1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "block-placement" 77 78 STATISTIC(NumCondBranches, "Number of conditional branches"); 79 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 80 STATISTIC(CondBranchTakenFreq, 81 "Potential frequency of taking conditional branches"); 82 STATISTIC(UncondBranchTakenFreq, 83 "Potential frequency of taking unconditional branches"); 84 85 static cl::opt<unsigned> AlignAllBlock( 86 "align-all-blocks", 87 cl::desc("Force the alignment of all blocks in the function in log2 format " 88 "(e.g 4 means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 92 "align-all-nofallthru-blocks", 93 cl::desc("Force the alignment of all blocks that have no fall-through " 94 "predecessors (i.e. don't add nops that are executed). In log2 " 95 "format (e.g 4 means align on 16B boundaries)."), 96 cl::init(0), cl::Hidden); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> ExitBlockBias( 100 "block-placement-exit-block-bias", 101 cl::desc("Block frequency percentage a loop exit block needs " 102 "over the original exit to be considered the new exit."), 103 cl::init(0), cl::Hidden); 104 105 // Definition: 106 // - Outlining: placement of a basic block outside the chain or hot path. 107 108 static cl::opt<unsigned> LoopToColdBlockRatio( 109 "loop-to-cold-block-ratio", 110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 111 "(frequency of block) is greater than this ratio"), 112 cl::init(5), cl::Hidden); 113 114 static cl::opt<bool> ForceLoopColdBlock( 115 "force-loop-cold-block", 116 cl::desc("Force outlining cold blocks from loops."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<bool> 120 PreciseRotationCost("precise-rotation-cost", 121 cl::desc("Model the cost of loop rotation more " 122 "precisely by using profile data."), 123 cl::init(false), cl::Hidden); 124 125 static cl::opt<bool> 126 ForcePreciseRotationCost("force-precise-rotation-cost", 127 cl::desc("Force the use of precise cost " 128 "loop rotation strategy."), 129 cl::init(false), cl::Hidden); 130 131 static cl::opt<unsigned> MisfetchCost( 132 "misfetch-cost", 133 cl::desc("Cost that models the probabilistic risk of an instruction " 134 "misfetch due to a jump comparing to falling through, whose cost " 135 "is zero."), 136 cl::init(1), cl::Hidden); 137 138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 139 cl::desc("Cost of jump instructions."), 140 cl::init(1), cl::Hidden); 141 static cl::opt<bool> 142 TailDupPlacement("tail-dup-placement", 143 cl::desc("Perform tail duplication during placement. " 144 "Creates more fallthrough opportunites in " 145 "outline branches."), 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 BranchFoldPlacement("branch-fold-placement", 150 cl::desc("Perform branch folding during placement. " 151 "Reduces code size."), 152 cl::init(true), cl::Hidden); 153 154 // Heuristic for tail duplication. 155 static cl::opt<unsigned> TailDupPlacementThreshold( 156 "tail-dup-placement-threshold", 157 cl::desc("Instruction cutoff for tail duplication during layout. " 158 "Tail merging during layout is forced to have a threshold " 159 "that won't conflict."), cl::init(2), 160 cl::Hidden); 161 162 // Heuristic for aggressive tail duplication. 163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 164 "tail-dup-placement-aggressive-threshold", 165 cl::desc("Instruction cutoff for aggressive tail duplication during " 166 "layout. Used at -O3. Tail merging during layout is forced to " 167 "have a threshold that won't conflict."), cl::init(4), 168 cl::Hidden); 169 170 // Heuristic for tail duplication. 171 static cl::opt<unsigned> TailDupPlacementPenalty( 172 "tail-dup-placement-penalty", 173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 174 "Copying can increase fallthrough, but it also increases icache " 175 "pressure. This parameter controls the penalty to account for that. " 176 "Percent as integer."), 177 cl::init(2), 178 cl::Hidden); 179 180 // Heuristic for tail duplication if profile count is used in cost model. 181 static cl::opt<unsigned> TailDupProfilePercentThreshold( 182 "tail-dup-profile-percent-threshold", 183 cl::desc("If profile count information is used in tail duplication cost " 184 "model, the gained fall through number from tail duplication " 185 "should be at least this percent of hot count."), 186 cl::init(50), cl::Hidden); 187 188 // Heuristic for triangle chains. 189 static cl::opt<unsigned> TriangleChainCount( 190 "triangle-chain-count", 191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 192 "triangle tail duplication heuristic to kick in. 0 to disable."), 193 cl::init(2), 194 cl::Hidden); 195 196 namespace llvm { 197 extern cl::opt<unsigned> StaticLikelyProb; 198 extern cl::opt<unsigned> ProfileLikelyProb; 199 200 // Internal option used to control BFI display only after MBP pass. 201 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 202 // -view-block-layout-with-bfi= 203 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 204 205 // Command line option to specify the name of the function for CFG dump 206 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 207 extern cl::opt<std::string> ViewBlockFreqFuncName; 208 } // namespace llvm 209 210 namespace { 211 212 class BlockChain; 213 214 /// Type for our function-wide basic block -> block chain mapping. 215 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 216 217 /// A chain of blocks which will be laid out contiguously. 218 /// 219 /// This is the datastructure representing a chain of consecutive blocks that 220 /// are profitable to layout together in order to maximize fallthrough 221 /// probabilities and code locality. We also can use a block chain to represent 222 /// a sequence of basic blocks which have some external (correctness) 223 /// requirement for sequential layout. 224 /// 225 /// Chains can be built around a single basic block and can be merged to grow 226 /// them. They participate in a block-to-chain mapping, which is updated 227 /// automatically as chains are merged together. 228 class BlockChain { 229 /// The sequence of blocks belonging to this chain. 230 /// 231 /// This is the sequence of blocks for a particular chain. These will be laid 232 /// out in-order within the function. 233 SmallVector<MachineBasicBlock *, 4> Blocks; 234 235 /// A handle to the function-wide basic block to block chain mapping. 236 /// 237 /// This is retained in each block chain to simplify the computation of child 238 /// block chains for SCC-formation and iteration. We store the edges to child 239 /// basic blocks, and map them back to their associated chains using this 240 /// structure. 241 BlockToChainMapType &BlockToChain; 242 243 public: 244 /// Construct a new BlockChain. 245 /// 246 /// This builds a new block chain representing a single basic block in the 247 /// function. It also registers itself as the chain that block participates 248 /// in with the BlockToChain mapping. 249 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 250 : Blocks(1, BB), BlockToChain(BlockToChain) { 251 assert(BB && "Cannot create a chain with a null basic block"); 252 BlockToChain[BB] = this; 253 } 254 255 /// Iterator over blocks within the chain. 256 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 257 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 258 259 /// Beginning of blocks within the chain. 260 iterator begin() { return Blocks.begin(); } 261 const_iterator begin() const { return Blocks.begin(); } 262 263 /// End of blocks within the chain. 264 iterator end() { return Blocks.end(); } 265 const_iterator end() const { return Blocks.end(); } 266 267 bool remove(MachineBasicBlock* BB) { 268 for(iterator i = begin(); i != end(); ++i) { 269 if (*i == BB) { 270 Blocks.erase(i); 271 return true; 272 } 273 } 274 return false; 275 } 276 277 /// Merge a block chain into this one. 278 /// 279 /// This routine merges a block chain into this one. It takes care of forming 280 /// a contiguous sequence of basic blocks, updating the edge list, and 281 /// updating the block -> chain mapping. It does not free or tear down the 282 /// old chain, but the old chain's block list is no longer valid. 283 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 284 assert(BB && "Can't merge a null block."); 285 assert(!Blocks.empty() && "Can't merge into an empty chain."); 286 287 // Fast path in case we don't have a chain already. 288 if (!Chain) { 289 assert(!BlockToChain[BB] && 290 "Passed chain is null, but BB has entry in BlockToChain."); 291 Blocks.push_back(BB); 292 BlockToChain[BB] = this; 293 return; 294 } 295 296 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 297 assert(Chain->begin() != Chain->end()); 298 299 // Update the incoming blocks to point to this chain, and add them to the 300 // chain structure. 301 for (MachineBasicBlock *ChainBB : *Chain) { 302 Blocks.push_back(ChainBB); 303 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 304 BlockToChain[ChainBB] = this; 305 } 306 } 307 308 #ifndef NDEBUG 309 /// Dump the blocks in this chain. 310 LLVM_DUMP_METHOD void dump() { 311 for (MachineBasicBlock *MBB : *this) 312 MBB->dump(); 313 } 314 #endif // NDEBUG 315 316 /// Count of predecessors of any block within the chain which have not 317 /// yet been scheduled. In general, we will delay scheduling this chain 318 /// until those predecessors are scheduled (or we find a sufficiently good 319 /// reason to override this heuristic.) Note that when forming loop chains, 320 /// blocks outside the loop are ignored and treated as if they were already 321 /// scheduled. 322 /// 323 /// Note: This field is reinitialized multiple times - once for each loop, 324 /// and then once for the function as a whole. 325 unsigned UnscheduledPredecessors = 0; 326 }; 327 328 class MachineBlockPlacement : public MachineFunctionPass { 329 /// A type for a block filter set. 330 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 331 332 /// Pair struct containing basic block and taildup profitability 333 struct BlockAndTailDupResult { 334 MachineBasicBlock *BB; 335 bool ShouldTailDup; 336 }; 337 338 /// Triple struct containing edge weight and the edge. 339 struct WeightedEdge { 340 BlockFrequency Weight; 341 MachineBasicBlock *Src; 342 MachineBasicBlock *Dest; 343 }; 344 345 /// work lists of blocks that are ready to be laid out 346 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 347 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 348 349 /// Edges that have already been computed as optimal. 350 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 351 352 /// Machine Function 353 MachineFunction *F; 354 355 /// A handle to the branch probability pass. 356 const MachineBranchProbabilityInfo *MBPI; 357 358 /// A handle to the function-wide block frequency pass. 359 std::unique_ptr<MBFIWrapper> MBFI; 360 361 /// A handle to the loop info. 362 MachineLoopInfo *MLI; 363 364 /// Preferred loop exit. 365 /// Member variable for convenience. It may be removed by duplication deep 366 /// in the call stack. 367 MachineBasicBlock *PreferredLoopExit; 368 369 /// A handle to the target's instruction info. 370 const TargetInstrInfo *TII; 371 372 /// A handle to the target's lowering info. 373 const TargetLoweringBase *TLI; 374 375 /// A handle to the post dominator tree. 376 MachinePostDominatorTree *MPDT; 377 378 ProfileSummaryInfo *PSI; 379 380 /// Duplicator used to duplicate tails during placement. 381 /// 382 /// Placement decisions can open up new tail duplication opportunities, but 383 /// since tail duplication affects placement decisions of later blocks, it 384 /// must be done inline. 385 TailDuplicator TailDup; 386 387 /// Partial tail duplication threshold. 388 BlockFrequency DupThreshold; 389 390 /// True: use block profile count to compute tail duplication cost. 391 /// False: use block frequency to compute tail duplication cost. 392 bool UseProfileCount; 393 394 /// Allocator and owner of BlockChain structures. 395 /// 396 /// We build BlockChains lazily while processing the loop structure of 397 /// a function. To reduce malloc traffic, we allocate them using this 398 /// slab-like allocator, and destroy them after the pass completes. An 399 /// important guarantee is that this allocator produces stable pointers to 400 /// the chains. 401 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 402 403 /// Function wide BasicBlock to BlockChain mapping. 404 /// 405 /// This mapping allows efficiently moving from any given basic block to the 406 /// BlockChain it participates in, if any. We use it to, among other things, 407 /// allow implicitly defining edges between chains as the existing edges 408 /// between basic blocks. 409 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 410 411 #ifndef NDEBUG 412 /// The set of basic blocks that have terminators that cannot be fully 413 /// analyzed. These basic blocks cannot be re-ordered safely by 414 /// MachineBlockPlacement, and we must preserve physical layout of these 415 /// blocks and their successors through the pass. 416 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 417 #endif 418 419 /// Get block profile count or frequency according to UseProfileCount. 420 /// The return value is used to model tail duplication cost. 421 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 422 if (UseProfileCount) { 423 auto Count = MBFI->getBlockProfileCount(BB); 424 if (Count) 425 return *Count; 426 else 427 return 0; 428 } else 429 return MBFI->getBlockFreq(BB); 430 } 431 432 /// Scale the DupThreshold according to basic block size. 433 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 434 void initDupThreshold(); 435 436 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 437 /// if the count goes to 0, add them to the appropriate work list. 438 void markChainSuccessors( 439 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 440 const BlockFilterSet *BlockFilter = nullptr); 441 442 /// Decrease the UnscheduledPredecessors count for a single block, and 443 /// if the count goes to 0, add them to the appropriate work list. 444 void markBlockSuccessors( 445 const BlockChain &Chain, const MachineBasicBlock *BB, 446 const MachineBasicBlock *LoopHeaderBB, 447 const BlockFilterSet *BlockFilter = nullptr); 448 449 BranchProbability 450 collectViableSuccessors( 451 const MachineBasicBlock *BB, const BlockChain &Chain, 452 const BlockFilterSet *BlockFilter, 453 SmallVector<MachineBasicBlock *, 4> &Successors); 454 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 455 BlockFilterSet *BlockFilter); 456 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 457 MachineBasicBlock *BB, 458 BlockFilterSet *BlockFilter); 459 bool repeatedlyTailDuplicateBlock( 460 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 461 const MachineBasicBlock *LoopHeaderBB, 462 BlockChain &Chain, BlockFilterSet *BlockFilter, 463 MachineFunction::iterator &PrevUnplacedBlockIt); 464 bool maybeTailDuplicateBlock( 465 MachineBasicBlock *BB, MachineBasicBlock *LPred, 466 BlockChain &Chain, BlockFilterSet *BlockFilter, 467 MachineFunction::iterator &PrevUnplacedBlockIt, 468 bool &DuplicatedToLPred); 469 bool hasBetterLayoutPredecessor( 470 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 471 const BlockChain &SuccChain, BranchProbability SuccProb, 472 BranchProbability RealSuccProb, const BlockChain &Chain, 473 const BlockFilterSet *BlockFilter); 474 BlockAndTailDupResult selectBestSuccessor( 475 const MachineBasicBlock *BB, const BlockChain &Chain, 476 const BlockFilterSet *BlockFilter); 477 MachineBasicBlock *selectBestCandidateBlock( 478 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 479 MachineBasicBlock *getFirstUnplacedBlock( 480 const BlockChain &PlacedChain, 481 MachineFunction::iterator &PrevUnplacedBlockIt, 482 const BlockFilterSet *BlockFilter); 483 484 /// Add a basic block to the work list if it is appropriate. 485 /// 486 /// If the optional parameter BlockFilter is provided, only MBB 487 /// present in the set will be added to the worklist. If nullptr 488 /// is provided, no filtering occurs. 489 void fillWorkLists(const MachineBasicBlock *MBB, 490 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 491 const BlockFilterSet *BlockFilter); 492 493 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 494 BlockFilterSet *BlockFilter = nullptr); 495 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 496 const MachineBasicBlock *OldTop); 497 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 498 const BlockFilterSet &LoopBlockSet); 499 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 500 const BlockFilterSet &LoopBlockSet); 501 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 502 const MachineBasicBlock *OldTop, 503 const MachineBasicBlock *ExitBB, 504 const BlockFilterSet &LoopBlockSet); 505 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 507 MachineBasicBlock *findBestLoopTop( 508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 509 MachineBasicBlock *findBestLoopExit( 510 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 511 BlockFrequency &ExitFreq); 512 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 513 void buildLoopChains(const MachineLoop &L); 514 void rotateLoop( 515 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 516 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 517 void rotateLoopWithProfile( 518 BlockChain &LoopChain, const MachineLoop &L, 519 const BlockFilterSet &LoopBlockSet); 520 void buildCFGChains(); 521 void optimizeBranches(); 522 void alignBlocks(); 523 /// Returns true if a block should be tail-duplicated to increase fallthrough 524 /// opportunities. 525 bool shouldTailDuplicate(MachineBasicBlock *BB); 526 /// Check the edge frequencies to see if tail duplication will increase 527 /// fallthroughs. 528 bool isProfitableToTailDup( 529 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 530 BranchProbability QProb, 531 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 532 533 /// Check for a trellis layout. 534 bool isTrellis(const MachineBasicBlock *BB, 535 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 536 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 537 538 /// Get the best successor given a trellis layout. 539 BlockAndTailDupResult getBestTrellisSuccessor( 540 const MachineBasicBlock *BB, 541 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 542 BranchProbability AdjustedSumProb, const BlockChain &Chain, 543 const BlockFilterSet *BlockFilter); 544 545 /// Get the best pair of non-conflicting edges. 546 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 547 const MachineBasicBlock *BB, 548 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 549 550 /// Returns true if a block can tail duplicate into all unplaced 551 /// predecessors. Filters based on loop. 552 bool canTailDuplicateUnplacedPreds( 553 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 554 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 555 556 /// Find chains of triangles to tail-duplicate where a global analysis works, 557 /// but a local analysis would not find them. 558 void precomputeTriangleChains(); 559 560 public: 561 static char ID; // Pass identification, replacement for typeid 562 563 MachineBlockPlacement() : MachineFunctionPass(ID) { 564 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 565 } 566 567 bool runOnMachineFunction(MachineFunction &F) override; 568 569 bool allowTailDupPlacement() const { 570 assert(F); 571 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 572 } 573 574 void getAnalysisUsage(AnalysisUsage &AU) const override { 575 AU.addRequired<MachineBranchProbabilityInfo>(); 576 AU.addRequired<MachineBlockFrequencyInfo>(); 577 if (TailDupPlacement) 578 AU.addRequired<MachinePostDominatorTree>(); 579 AU.addRequired<MachineLoopInfo>(); 580 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 581 AU.addRequired<TargetPassConfig>(); 582 MachineFunctionPass::getAnalysisUsage(AU); 583 } 584 }; 585 586 } // end anonymous namespace 587 588 char MachineBlockPlacement::ID = 0; 589 590 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 591 592 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 593 "Branch Probability Basic Block Placement", false, false) 594 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 595 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 596 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 597 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 598 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 599 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 600 "Branch Probability Basic Block Placement", false, false) 601 602 #ifndef NDEBUG 603 /// Helper to print the name of a MBB. 604 /// 605 /// Only used by debug logging. 606 static std::string getBlockName(const MachineBasicBlock *BB) { 607 std::string Result; 608 raw_string_ostream OS(Result); 609 OS << printMBBReference(*BB); 610 OS << " ('" << BB->getName() << "')"; 611 OS.flush(); 612 return Result; 613 } 614 #endif 615 616 /// Mark a chain's successors as having one fewer preds. 617 /// 618 /// When a chain is being merged into the "placed" chain, this routine will 619 /// quickly walk the successors of each block in the chain and mark them as 620 /// having one fewer active predecessor. It also adds any successors of this 621 /// chain which reach the zero-predecessor state to the appropriate worklist. 622 void MachineBlockPlacement::markChainSuccessors( 623 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 624 const BlockFilterSet *BlockFilter) { 625 // Walk all the blocks in this chain, marking their successors as having 626 // a predecessor placed. 627 for (MachineBasicBlock *MBB : Chain) { 628 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 629 } 630 } 631 632 /// Mark a single block's successors as having one fewer preds. 633 /// 634 /// Under normal circumstances, this is only called by markChainSuccessors, 635 /// but if a block that was to be placed is completely tail-duplicated away, 636 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 637 /// for just that block. 638 void MachineBlockPlacement::markBlockSuccessors( 639 const BlockChain &Chain, const MachineBasicBlock *MBB, 640 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 641 // Add any successors for which this is the only un-placed in-loop 642 // predecessor to the worklist as a viable candidate for CFG-neutral 643 // placement. No subsequent placement of this block will violate the CFG 644 // shape, so we get to use heuristics to choose a favorable placement. 645 for (MachineBasicBlock *Succ : MBB->successors()) { 646 if (BlockFilter && !BlockFilter->count(Succ)) 647 continue; 648 BlockChain &SuccChain = *BlockToChain[Succ]; 649 // Disregard edges within a fixed chain, or edges to the loop header. 650 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 651 continue; 652 653 // This is a cross-chain edge that is within the loop, so decrement the 654 // loop predecessor count of the destination chain. 655 if (SuccChain.UnscheduledPredecessors == 0 || 656 --SuccChain.UnscheduledPredecessors > 0) 657 continue; 658 659 auto *NewBB = *SuccChain.begin(); 660 if (NewBB->isEHPad()) 661 EHPadWorkList.push_back(NewBB); 662 else 663 BlockWorkList.push_back(NewBB); 664 } 665 } 666 667 /// This helper function collects the set of successors of block 668 /// \p BB that are allowed to be its layout successors, and return 669 /// the total branch probability of edges from \p BB to those 670 /// blocks. 671 BranchProbability MachineBlockPlacement::collectViableSuccessors( 672 const MachineBasicBlock *BB, const BlockChain &Chain, 673 const BlockFilterSet *BlockFilter, 674 SmallVector<MachineBasicBlock *, 4> &Successors) { 675 // Adjust edge probabilities by excluding edges pointing to blocks that is 676 // either not in BlockFilter or is already in the current chain. Consider the 677 // following CFG: 678 // 679 // --->A 680 // | / \ 681 // | B C 682 // | \ / \ 683 // ----D E 684 // 685 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 686 // A->C is chosen as a fall-through, D won't be selected as a successor of C 687 // due to CFG constraint (the probability of C->D is not greater than 688 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 689 // when calculating the probability of C->D, D will be selected and we 690 // will get A C D B as the layout of this loop. 691 auto AdjustedSumProb = BranchProbability::getOne(); 692 for (MachineBasicBlock *Succ : BB->successors()) { 693 bool SkipSucc = false; 694 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 695 SkipSucc = true; 696 } else { 697 BlockChain *SuccChain = BlockToChain[Succ]; 698 if (SuccChain == &Chain) { 699 SkipSucc = true; 700 } else if (Succ != *SuccChain->begin()) { 701 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 702 << " -> Mid chain!\n"); 703 continue; 704 } 705 } 706 if (SkipSucc) 707 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 708 else 709 Successors.push_back(Succ); 710 } 711 712 return AdjustedSumProb; 713 } 714 715 /// The helper function returns the branch probability that is adjusted 716 /// or normalized over the new total \p AdjustedSumProb. 717 static BranchProbability 718 getAdjustedProbability(BranchProbability OrigProb, 719 BranchProbability AdjustedSumProb) { 720 BranchProbability SuccProb; 721 uint32_t SuccProbN = OrigProb.getNumerator(); 722 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 723 if (SuccProbN >= SuccProbD) 724 SuccProb = BranchProbability::getOne(); 725 else 726 SuccProb = BranchProbability(SuccProbN, SuccProbD); 727 728 return SuccProb; 729 } 730 731 /// Check if \p BB has exactly the successors in \p Successors. 732 static bool 733 hasSameSuccessors(MachineBasicBlock &BB, 734 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 735 if (BB.succ_size() != Successors.size()) 736 return false; 737 // We don't want to count self-loops 738 if (Successors.count(&BB)) 739 return false; 740 for (MachineBasicBlock *Succ : BB.successors()) 741 if (!Successors.count(Succ)) 742 return false; 743 return true; 744 } 745 746 /// Check if a block should be tail duplicated to increase fallthrough 747 /// opportunities. 748 /// \p BB Block to check. 749 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 750 // Blocks with single successors don't create additional fallthrough 751 // opportunities. Don't duplicate them. TODO: When conditional exits are 752 // analyzable, allow them to be duplicated. 753 bool IsSimple = TailDup.isSimpleBB(BB); 754 755 if (BB->succ_size() == 1) 756 return false; 757 return TailDup.shouldTailDuplicate(IsSimple, *BB); 758 } 759 760 /// Compare 2 BlockFrequency's with a small penalty for \p A. 761 /// In order to be conservative, we apply a X% penalty to account for 762 /// increased icache pressure and static heuristics. For small frequencies 763 /// we use only the numerators to improve accuracy. For simplicity, we assume the 764 /// penalty is less than 100% 765 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 766 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 767 uint64_t EntryFreq) { 768 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 769 BlockFrequency Gain = A - B; 770 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 771 } 772 773 /// Check the edge frequencies to see if tail duplication will increase 774 /// fallthroughs. It only makes sense to call this function when 775 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 776 /// always locally profitable if we would have picked \p Succ without 777 /// considering duplication. 778 bool MachineBlockPlacement::isProfitableToTailDup( 779 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 780 BranchProbability QProb, 781 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 782 // We need to do a probability calculation to make sure this is profitable. 783 // First: does succ have a successor that post-dominates? This affects the 784 // calculation. The 2 relevant cases are: 785 // BB BB 786 // | \Qout | \Qout 787 // P| C |P C 788 // = C' = C' 789 // | /Qin | /Qin 790 // | / | / 791 // Succ Succ 792 // / \ | \ V 793 // U/ =V |U \ 794 // / \ = D 795 // D E | / 796 // | / 797 // |/ 798 // PDom 799 // '=' : Branch taken for that CFG edge 800 // In the second case, Placing Succ while duplicating it into C prevents the 801 // fallthrough of Succ into either D or PDom, because they now have C as an 802 // unplaced predecessor 803 804 // Start by figuring out which case we fall into 805 MachineBasicBlock *PDom = nullptr; 806 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 807 // Only scan the relevant successors 808 auto AdjustedSuccSumProb = 809 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 810 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 811 auto BBFreq = MBFI->getBlockFreq(BB); 812 auto SuccFreq = MBFI->getBlockFreq(Succ); 813 BlockFrequency P = BBFreq * PProb; 814 BlockFrequency Qout = BBFreq * QProb; 815 uint64_t EntryFreq = MBFI->getEntryFreq(); 816 // If there are no more successors, it is profitable to copy, as it strictly 817 // increases fallthrough. 818 if (SuccSuccs.size() == 0) 819 return greaterWithBias(P, Qout, EntryFreq); 820 821 auto BestSuccSucc = BranchProbability::getZero(); 822 // Find the PDom or the best Succ if no PDom exists. 823 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 824 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 825 if (Prob > BestSuccSucc) 826 BestSuccSucc = Prob; 827 if (PDom == nullptr) 828 if (MPDT->dominates(SuccSucc, Succ)) { 829 PDom = SuccSucc; 830 break; 831 } 832 } 833 // For the comparisons, we need to know Succ's best incoming edge that isn't 834 // from BB. 835 auto SuccBestPred = BlockFrequency(0); 836 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 837 if (SuccPred == Succ || SuccPred == BB 838 || BlockToChain[SuccPred] == &Chain 839 || (BlockFilter && !BlockFilter->count(SuccPred))) 840 continue; 841 auto Freq = MBFI->getBlockFreq(SuccPred) 842 * MBPI->getEdgeProbability(SuccPred, Succ); 843 if (Freq > SuccBestPred) 844 SuccBestPred = Freq; 845 } 846 // Qin is Succ's best unplaced incoming edge that isn't BB 847 BlockFrequency Qin = SuccBestPred; 848 // If it doesn't have a post-dominating successor, here is the calculation: 849 // BB BB 850 // | \Qout | \ 851 // P| C | = 852 // = C' | C 853 // | /Qin | | 854 // | / | C' (+Succ) 855 // Succ Succ /| 856 // / \ | \/ | 857 // U/ =V | == | 858 // / \ | / \| 859 // D E D E 860 // '=' : Branch taken for that CFG edge 861 // Cost in the first case is: P + V 862 // For this calculation, we always assume P > Qout. If Qout > P 863 // The result of this function will be ignored at the caller. 864 // Let F = SuccFreq - Qin 865 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 866 867 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 868 BranchProbability UProb = BestSuccSucc; 869 BranchProbability VProb = AdjustedSuccSumProb - UProb; 870 BlockFrequency F = SuccFreq - Qin; 871 BlockFrequency V = SuccFreq * VProb; 872 BlockFrequency QinU = std::min(Qin, F) * UProb; 873 BlockFrequency BaseCost = P + V; 874 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 875 return greaterWithBias(BaseCost, DupCost, EntryFreq); 876 } 877 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 878 BranchProbability VProb = AdjustedSuccSumProb - UProb; 879 BlockFrequency U = SuccFreq * UProb; 880 BlockFrequency V = SuccFreq * VProb; 881 BlockFrequency F = SuccFreq - Qin; 882 // If there is a post-dominating successor, here is the calculation: 883 // BB BB BB BB 884 // | \Qout | \ | \Qout | \ 885 // |P C | = |P C | = 886 // = C' |P C = C' |P C 887 // | /Qin | | | /Qin | | 888 // | / | C' (+Succ) | / | C' (+Succ) 889 // Succ Succ /| Succ Succ /| 890 // | \ V | \/ | | \ V | \/ | 891 // |U \ |U /\ =? |U = |U /\ | 892 // = D = = =?| | D | = =| 893 // | / |/ D | / |/ D 894 // | / | / | = | / 895 // |/ | / |/ | = 896 // Dom Dom Dom Dom 897 // '=' : Branch taken for that CFG edge 898 // The cost for taken branches in the first case is P + U 899 // Let F = SuccFreq - Qin 900 // The cost in the second case (assuming independence), given the layout: 901 // BB, Succ, (C+Succ), D, Dom or the layout: 902 // BB, Succ, D, Dom, (C+Succ) 903 // is Qout + max(F, Qin) * U + min(F, Qin) 904 // compare P + U vs Qout + P * U + Qin. 905 // 906 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 907 // 908 // For the 3rd case, the cost is P + 2 * V 909 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 910 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 911 if (UProb > AdjustedSuccSumProb / 2 && 912 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 913 Chain, BlockFilter)) 914 // Cases 3 & 4 915 return greaterWithBias( 916 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 917 EntryFreq); 918 // Cases 1 & 2 919 return greaterWithBias((P + U), 920 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 921 std::max(Qin, F) * UProb), 922 EntryFreq); 923 } 924 925 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 926 /// successors form the lower part of a trellis. A successor set S forms the 927 /// lower part of a trellis if all of the predecessors of S are either in S or 928 /// have all of S as successors. We ignore trellises where BB doesn't have 2 929 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 930 /// are very uncommon and complex to compute optimally. Allowing edges within S 931 /// is not strictly a trellis, but the same algorithm works, so we allow it. 932 bool MachineBlockPlacement::isTrellis( 933 const MachineBasicBlock *BB, 934 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 935 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 936 // Technically BB could form a trellis with branching factor higher than 2. 937 // But that's extremely uncommon. 938 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 939 return false; 940 941 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 942 BB->succ_end()); 943 // To avoid reviewing the same predecessors twice. 944 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 945 946 for (MachineBasicBlock *Succ : ViableSuccs) { 947 int PredCount = 0; 948 for (auto SuccPred : Succ->predecessors()) { 949 // Allow triangle successors, but don't count them. 950 if (Successors.count(SuccPred)) { 951 // Make sure that it is actually a triangle. 952 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 953 if (!Successors.count(CheckSucc)) 954 return false; 955 continue; 956 } 957 const BlockChain *PredChain = BlockToChain[SuccPred]; 958 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 959 PredChain == &Chain || PredChain == BlockToChain[Succ]) 960 continue; 961 ++PredCount; 962 // Perform the successor check only once. 963 if (!SeenPreds.insert(SuccPred).second) 964 continue; 965 if (!hasSameSuccessors(*SuccPred, Successors)) 966 return false; 967 } 968 // If one of the successors has only BB as a predecessor, it is not a 969 // trellis. 970 if (PredCount < 1) 971 return false; 972 } 973 return true; 974 } 975 976 /// Pick the highest total weight pair of edges that can both be laid out. 977 /// The edges in \p Edges[0] are assumed to have a different destination than 978 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 979 /// the individual highest weight edges to the 2 different destinations, or in 980 /// case of a conflict, one of them should be replaced with a 2nd best edge. 981 std::pair<MachineBlockPlacement::WeightedEdge, 982 MachineBlockPlacement::WeightedEdge> 983 MachineBlockPlacement::getBestNonConflictingEdges( 984 const MachineBasicBlock *BB, 985 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 986 Edges) { 987 // Sort the edges, and then for each successor, find the best incoming 988 // predecessor. If the best incoming predecessors aren't the same, 989 // then that is clearly the best layout. If there is a conflict, one of the 990 // successors will have to fallthrough from the second best predecessor. We 991 // compare which combination is better overall. 992 993 // Sort for highest frequency. 994 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 995 996 llvm::stable_sort(Edges[0], Cmp); 997 llvm::stable_sort(Edges[1], Cmp); 998 auto BestA = Edges[0].begin(); 999 auto BestB = Edges[1].begin(); 1000 // Arrange for the correct answer to be in BestA and BestB 1001 // If the 2 best edges don't conflict, the answer is already there. 1002 if (BestA->Src == BestB->Src) { 1003 // Compare the total fallthrough of (Best + Second Best) for both pairs 1004 auto SecondBestA = std::next(BestA); 1005 auto SecondBestB = std::next(BestB); 1006 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1007 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1008 if (BestAScore < BestBScore) 1009 BestA = SecondBestA; 1010 else 1011 BestB = SecondBestB; 1012 } 1013 // Arrange for the BB edge to be in BestA if it exists. 1014 if (BestB->Src == BB) 1015 std::swap(BestA, BestB); 1016 return std::make_pair(*BestA, *BestB); 1017 } 1018 1019 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1020 /// We only handle trellises with 2 successors, so the algorithm is 1021 /// straightforward: Find the best pair of edges that don't conflict. We find 1022 /// the best incoming edge for each successor in the trellis. If those conflict, 1023 /// we consider which of them should be replaced with the second best. 1024 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1025 /// comes from \p BB, it will be in \p BestEdges[0] 1026 MachineBlockPlacement::BlockAndTailDupResult 1027 MachineBlockPlacement::getBestTrellisSuccessor( 1028 const MachineBasicBlock *BB, 1029 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1030 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1031 const BlockFilterSet *BlockFilter) { 1032 1033 BlockAndTailDupResult Result = {nullptr, false}; 1034 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1035 BB->succ_end()); 1036 1037 // We assume size 2 because it's common. For general n, we would have to do 1038 // the Hungarian algorithm, but it's not worth the complexity because more 1039 // than 2 successors is fairly uncommon, and a trellis even more so. 1040 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1041 return Result; 1042 1043 // Collect the edge frequencies of all edges that form the trellis. 1044 SmallVector<WeightedEdge, 8> Edges[2]; 1045 int SuccIndex = 0; 1046 for (auto Succ : ViableSuccs) { 1047 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1048 // Skip any placed predecessors that are not BB 1049 if (SuccPred != BB) 1050 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1051 BlockToChain[SuccPred] == &Chain || 1052 BlockToChain[SuccPred] == BlockToChain[Succ]) 1053 continue; 1054 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1055 MBPI->getEdgeProbability(SuccPred, Succ); 1056 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1057 } 1058 ++SuccIndex; 1059 } 1060 1061 // Pick the best combination of 2 edges from all the edges in the trellis. 1062 WeightedEdge BestA, BestB; 1063 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1064 1065 if (BestA.Src != BB) { 1066 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1067 // we shouldn't choose any successor. We've already looked and there's a 1068 // better fallthrough edge for all the successors. 1069 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1070 return Result; 1071 } 1072 1073 // Did we pick the triangle edge? If tail-duplication is profitable, do 1074 // that instead. Otherwise merge the triangle edge now while we know it is 1075 // optimal. 1076 if (BestA.Dest == BestB.Src) { 1077 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1078 // would be better. 1079 MachineBasicBlock *Succ1 = BestA.Dest; 1080 MachineBasicBlock *Succ2 = BestB.Dest; 1081 // Check to see if tail-duplication would be profitable. 1082 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1083 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1084 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1085 Chain, BlockFilter)) { 1086 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1087 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1088 dbgs() << " Selected: " << getBlockName(Succ2) 1089 << ", probability: " << Succ2Prob 1090 << " (Tail Duplicate)\n"); 1091 Result.BB = Succ2; 1092 Result.ShouldTailDup = true; 1093 return Result; 1094 } 1095 } 1096 // We have already computed the optimal edge for the other side of the 1097 // trellis. 1098 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1099 1100 auto TrellisSucc = BestA.Dest; 1101 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1102 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1103 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1104 << ", probability: " << SuccProb << " (Trellis)\n"); 1105 Result.BB = TrellisSucc; 1106 return Result; 1107 } 1108 1109 /// When the option allowTailDupPlacement() is on, this method checks if the 1110 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1111 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1112 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1113 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1114 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1115 if (!shouldTailDuplicate(Succ)) 1116 return false; 1117 1118 // The result of canTailDuplicate. 1119 bool Duplicate = true; 1120 // Number of possible duplication. 1121 unsigned int NumDup = 0; 1122 1123 // For CFG checking. 1124 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1125 BB->succ_end()); 1126 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1127 // Make sure all unplaced and unfiltered predecessors can be 1128 // tail-duplicated into. 1129 // Skip any blocks that are already placed or not in this loop. 1130 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1131 || BlockToChain[Pred] == &Chain) 1132 continue; 1133 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1134 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1135 // This will result in a trellis after tail duplication, so we don't 1136 // need to copy Succ into this predecessor. In the presence 1137 // of a trellis tail duplication can continue to be profitable. 1138 // For example: 1139 // A A 1140 // |\ |\ 1141 // | \ | \ 1142 // | C | C+BB 1143 // | / | | 1144 // |/ | | 1145 // BB => BB | 1146 // |\ |\/| 1147 // | \ |/\| 1148 // | D | D 1149 // | / | / 1150 // |/ |/ 1151 // Succ Succ 1152 // 1153 // After BB was duplicated into C, the layout looks like the one on the 1154 // right. BB and C now have the same successors. When considering 1155 // whether Succ can be duplicated into all its unplaced predecessors, we 1156 // ignore C. 1157 // We can do this because C already has a profitable fallthrough, namely 1158 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1159 // duplication and for this test. 1160 // 1161 // This allows trellises to be laid out in 2 separate chains 1162 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1163 // because it allows the creation of 2 fallthrough paths with links 1164 // between them, and we correctly identify the best layout for these 1165 // CFGs. We want to extend trellises that the user created in addition 1166 // to trellises created by tail-duplication, so we just look for the 1167 // CFG. 1168 continue; 1169 Duplicate = false; 1170 continue; 1171 } 1172 NumDup++; 1173 } 1174 1175 // No possible duplication in current filter set. 1176 if (NumDup == 0) 1177 return false; 1178 1179 // If profile information is available, findDuplicateCandidates can do more 1180 // precise benefit analysis. 1181 if (F->getFunction().hasProfileData()) 1182 return true; 1183 1184 // This is mainly for function exit BB. 1185 // The integrated tail duplication is really designed for increasing 1186 // fallthrough from predecessors from Succ to its successors. We may need 1187 // other machanism to handle different cases. 1188 if (Succ->succ_size() == 0) 1189 return true; 1190 1191 // Plus the already placed predecessor. 1192 NumDup++; 1193 1194 // If the duplication candidate has more unplaced predecessors than 1195 // successors, the extra duplication can't bring more fallthrough. 1196 // 1197 // Pred1 Pred2 Pred3 1198 // \ | / 1199 // \ | / 1200 // \ | / 1201 // Dup 1202 // / \ 1203 // / \ 1204 // Succ1 Succ2 1205 // 1206 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1207 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1208 // but the duplication into Pred3 can't increase fallthrough. 1209 // 1210 // A small number of extra duplication may not hurt too much. We need a better 1211 // heuristic to handle it. 1212 if ((NumDup > Succ->succ_size()) || !Duplicate) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 /// Find chains of triangles where we believe it would be profitable to 1219 /// tail-duplicate them all, but a local analysis would not find them. 1220 /// There are 3 ways this can be profitable: 1221 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1222 /// longer chains) 1223 /// 2) The chains are statically correlated. Branch probabilities have a very 1224 /// U-shaped distribution. 1225 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1226 /// If the branches in a chain are likely to be from the same side of the 1227 /// distribution as their predecessor, but are independent at runtime, this 1228 /// transformation is profitable. (Because the cost of being wrong is a small 1229 /// fixed cost, unlike the standard triangle layout where the cost of being 1230 /// wrong scales with the # of triangles.) 1231 /// 3) The chains are dynamically correlated. If the probability that a previous 1232 /// branch was taken positively influences whether the next branch will be 1233 /// taken 1234 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1235 void MachineBlockPlacement::precomputeTriangleChains() { 1236 struct TriangleChain { 1237 std::vector<MachineBasicBlock *> Edges; 1238 1239 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1240 : Edges({src, dst}) {} 1241 1242 void append(MachineBasicBlock *dst) { 1243 assert(getKey()->isSuccessor(dst) && 1244 "Attempting to append a block that is not a successor."); 1245 Edges.push_back(dst); 1246 } 1247 1248 unsigned count() const { return Edges.size() - 1; } 1249 1250 MachineBasicBlock *getKey() const { 1251 return Edges.back(); 1252 } 1253 }; 1254 1255 if (TriangleChainCount == 0) 1256 return; 1257 1258 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1259 // Map from last block to the chain that contains it. This allows us to extend 1260 // chains as we find new triangles. 1261 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1262 for (MachineBasicBlock &BB : *F) { 1263 // If BB doesn't have 2 successors, it doesn't start a triangle. 1264 if (BB.succ_size() != 2) 1265 continue; 1266 MachineBasicBlock *PDom = nullptr; 1267 for (MachineBasicBlock *Succ : BB.successors()) { 1268 if (!MPDT->dominates(Succ, &BB)) 1269 continue; 1270 PDom = Succ; 1271 break; 1272 } 1273 // If BB doesn't have a post-dominating successor, it doesn't form a 1274 // triangle. 1275 if (PDom == nullptr) 1276 continue; 1277 // If PDom has a hint that it is low probability, skip this triangle. 1278 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1279 continue; 1280 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1281 // we're looking for. 1282 if (!shouldTailDuplicate(PDom)) 1283 continue; 1284 bool CanTailDuplicate = true; 1285 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1286 // isn't the kind of triangle we're looking for. 1287 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1288 if (Pred == &BB) 1289 continue; 1290 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1291 CanTailDuplicate = false; 1292 break; 1293 } 1294 } 1295 // If we can't tail-duplicate PDom to its predecessors, then skip this 1296 // triangle. 1297 if (!CanTailDuplicate) 1298 continue; 1299 1300 // Now we have an interesting triangle. Insert it if it's not part of an 1301 // existing chain. 1302 // Note: This cannot be replaced with a call insert() or emplace() because 1303 // the find key is BB, but the insert/emplace key is PDom. 1304 auto Found = TriangleChainMap.find(&BB); 1305 // If it is, remove the chain from the map, grow it, and put it back in the 1306 // map with the end as the new key. 1307 if (Found != TriangleChainMap.end()) { 1308 TriangleChain Chain = std::move(Found->second); 1309 TriangleChainMap.erase(Found); 1310 Chain.append(PDom); 1311 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1312 } else { 1313 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1314 assert(InsertResult.second && "Block seen twice."); 1315 (void)InsertResult; 1316 } 1317 } 1318 1319 // Iterating over a DenseMap is safe here, because the only thing in the body 1320 // of the loop is inserting into another DenseMap (ComputedEdges). 1321 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1322 for (auto &ChainPair : TriangleChainMap) { 1323 TriangleChain &Chain = ChainPair.second; 1324 // Benchmarking has shown that due to branch correlation duplicating 2 or 1325 // more triangles is profitable, despite the calculations assuming 1326 // independence. 1327 if (Chain.count() < TriangleChainCount) 1328 continue; 1329 MachineBasicBlock *dst = Chain.Edges.back(); 1330 Chain.Edges.pop_back(); 1331 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1332 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1333 << getBlockName(dst) 1334 << " as pre-computed based on triangles.\n"); 1335 1336 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1337 assert(InsertResult.second && "Block seen twice."); 1338 (void)InsertResult; 1339 1340 dst = src; 1341 } 1342 } 1343 } 1344 1345 // When profile is not present, return the StaticLikelyProb. 1346 // When profile is available, we need to handle the triangle-shape CFG. 1347 static BranchProbability getLayoutSuccessorProbThreshold( 1348 const MachineBasicBlock *BB) { 1349 if (!BB->getParent()->getFunction().hasProfileData()) 1350 return BranchProbability(StaticLikelyProb, 100); 1351 if (BB->succ_size() == 2) { 1352 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1353 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1354 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1355 /* See case 1 below for the cost analysis. For BB->Succ to 1356 * be taken with smaller cost, the following needs to hold: 1357 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1358 * So the threshold T in the calculation below 1359 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1360 * So T / (1 - T) = 2, Yielding T = 2/3 1361 * Also adding user specified branch bias, we have 1362 * T = (2/3)*(ProfileLikelyProb/50) 1363 * = (2*ProfileLikelyProb)/150) 1364 */ 1365 return BranchProbability(2 * ProfileLikelyProb, 150); 1366 } 1367 } 1368 return BranchProbability(ProfileLikelyProb, 100); 1369 } 1370 1371 /// Checks to see if the layout candidate block \p Succ has a better layout 1372 /// predecessor than \c BB. If yes, returns true. 1373 /// \p SuccProb: The probability adjusted for only remaining blocks. 1374 /// Only used for logging 1375 /// \p RealSuccProb: The un-adjusted probability. 1376 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1377 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1378 /// considered 1379 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1380 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1381 const BlockChain &SuccChain, BranchProbability SuccProb, 1382 BranchProbability RealSuccProb, const BlockChain &Chain, 1383 const BlockFilterSet *BlockFilter) { 1384 1385 // There isn't a better layout when there are no unscheduled predecessors. 1386 if (SuccChain.UnscheduledPredecessors == 0) 1387 return false; 1388 1389 // There are two basic scenarios here: 1390 // ------------------------------------- 1391 // Case 1: triangular shape CFG (if-then): 1392 // BB 1393 // | \ 1394 // | \ 1395 // | Pred 1396 // | / 1397 // Succ 1398 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1399 // set Succ as the layout successor of BB. Picking Succ as BB's 1400 // successor breaks the CFG constraints (FIXME: define these constraints). 1401 // With this layout, Pred BB 1402 // is forced to be outlined, so the overall cost will be cost of the 1403 // branch taken from BB to Pred, plus the cost of back taken branch 1404 // from Pred to Succ, as well as the additional cost associated 1405 // with the needed unconditional jump instruction from Pred To Succ. 1406 1407 // The cost of the topological order layout is the taken branch cost 1408 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1409 // must hold: 1410 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1411 // < freq(BB->Succ) * taken_branch_cost. 1412 // Ignoring unconditional jump cost, we get 1413 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1414 // prob(BB->Succ) > 2 * prob(BB->Pred) 1415 // 1416 // When real profile data is available, we can precisely compute the 1417 // probability threshold that is needed for edge BB->Succ to be considered. 1418 // Without profile data, the heuristic requires the branch bias to be 1419 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1420 // ----------------------------------------------------------------- 1421 // Case 2: diamond like CFG (if-then-else): 1422 // S 1423 // / \ 1424 // | \ 1425 // BB Pred 1426 // \ / 1427 // Succ 1428 // .. 1429 // 1430 // The current block is BB and edge BB->Succ is now being evaluated. 1431 // Note that edge S->BB was previously already selected because 1432 // prob(S->BB) > prob(S->Pred). 1433 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1434 // choose Pred, we will have a topological ordering as shown on the left 1435 // in the picture below. If we choose Succ, we have the solution as shown 1436 // on the right: 1437 // 1438 // topo-order: 1439 // 1440 // S----- ---S 1441 // | | | | 1442 // ---BB | | BB 1443 // | | | | 1444 // | Pred-- | Succ-- 1445 // | | | | 1446 // ---Succ ---Pred-- 1447 // 1448 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1449 // = freq(S->Pred) + freq(S->BB) 1450 // 1451 // If we have profile data (i.e, branch probabilities can be trusted), the 1452 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1453 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1454 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1455 // means the cost of topological order is greater. 1456 // When profile data is not available, however, we need to be more 1457 // conservative. If the branch prediction is wrong, breaking the topo-order 1458 // will actually yield a layout with large cost. For this reason, we need 1459 // strong biased branch at block S with Prob(S->BB) in order to select 1460 // BB->Succ. This is equivalent to looking the CFG backward with backward 1461 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1462 // profile data). 1463 // -------------------------------------------------------------------------- 1464 // Case 3: forked diamond 1465 // S 1466 // / \ 1467 // / \ 1468 // BB Pred 1469 // | \ / | 1470 // | \ / | 1471 // | X | 1472 // | / \ | 1473 // | / \ | 1474 // S1 S2 1475 // 1476 // The current block is BB and edge BB->S1 is now being evaluated. 1477 // As above S->BB was already selected because 1478 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1479 // 1480 // topo-order: 1481 // 1482 // S-------| ---S 1483 // | | | | 1484 // ---BB | | BB 1485 // | | | | 1486 // | Pred----| | S1---- 1487 // | | | | 1488 // --(S1 or S2) ---Pred-- 1489 // | 1490 // S2 1491 // 1492 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1493 // + min(freq(Pred->S1), freq(Pred->S2)) 1494 // Non-topo-order cost: 1495 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1496 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1497 // is 0. Then the non topo layout is better when 1498 // freq(S->Pred) < freq(BB->S1). 1499 // This is exactly what is checked below. 1500 // Note there are other shapes that apply (Pred may not be a single block, 1501 // but they all fit this general pattern.) 1502 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1503 1504 // Make sure that a hot successor doesn't have a globally more 1505 // important predecessor. 1506 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1507 bool BadCFGConflict = false; 1508 1509 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1510 BlockChain *PredChain = BlockToChain[Pred]; 1511 if (Pred == Succ || PredChain == &SuccChain || 1512 (BlockFilter && !BlockFilter->count(Pred)) || 1513 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1514 // This check is redundant except for look ahead. This function is 1515 // called for lookahead by isProfitableToTailDup when BB hasn't been 1516 // placed yet. 1517 (Pred == BB)) 1518 continue; 1519 // Do backward checking. 1520 // For all cases above, we need a backward checking to filter out edges that 1521 // are not 'strongly' biased. 1522 // BB Pred 1523 // \ / 1524 // Succ 1525 // We select edge BB->Succ if 1526 // freq(BB->Succ) > freq(Succ) * HotProb 1527 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1528 // HotProb 1529 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1530 // Case 1 is covered too, because the first equation reduces to: 1531 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1532 BlockFrequency PredEdgeFreq = 1533 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1534 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1535 BadCFGConflict = true; 1536 break; 1537 } 1538 } 1539 1540 if (BadCFGConflict) { 1541 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1542 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1543 return true; 1544 } 1545 1546 return false; 1547 } 1548 1549 /// Select the best successor for a block. 1550 /// 1551 /// This looks across all successors of a particular block and attempts to 1552 /// select the "best" one to be the layout successor. It only considers direct 1553 /// successors which also pass the block filter. It will attempt to avoid 1554 /// breaking CFG structure, but cave and break such structures in the case of 1555 /// very hot successor edges. 1556 /// 1557 /// \returns The best successor block found, or null if none are viable, along 1558 /// with a boolean indicating if tail duplication is necessary. 1559 MachineBlockPlacement::BlockAndTailDupResult 1560 MachineBlockPlacement::selectBestSuccessor( 1561 const MachineBasicBlock *BB, const BlockChain &Chain, 1562 const BlockFilterSet *BlockFilter) { 1563 const BranchProbability HotProb(StaticLikelyProb, 100); 1564 1565 BlockAndTailDupResult BestSucc = { nullptr, false }; 1566 auto BestProb = BranchProbability::getZero(); 1567 1568 SmallVector<MachineBasicBlock *, 4> Successors; 1569 auto AdjustedSumProb = 1570 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1571 1572 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1573 << "\n"); 1574 1575 // if we already precomputed the best successor for BB, return that if still 1576 // applicable. 1577 auto FoundEdge = ComputedEdges.find(BB); 1578 if (FoundEdge != ComputedEdges.end()) { 1579 MachineBasicBlock *Succ = FoundEdge->second.BB; 1580 ComputedEdges.erase(FoundEdge); 1581 BlockChain *SuccChain = BlockToChain[Succ]; 1582 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1583 SuccChain != &Chain && Succ == *SuccChain->begin()) 1584 return FoundEdge->second; 1585 } 1586 1587 // if BB is part of a trellis, Use the trellis to determine the optimal 1588 // fallthrough edges 1589 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1590 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1591 BlockFilter); 1592 1593 // For blocks with CFG violations, we may be able to lay them out anyway with 1594 // tail-duplication. We keep this vector so we can perform the probability 1595 // calculations the minimum number of times. 1596 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1597 DupCandidates; 1598 for (MachineBasicBlock *Succ : Successors) { 1599 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1600 BranchProbability SuccProb = 1601 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1602 1603 BlockChain &SuccChain = *BlockToChain[Succ]; 1604 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1605 // predecessor that yields lower global cost. 1606 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1607 Chain, BlockFilter)) { 1608 // If tail duplication would make Succ profitable, place it. 1609 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1610 DupCandidates.emplace_back(SuccProb, Succ); 1611 continue; 1612 } 1613 1614 LLVM_DEBUG( 1615 dbgs() << " Candidate: " << getBlockName(Succ) 1616 << ", probability: " << SuccProb 1617 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1618 << "\n"); 1619 1620 if (BestSucc.BB && BestProb >= SuccProb) { 1621 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1622 continue; 1623 } 1624 1625 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1626 BestSucc.BB = Succ; 1627 BestProb = SuccProb; 1628 } 1629 // Handle the tail duplication candidates in order of decreasing probability. 1630 // Stop at the first one that is profitable. Also stop if they are less 1631 // profitable than BestSucc. Position is important because we preserve it and 1632 // prefer first best match. Here we aren't comparing in order, so we capture 1633 // the position instead. 1634 llvm::stable_sort(DupCandidates, 1635 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1636 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1637 return std::get<0>(L) > std::get<0>(R); 1638 }); 1639 for (auto &Tup : DupCandidates) { 1640 BranchProbability DupProb; 1641 MachineBasicBlock *Succ; 1642 std::tie(DupProb, Succ) = Tup; 1643 if (DupProb < BestProb) 1644 break; 1645 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1646 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1647 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1648 << ", probability: " << DupProb 1649 << " (Tail Duplicate)\n"); 1650 BestSucc.BB = Succ; 1651 BestSucc.ShouldTailDup = true; 1652 break; 1653 } 1654 } 1655 1656 if (BestSucc.BB) 1657 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1658 1659 return BestSucc; 1660 } 1661 1662 /// Select the best block from a worklist. 1663 /// 1664 /// This looks through the provided worklist as a list of candidate basic 1665 /// blocks and select the most profitable one to place. The definition of 1666 /// profitable only really makes sense in the context of a loop. This returns 1667 /// the most frequently visited block in the worklist, which in the case of 1668 /// a loop, is the one most desirable to be physically close to the rest of the 1669 /// loop body in order to improve i-cache behavior. 1670 /// 1671 /// \returns The best block found, or null if none are viable. 1672 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1673 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1674 // Once we need to walk the worklist looking for a candidate, cleanup the 1675 // worklist of already placed entries. 1676 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1677 // some code complexity) into the loop below. 1678 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1679 return BlockToChain.lookup(BB) == &Chain; 1680 }); 1681 1682 if (WorkList.empty()) 1683 return nullptr; 1684 1685 bool IsEHPad = WorkList[0]->isEHPad(); 1686 1687 MachineBasicBlock *BestBlock = nullptr; 1688 BlockFrequency BestFreq; 1689 for (MachineBasicBlock *MBB : WorkList) { 1690 assert(MBB->isEHPad() == IsEHPad && 1691 "EHPad mismatch between block and work list."); 1692 1693 BlockChain &SuccChain = *BlockToChain[MBB]; 1694 if (&SuccChain == &Chain) 1695 continue; 1696 1697 assert(SuccChain.UnscheduledPredecessors == 0 && 1698 "Found CFG-violating block"); 1699 1700 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1701 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1702 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1703 1704 // For ehpad, we layout the least probable first as to avoid jumping back 1705 // from least probable landingpads to more probable ones. 1706 // 1707 // FIXME: Using probability is probably (!) not the best way to achieve 1708 // this. We should probably have a more principled approach to layout 1709 // cleanup code. 1710 // 1711 // The goal is to get: 1712 // 1713 // +--------------------------+ 1714 // | V 1715 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1716 // 1717 // Rather than: 1718 // 1719 // +-------------------------------------+ 1720 // V | 1721 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1722 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1723 continue; 1724 1725 BestBlock = MBB; 1726 BestFreq = CandidateFreq; 1727 } 1728 1729 return BestBlock; 1730 } 1731 1732 /// Retrieve the first unplaced basic block. 1733 /// 1734 /// This routine is called when we are unable to use the CFG to walk through 1735 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1736 /// We walk through the function's blocks in order, starting from the 1737 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1738 /// re-scanning the entire sequence on repeated calls to this routine. 1739 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1740 const BlockChain &PlacedChain, 1741 MachineFunction::iterator &PrevUnplacedBlockIt, 1742 const BlockFilterSet *BlockFilter) { 1743 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1744 ++I) { 1745 if (BlockFilter && !BlockFilter->count(&*I)) 1746 continue; 1747 if (BlockToChain[&*I] != &PlacedChain) { 1748 PrevUnplacedBlockIt = I; 1749 // Now select the head of the chain to which the unplaced block belongs 1750 // as the block to place. This will force the entire chain to be placed, 1751 // and satisfies the requirements of merging chains. 1752 return *BlockToChain[&*I]->begin(); 1753 } 1754 } 1755 return nullptr; 1756 } 1757 1758 void MachineBlockPlacement::fillWorkLists( 1759 const MachineBasicBlock *MBB, 1760 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1761 const BlockFilterSet *BlockFilter = nullptr) { 1762 BlockChain &Chain = *BlockToChain[MBB]; 1763 if (!UpdatedPreds.insert(&Chain).second) 1764 return; 1765 1766 assert( 1767 Chain.UnscheduledPredecessors == 0 && 1768 "Attempting to place block with unscheduled predecessors in worklist."); 1769 for (MachineBasicBlock *ChainBB : Chain) { 1770 assert(BlockToChain[ChainBB] == &Chain && 1771 "Block in chain doesn't match BlockToChain map."); 1772 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1773 if (BlockFilter && !BlockFilter->count(Pred)) 1774 continue; 1775 if (BlockToChain[Pred] == &Chain) 1776 continue; 1777 ++Chain.UnscheduledPredecessors; 1778 } 1779 } 1780 1781 if (Chain.UnscheduledPredecessors != 0) 1782 return; 1783 1784 MachineBasicBlock *BB = *Chain.begin(); 1785 if (BB->isEHPad()) 1786 EHPadWorkList.push_back(BB); 1787 else 1788 BlockWorkList.push_back(BB); 1789 } 1790 1791 void MachineBlockPlacement::buildChain( 1792 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1793 BlockFilterSet *BlockFilter) { 1794 assert(HeadBB && "BB must not be null.\n"); 1795 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1796 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1797 1798 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1799 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1800 MachineBasicBlock *BB = *std::prev(Chain.end()); 1801 while (true) { 1802 assert(BB && "null block found at end of chain in loop."); 1803 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1804 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1805 1806 1807 // Look for the best viable successor if there is one to place immediately 1808 // after this block. 1809 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1810 MachineBasicBlock* BestSucc = Result.BB; 1811 bool ShouldTailDup = Result.ShouldTailDup; 1812 if (allowTailDupPlacement()) 1813 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1814 Chain, 1815 BlockFilter)); 1816 1817 // If an immediate successor isn't available, look for the best viable 1818 // block among those we've identified as not violating the loop's CFG at 1819 // this point. This won't be a fallthrough, but it will increase locality. 1820 if (!BestSucc) 1821 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1822 if (!BestSucc) 1823 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1824 1825 if (!BestSucc) { 1826 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1827 if (!BestSucc) 1828 break; 1829 1830 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1831 "layout successor until the CFG reduces\n"); 1832 } 1833 1834 // Placement may have changed tail duplication opportunities. 1835 // Check for that now. 1836 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1837 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1838 BlockFilter, PrevUnplacedBlockIt); 1839 // If the chosen successor was duplicated into BB, don't bother laying 1840 // it out, just go round the loop again with BB as the chain end. 1841 if (!BB->isSuccessor(BestSucc)) 1842 continue; 1843 } 1844 1845 // Place this block, updating the datastructures to reflect its placement. 1846 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1847 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1848 // we selected a successor that didn't fit naturally into the CFG. 1849 SuccChain.UnscheduledPredecessors = 0; 1850 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1851 << getBlockName(BestSucc) << "\n"); 1852 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1853 Chain.merge(BestSucc, &SuccChain); 1854 BB = *std::prev(Chain.end()); 1855 } 1856 1857 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1858 << getBlockName(*Chain.begin()) << "\n"); 1859 } 1860 1861 // If bottom of block BB has only one successor OldTop, in most cases it is 1862 // profitable to move it before OldTop, except the following case: 1863 // 1864 // -->OldTop<- 1865 // | . | 1866 // | . | 1867 // | . | 1868 // ---Pred | 1869 // | | 1870 // BB----- 1871 // 1872 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1873 // layout the other successor below it, so it can't reduce taken branch. 1874 // In this case we keep its original layout. 1875 bool 1876 MachineBlockPlacement::canMoveBottomBlockToTop( 1877 const MachineBasicBlock *BottomBlock, 1878 const MachineBasicBlock *OldTop) { 1879 if (BottomBlock->pred_size() != 1) 1880 return true; 1881 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1882 if (Pred->succ_size() != 2) 1883 return true; 1884 1885 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1886 if (OtherBB == BottomBlock) 1887 OtherBB = *Pred->succ_rbegin(); 1888 if (OtherBB == OldTop) 1889 return false; 1890 1891 return true; 1892 } 1893 1894 // Find out the possible fall through frequence to the top of a loop. 1895 BlockFrequency 1896 MachineBlockPlacement::TopFallThroughFreq( 1897 const MachineBasicBlock *Top, 1898 const BlockFilterSet &LoopBlockSet) { 1899 BlockFrequency MaxFreq = 0; 1900 for (MachineBasicBlock *Pred : Top->predecessors()) { 1901 BlockChain *PredChain = BlockToChain[Pred]; 1902 if (!LoopBlockSet.count(Pred) && 1903 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1904 // Found a Pred block can be placed before Top. 1905 // Check if Top is the best successor of Pred. 1906 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1907 bool TopOK = true; 1908 for (MachineBasicBlock *Succ : Pred->successors()) { 1909 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1910 BlockChain *SuccChain = BlockToChain[Succ]; 1911 // Check if Succ can be placed after Pred. 1912 // Succ should not be in any chain, or it is the head of some chain. 1913 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1914 (!SuccChain || Succ == *SuccChain->begin())) { 1915 TopOK = false; 1916 break; 1917 } 1918 } 1919 if (TopOK) { 1920 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1921 MBPI->getEdgeProbability(Pred, Top); 1922 if (EdgeFreq > MaxFreq) 1923 MaxFreq = EdgeFreq; 1924 } 1925 } 1926 } 1927 return MaxFreq; 1928 } 1929 1930 // Compute the fall through gains when move NewTop before OldTop. 1931 // 1932 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1933 // marked as "+" are increased fallthrough, this function computes 1934 // 1935 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1936 // 1937 // | 1938 // | - 1939 // V 1940 // --->OldTop 1941 // | . 1942 // | . 1943 // +| . + 1944 // | Pred ---> 1945 // | |- 1946 // | V 1947 // --- NewTop <--- 1948 // |- 1949 // V 1950 // 1951 BlockFrequency 1952 MachineBlockPlacement::FallThroughGains( 1953 const MachineBasicBlock *NewTop, 1954 const MachineBasicBlock *OldTop, 1955 const MachineBasicBlock *ExitBB, 1956 const BlockFilterSet &LoopBlockSet) { 1957 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1958 BlockFrequency FallThrough2Exit = 0; 1959 if (ExitBB) 1960 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1961 MBPI->getEdgeProbability(NewTop, ExitBB); 1962 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1963 MBPI->getEdgeProbability(NewTop, OldTop); 1964 1965 // Find the best Pred of NewTop. 1966 MachineBasicBlock *BestPred = nullptr; 1967 BlockFrequency FallThroughFromPred = 0; 1968 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1969 if (!LoopBlockSet.count(Pred)) 1970 continue; 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1973 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1974 MBPI->getEdgeProbability(Pred, NewTop); 1975 if (EdgeFreq > FallThroughFromPred) { 1976 FallThroughFromPred = EdgeFreq; 1977 BestPred = Pred; 1978 } 1979 } 1980 } 1981 1982 // If NewTop is not placed after Pred, another successor can be placed 1983 // after Pred. 1984 BlockFrequency NewFreq = 0; 1985 if (BestPred) { 1986 for (MachineBasicBlock *Succ : BestPred->successors()) { 1987 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1988 continue; 1989 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1990 continue; 1991 BlockChain *SuccChain = BlockToChain[Succ]; 1992 if ((SuccChain && (Succ != *SuccChain->begin())) || 1993 (SuccChain == BlockToChain[BestPred])) 1994 continue; 1995 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1996 MBPI->getEdgeProbability(BestPred, Succ); 1997 if (EdgeFreq > NewFreq) 1998 NewFreq = EdgeFreq; 1999 } 2000 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2001 MBPI->getEdgeProbability(BestPred, NewTop); 2002 if (NewFreq > OrigEdgeFreq) { 2003 // If NewTop is not the best successor of Pred, then Pred doesn't 2004 // fallthrough to NewTop. So there is no FallThroughFromPred and 2005 // NewFreq. 2006 NewFreq = 0; 2007 FallThroughFromPred = 0; 2008 } 2009 } 2010 2011 BlockFrequency Result = 0; 2012 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2013 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 2014 FallThroughFromPred; 2015 if (Gains > Lost) 2016 Result = Gains - Lost; 2017 return Result; 2018 } 2019 2020 /// Helper function of findBestLoopTop. Find the best loop top block 2021 /// from predecessors of old top. 2022 /// 2023 /// Look for a block which is strictly better than the old top for laying 2024 /// out before the old top of the loop. This looks for only two patterns: 2025 /// 2026 /// 1. a block has only one successor, the old loop top 2027 /// 2028 /// Because such a block will always result in an unconditional jump, 2029 /// rotating it in front of the old top is always profitable. 2030 /// 2031 /// 2. a block has two successors, one is old top, another is exit 2032 /// and it has more than one predecessors 2033 /// 2034 /// If it is below one of its predecessors P, only P can fall through to 2035 /// it, all other predecessors need a jump to it, and another conditional 2036 /// jump to loop header. If it is moved before loop header, all its 2037 /// predecessors jump to it, then fall through to loop header. So all its 2038 /// predecessors except P can reduce one taken branch. 2039 /// At the same time, move it before old top increases the taken branch 2040 /// to loop exit block, so the reduced taken branch will be compared with 2041 /// the increased taken branch to the loop exit block. 2042 MachineBasicBlock * 2043 MachineBlockPlacement::findBestLoopTopHelper( 2044 MachineBasicBlock *OldTop, 2045 const MachineLoop &L, 2046 const BlockFilterSet &LoopBlockSet) { 2047 // Check that the header hasn't been fused with a preheader block due to 2048 // crazy branches. If it has, we need to start with the header at the top to 2049 // prevent pulling the preheader into the loop body. 2050 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2051 if (!LoopBlockSet.count(*HeaderChain.begin())) 2052 return OldTop; 2053 2054 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2055 << "\n"); 2056 2057 BlockFrequency BestGains = 0; 2058 MachineBasicBlock *BestPred = nullptr; 2059 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2060 if (!LoopBlockSet.count(Pred)) 2061 continue; 2062 if (Pred == L.getHeader()) 2063 continue; 2064 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2065 << Pred->succ_size() << " successors, "; 2066 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2067 if (Pred->succ_size() > 2) 2068 continue; 2069 2070 MachineBasicBlock *OtherBB = nullptr; 2071 if (Pred->succ_size() == 2) { 2072 OtherBB = *Pred->succ_begin(); 2073 if (OtherBB == OldTop) 2074 OtherBB = *Pred->succ_rbegin(); 2075 } 2076 2077 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2078 continue; 2079 2080 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2081 LoopBlockSet); 2082 if ((Gains > 0) && (Gains > BestGains || 2083 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2084 BestPred = Pred; 2085 BestGains = Gains; 2086 } 2087 } 2088 2089 // If no direct predecessor is fine, just use the loop header. 2090 if (!BestPred) { 2091 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2092 return OldTop; 2093 } 2094 2095 // Walk backwards through any straight line of predecessors. 2096 while (BestPred->pred_size() == 1 && 2097 (*BestPred->pred_begin())->succ_size() == 1 && 2098 *BestPred->pred_begin() != L.getHeader()) 2099 BestPred = *BestPred->pred_begin(); 2100 2101 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2102 return BestPred; 2103 } 2104 2105 /// Find the best loop top block for layout. 2106 /// 2107 /// This function iteratively calls findBestLoopTopHelper, until no new better 2108 /// BB can be found. 2109 MachineBasicBlock * 2110 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2111 const BlockFilterSet &LoopBlockSet) { 2112 // Placing the latch block before the header may introduce an extra branch 2113 // that skips this block the first time the loop is executed, which we want 2114 // to avoid when optimising for size. 2115 // FIXME: in theory there is a case that does not introduce a new branch, 2116 // i.e. when the layout predecessor does not fallthrough to the loop header. 2117 // In practice this never happens though: there always seems to be a preheader 2118 // that can fallthrough and that is also placed before the header. 2119 bool OptForSize = F->getFunction().hasOptSize() || 2120 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2121 if (OptForSize) 2122 return L.getHeader(); 2123 2124 MachineBasicBlock *OldTop = nullptr; 2125 MachineBasicBlock *NewTop = L.getHeader(); 2126 while (NewTop != OldTop) { 2127 OldTop = NewTop; 2128 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2129 if (NewTop != OldTop) 2130 ComputedEdges[NewTop] = { OldTop, false }; 2131 } 2132 return NewTop; 2133 } 2134 2135 /// Find the best loop exiting block for layout. 2136 /// 2137 /// This routine implements the logic to analyze the loop looking for the best 2138 /// block to layout at the top of the loop. Typically this is done to maximize 2139 /// fallthrough opportunities. 2140 MachineBasicBlock * 2141 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2142 const BlockFilterSet &LoopBlockSet, 2143 BlockFrequency &ExitFreq) { 2144 // We don't want to layout the loop linearly in all cases. If the loop header 2145 // is just a normal basic block in the loop, we want to look for what block 2146 // within the loop is the best one to layout at the top. However, if the loop 2147 // header has be pre-merged into a chain due to predecessors not having 2148 // analyzable branches, *and* the predecessor it is merged with is *not* part 2149 // of the loop, rotating the header into the middle of the loop will create 2150 // a non-contiguous range of blocks which is Very Bad. So start with the 2151 // header and only rotate if safe. 2152 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2153 if (!LoopBlockSet.count(*HeaderChain.begin())) 2154 return nullptr; 2155 2156 BlockFrequency BestExitEdgeFreq; 2157 unsigned BestExitLoopDepth = 0; 2158 MachineBasicBlock *ExitingBB = nullptr; 2159 // If there are exits to outer loops, loop rotation can severely limit 2160 // fallthrough opportunities unless it selects such an exit. Keep a set of 2161 // blocks where rotating to exit with that block will reach an outer loop. 2162 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2163 2164 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2165 << getBlockName(L.getHeader()) << "\n"); 2166 for (MachineBasicBlock *MBB : L.getBlocks()) { 2167 BlockChain &Chain = *BlockToChain[MBB]; 2168 // Ensure that this block is at the end of a chain; otherwise it could be 2169 // mid-way through an inner loop or a successor of an unanalyzable branch. 2170 if (MBB != *std::prev(Chain.end())) 2171 continue; 2172 2173 // Now walk the successors. We need to establish whether this has a viable 2174 // exiting successor and whether it has a viable non-exiting successor. 2175 // We store the old exiting state and restore it if a viable looping 2176 // successor isn't found. 2177 MachineBasicBlock *OldExitingBB = ExitingBB; 2178 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2179 bool HasLoopingSucc = false; 2180 for (MachineBasicBlock *Succ : MBB->successors()) { 2181 if (Succ->isEHPad()) 2182 continue; 2183 if (Succ == MBB) 2184 continue; 2185 BlockChain &SuccChain = *BlockToChain[Succ]; 2186 // Don't split chains, either this chain or the successor's chain. 2187 if (&Chain == &SuccChain) { 2188 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2189 << getBlockName(Succ) << " (chain conflict)\n"); 2190 continue; 2191 } 2192 2193 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2194 if (LoopBlockSet.count(Succ)) { 2195 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2196 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2197 HasLoopingSucc = true; 2198 continue; 2199 } 2200 2201 unsigned SuccLoopDepth = 0; 2202 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2203 SuccLoopDepth = ExitLoop->getLoopDepth(); 2204 if (ExitLoop->contains(&L)) 2205 BlocksExitingToOuterLoop.insert(MBB); 2206 } 2207 2208 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2209 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2210 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2211 << "] ("; 2212 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2213 // Note that we bias this toward an existing layout successor to retain 2214 // incoming order in the absence of better information. The exit must have 2215 // a frequency higher than the current exit before we consider breaking 2216 // the layout. 2217 BranchProbability Bias(100 - ExitBlockBias, 100); 2218 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2219 ExitEdgeFreq > BestExitEdgeFreq || 2220 (MBB->isLayoutSuccessor(Succ) && 2221 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2222 BestExitEdgeFreq = ExitEdgeFreq; 2223 ExitingBB = MBB; 2224 } 2225 } 2226 2227 if (!HasLoopingSucc) { 2228 // Restore the old exiting state, no viable looping successor was found. 2229 ExitingBB = OldExitingBB; 2230 BestExitEdgeFreq = OldBestExitEdgeFreq; 2231 } 2232 } 2233 // Without a candidate exiting block or with only a single block in the 2234 // loop, just use the loop header to layout the loop. 2235 if (!ExitingBB) { 2236 LLVM_DEBUG( 2237 dbgs() << " No other candidate exit blocks, using loop header\n"); 2238 return nullptr; 2239 } 2240 if (L.getNumBlocks() == 1) { 2241 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2242 return nullptr; 2243 } 2244 2245 // Also, if we have exit blocks which lead to outer loops but didn't select 2246 // one of them as the exiting block we are rotating toward, disable loop 2247 // rotation altogether. 2248 if (!BlocksExitingToOuterLoop.empty() && 2249 !BlocksExitingToOuterLoop.count(ExitingBB)) 2250 return nullptr; 2251 2252 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2253 << "\n"); 2254 ExitFreq = BestExitEdgeFreq; 2255 return ExitingBB; 2256 } 2257 2258 /// Check if there is a fallthrough to loop header Top. 2259 /// 2260 /// 1. Look for a Pred that can be layout before Top. 2261 /// 2. Check if Top is the most possible successor of Pred. 2262 bool 2263 MachineBlockPlacement::hasViableTopFallthrough( 2264 const MachineBasicBlock *Top, 2265 const BlockFilterSet &LoopBlockSet) { 2266 for (MachineBasicBlock *Pred : Top->predecessors()) { 2267 BlockChain *PredChain = BlockToChain[Pred]; 2268 if (!LoopBlockSet.count(Pred) && 2269 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2270 // Found a Pred block can be placed before Top. 2271 // Check if Top is the best successor of Pred. 2272 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2273 bool TopOK = true; 2274 for (MachineBasicBlock *Succ : Pred->successors()) { 2275 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2276 BlockChain *SuccChain = BlockToChain[Succ]; 2277 // Check if Succ can be placed after Pred. 2278 // Succ should not be in any chain, or it is the head of some chain. 2279 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2280 TopOK = false; 2281 break; 2282 } 2283 } 2284 if (TopOK) 2285 return true; 2286 } 2287 } 2288 return false; 2289 } 2290 2291 /// Attempt to rotate an exiting block to the bottom of the loop. 2292 /// 2293 /// Once we have built a chain, try to rotate it to line up the hot exit block 2294 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2295 /// branches. For example, if the loop has fallthrough into its header and out 2296 /// of its bottom already, don't rotate it. 2297 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2298 const MachineBasicBlock *ExitingBB, 2299 BlockFrequency ExitFreq, 2300 const BlockFilterSet &LoopBlockSet) { 2301 if (!ExitingBB) 2302 return; 2303 2304 MachineBasicBlock *Top = *LoopChain.begin(); 2305 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2306 2307 // If ExitingBB is already the last one in a chain then nothing to do. 2308 if (Bottom == ExitingBB) 2309 return; 2310 2311 // The entry block should always be the first BB in a function. 2312 if (Top->isEntryBlock()) 2313 return; 2314 2315 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2316 2317 // If the header has viable fallthrough, check whether the current loop 2318 // bottom is a viable exiting block. If so, bail out as rotating will 2319 // introduce an unnecessary branch. 2320 if (ViableTopFallthrough) { 2321 for (MachineBasicBlock *Succ : Bottom->successors()) { 2322 BlockChain *SuccChain = BlockToChain[Succ]; 2323 if (!LoopBlockSet.count(Succ) && 2324 (!SuccChain || Succ == *SuccChain->begin())) 2325 return; 2326 } 2327 2328 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2329 // frequency is larger than top fallthrough. 2330 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2331 if (FallThrough2Top >= ExitFreq) 2332 return; 2333 } 2334 2335 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2336 if (ExitIt == LoopChain.end()) 2337 return; 2338 2339 // Rotating a loop exit to the bottom when there is a fallthrough to top 2340 // trades the entry fallthrough for an exit fallthrough. 2341 // If there is no bottom->top edge, but the chosen exit block does have 2342 // a fallthrough, we break that fallthrough for nothing in return. 2343 2344 // Let's consider an example. We have a built chain of basic blocks 2345 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2346 // By doing a rotation we get 2347 // Bk+1, ..., Bn, B1, ..., Bk 2348 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2349 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2350 // It might be compensated by fallthrough Bn -> B1. 2351 // So we have a condition to avoid creation of extra branch by loop rotation. 2352 // All below must be true to avoid loop rotation: 2353 // If there is a fallthrough to top (B1) 2354 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2355 // There is no fallthrough from bottom (Bn) to top (B1). 2356 // Please note that there is no exit fallthrough from Bn because we checked it 2357 // above. 2358 if (ViableTopFallthrough) { 2359 assert(std::next(ExitIt) != LoopChain.end() && 2360 "Exit should not be last BB"); 2361 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2362 if (ExitingBB->isSuccessor(NextBlockInChain)) 2363 if (!Bottom->isSuccessor(Top)) 2364 return; 2365 } 2366 2367 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2368 << " at bottom\n"); 2369 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2370 } 2371 2372 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2373 /// 2374 /// With profile data, we can determine the cost in terms of missed fall through 2375 /// opportunities when rotating a loop chain and select the best rotation. 2376 /// Basically, there are three kinds of cost to consider for each rotation: 2377 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2378 /// the loop to the loop header. 2379 /// 2. The possibly missed fall through edges (if they exist) from the loop 2380 /// exits to BB out of the loop. 2381 /// 3. The missed fall through edge (if it exists) from the last BB to the 2382 /// first BB in the loop chain. 2383 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2384 /// We select the best rotation with the smallest cost. 2385 void MachineBlockPlacement::rotateLoopWithProfile( 2386 BlockChain &LoopChain, const MachineLoop &L, 2387 const BlockFilterSet &LoopBlockSet) { 2388 auto RotationPos = LoopChain.end(); 2389 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2390 2391 // The entry block should always be the first BB in a function. 2392 if (ChainHeaderBB->isEntryBlock()) 2393 return; 2394 2395 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2396 2397 // A utility lambda that scales up a block frequency by dividing it by a 2398 // branch probability which is the reciprocal of the scale. 2399 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2400 unsigned Scale) -> BlockFrequency { 2401 if (Scale == 0) 2402 return 0; 2403 // Use operator / between BlockFrequency and BranchProbability to implement 2404 // saturating multiplication. 2405 return Freq / BranchProbability(1, Scale); 2406 }; 2407 2408 // Compute the cost of the missed fall-through edge to the loop header if the 2409 // chain head is not the loop header. As we only consider natural loops with 2410 // single header, this computation can be done only once. 2411 BlockFrequency HeaderFallThroughCost(0); 2412 for (auto *Pred : ChainHeaderBB->predecessors()) { 2413 BlockChain *PredChain = BlockToChain[Pred]; 2414 if (!LoopBlockSet.count(Pred) && 2415 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2416 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2417 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2418 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2419 // If the predecessor has only an unconditional jump to the header, we 2420 // need to consider the cost of this jump. 2421 if (Pred->succ_size() == 1) 2422 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2423 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2424 } 2425 } 2426 2427 // Here we collect all exit blocks in the loop, and for each exit we find out 2428 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2429 // as the sum of frequencies of exit edges we collect here, excluding the exit 2430 // edge from the tail of the loop chain. 2431 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2432 for (auto BB : LoopChain) { 2433 auto LargestExitEdgeProb = BranchProbability::getZero(); 2434 for (auto *Succ : BB->successors()) { 2435 BlockChain *SuccChain = BlockToChain[Succ]; 2436 if (!LoopBlockSet.count(Succ) && 2437 (!SuccChain || Succ == *SuccChain->begin())) { 2438 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2439 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2440 } 2441 } 2442 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2443 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2444 ExitsWithFreq.emplace_back(BB, ExitFreq); 2445 } 2446 } 2447 2448 // In this loop we iterate every block in the loop chain and calculate the 2449 // cost assuming the block is the head of the loop chain. When the loop ends, 2450 // we should have found the best candidate as the loop chain's head. 2451 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2452 EndIter = LoopChain.end(); 2453 Iter != EndIter; Iter++, TailIter++) { 2454 // TailIter is used to track the tail of the loop chain if the block we are 2455 // checking (pointed by Iter) is the head of the chain. 2456 if (TailIter == LoopChain.end()) 2457 TailIter = LoopChain.begin(); 2458 2459 auto TailBB = *TailIter; 2460 2461 // Calculate the cost by putting this BB to the top. 2462 BlockFrequency Cost = 0; 2463 2464 // If the current BB is the loop header, we need to take into account the 2465 // cost of the missed fall through edge from outside of the loop to the 2466 // header. 2467 if (Iter != LoopChain.begin()) 2468 Cost += HeaderFallThroughCost; 2469 2470 // Collect the loop exit cost by summing up frequencies of all exit edges 2471 // except the one from the chain tail. 2472 for (auto &ExitWithFreq : ExitsWithFreq) 2473 if (TailBB != ExitWithFreq.first) 2474 Cost += ExitWithFreq.second; 2475 2476 // The cost of breaking the once fall-through edge from the tail to the top 2477 // of the loop chain. Here we need to consider three cases: 2478 // 1. If the tail node has only one successor, then we will get an 2479 // additional jmp instruction. So the cost here is (MisfetchCost + 2480 // JumpInstCost) * tail node frequency. 2481 // 2. If the tail node has two successors, then we may still get an 2482 // additional jmp instruction if the layout successor after the loop 2483 // chain is not its CFG successor. Note that the more frequently executed 2484 // jmp instruction will be put ahead of the other one. Assume the 2485 // frequency of those two branches are x and y, where x is the frequency 2486 // of the edge to the chain head, then the cost will be 2487 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2488 // 3. If the tail node has more than two successors (this rarely happens), 2489 // we won't consider any additional cost. 2490 if (TailBB->isSuccessor(*Iter)) { 2491 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2492 if (TailBB->succ_size() == 1) 2493 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2494 MisfetchCost + JumpInstCost); 2495 else if (TailBB->succ_size() == 2) { 2496 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2497 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2498 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2499 ? TailBBFreq * TailToHeadProb.getCompl() 2500 : TailToHeadFreq; 2501 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2502 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2503 } 2504 } 2505 2506 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2507 << getBlockName(*Iter) 2508 << " to the top: " << Cost.getFrequency() << "\n"); 2509 2510 if (Cost < SmallestRotationCost) { 2511 SmallestRotationCost = Cost; 2512 RotationPos = Iter; 2513 } 2514 } 2515 2516 if (RotationPos != LoopChain.end()) { 2517 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2518 << " to the top\n"); 2519 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2520 } 2521 } 2522 2523 /// Collect blocks in the given loop that are to be placed. 2524 /// 2525 /// When profile data is available, exclude cold blocks from the returned set; 2526 /// otherwise, collect all blocks in the loop. 2527 MachineBlockPlacement::BlockFilterSet 2528 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2529 BlockFilterSet LoopBlockSet; 2530 2531 // Filter cold blocks off from LoopBlockSet when profile data is available. 2532 // Collect the sum of frequencies of incoming edges to the loop header from 2533 // outside. If we treat the loop as a super block, this is the frequency of 2534 // the loop. Then for each block in the loop, we calculate the ratio between 2535 // its frequency and the frequency of the loop block. When it is too small, 2536 // don't add it to the loop chain. If there are outer loops, then this block 2537 // will be merged into the first outer loop chain for which this block is not 2538 // cold anymore. This needs precise profile data and we only do this when 2539 // profile data is available. 2540 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2541 BlockFrequency LoopFreq(0); 2542 for (auto LoopPred : L.getHeader()->predecessors()) 2543 if (!L.contains(LoopPred)) 2544 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2545 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2546 2547 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2548 if (LoopBlockSet.count(LoopBB)) 2549 continue; 2550 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2551 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2552 continue; 2553 BlockChain *Chain = BlockToChain[LoopBB]; 2554 for (MachineBasicBlock *ChainBB : *Chain) 2555 LoopBlockSet.insert(ChainBB); 2556 } 2557 } else 2558 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2559 2560 return LoopBlockSet; 2561 } 2562 2563 /// Forms basic block chains from the natural loop structures. 2564 /// 2565 /// These chains are designed to preserve the existing *structure* of the code 2566 /// as much as possible. We can then stitch the chains together in a way which 2567 /// both preserves the topological structure and minimizes taken conditional 2568 /// branches. 2569 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2570 // First recurse through any nested loops, building chains for those inner 2571 // loops. 2572 for (const MachineLoop *InnerLoop : L) 2573 buildLoopChains(*InnerLoop); 2574 2575 assert(BlockWorkList.empty() && 2576 "BlockWorkList not empty when starting to build loop chains."); 2577 assert(EHPadWorkList.empty() && 2578 "EHPadWorkList not empty when starting to build loop chains."); 2579 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2580 2581 // Check if we have profile data for this function. If yes, we will rotate 2582 // this loop by modeling costs more precisely which requires the profile data 2583 // for better layout. 2584 bool RotateLoopWithProfile = 2585 ForcePreciseRotationCost || 2586 (PreciseRotationCost && F->getFunction().hasProfileData()); 2587 2588 // First check to see if there is an obviously preferable top block for the 2589 // loop. This will default to the header, but may end up as one of the 2590 // predecessors to the header if there is one which will result in strictly 2591 // fewer branches in the loop body. 2592 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2593 2594 // If we selected just the header for the loop top, look for a potentially 2595 // profitable exit block in the event that rotating the loop can eliminate 2596 // branches by placing an exit edge at the bottom. 2597 // 2598 // Loops are processed innermost to uttermost, make sure we clear 2599 // PreferredLoopExit before processing a new loop. 2600 PreferredLoopExit = nullptr; 2601 BlockFrequency ExitFreq; 2602 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2603 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2604 2605 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2606 2607 // FIXME: This is a really lame way of walking the chains in the loop: we 2608 // walk the blocks, and use a set to prevent visiting a particular chain 2609 // twice. 2610 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2611 assert(LoopChain.UnscheduledPredecessors == 0 && 2612 "LoopChain should not have unscheduled predecessors."); 2613 UpdatedPreds.insert(&LoopChain); 2614 2615 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2616 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2617 2618 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2619 2620 if (RotateLoopWithProfile) 2621 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2622 else 2623 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2624 2625 LLVM_DEBUG({ 2626 // Crash at the end so we get all of the debugging output first. 2627 bool BadLoop = false; 2628 if (LoopChain.UnscheduledPredecessors) { 2629 BadLoop = true; 2630 dbgs() << "Loop chain contains a block without its preds placed!\n" 2631 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2632 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2633 } 2634 for (MachineBasicBlock *ChainBB : LoopChain) { 2635 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2636 if (!LoopBlockSet.remove(ChainBB)) { 2637 // We don't mark the loop as bad here because there are real situations 2638 // where this can occur. For example, with an unanalyzable fallthrough 2639 // from a loop block to a non-loop block or vice versa. 2640 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2641 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2642 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2643 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2644 } 2645 } 2646 2647 if (!LoopBlockSet.empty()) { 2648 BadLoop = true; 2649 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2650 dbgs() << "Loop contains blocks never placed into a chain!\n" 2651 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2652 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2653 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2654 } 2655 assert(!BadLoop && "Detected problems with the placement of this loop."); 2656 }); 2657 2658 BlockWorkList.clear(); 2659 EHPadWorkList.clear(); 2660 } 2661 2662 void MachineBlockPlacement::buildCFGChains() { 2663 // Ensure that every BB in the function has an associated chain to simplify 2664 // the assumptions of the remaining algorithm. 2665 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2666 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2667 ++FI) { 2668 MachineBasicBlock *BB = &*FI; 2669 BlockChain *Chain = 2670 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2671 // Also, merge any blocks which we cannot reason about and must preserve 2672 // the exact fallthrough behavior for. 2673 while (true) { 2674 Cond.clear(); 2675 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2676 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2677 break; 2678 2679 MachineFunction::iterator NextFI = std::next(FI); 2680 MachineBasicBlock *NextBB = &*NextFI; 2681 // Ensure that the layout successor is a viable block, as we know that 2682 // fallthrough is a possibility. 2683 assert(NextFI != FE && "Can't fallthrough past the last block."); 2684 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2685 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2686 << "\n"); 2687 Chain->merge(NextBB, nullptr); 2688 #ifndef NDEBUG 2689 BlocksWithUnanalyzableExits.insert(&*BB); 2690 #endif 2691 FI = NextFI; 2692 BB = NextBB; 2693 } 2694 } 2695 2696 // Build any loop-based chains. 2697 PreferredLoopExit = nullptr; 2698 for (MachineLoop *L : *MLI) 2699 buildLoopChains(*L); 2700 2701 assert(BlockWorkList.empty() && 2702 "BlockWorkList should be empty before building final chain."); 2703 assert(EHPadWorkList.empty() && 2704 "EHPadWorkList should be empty before building final chain."); 2705 2706 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2707 for (MachineBasicBlock &MBB : *F) 2708 fillWorkLists(&MBB, UpdatedPreds); 2709 2710 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2711 buildChain(&F->front(), FunctionChain); 2712 2713 #ifndef NDEBUG 2714 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2715 #endif 2716 LLVM_DEBUG({ 2717 // Crash at the end so we get all of the debugging output first. 2718 bool BadFunc = false; 2719 FunctionBlockSetType FunctionBlockSet; 2720 for (MachineBasicBlock &MBB : *F) 2721 FunctionBlockSet.insert(&MBB); 2722 2723 for (MachineBasicBlock *ChainBB : FunctionChain) 2724 if (!FunctionBlockSet.erase(ChainBB)) { 2725 BadFunc = true; 2726 dbgs() << "Function chain contains a block not in the function!\n" 2727 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2728 } 2729 2730 if (!FunctionBlockSet.empty()) { 2731 BadFunc = true; 2732 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2733 dbgs() << "Function contains blocks never placed into a chain!\n" 2734 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2735 } 2736 assert(!BadFunc && "Detected problems with the block placement."); 2737 }); 2738 2739 // Remember original layout ordering, so we can update terminators after 2740 // reordering to point to the original layout successor. 2741 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2742 F->getNumBlockIDs()); 2743 { 2744 MachineBasicBlock *LastMBB = nullptr; 2745 for (auto &MBB : *F) { 2746 if (LastMBB != nullptr) 2747 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2748 LastMBB = &MBB; 2749 } 2750 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2751 } 2752 2753 // Splice the blocks into place. 2754 MachineFunction::iterator InsertPos = F->begin(); 2755 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2756 for (MachineBasicBlock *ChainBB : FunctionChain) { 2757 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2758 : " ... ") 2759 << getBlockName(ChainBB) << "\n"); 2760 if (InsertPos != MachineFunction::iterator(ChainBB)) 2761 F->splice(InsertPos, ChainBB); 2762 else 2763 ++InsertPos; 2764 2765 // Update the terminator of the previous block. 2766 if (ChainBB == *FunctionChain.begin()) 2767 continue; 2768 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2769 2770 // FIXME: It would be awesome of updateTerminator would just return rather 2771 // than assert when the branch cannot be analyzed in order to remove this 2772 // boiler plate. 2773 Cond.clear(); 2774 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2775 2776 #ifndef NDEBUG 2777 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2778 // Given the exact block placement we chose, we may actually not _need_ to 2779 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2780 // do that at this point is a bug. 2781 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2782 !PrevBB->canFallThrough()) && 2783 "Unexpected block with un-analyzable fallthrough!"); 2784 Cond.clear(); 2785 TBB = FBB = nullptr; 2786 } 2787 #endif 2788 2789 // The "PrevBB" is not yet updated to reflect current code layout, so, 2790 // o. it may fall-through to a block without explicit "goto" instruction 2791 // before layout, and no longer fall-through it after layout; or 2792 // o. just opposite. 2793 // 2794 // analyzeBranch() may return erroneous value for FBB when these two 2795 // situations take place. For the first scenario FBB is mistakenly set NULL; 2796 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2797 // mistakenly pointing to "*BI". 2798 // Thus, if the future change needs to use FBB before the layout is set, it 2799 // has to correct FBB first by using the code similar to the following: 2800 // 2801 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2802 // PrevBB->updateTerminator(); 2803 // Cond.clear(); 2804 // TBB = FBB = nullptr; 2805 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2806 // // FIXME: This should never take place. 2807 // TBB = FBB = nullptr; 2808 // } 2809 // } 2810 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2811 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2812 } 2813 } 2814 2815 // Fixup the last block. 2816 Cond.clear(); 2817 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2818 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2819 MachineBasicBlock *PrevBB = &F->back(); 2820 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2821 } 2822 2823 BlockWorkList.clear(); 2824 EHPadWorkList.clear(); 2825 } 2826 2827 void MachineBlockPlacement::optimizeBranches() { 2828 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2829 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2830 2831 // Now that all the basic blocks in the chain have the proper layout, 2832 // make a final call to analyzeBranch with AllowModify set. 2833 // Indeed, the target may be able to optimize the branches in a way we 2834 // cannot because all branches may not be analyzable. 2835 // E.g., the target may be able to remove an unconditional branch to 2836 // a fallthrough when it occurs after predicated terminators. 2837 for (MachineBasicBlock *ChainBB : FunctionChain) { 2838 Cond.clear(); 2839 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2840 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2841 // If PrevBB has a two-way branch, try to re-order the branches 2842 // such that we branch to the successor with higher probability first. 2843 if (TBB && !Cond.empty() && FBB && 2844 MBPI->getEdgeProbability(ChainBB, FBB) > 2845 MBPI->getEdgeProbability(ChainBB, TBB) && 2846 !TII->reverseBranchCondition(Cond)) { 2847 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2848 << getBlockName(ChainBB) << "\n"); 2849 LLVM_DEBUG(dbgs() << " Edge probability: " 2850 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2851 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2852 DebugLoc dl; // FIXME: this is nowhere 2853 TII->removeBranch(*ChainBB); 2854 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2855 } 2856 } 2857 } 2858 } 2859 2860 void MachineBlockPlacement::alignBlocks() { 2861 // Walk through the backedges of the function now that we have fully laid out 2862 // the basic blocks and align the destination of each backedge. We don't rely 2863 // exclusively on the loop info here so that we can align backedges in 2864 // unnatural CFGs and backedges that were introduced purely because of the 2865 // loop rotations done during this layout pass. 2866 if (F->getFunction().hasMinSize() || 2867 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2868 return; 2869 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2870 if (FunctionChain.begin() == FunctionChain.end()) 2871 return; // Empty chain. 2872 2873 const BranchProbability ColdProb(1, 5); // 20% 2874 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2875 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2876 for (MachineBasicBlock *ChainBB : FunctionChain) { 2877 if (ChainBB == *FunctionChain.begin()) 2878 continue; 2879 2880 // Don't align non-looping basic blocks. These are unlikely to execute 2881 // enough times to matter in practice. Note that we'll still handle 2882 // unnatural CFGs inside of a natural outer loop (the common case) and 2883 // rotated loops. 2884 MachineLoop *L = MLI->getLoopFor(ChainBB); 2885 if (!L) 2886 continue; 2887 2888 const Align Align = TLI->getPrefLoopAlignment(L); 2889 if (Align == 1) 2890 continue; // Don't care about loop alignment. 2891 2892 // If the block is cold relative to the function entry don't waste space 2893 // aligning it. 2894 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2895 if (Freq < WeightedEntryFreq) 2896 continue; 2897 2898 // If the block is cold relative to its loop header, don't align it 2899 // regardless of what edges into the block exist. 2900 MachineBasicBlock *LoopHeader = L->getHeader(); 2901 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2902 if (Freq < (LoopHeaderFreq * ColdProb)) 2903 continue; 2904 2905 // If the global profiles indicates so, don't align it. 2906 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2907 !TLI->alignLoopsWithOptSize()) 2908 continue; 2909 2910 // Check for the existence of a non-layout predecessor which would benefit 2911 // from aligning this block. 2912 MachineBasicBlock *LayoutPred = 2913 &*std::prev(MachineFunction::iterator(ChainBB)); 2914 2915 // Force alignment if all the predecessors are jumps. We already checked 2916 // that the block isn't cold above. 2917 if (!LayoutPred->isSuccessor(ChainBB)) { 2918 ChainBB->setAlignment(Align); 2919 continue; 2920 } 2921 2922 // Align this block if the layout predecessor's edge into this block is 2923 // cold relative to the block. When this is true, other predecessors make up 2924 // all of the hot entries into the block and thus alignment is likely to be 2925 // important. 2926 BranchProbability LayoutProb = 2927 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2928 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2929 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2930 ChainBB->setAlignment(Align); 2931 } 2932 } 2933 2934 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2935 /// it was duplicated into its chain predecessor and removed. 2936 /// \p BB - Basic block that may be duplicated. 2937 /// 2938 /// \p LPred - Chosen layout predecessor of \p BB. 2939 /// Updated to be the chain end if LPred is removed. 2940 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2941 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2942 /// Used to identify which blocks to update predecessor 2943 /// counts. 2944 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2945 /// chosen in the given order due to unnatural CFG 2946 /// only needed if \p BB is removed and 2947 /// \p PrevUnplacedBlockIt pointed to \p BB. 2948 /// @return true if \p BB was removed. 2949 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2950 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2951 const MachineBasicBlock *LoopHeaderBB, 2952 BlockChain &Chain, BlockFilterSet *BlockFilter, 2953 MachineFunction::iterator &PrevUnplacedBlockIt) { 2954 bool Removed, DuplicatedToLPred; 2955 bool DuplicatedToOriginalLPred; 2956 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2957 PrevUnplacedBlockIt, 2958 DuplicatedToLPred); 2959 if (!Removed) 2960 return false; 2961 DuplicatedToOriginalLPred = DuplicatedToLPred; 2962 // Iteratively try to duplicate again. It can happen that a block that is 2963 // duplicated into is still small enough to be duplicated again. 2964 // No need to call markBlockSuccessors in this case, as the blocks being 2965 // duplicated from here on are already scheduled. 2966 while (DuplicatedToLPred && Removed) { 2967 MachineBasicBlock *DupBB, *DupPred; 2968 // The removal callback causes Chain.end() to be updated when a block is 2969 // removed. On the first pass through the loop, the chain end should be the 2970 // same as it was on function entry. On subsequent passes, because we are 2971 // duplicating the block at the end of the chain, if it is removed the 2972 // chain will have shrunk by one block. 2973 BlockChain::iterator ChainEnd = Chain.end(); 2974 DupBB = *(--ChainEnd); 2975 // Now try to duplicate again. 2976 if (ChainEnd == Chain.begin()) 2977 break; 2978 DupPred = *std::prev(ChainEnd); 2979 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2980 PrevUnplacedBlockIt, 2981 DuplicatedToLPred); 2982 } 2983 // If BB was duplicated into LPred, it is now scheduled. But because it was 2984 // removed, markChainSuccessors won't be called for its chain. Instead we 2985 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2986 // at the end because repeating the tail duplication can increase the number 2987 // of unscheduled predecessors. 2988 LPred = *std::prev(Chain.end()); 2989 if (DuplicatedToOriginalLPred) 2990 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2991 return true; 2992 } 2993 2994 /// Tail duplicate \p BB into (some) predecessors if profitable. 2995 /// \p BB - Basic block that may be duplicated 2996 /// \p LPred - Chosen layout predecessor of \p BB 2997 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2998 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2999 /// Used to identify which blocks to update predecessor 3000 /// counts. 3001 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3002 /// chosen in the given order due to unnatural CFG 3003 /// only needed if \p BB is removed and 3004 /// \p PrevUnplacedBlockIt pointed to \p BB. 3005 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3006 /// \return - True if the block was duplicated into all preds and removed. 3007 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3008 MachineBasicBlock *BB, MachineBasicBlock *LPred, 3009 BlockChain &Chain, BlockFilterSet *BlockFilter, 3010 MachineFunction::iterator &PrevUnplacedBlockIt, 3011 bool &DuplicatedToLPred) { 3012 DuplicatedToLPred = false; 3013 if (!shouldTailDuplicate(BB)) 3014 return false; 3015 3016 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3017 << "\n"); 3018 3019 // This has to be a callback because none of it can be done after 3020 // BB is deleted. 3021 bool Removed = false; 3022 auto RemovalCallback = 3023 [&](MachineBasicBlock *RemBB) { 3024 // Signal to outer function 3025 Removed = true; 3026 3027 // Conservative default. 3028 bool InWorkList = true; 3029 // Remove from the Chain and Chain Map 3030 if (BlockToChain.count(RemBB)) { 3031 BlockChain *Chain = BlockToChain[RemBB]; 3032 InWorkList = Chain->UnscheduledPredecessors == 0; 3033 Chain->remove(RemBB); 3034 BlockToChain.erase(RemBB); 3035 } 3036 3037 // Handle the unplaced block iterator 3038 if (&(*PrevUnplacedBlockIt) == RemBB) { 3039 PrevUnplacedBlockIt++; 3040 } 3041 3042 // Handle the Work Lists 3043 if (InWorkList) { 3044 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3045 if (RemBB->isEHPad()) 3046 RemoveList = EHPadWorkList; 3047 llvm::erase_value(RemoveList, RemBB); 3048 } 3049 3050 // Handle the filter set 3051 if (BlockFilter) { 3052 BlockFilter->remove(RemBB); 3053 } 3054 3055 // Remove the block from loop info. 3056 MLI->removeBlock(RemBB); 3057 if (RemBB == PreferredLoopExit) 3058 PreferredLoopExit = nullptr; 3059 3060 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3061 << getBlockName(RemBB) << "\n"); 3062 }; 3063 auto RemovalCallbackRef = 3064 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3065 3066 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3067 bool IsSimple = TailDup.isSimpleBB(BB); 3068 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3069 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3070 if (F->getFunction().hasProfileData()) { 3071 // We can do partial duplication with precise profile information. 3072 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3073 if (CandidatePreds.size() == 0) 3074 return false; 3075 if (CandidatePreds.size() < BB->pred_size()) 3076 CandidatePtr = &CandidatePreds; 3077 } 3078 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3079 &RemovalCallbackRef, CandidatePtr); 3080 3081 // Update UnscheduledPredecessors to reflect tail-duplication. 3082 DuplicatedToLPred = false; 3083 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3084 // We're only looking for unscheduled predecessors that match the filter. 3085 BlockChain* PredChain = BlockToChain[Pred]; 3086 if (Pred == LPred) 3087 DuplicatedToLPred = true; 3088 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3089 || PredChain == &Chain) 3090 continue; 3091 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3092 if (BlockFilter && !BlockFilter->count(NewSucc)) 3093 continue; 3094 BlockChain *NewChain = BlockToChain[NewSucc]; 3095 if (NewChain != &Chain && NewChain != PredChain) 3096 NewChain->UnscheduledPredecessors++; 3097 } 3098 } 3099 return Removed; 3100 } 3101 3102 // Count the number of actual machine instructions. 3103 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3104 uint64_t InstrCount = 0; 3105 for (MachineInstr &MI : *MBB) { 3106 if (!MI.isPHI() && !MI.isMetaInstruction()) 3107 InstrCount += 1; 3108 } 3109 return InstrCount; 3110 } 3111 3112 // The size cost of duplication is the instruction size of the duplicated block. 3113 // So we should scale the threshold accordingly. But the instruction size is not 3114 // available on all targets, so we use the number of instructions instead. 3115 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3116 return DupThreshold.getFrequency() * countMBBInstruction(BB); 3117 } 3118 3119 // Returns true if BB is Pred's best successor. 3120 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3121 MachineBasicBlock *Pred, 3122 BlockFilterSet *BlockFilter) { 3123 if (BB == Pred) 3124 return false; 3125 if (BlockFilter && !BlockFilter->count(Pred)) 3126 return false; 3127 BlockChain *PredChain = BlockToChain[Pred]; 3128 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3129 return false; 3130 3131 // Find the successor with largest probability excluding BB. 3132 BranchProbability BestProb = BranchProbability::getZero(); 3133 for (MachineBasicBlock *Succ : Pred->successors()) 3134 if (Succ != BB) { 3135 if (BlockFilter && !BlockFilter->count(Succ)) 3136 continue; 3137 BlockChain *SuccChain = BlockToChain[Succ]; 3138 if (SuccChain && (Succ != *SuccChain->begin())) 3139 continue; 3140 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3141 if (SuccProb > BestProb) 3142 BestProb = SuccProb; 3143 } 3144 3145 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3146 if (BBProb <= BestProb) 3147 return false; 3148 3149 // Compute the number of reduced taken branches if Pred falls through to BB 3150 // instead of another successor. Then compare it with threshold. 3151 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3152 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3153 return Gain > scaleThreshold(BB); 3154 } 3155 3156 // Find out the predecessors of BB and BB can be beneficially duplicated into 3157 // them. 3158 void MachineBlockPlacement::findDuplicateCandidates( 3159 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3160 MachineBasicBlock *BB, 3161 BlockFilterSet *BlockFilter) { 3162 MachineBasicBlock *Fallthrough = nullptr; 3163 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3164 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3165 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3166 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3167 3168 // Sort for highest frequency. 3169 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3170 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3171 }; 3172 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3173 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3174 }; 3175 llvm::stable_sort(Succs, CmpSucc); 3176 llvm::stable_sort(Preds, CmpPred); 3177 3178 auto SuccIt = Succs.begin(); 3179 if (SuccIt != Succs.end()) { 3180 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3181 } 3182 3183 // For each predecessors of BB, compute the benefit of duplicating BB, 3184 // if it is larger than the threshold, add it into Candidates. 3185 // 3186 // If we have following control flow. 3187 // 3188 // PB1 PB2 PB3 PB4 3189 // \ | / /\ 3190 // \ | / / \ 3191 // \ |/ / \ 3192 // BB----/ OB 3193 // /\ 3194 // / \ 3195 // SB1 SB2 3196 // 3197 // And it can be partially duplicated as 3198 // 3199 // PB2+BB 3200 // | PB1 PB3 PB4 3201 // | | / /\ 3202 // | | / / \ 3203 // | |/ / \ 3204 // | BB----/ OB 3205 // |\ /| 3206 // | X | 3207 // |/ \| 3208 // SB2 SB1 3209 // 3210 // The benefit of duplicating into a predecessor is defined as 3211 // Orig_taken_branch - Duplicated_taken_branch 3212 // 3213 // The Orig_taken_branch is computed with the assumption that predecessor 3214 // jumps to BB and the most possible successor is laid out after BB. 3215 // 3216 // The Duplicated_taken_branch is computed with the assumption that BB is 3217 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3218 // SB2 for PB2 in our case). If there is no available successor, the combined 3219 // block jumps to all BB's successor, like PB3 in this example. 3220 // 3221 // If a predecessor has multiple successors, so BB can't be duplicated into 3222 // it. But it can beneficially fall through to BB, and duplicate BB into other 3223 // predecessors. 3224 for (MachineBasicBlock *Pred : Preds) { 3225 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3226 3227 if (!TailDup.canTailDuplicate(BB, Pred)) { 3228 // BB can't be duplicated into Pred, but it is possible to be layout 3229 // below Pred. 3230 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3231 Fallthrough = Pred; 3232 if (SuccIt != Succs.end()) 3233 SuccIt++; 3234 } 3235 continue; 3236 } 3237 3238 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3239 BlockFrequency DupCost; 3240 if (SuccIt == Succs.end()) { 3241 // Jump to all successors; 3242 if (Succs.size() > 0) 3243 DupCost += PredFreq; 3244 } else { 3245 // Fallthrough to *SuccIt, jump to all other successors; 3246 DupCost += PredFreq; 3247 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3248 } 3249 3250 assert(OrigCost >= DupCost); 3251 OrigCost -= DupCost; 3252 if (OrigCost > BBDupThreshold) { 3253 Candidates.push_back(Pred); 3254 if (SuccIt != Succs.end()) 3255 SuccIt++; 3256 } 3257 } 3258 3259 // No predecessors can optimally fallthrough to BB. 3260 // So we can change one duplication into fallthrough. 3261 if (!Fallthrough) { 3262 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3263 Candidates[0] = Candidates.back(); 3264 Candidates.pop_back(); 3265 } 3266 } 3267 } 3268 3269 void MachineBlockPlacement::initDupThreshold() { 3270 DupThreshold = 0; 3271 if (!F->getFunction().hasProfileData()) 3272 return; 3273 3274 // We prefer to use prifile count. 3275 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3276 if (HotThreshold != UINT64_MAX) { 3277 UseProfileCount = true; 3278 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100; 3279 return; 3280 } 3281 3282 // Profile count is not available, we can use block frequency instead. 3283 BlockFrequency MaxFreq = 0; 3284 for (MachineBasicBlock &MBB : *F) { 3285 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3286 if (Freq > MaxFreq) 3287 MaxFreq = Freq; 3288 } 3289 3290 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3291 DupThreshold = MaxFreq * ThresholdProb; 3292 UseProfileCount = false; 3293 } 3294 3295 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3296 if (skipFunction(MF.getFunction())) 3297 return false; 3298 3299 // Check for single-block functions and skip them. 3300 if (std::next(MF.begin()) == MF.end()) 3301 return false; 3302 3303 F = &MF; 3304 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3305 MBFI = std::make_unique<MBFIWrapper>( 3306 getAnalysis<MachineBlockFrequencyInfo>()); 3307 MLI = &getAnalysis<MachineLoopInfo>(); 3308 TII = MF.getSubtarget().getInstrInfo(); 3309 TLI = MF.getSubtarget().getTargetLowering(); 3310 MPDT = nullptr; 3311 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3312 3313 initDupThreshold(); 3314 3315 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3316 // there are no MachineLoops. 3317 PreferredLoopExit = nullptr; 3318 3319 assert(BlockToChain.empty() && 3320 "BlockToChain map should be empty before starting placement."); 3321 assert(ComputedEdges.empty() && 3322 "Computed Edge map should be empty before starting placement."); 3323 3324 unsigned TailDupSize = TailDupPlacementThreshold; 3325 // If only the aggressive threshold is explicitly set, use it. 3326 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3327 TailDupPlacementThreshold.getNumOccurrences() == 0) 3328 TailDupSize = TailDupPlacementAggressiveThreshold; 3329 3330 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3331 // For aggressive optimization, we can adjust some thresholds to be less 3332 // conservative. 3333 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3334 // At O3 we should be more willing to copy blocks for tail duplication. This 3335 // increases size pressure, so we only do it at O3 3336 // Do this unless only the regular threshold is explicitly set. 3337 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3338 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3339 TailDupSize = TailDupPlacementAggressiveThreshold; 3340 } 3341 3342 // If there's no threshold provided through options, query the target 3343 // information for a threshold instead. 3344 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3345 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive || 3346 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3347 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3348 3349 if (allowTailDupPlacement()) { 3350 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3351 bool OptForSize = MF.getFunction().hasOptSize() || 3352 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3353 if (OptForSize) 3354 TailDupSize = 1; 3355 bool PreRegAlloc = false; 3356 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3357 /* LayoutMode */ true, TailDupSize); 3358 precomputeTriangleChains(); 3359 } 3360 3361 buildCFGChains(); 3362 3363 // Changing the layout can create new tail merging opportunities. 3364 // TailMerge can create jump into if branches that make CFG irreducible for 3365 // HW that requires structured CFG. 3366 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3367 PassConfig->getEnableTailMerge() && 3368 BranchFoldPlacement; 3369 // No tail merging opportunities if the block number is less than four. 3370 if (MF.size() > 3 && EnableTailMerge) { 3371 unsigned TailMergeSize = TailDupSize + 1; 3372 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3373 *MBFI, *MBPI, PSI, TailMergeSize); 3374 3375 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3376 /*AfterPlacement=*/true)) { 3377 // Redo the layout if tail merging creates/removes/moves blocks. 3378 BlockToChain.clear(); 3379 ComputedEdges.clear(); 3380 // Must redo the post-dominator tree if blocks were changed. 3381 if (MPDT) 3382 MPDT->runOnMachineFunction(MF); 3383 ChainAllocator.DestroyAll(); 3384 buildCFGChains(); 3385 } 3386 } 3387 3388 optimizeBranches(); 3389 alignBlocks(); 3390 3391 BlockToChain.clear(); 3392 ComputedEdges.clear(); 3393 ChainAllocator.DestroyAll(); 3394 3395 if (AlignAllBlock) 3396 // Align all of the blocks in the function to a specific alignment. 3397 for (MachineBasicBlock &MBB : MF) 3398 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3399 else if (AlignAllNonFallThruBlocks) { 3400 // Align all of the blocks that have no fall-through predecessors to a 3401 // specific alignment. 3402 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3403 auto LayoutPred = std::prev(MBI); 3404 if (!LayoutPred->isSuccessor(&*MBI)) 3405 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3406 } 3407 } 3408 if (ViewBlockLayoutWithBFI != GVDT_None && 3409 (ViewBlockFreqFuncName.empty() || 3410 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3411 MBFI->view("MBP." + MF.getName(), false); 3412 } 3413 3414 3415 // We always return true as we have no way to track whether the final order 3416 // differs from the original order. 3417 return true; 3418 } 3419 3420 namespace { 3421 3422 /// A pass to compute block placement statistics. 3423 /// 3424 /// A separate pass to compute interesting statistics for evaluating block 3425 /// placement. This is separate from the actual placement pass so that they can 3426 /// be computed in the absence of any placement transformations or when using 3427 /// alternative placement strategies. 3428 class MachineBlockPlacementStats : public MachineFunctionPass { 3429 /// A handle to the branch probability pass. 3430 const MachineBranchProbabilityInfo *MBPI; 3431 3432 /// A handle to the function-wide block frequency pass. 3433 const MachineBlockFrequencyInfo *MBFI; 3434 3435 public: 3436 static char ID; // Pass identification, replacement for typeid 3437 3438 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3439 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3440 } 3441 3442 bool runOnMachineFunction(MachineFunction &F) override; 3443 3444 void getAnalysisUsage(AnalysisUsage &AU) const override { 3445 AU.addRequired<MachineBranchProbabilityInfo>(); 3446 AU.addRequired<MachineBlockFrequencyInfo>(); 3447 AU.setPreservesAll(); 3448 MachineFunctionPass::getAnalysisUsage(AU); 3449 } 3450 }; 3451 3452 } // end anonymous namespace 3453 3454 char MachineBlockPlacementStats::ID = 0; 3455 3456 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3457 3458 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3459 "Basic Block Placement Stats", false, false) 3460 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3461 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3462 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3463 "Basic Block Placement Stats", false, false) 3464 3465 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3466 // Check for single-block functions and skip them. 3467 if (std::next(F.begin()) == F.end()) 3468 return false; 3469 3470 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3471 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3472 3473 for (MachineBasicBlock &MBB : F) { 3474 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3475 Statistic &NumBranches = 3476 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3477 Statistic &BranchTakenFreq = 3478 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3479 for (MachineBasicBlock *Succ : MBB.successors()) { 3480 // Skip if this successor is a fallthrough. 3481 if (MBB.isLayoutSuccessor(Succ)) 3482 continue; 3483 3484 BlockFrequency EdgeFreq = 3485 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3486 ++NumBranches; 3487 BranchTakenFreq += EdgeFreq.getFrequency(); 3488 } 3489 } 3490 3491 return false; 3492 } 3493