xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "block-placement"
74 
75 STATISTIC(NumCondBranches, "Number of conditional branches");
76 STATISTIC(NumUncondBranches, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq,
78           "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq,
80           "Potential frequency of taking unconditional branches");
81 
82 static cl::opt<unsigned> AlignAllBlock(
83     "align-all-blocks",
84     cl::desc("Force the alignment of all blocks in the function in log2 format "
85              "(e.g 4 means align on 16B boundaries)."),
86     cl::init(0), cl::Hidden);
87 
88 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
89     "align-all-nofallthru-blocks",
90     cl::desc("Force the alignment of all blocks that have no fall-through "
91              "predecessors (i.e. don't add nops that are executed). In log2 "
92              "format (e.g 4 means align on 16B boundaries)."),
93     cl::init(0), cl::Hidden);
94 
95 // FIXME: Find a good default for this flag and remove the flag.
96 static cl::opt<unsigned> ExitBlockBias(
97     "block-placement-exit-block-bias",
98     cl::desc("Block frequency percentage a loop exit block needs "
99              "over the original exit to be considered the new exit."),
100     cl::init(0), cl::Hidden);
101 
102 // Definition:
103 // - Outlining: placement of a basic block outside the chain or hot path.
104 
105 static cl::opt<unsigned> LoopToColdBlockRatio(
106     "loop-to-cold-block-ratio",
107     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
108              "(frequency of block) is greater than this ratio"),
109     cl::init(5), cl::Hidden);
110 
111 static cl::opt<bool> ForceLoopColdBlock(
112     "force-loop-cold-block",
113     cl::desc("Force outlining cold blocks from loops."),
114     cl::init(false), cl::Hidden);
115 
116 static cl::opt<bool>
117     PreciseRotationCost("precise-rotation-cost",
118                         cl::desc("Model the cost of loop rotation more "
119                                  "precisely by using profile data."),
120                         cl::init(false), cl::Hidden);
121 
122 static cl::opt<bool>
123     ForcePreciseRotationCost("force-precise-rotation-cost",
124                              cl::desc("Force the use of precise cost "
125                                       "loop rotation strategy."),
126                              cl::init(false), cl::Hidden);
127 
128 static cl::opt<unsigned> MisfetchCost(
129     "misfetch-cost",
130     cl::desc("Cost that models the probabilistic risk of an instruction "
131              "misfetch due to a jump comparing to falling through, whose cost "
132              "is zero."),
133     cl::init(1), cl::Hidden);
134 
135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
136                                       cl::desc("Cost of jump instructions."),
137                                       cl::init(1), cl::Hidden);
138 static cl::opt<bool>
139 TailDupPlacement("tail-dup-placement",
140               cl::desc("Perform tail duplication during placement. "
141                        "Creates more fallthrough opportunites in "
142                        "outline branches."),
143               cl::init(true), cl::Hidden);
144 
145 static cl::opt<bool>
146 BranchFoldPlacement("branch-fold-placement",
147               cl::desc("Perform branch folding during placement. "
148                        "Reduces code size."),
149               cl::init(true), cl::Hidden);
150 
151 // Heuristic for tail duplication.
152 static cl::opt<unsigned> TailDupPlacementThreshold(
153     "tail-dup-placement-threshold",
154     cl::desc("Instruction cutoff for tail duplication during layout. "
155              "Tail merging during layout is forced to have a threshold "
156              "that won't conflict."), cl::init(2),
157     cl::Hidden);
158 
159 // Heuristic for aggressive tail duplication.
160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
161     "tail-dup-placement-aggressive-threshold",
162     cl::desc("Instruction cutoff for aggressive tail duplication during "
163              "layout. Used at -O3. Tail merging during layout is forced to "
164              "have a threshold that won't conflict."), cl::init(4),
165     cl::Hidden);
166 
167 // Heuristic for tail duplication.
168 static cl::opt<unsigned> TailDupPlacementPenalty(
169     "tail-dup-placement-penalty",
170     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
171              "Copying can increase fallthrough, but it also increases icache "
172              "pressure. This parameter controls the penalty to account for that. "
173              "Percent as integer."),
174     cl::init(2),
175     cl::Hidden);
176 
177 // Heuristic for triangle chains.
178 static cl::opt<unsigned> TriangleChainCount(
179     "triangle-chain-count",
180     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
181              "triangle tail duplication heuristic to kick in. 0 to disable."),
182     cl::init(2),
183     cl::Hidden);
184 
185 extern cl::opt<unsigned> StaticLikelyProb;
186 extern cl::opt<unsigned> ProfileLikelyProb;
187 
188 // Internal option used to control BFI display only after MBP pass.
189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
190 // -view-block-layout-with-bfi=
191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
192 
193 // Command line option to specify the name of the function for CFG dump
194 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
195 extern cl::opt<std::string> ViewBlockFreqFuncName;
196 
197 namespace {
198 
199 class BlockChain;
200 
201 /// Type for our function-wide basic block -> block chain mapping.
202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
203 
204 /// A chain of blocks which will be laid out contiguously.
205 ///
206 /// This is the datastructure representing a chain of consecutive blocks that
207 /// are profitable to layout together in order to maximize fallthrough
208 /// probabilities and code locality. We also can use a block chain to represent
209 /// a sequence of basic blocks which have some external (correctness)
210 /// requirement for sequential layout.
211 ///
212 /// Chains can be built around a single basic block and can be merged to grow
213 /// them. They participate in a block-to-chain mapping, which is updated
214 /// automatically as chains are merged together.
215 class BlockChain {
216   /// The sequence of blocks belonging to this chain.
217   ///
218   /// This is the sequence of blocks for a particular chain. These will be laid
219   /// out in-order within the function.
220   SmallVector<MachineBasicBlock *, 4> Blocks;
221 
222   /// A handle to the function-wide basic block to block chain mapping.
223   ///
224   /// This is retained in each block chain to simplify the computation of child
225   /// block chains for SCC-formation and iteration. We store the edges to child
226   /// basic blocks, and map them back to their associated chains using this
227   /// structure.
228   BlockToChainMapType &BlockToChain;
229 
230 public:
231   /// Construct a new BlockChain.
232   ///
233   /// This builds a new block chain representing a single basic block in the
234   /// function. It also registers itself as the chain that block participates
235   /// in with the BlockToChain mapping.
236   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
237       : Blocks(1, BB), BlockToChain(BlockToChain) {
238     assert(BB && "Cannot create a chain with a null basic block");
239     BlockToChain[BB] = this;
240   }
241 
242   /// Iterator over blocks within the chain.
243   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
244   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
245 
246   /// Beginning of blocks within the chain.
247   iterator begin() { return Blocks.begin(); }
248   const_iterator begin() const { return Blocks.begin(); }
249 
250   /// End of blocks within the chain.
251   iterator end() { return Blocks.end(); }
252   const_iterator end() const { return Blocks.end(); }
253 
254   bool remove(MachineBasicBlock* BB) {
255     for(iterator i = begin(); i != end(); ++i) {
256       if (*i == BB) {
257         Blocks.erase(i);
258         return true;
259       }
260     }
261     return false;
262   }
263 
264   /// Merge a block chain into this one.
265   ///
266   /// This routine merges a block chain into this one. It takes care of forming
267   /// a contiguous sequence of basic blocks, updating the edge list, and
268   /// updating the block -> chain mapping. It does not free or tear down the
269   /// old chain, but the old chain's block list is no longer valid.
270   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
271     assert(BB && "Can't merge a null block.");
272     assert(!Blocks.empty() && "Can't merge into an empty chain.");
273 
274     // Fast path in case we don't have a chain already.
275     if (!Chain) {
276       assert(!BlockToChain[BB] &&
277              "Passed chain is null, but BB has entry in BlockToChain.");
278       Blocks.push_back(BB);
279       BlockToChain[BB] = this;
280       return;
281     }
282 
283     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
284     assert(Chain->begin() != Chain->end());
285 
286     // Update the incoming blocks to point to this chain, and add them to the
287     // chain structure.
288     for (MachineBasicBlock *ChainBB : *Chain) {
289       Blocks.push_back(ChainBB);
290       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
291       BlockToChain[ChainBB] = this;
292     }
293   }
294 
295 #ifndef NDEBUG
296   /// Dump the blocks in this chain.
297   LLVM_DUMP_METHOD void dump() {
298     for (MachineBasicBlock *MBB : *this)
299       MBB->dump();
300   }
301 #endif // NDEBUG
302 
303   /// Count of predecessors of any block within the chain which have not
304   /// yet been scheduled.  In general, we will delay scheduling this chain
305   /// until those predecessors are scheduled (or we find a sufficiently good
306   /// reason to override this heuristic.)  Note that when forming loop chains,
307   /// blocks outside the loop are ignored and treated as if they were already
308   /// scheduled.
309   ///
310   /// Note: This field is reinitialized multiple times - once for each loop,
311   /// and then once for the function as a whole.
312   unsigned UnscheduledPredecessors = 0;
313 };
314 
315 class MachineBlockPlacement : public MachineFunctionPass {
316   /// A type for a block filter set.
317   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
318 
319   /// Pair struct containing basic block and taildup profitability
320   struct BlockAndTailDupResult {
321     MachineBasicBlock *BB;
322     bool ShouldTailDup;
323   };
324 
325   /// Triple struct containing edge weight and the edge.
326   struct WeightedEdge {
327     BlockFrequency Weight;
328     MachineBasicBlock *Src;
329     MachineBasicBlock *Dest;
330   };
331 
332   /// work lists of blocks that are ready to be laid out
333   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
334   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
335 
336   /// Edges that have already been computed as optimal.
337   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
338 
339   /// Machine Function
340   MachineFunction *F;
341 
342   /// A handle to the branch probability pass.
343   const MachineBranchProbabilityInfo *MBPI;
344 
345   /// A handle to the function-wide block frequency pass.
346   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
347 
348   /// A handle to the loop info.
349   MachineLoopInfo *MLI;
350 
351   /// Preferred loop exit.
352   /// Member variable for convenience. It may be removed by duplication deep
353   /// in the call stack.
354   MachineBasicBlock *PreferredLoopExit;
355 
356   /// A handle to the target's instruction info.
357   const TargetInstrInfo *TII;
358 
359   /// A handle to the target's lowering info.
360   const TargetLoweringBase *TLI;
361 
362   /// A handle to the post dominator tree.
363   MachinePostDominatorTree *MPDT;
364 
365   /// Duplicator used to duplicate tails during placement.
366   ///
367   /// Placement decisions can open up new tail duplication opportunities, but
368   /// since tail duplication affects placement decisions of later blocks, it
369   /// must be done inline.
370   TailDuplicator TailDup;
371 
372   /// Allocator and owner of BlockChain structures.
373   ///
374   /// We build BlockChains lazily while processing the loop structure of
375   /// a function. To reduce malloc traffic, we allocate them using this
376   /// slab-like allocator, and destroy them after the pass completes. An
377   /// important guarantee is that this allocator produces stable pointers to
378   /// the chains.
379   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
380 
381   /// Function wide BasicBlock to BlockChain mapping.
382   ///
383   /// This mapping allows efficiently moving from any given basic block to the
384   /// BlockChain it participates in, if any. We use it to, among other things,
385   /// allow implicitly defining edges between chains as the existing edges
386   /// between basic blocks.
387   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
388 
389 #ifndef NDEBUG
390   /// The set of basic blocks that have terminators that cannot be fully
391   /// analyzed.  These basic blocks cannot be re-ordered safely by
392   /// MachineBlockPlacement, and we must preserve physical layout of these
393   /// blocks and their successors through the pass.
394   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
395 #endif
396 
397   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
398   /// if the count goes to 0, add them to the appropriate work list.
399   void markChainSuccessors(
400       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
401       const BlockFilterSet *BlockFilter = nullptr);
402 
403   /// Decrease the UnscheduledPredecessors count for a single block, and
404   /// if the count goes to 0, add them to the appropriate work list.
405   void markBlockSuccessors(
406       const BlockChain &Chain, const MachineBasicBlock *BB,
407       const MachineBasicBlock *LoopHeaderBB,
408       const BlockFilterSet *BlockFilter = nullptr);
409 
410   BranchProbability
411   collectViableSuccessors(
412       const MachineBasicBlock *BB, const BlockChain &Chain,
413       const BlockFilterSet *BlockFilter,
414       SmallVector<MachineBasicBlock *, 4> &Successors);
415   bool shouldPredBlockBeOutlined(
416       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
417       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
418       BranchProbability SuccProb, BranchProbability HotProb);
419   bool repeatedlyTailDuplicateBlock(
420       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
421       const MachineBasicBlock *LoopHeaderBB,
422       BlockChain &Chain, BlockFilterSet *BlockFilter,
423       MachineFunction::iterator &PrevUnplacedBlockIt);
424   bool maybeTailDuplicateBlock(
425       MachineBasicBlock *BB, MachineBasicBlock *LPred,
426       BlockChain &Chain, BlockFilterSet *BlockFilter,
427       MachineFunction::iterator &PrevUnplacedBlockIt,
428       bool &DuplicatedToLPred);
429   bool hasBetterLayoutPredecessor(
430       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
431       const BlockChain &SuccChain, BranchProbability SuccProb,
432       BranchProbability RealSuccProb, const BlockChain &Chain,
433       const BlockFilterSet *BlockFilter);
434   BlockAndTailDupResult selectBestSuccessor(
435       const MachineBasicBlock *BB, const BlockChain &Chain,
436       const BlockFilterSet *BlockFilter);
437   MachineBasicBlock *selectBestCandidateBlock(
438       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
439   MachineBasicBlock *getFirstUnplacedBlock(
440       const BlockChain &PlacedChain,
441       MachineFunction::iterator &PrevUnplacedBlockIt,
442       const BlockFilterSet *BlockFilter);
443 
444   /// Add a basic block to the work list if it is appropriate.
445   ///
446   /// If the optional parameter BlockFilter is provided, only MBB
447   /// present in the set will be added to the worklist. If nullptr
448   /// is provided, no filtering occurs.
449   void fillWorkLists(const MachineBasicBlock *MBB,
450                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
451                      const BlockFilterSet *BlockFilter);
452 
453   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
454                   BlockFilterSet *BlockFilter = nullptr);
455   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
456                                const MachineBasicBlock *OldTop);
457   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
458                                const BlockFilterSet &LoopBlockSet);
459   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
460                                     const BlockFilterSet &LoopBlockSet);
461   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
462                                   const MachineBasicBlock *OldTop,
463                                   const MachineBasicBlock *ExitBB,
464                                   const BlockFilterSet &LoopBlockSet);
465   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
466       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
467   MachineBasicBlock *findBestLoopTop(
468       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
469   MachineBasicBlock *findBestLoopExit(
470       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
471       BlockFrequency &ExitFreq);
472   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
473   void buildLoopChains(const MachineLoop &L);
474   void rotateLoop(
475       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
476       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
477   void rotateLoopWithProfile(
478       BlockChain &LoopChain, const MachineLoop &L,
479       const BlockFilterSet &LoopBlockSet);
480   void buildCFGChains();
481   void optimizeBranches();
482   void alignBlocks();
483   /// Returns true if a block should be tail-duplicated to increase fallthrough
484   /// opportunities.
485   bool shouldTailDuplicate(MachineBasicBlock *BB);
486   /// Check the edge frequencies to see if tail duplication will increase
487   /// fallthroughs.
488   bool isProfitableToTailDup(
489     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
490     BranchProbability QProb,
491     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
492 
493   /// Check for a trellis layout.
494   bool isTrellis(const MachineBasicBlock *BB,
495                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
496                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
497 
498   /// Get the best successor given a trellis layout.
499   BlockAndTailDupResult getBestTrellisSuccessor(
500       const MachineBasicBlock *BB,
501       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
502       BranchProbability AdjustedSumProb, const BlockChain &Chain,
503       const BlockFilterSet *BlockFilter);
504 
505   /// Get the best pair of non-conflicting edges.
506   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
507       const MachineBasicBlock *BB,
508       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
509 
510   /// Returns true if a block can tail duplicate into all unplaced
511   /// predecessors. Filters based on loop.
512   bool canTailDuplicateUnplacedPreds(
513       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
514       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
515 
516   /// Find chains of triangles to tail-duplicate where a global analysis works,
517   /// but a local analysis would not find them.
518   void precomputeTriangleChains();
519 
520 public:
521   static char ID; // Pass identification, replacement for typeid
522 
523   MachineBlockPlacement() : MachineFunctionPass(ID) {
524     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
525   }
526 
527   bool runOnMachineFunction(MachineFunction &F) override;
528 
529   bool allowTailDupPlacement() const {
530     assert(F);
531     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
532   }
533 
534   void getAnalysisUsage(AnalysisUsage &AU) const override {
535     AU.addRequired<MachineBranchProbabilityInfo>();
536     AU.addRequired<MachineBlockFrequencyInfo>();
537     if (TailDupPlacement)
538       AU.addRequired<MachinePostDominatorTree>();
539     AU.addRequired<MachineLoopInfo>();
540     AU.addRequired<TargetPassConfig>();
541     MachineFunctionPass::getAnalysisUsage(AU);
542   }
543 };
544 
545 } // end anonymous namespace
546 
547 char MachineBlockPlacement::ID = 0;
548 
549 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
550 
551 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
552                       "Branch Probability Basic Block Placement", false, false)
553 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
554 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
555 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
556 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
557 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
558                     "Branch Probability Basic Block Placement", false, false)
559 
560 #ifndef NDEBUG
561 /// Helper to print the name of a MBB.
562 ///
563 /// Only used by debug logging.
564 static std::string getBlockName(const MachineBasicBlock *BB) {
565   std::string Result;
566   raw_string_ostream OS(Result);
567   OS << printMBBReference(*BB);
568   OS << " ('" << BB->getName() << "')";
569   OS.flush();
570   return Result;
571 }
572 #endif
573 
574 /// Mark a chain's successors as having one fewer preds.
575 ///
576 /// When a chain is being merged into the "placed" chain, this routine will
577 /// quickly walk the successors of each block in the chain and mark them as
578 /// having one fewer active predecessor. It also adds any successors of this
579 /// chain which reach the zero-predecessor state to the appropriate worklist.
580 void MachineBlockPlacement::markChainSuccessors(
581     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
582     const BlockFilterSet *BlockFilter) {
583   // Walk all the blocks in this chain, marking their successors as having
584   // a predecessor placed.
585   for (MachineBasicBlock *MBB : Chain) {
586     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
587   }
588 }
589 
590 /// Mark a single block's successors as having one fewer preds.
591 ///
592 /// Under normal circumstances, this is only called by markChainSuccessors,
593 /// but if a block that was to be placed is completely tail-duplicated away,
594 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
595 /// for just that block.
596 void MachineBlockPlacement::markBlockSuccessors(
597     const BlockChain &Chain, const MachineBasicBlock *MBB,
598     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
599   // Add any successors for which this is the only un-placed in-loop
600   // predecessor to the worklist as a viable candidate for CFG-neutral
601   // placement. No subsequent placement of this block will violate the CFG
602   // shape, so we get to use heuristics to choose a favorable placement.
603   for (MachineBasicBlock *Succ : MBB->successors()) {
604     if (BlockFilter && !BlockFilter->count(Succ))
605       continue;
606     BlockChain &SuccChain = *BlockToChain[Succ];
607     // Disregard edges within a fixed chain, or edges to the loop header.
608     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
609       continue;
610 
611     // This is a cross-chain edge that is within the loop, so decrement the
612     // loop predecessor count of the destination chain.
613     if (SuccChain.UnscheduledPredecessors == 0 ||
614         --SuccChain.UnscheduledPredecessors > 0)
615       continue;
616 
617     auto *NewBB = *SuccChain.begin();
618     if (NewBB->isEHPad())
619       EHPadWorkList.push_back(NewBB);
620     else
621       BlockWorkList.push_back(NewBB);
622   }
623 }
624 
625 /// This helper function collects the set of successors of block
626 /// \p BB that are allowed to be its layout successors, and return
627 /// the total branch probability of edges from \p BB to those
628 /// blocks.
629 BranchProbability MachineBlockPlacement::collectViableSuccessors(
630     const MachineBasicBlock *BB, const BlockChain &Chain,
631     const BlockFilterSet *BlockFilter,
632     SmallVector<MachineBasicBlock *, 4> &Successors) {
633   // Adjust edge probabilities by excluding edges pointing to blocks that is
634   // either not in BlockFilter or is already in the current chain. Consider the
635   // following CFG:
636   //
637   //     --->A
638   //     |  / \
639   //     | B   C
640   //     |  \ / \
641   //     ----D   E
642   //
643   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
644   // A->C is chosen as a fall-through, D won't be selected as a successor of C
645   // due to CFG constraint (the probability of C->D is not greater than
646   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
647   // when calculating the probability of C->D, D will be selected and we
648   // will get A C D B as the layout of this loop.
649   auto AdjustedSumProb = BranchProbability::getOne();
650   for (MachineBasicBlock *Succ : BB->successors()) {
651     bool SkipSucc = false;
652     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
653       SkipSucc = true;
654     } else {
655       BlockChain *SuccChain = BlockToChain[Succ];
656       if (SuccChain == &Chain) {
657         SkipSucc = true;
658       } else if (Succ != *SuccChain->begin()) {
659         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
660                           << " -> Mid chain!\n");
661         continue;
662       }
663     }
664     if (SkipSucc)
665       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
666     else
667       Successors.push_back(Succ);
668   }
669 
670   return AdjustedSumProb;
671 }
672 
673 /// The helper function returns the branch probability that is adjusted
674 /// or normalized over the new total \p AdjustedSumProb.
675 static BranchProbability
676 getAdjustedProbability(BranchProbability OrigProb,
677                        BranchProbability AdjustedSumProb) {
678   BranchProbability SuccProb;
679   uint32_t SuccProbN = OrigProb.getNumerator();
680   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
681   if (SuccProbN >= SuccProbD)
682     SuccProb = BranchProbability::getOne();
683   else
684     SuccProb = BranchProbability(SuccProbN, SuccProbD);
685 
686   return SuccProb;
687 }
688 
689 /// Check if \p BB has exactly the successors in \p Successors.
690 static bool
691 hasSameSuccessors(MachineBasicBlock &BB,
692                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
693   if (BB.succ_size() != Successors.size())
694     return false;
695   // We don't want to count self-loops
696   if (Successors.count(&BB))
697     return false;
698   for (MachineBasicBlock *Succ : BB.successors())
699     if (!Successors.count(Succ))
700       return false;
701   return true;
702 }
703 
704 /// Check if a block should be tail duplicated to increase fallthrough
705 /// opportunities.
706 /// \p BB Block to check.
707 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
708   // Blocks with single successors don't create additional fallthrough
709   // opportunities. Don't duplicate them. TODO: When conditional exits are
710   // analyzable, allow them to be duplicated.
711   bool IsSimple = TailDup.isSimpleBB(BB);
712 
713   if (BB->succ_size() == 1)
714     return false;
715   return TailDup.shouldTailDuplicate(IsSimple, *BB);
716 }
717 
718 /// Compare 2 BlockFrequency's with a small penalty for \p A.
719 /// In order to be conservative, we apply a X% penalty to account for
720 /// increased icache pressure and static heuristics. For small frequencies
721 /// we use only the numerators to improve accuracy. For simplicity, we assume the
722 /// penalty is less than 100%
723 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
724 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
725                             uint64_t EntryFreq) {
726   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
727   BlockFrequency Gain = A - B;
728   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
729 }
730 
731 /// Check the edge frequencies to see if tail duplication will increase
732 /// fallthroughs. It only makes sense to call this function when
733 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
734 /// always locally profitable if we would have picked \p Succ without
735 /// considering duplication.
736 bool MachineBlockPlacement::isProfitableToTailDup(
737     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
738     BranchProbability QProb,
739     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
740   // We need to do a probability calculation to make sure this is profitable.
741   // First: does succ have a successor that post-dominates? This affects the
742   // calculation. The 2 relevant cases are:
743   //    BB         BB
744   //    | \Qout    | \Qout
745   //   P|  C       |P C
746   //    =   C'     =   C'
747   //    |  /Qin    |  /Qin
748   //    | /        | /
749   //    Succ       Succ
750   //    / \        | \  V
751   //  U/   =V      |U \
752   //  /     \      =   D
753   //  D      E     |  /
754   //               | /
755   //               |/
756   //               PDom
757   //  '=' : Branch taken for that CFG edge
758   // In the second case, Placing Succ while duplicating it into C prevents the
759   // fallthrough of Succ into either D or PDom, because they now have C as an
760   // unplaced predecessor
761 
762   // Start by figuring out which case we fall into
763   MachineBasicBlock *PDom = nullptr;
764   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
765   // Only scan the relevant successors
766   auto AdjustedSuccSumProb =
767       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
768   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
769   auto BBFreq = MBFI->getBlockFreq(BB);
770   auto SuccFreq = MBFI->getBlockFreq(Succ);
771   BlockFrequency P = BBFreq * PProb;
772   BlockFrequency Qout = BBFreq * QProb;
773   uint64_t EntryFreq = MBFI->getEntryFreq();
774   // If there are no more successors, it is profitable to copy, as it strictly
775   // increases fallthrough.
776   if (SuccSuccs.size() == 0)
777     return greaterWithBias(P, Qout, EntryFreq);
778 
779   auto BestSuccSucc = BranchProbability::getZero();
780   // Find the PDom or the best Succ if no PDom exists.
781   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
782     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
783     if (Prob > BestSuccSucc)
784       BestSuccSucc = Prob;
785     if (PDom == nullptr)
786       if (MPDT->dominates(SuccSucc, Succ)) {
787         PDom = SuccSucc;
788         break;
789       }
790   }
791   // For the comparisons, we need to know Succ's best incoming edge that isn't
792   // from BB.
793   auto SuccBestPred = BlockFrequency(0);
794   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
795     if (SuccPred == Succ || SuccPred == BB
796         || BlockToChain[SuccPred] == &Chain
797         || (BlockFilter && !BlockFilter->count(SuccPred)))
798       continue;
799     auto Freq = MBFI->getBlockFreq(SuccPred)
800         * MBPI->getEdgeProbability(SuccPred, Succ);
801     if (Freq > SuccBestPred)
802       SuccBestPred = Freq;
803   }
804   // Qin is Succ's best unplaced incoming edge that isn't BB
805   BlockFrequency Qin = SuccBestPred;
806   // If it doesn't have a post-dominating successor, here is the calculation:
807   //    BB        BB
808   //    | \Qout   |  \
809   //   P|  C      |   =
810   //    =   C'    |    C
811   //    |  /Qin   |     |
812   //    | /       |     C' (+Succ)
813   //    Succ      Succ /|
814   //    / \       |  \/ |
815   //  U/   =V     |  == |
816   //  /     \     | /  \|
817   //  D      E    D     E
818   //  '=' : Branch taken for that CFG edge
819   //  Cost in the first case is: P + V
820   //  For this calculation, we always assume P > Qout. If Qout > P
821   //  The result of this function will be ignored at the caller.
822   //  Let F = SuccFreq - Qin
823   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
824 
825   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
826     BranchProbability UProb = BestSuccSucc;
827     BranchProbability VProb = AdjustedSuccSumProb - UProb;
828     BlockFrequency F = SuccFreq - Qin;
829     BlockFrequency V = SuccFreq * VProb;
830     BlockFrequency QinU = std::min(Qin, F) * UProb;
831     BlockFrequency BaseCost = P + V;
832     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
833     return greaterWithBias(BaseCost, DupCost, EntryFreq);
834   }
835   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
836   BranchProbability VProb = AdjustedSuccSumProb - UProb;
837   BlockFrequency U = SuccFreq * UProb;
838   BlockFrequency V = SuccFreq * VProb;
839   BlockFrequency F = SuccFreq - Qin;
840   // If there is a post-dominating successor, here is the calculation:
841   // BB         BB                 BB          BB
842   // | \Qout    |   \               | \Qout     |  \
843   // |P C       |    =              |P C        |   =
844   // =   C'     |P    C             =   C'      |P   C
845   // |  /Qin    |      |            |  /Qin     |     |
846   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
847   // Succ       Succ  /|            Succ        Succ /|
848   // | \  V     |   \/ |            | \  V      |  \/ |
849   // |U \       |U  /\ =?           |U =        |U /\ |
850   // =   D      = =  =?|            |   D       | =  =|
851   // |  /       |/     D            |  /        |/    D
852   // | /        |     /             | =         |    /
853   // |/         |    /              |/          |   =
854   // Dom         Dom                Dom         Dom
855   //  '=' : Branch taken for that CFG edge
856   // The cost for taken branches in the first case is P + U
857   // Let F = SuccFreq - Qin
858   // The cost in the second case (assuming independence), given the layout:
859   // BB, Succ, (C+Succ), D, Dom or the layout:
860   // BB, Succ, D, Dom, (C+Succ)
861   // is Qout + max(F, Qin) * U + min(F, Qin)
862   // compare P + U vs Qout + P * U + Qin.
863   //
864   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
865   //
866   // For the 3rd case, the cost is P + 2 * V
867   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
868   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
869   if (UProb > AdjustedSuccSumProb / 2 &&
870       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
871                                   Chain, BlockFilter))
872     // Cases 3 & 4
873     return greaterWithBias(
874         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
875         EntryFreq);
876   // Cases 1 & 2
877   return greaterWithBias((P + U),
878                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
879                           std::max(Qin, F) * UProb),
880                          EntryFreq);
881 }
882 
883 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
884 /// successors form the lower part of a trellis. A successor set S forms the
885 /// lower part of a trellis if all of the predecessors of S are either in S or
886 /// have all of S as successors. We ignore trellises where BB doesn't have 2
887 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
888 /// are very uncommon and complex to compute optimally. Allowing edges within S
889 /// is not strictly a trellis, but the same algorithm works, so we allow it.
890 bool MachineBlockPlacement::isTrellis(
891     const MachineBasicBlock *BB,
892     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
893     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
894   // Technically BB could form a trellis with branching factor higher than 2.
895   // But that's extremely uncommon.
896   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
897     return false;
898 
899   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
900                                                        BB->succ_end());
901   // To avoid reviewing the same predecessors twice.
902   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
903 
904   for (MachineBasicBlock *Succ : ViableSuccs) {
905     int PredCount = 0;
906     for (auto SuccPred : Succ->predecessors()) {
907       // Allow triangle successors, but don't count them.
908       if (Successors.count(SuccPred)) {
909         // Make sure that it is actually a triangle.
910         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
911           if (!Successors.count(CheckSucc))
912             return false;
913         continue;
914       }
915       const BlockChain *PredChain = BlockToChain[SuccPred];
916       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
917           PredChain == &Chain || PredChain == BlockToChain[Succ])
918         continue;
919       ++PredCount;
920       // Perform the successor check only once.
921       if (!SeenPreds.insert(SuccPred).second)
922         continue;
923       if (!hasSameSuccessors(*SuccPred, Successors))
924         return false;
925     }
926     // If one of the successors has only BB as a predecessor, it is not a
927     // trellis.
928     if (PredCount < 1)
929       return false;
930   }
931   return true;
932 }
933 
934 /// Pick the highest total weight pair of edges that can both be laid out.
935 /// The edges in \p Edges[0] are assumed to have a different destination than
936 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
937 /// the individual highest weight edges to the 2 different destinations, or in
938 /// case of a conflict, one of them should be replaced with a 2nd best edge.
939 std::pair<MachineBlockPlacement::WeightedEdge,
940           MachineBlockPlacement::WeightedEdge>
941 MachineBlockPlacement::getBestNonConflictingEdges(
942     const MachineBasicBlock *BB,
943     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
944         Edges) {
945   // Sort the edges, and then for each successor, find the best incoming
946   // predecessor. If the best incoming predecessors aren't the same,
947   // then that is clearly the best layout. If there is a conflict, one of the
948   // successors will have to fallthrough from the second best predecessor. We
949   // compare which combination is better overall.
950 
951   // Sort for highest frequency.
952   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
953 
954   llvm::stable_sort(Edges[0], Cmp);
955   llvm::stable_sort(Edges[1], Cmp);
956   auto BestA = Edges[0].begin();
957   auto BestB = Edges[1].begin();
958   // Arrange for the correct answer to be in BestA and BestB
959   // If the 2 best edges don't conflict, the answer is already there.
960   if (BestA->Src == BestB->Src) {
961     // Compare the total fallthrough of (Best + Second Best) for both pairs
962     auto SecondBestA = std::next(BestA);
963     auto SecondBestB = std::next(BestB);
964     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
965     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
966     if (BestAScore < BestBScore)
967       BestA = SecondBestA;
968     else
969       BestB = SecondBestB;
970   }
971   // Arrange for the BB edge to be in BestA if it exists.
972   if (BestB->Src == BB)
973     std::swap(BestA, BestB);
974   return std::make_pair(*BestA, *BestB);
975 }
976 
977 /// Get the best successor from \p BB based on \p BB being part of a trellis.
978 /// We only handle trellises with 2 successors, so the algorithm is
979 /// straightforward: Find the best pair of edges that don't conflict. We find
980 /// the best incoming edge for each successor in the trellis. If those conflict,
981 /// we consider which of them should be replaced with the second best.
982 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
983 /// comes from \p BB, it will be in \p BestEdges[0]
984 MachineBlockPlacement::BlockAndTailDupResult
985 MachineBlockPlacement::getBestTrellisSuccessor(
986     const MachineBasicBlock *BB,
987     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
988     BranchProbability AdjustedSumProb, const BlockChain &Chain,
989     const BlockFilterSet *BlockFilter) {
990 
991   BlockAndTailDupResult Result = {nullptr, false};
992   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
993                                                        BB->succ_end());
994 
995   // We assume size 2 because it's common. For general n, we would have to do
996   // the Hungarian algorithm, but it's not worth the complexity because more
997   // than 2 successors is fairly uncommon, and a trellis even more so.
998   if (Successors.size() != 2 || ViableSuccs.size() != 2)
999     return Result;
1000 
1001   // Collect the edge frequencies of all edges that form the trellis.
1002   SmallVector<WeightedEdge, 8> Edges[2];
1003   int SuccIndex = 0;
1004   for (auto Succ : ViableSuccs) {
1005     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1006       // Skip any placed predecessors that are not BB
1007       if (SuccPred != BB)
1008         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1009             BlockToChain[SuccPred] == &Chain ||
1010             BlockToChain[SuccPred] == BlockToChain[Succ])
1011           continue;
1012       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1013                                 MBPI->getEdgeProbability(SuccPred, Succ);
1014       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1015     }
1016     ++SuccIndex;
1017   }
1018 
1019   // Pick the best combination of 2 edges from all the edges in the trellis.
1020   WeightedEdge BestA, BestB;
1021   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1022 
1023   if (BestA.Src != BB) {
1024     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1025     // we shouldn't choose any successor. We've already looked and there's a
1026     // better fallthrough edge for all the successors.
1027     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1028     return Result;
1029   }
1030 
1031   // Did we pick the triangle edge? If tail-duplication is profitable, do
1032   // that instead. Otherwise merge the triangle edge now while we know it is
1033   // optimal.
1034   if (BestA.Dest == BestB.Src) {
1035     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1036     // would be better.
1037     MachineBasicBlock *Succ1 = BestA.Dest;
1038     MachineBasicBlock *Succ2 = BestB.Dest;
1039     // Check to see if tail-duplication would be profitable.
1040     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1041         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1042         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1043                               Chain, BlockFilter)) {
1044       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1045                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1046                  dbgs() << "    Selected: " << getBlockName(Succ2)
1047                         << ", probability: " << Succ2Prob
1048                         << " (Tail Duplicate)\n");
1049       Result.BB = Succ2;
1050       Result.ShouldTailDup = true;
1051       return Result;
1052     }
1053   }
1054   // We have already computed the optimal edge for the other side of the
1055   // trellis.
1056   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1057 
1058   auto TrellisSucc = BestA.Dest;
1059   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1060                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1061              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1062                     << ", probability: " << SuccProb << " (Trellis)\n");
1063   Result.BB = TrellisSucc;
1064   return Result;
1065 }
1066 
1067 /// When the option allowTailDupPlacement() is on, this method checks if the
1068 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1069 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1070 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1071     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1072     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1073   if (!shouldTailDuplicate(Succ))
1074     return false;
1075 
1076   // For CFG checking.
1077   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1078                                                        BB->succ_end());
1079   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1080     // Make sure all unplaced and unfiltered predecessors can be
1081     // tail-duplicated into.
1082     // Skip any blocks that are already placed or not in this loop.
1083     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1084         || BlockToChain[Pred] == &Chain)
1085       continue;
1086     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1087       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1088         // This will result in a trellis after tail duplication, so we don't
1089         // need to copy Succ into this predecessor. In the presence
1090         // of a trellis tail duplication can continue to be profitable.
1091         // For example:
1092         // A            A
1093         // |\           |\
1094         // | \          | \
1095         // |  C         |  C+BB
1096         // | /          |  |
1097         // |/           |  |
1098         // BB    =>     BB |
1099         // |\           |\/|
1100         // | \          |/\|
1101         // |  D         |  D
1102         // | /          | /
1103         // |/           |/
1104         // Succ         Succ
1105         //
1106         // After BB was duplicated into C, the layout looks like the one on the
1107         // right. BB and C now have the same successors. When considering
1108         // whether Succ can be duplicated into all its unplaced predecessors, we
1109         // ignore C.
1110         // We can do this because C already has a profitable fallthrough, namely
1111         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1112         // duplication and for this test.
1113         //
1114         // This allows trellises to be laid out in 2 separate chains
1115         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1116         // because it allows the creation of 2 fallthrough paths with links
1117         // between them, and we correctly identify the best layout for these
1118         // CFGs. We want to extend trellises that the user created in addition
1119         // to trellises created by tail-duplication, so we just look for the
1120         // CFG.
1121         continue;
1122       return false;
1123     }
1124   }
1125   return true;
1126 }
1127 
1128 /// Find chains of triangles where we believe it would be profitable to
1129 /// tail-duplicate them all, but a local analysis would not find them.
1130 /// There are 3 ways this can be profitable:
1131 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1132 ///    longer chains)
1133 /// 2) The chains are statically correlated. Branch probabilities have a very
1134 ///    U-shaped distribution.
1135 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1136 ///    If the branches in a chain are likely to be from the same side of the
1137 ///    distribution as their predecessor, but are independent at runtime, this
1138 ///    transformation is profitable. (Because the cost of being wrong is a small
1139 ///    fixed cost, unlike the standard triangle layout where the cost of being
1140 ///    wrong scales with the # of triangles.)
1141 /// 3) The chains are dynamically correlated. If the probability that a previous
1142 ///    branch was taken positively influences whether the next branch will be
1143 ///    taken
1144 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1145 void MachineBlockPlacement::precomputeTriangleChains() {
1146   struct TriangleChain {
1147     std::vector<MachineBasicBlock *> Edges;
1148 
1149     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1150         : Edges({src, dst}) {}
1151 
1152     void append(MachineBasicBlock *dst) {
1153       assert(getKey()->isSuccessor(dst) &&
1154              "Attempting to append a block that is not a successor.");
1155       Edges.push_back(dst);
1156     }
1157 
1158     unsigned count() const { return Edges.size() - 1; }
1159 
1160     MachineBasicBlock *getKey() const {
1161       return Edges.back();
1162     }
1163   };
1164 
1165   if (TriangleChainCount == 0)
1166     return;
1167 
1168   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1169   // Map from last block to the chain that contains it. This allows us to extend
1170   // chains as we find new triangles.
1171   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1172   for (MachineBasicBlock &BB : *F) {
1173     // If BB doesn't have 2 successors, it doesn't start a triangle.
1174     if (BB.succ_size() != 2)
1175       continue;
1176     MachineBasicBlock *PDom = nullptr;
1177     for (MachineBasicBlock *Succ : BB.successors()) {
1178       if (!MPDT->dominates(Succ, &BB))
1179         continue;
1180       PDom = Succ;
1181       break;
1182     }
1183     // If BB doesn't have a post-dominating successor, it doesn't form a
1184     // triangle.
1185     if (PDom == nullptr)
1186       continue;
1187     // If PDom has a hint that it is low probability, skip this triangle.
1188     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1189       continue;
1190     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1191     // we're looking for.
1192     if (!shouldTailDuplicate(PDom))
1193       continue;
1194     bool CanTailDuplicate = true;
1195     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1196     // isn't the kind of triangle we're looking for.
1197     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1198       if (Pred == &BB)
1199         continue;
1200       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1201         CanTailDuplicate = false;
1202         break;
1203       }
1204     }
1205     // If we can't tail-duplicate PDom to its predecessors, then skip this
1206     // triangle.
1207     if (!CanTailDuplicate)
1208       continue;
1209 
1210     // Now we have an interesting triangle. Insert it if it's not part of an
1211     // existing chain.
1212     // Note: This cannot be replaced with a call insert() or emplace() because
1213     // the find key is BB, but the insert/emplace key is PDom.
1214     auto Found = TriangleChainMap.find(&BB);
1215     // If it is, remove the chain from the map, grow it, and put it back in the
1216     // map with the end as the new key.
1217     if (Found != TriangleChainMap.end()) {
1218       TriangleChain Chain = std::move(Found->second);
1219       TriangleChainMap.erase(Found);
1220       Chain.append(PDom);
1221       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1222     } else {
1223       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1224       assert(InsertResult.second && "Block seen twice.");
1225       (void)InsertResult;
1226     }
1227   }
1228 
1229   // Iterating over a DenseMap is safe here, because the only thing in the body
1230   // of the loop is inserting into another DenseMap (ComputedEdges).
1231   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1232   for (auto &ChainPair : TriangleChainMap) {
1233     TriangleChain &Chain = ChainPair.second;
1234     // Benchmarking has shown that due to branch correlation duplicating 2 or
1235     // more triangles is profitable, despite the calculations assuming
1236     // independence.
1237     if (Chain.count() < TriangleChainCount)
1238       continue;
1239     MachineBasicBlock *dst = Chain.Edges.back();
1240     Chain.Edges.pop_back();
1241     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1242       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1243                         << getBlockName(dst)
1244                         << " as pre-computed based on triangles.\n");
1245 
1246       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1247       assert(InsertResult.second && "Block seen twice.");
1248       (void)InsertResult;
1249 
1250       dst = src;
1251     }
1252   }
1253 }
1254 
1255 // When profile is not present, return the StaticLikelyProb.
1256 // When profile is available, we need to handle the triangle-shape CFG.
1257 static BranchProbability getLayoutSuccessorProbThreshold(
1258       const MachineBasicBlock *BB) {
1259   if (!BB->getParent()->getFunction().hasProfileData())
1260     return BranchProbability(StaticLikelyProb, 100);
1261   if (BB->succ_size() == 2) {
1262     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1263     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1264     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1265       /* See case 1 below for the cost analysis. For BB->Succ to
1266        * be taken with smaller cost, the following needs to hold:
1267        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1268        *   So the threshold T in the calculation below
1269        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1270        *   So T / (1 - T) = 2, Yielding T = 2/3
1271        * Also adding user specified branch bias, we have
1272        *   T = (2/3)*(ProfileLikelyProb/50)
1273        *     = (2*ProfileLikelyProb)/150)
1274        */
1275       return BranchProbability(2 * ProfileLikelyProb, 150);
1276     }
1277   }
1278   return BranchProbability(ProfileLikelyProb, 100);
1279 }
1280 
1281 /// Checks to see if the layout candidate block \p Succ has a better layout
1282 /// predecessor than \c BB. If yes, returns true.
1283 /// \p SuccProb: The probability adjusted for only remaining blocks.
1284 ///   Only used for logging
1285 /// \p RealSuccProb: The un-adjusted probability.
1286 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1287 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1288 ///    considered
1289 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1290     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1291     const BlockChain &SuccChain, BranchProbability SuccProb,
1292     BranchProbability RealSuccProb, const BlockChain &Chain,
1293     const BlockFilterSet *BlockFilter) {
1294 
1295   // There isn't a better layout when there are no unscheduled predecessors.
1296   if (SuccChain.UnscheduledPredecessors == 0)
1297     return false;
1298 
1299   // There are two basic scenarios here:
1300   // -------------------------------------
1301   // Case 1: triangular shape CFG (if-then):
1302   //     BB
1303   //     | \
1304   //     |  \
1305   //     |   Pred
1306   //     |   /
1307   //     Succ
1308   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1309   // set Succ as the layout successor of BB. Picking Succ as BB's
1310   // successor breaks the CFG constraints (FIXME: define these constraints).
1311   // With this layout, Pred BB
1312   // is forced to be outlined, so the overall cost will be cost of the
1313   // branch taken from BB to Pred, plus the cost of back taken branch
1314   // from Pred to Succ, as well as the additional cost associated
1315   // with the needed unconditional jump instruction from Pred To Succ.
1316 
1317   // The cost of the topological order layout is the taken branch cost
1318   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1319   // must hold:
1320   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1321   //      < freq(BB->Succ) *  taken_branch_cost.
1322   // Ignoring unconditional jump cost, we get
1323   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1324   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1325   //
1326   // When real profile data is available, we can precisely compute the
1327   // probability threshold that is needed for edge BB->Succ to be considered.
1328   // Without profile data, the heuristic requires the branch bias to be
1329   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1330   // -----------------------------------------------------------------
1331   // Case 2: diamond like CFG (if-then-else):
1332   //     S
1333   //    / \
1334   //   |   \
1335   //  BB    Pred
1336   //   \    /
1337   //    Succ
1338   //    ..
1339   //
1340   // The current block is BB and edge BB->Succ is now being evaluated.
1341   // Note that edge S->BB was previously already selected because
1342   // prob(S->BB) > prob(S->Pred).
1343   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1344   // choose Pred, we will have a topological ordering as shown on the left
1345   // in the picture below. If we choose Succ, we have the solution as shown
1346   // on the right:
1347   //
1348   //   topo-order:
1349   //
1350   //       S-----                             ---S
1351   //       |    |                             |  |
1352   //    ---BB   |                             |  BB
1353   //    |       |                             |  |
1354   //    |  Pred--                             |  Succ--
1355   //    |  |                                  |       |
1356   //    ---Succ                               ---Pred--
1357   //
1358   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1359   //      = freq(S->Pred) + freq(S->BB)
1360   //
1361   // If we have profile data (i.e, branch probabilities can be trusted), the
1362   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1363   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1364   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1365   // means the cost of topological order is greater.
1366   // When profile data is not available, however, we need to be more
1367   // conservative. If the branch prediction is wrong, breaking the topo-order
1368   // will actually yield a layout with large cost. For this reason, we need
1369   // strong biased branch at block S with Prob(S->BB) in order to select
1370   // BB->Succ. This is equivalent to looking the CFG backward with backward
1371   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1372   // profile data).
1373   // --------------------------------------------------------------------------
1374   // Case 3: forked diamond
1375   //       S
1376   //      / \
1377   //     /   \
1378   //   BB    Pred
1379   //   | \   / |
1380   //   |  \ /  |
1381   //   |   X   |
1382   //   |  / \  |
1383   //   | /   \ |
1384   //   S1     S2
1385   //
1386   // The current block is BB and edge BB->S1 is now being evaluated.
1387   // As above S->BB was already selected because
1388   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1389   //
1390   // topo-order:
1391   //
1392   //     S-------|                     ---S
1393   //     |       |                     |  |
1394   //  ---BB      |                     |  BB
1395   //  |          |                     |  |
1396   //  |  Pred----|                     |  S1----
1397   //  |  |                             |       |
1398   //  --(S1 or S2)                     ---Pred--
1399   //                                        |
1400   //                                       S2
1401   //
1402   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1403   //    + min(freq(Pred->S1), freq(Pred->S2))
1404   // Non-topo-order cost:
1405   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1406   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1407   // is 0. Then the non topo layout is better when
1408   // freq(S->Pred) < freq(BB->S1).
1409   // This is exactly what is checked below.
1410   // Note there are other shapes that apply (Pred may not be a single block,
1411   // but they all fit this general pattern.)
1412   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1413 
1414   // Make sure that a hot successor doesn't have a globally more
1415   // important predecessor.
1416   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1417   bool BadCFGConflict = false;
1418 
1419   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1420     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1421         (BlockFilter && !BlockFilter->count(Pred)) ||
1422         BlockToChain[Pred] == &Chain ||
1423         // This check is redundant except for look ahead. This function is
1424         // called for lookahead by isProfitableToTailDup when BB hasn't been
1425         // placed yet.
1426         (Pred == BB))
1427       continue;
1428     // Do backward checking.
1429     // For all cases above, we need a backward checking to filter out edges that
1430     // are not 'strongly' biased.
1431     // BB  Pred
1432     //  \ /
1433     //  Succ
1434     // We select edge BB->Succ if
1435     //      freq(BB->Succ) > freq(Succ) * HotProb
1436     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1437     //      HotProb
1438     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1439     // Case 1 is covered too, because the first equation reduces to:
1440     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1441     BlockFrequency PredEdgeFreq =
1442         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1443     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1444       BadCFGConflict = true;
1445       break;
1446     }
1447   }
1448 
1449   if (BadCFGConflict) {
1450     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1451                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1452     return true;
1453   }
1454 
1455   return false;
1456 }
1457 
1458 /// Select the best successor for a block.
1459 ///
1460 /// This looks across all successors of a particular block and attempts to
1461 /// select the "best" one to be the layout successor. It only considers direct
1462 /// successors which also pass the block filter. It will attempt to avoid
1463 /// breaking CFG structure, but cave and break such structures in the case of
1464 /// very hot successor edges.
1465 ///
1466 /// \returns The best successor block found, or null if none are viable, along
1467 /// with a boolean indicating if tail duplication is necessary.
1468 MachineBlockPlacement::BlockAndTailDupResult
1469 MachineBlockPlacement::selectBestSuccessor(
1470     const MachineBasicBlock *BB, const BlockChain &Chain,
1471     const BlockFilterSet *BlockFilter) {
1472   const BranchProbability HotProb(StaticLikelyProb, 100);
1473 
1474   BlockAndTailDupResult BestSucc = { nullptr, false };
1475   auto BestProb = BranchProbability::getZero();
1476 
1477   SmallVector<MachineBasicBlock *, 4> Successors;
1478   auto AdjustedSumProb =
1479       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1480 
1481   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1482                     << "\n");
1483 
1484   // if we already precomputed the best successor for BB, return that if still
1485   // applicable.
1486   auto FoundEdge = ComputedEdges.find(BB);
1487   if (FoundEdge != ComputedEdges.end()) {
1488     MachineBasicBlock *Succ = FoundEdge->second.BB;
1489     ComputedEdges.erase(FoundEdge);
1490     BlockChain *SuccChain = BlockToChain[Succ];
1491     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1492         SuccChain != &Chain && Succ == *SuccChain->begin())
1493       return FoundEdge->second;
1494   }
1495 
1496   // if BB is part of a trellis, Use the trellis to determine the optimal
1497   // fallthrough edges
1498   if (isTrellis(BB, Successors, Chain, BlockFilter))
1499     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1500                                    BlockFilter);
1501 
1502   // For blocks with CFG violations, we may be able to lay them out anyway with
1503   // tail-duplication. We keep this vector so we can perform the probability
1504   // calculations the minimum number of times.
1505   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1506       DupCandidates;
1507   for (MachineBasicBlock *Succ : Successors) {
1508     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1509     BranchProbability SuccProb =
1510         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1511 
1512     BlockChain &SuccChain = *BlockToChain[Succ];
1513     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1514     // predecessor that yields lower global cost.
1515     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1516                                    Chain, BlockFilter)) {
1517       // If tail duplication would make Succ profitable, place it.
1518       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1519         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1520       continue;
1521     }
1522 
1523     LLVM_DEBUG(
1524         dbgs() << "    Candidate: " << getBlockName(Succ)
1525                << ", probability: " << SuccProb
1526                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1527                << "\n");
1528 
1529     if (BestSucc.BB && BestProb >= SuccProb) {
1530       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1531       continue;
1532     }
1533 
1534     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1535     BestSucc.BB = Succ;
1536     BestProb = SuccProb;
1537   }
1538   // Handle the tail duplication candidates in order of decreasing probability.
1539   // Stop at the first one that is profitable. Also stop if they are less
1540   // profitable than BestSucc. Position is important because we preserve it and
1541   // prefer first best match. Here we aren't comparing in order, so we capture
1542   // the position instead.
1543   llvm::stable_sort(DupCandidates,
1544                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1545                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1546                       return std::get<0>(L) > std::get<0>(R);
1547                     });
1548   for (auto &Tup : DupCandidates) {
1549     BranchProbability DupProb;
1550     MachineBasicBlock *Succ;
1551     std::tie(DupProb, Succ) = Tup;
1552     if (DupProb < BestProb)
1553       break;
1554     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1555         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1556       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1557                         << ", probability: " << DupProb
1558                         << " (Tail Duplicate)\n");
1559       BestSucc.BB = Succ;
1560       BestSucc.ShouldTailDup = true;
1561       break;
1562     }
1563   }
1564 
1565   if (BestSucc.BB)
1566     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1567 
1568   return BestSucc;
1569 }
1570 
1571 /// Select the best block from a worklist.
1572 ///
1573 /// This looks through the provided worklist as a list of candidate basic
1574 /// blocks and select the most profitable one to place. The definition of
1575 /// profitable only really makes sense in the context of a loop. This returns
1576 /// the most frequently visited block in the worklist, which in the case of
1577 /// a loop, is the one most desirable to be physically close to the rest of the
1578 /// loop body in order to improve i-cache behavior.
1579 ///
1580 /// \returns The best block found, or null if none are viable.
1581 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1582     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1583   // Once we need to walk the worklist looking for a candidate, cleanup the
1584   // worklist of already placed entries.
1585   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1586   // some code complexity) into the loop below.
1587   WorkList.erase(llvm::remove_if(WorkList,
1588                                  [&](MachineBasicBlock *BB) {
1589                                    return BlockToChain.lookup(BB) == &Chain;
1590                                  }),
1591                  WorkList.end());
1592 
1593   if (WorkList.empty())
1594     return nullptr;
1595 
1596   bool IsEHPad = WorkList[0]->isEHPad();
1597 
1598   MachineBasicBlock *BestBlock = nullptr;
1599   BlockFrequency BestFreq;
1600   for (MachineBasicBlock *MBB : WorkList) {
1601     assert(MBB->isEHPad() == IsEHPad &&
1602            "EHPad mismatch between block and work list.");
1603 
1604     BlockChain &SuccChain = *BlockToChain[MBB];
1605     if (&SuccChain == &Chain)
1606       continue;
1607 
1608     assert(SuccChain.UnscheduledPredecessors == 0 &&
1609            "Found CFG-violating block");
1610 
1611     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1612     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1613                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1614 
1615     // For ehpad, we layout the least probable first as to avoid jumping back
1616     // from least probable landingpads to more probable ones.
1617     //
1618     // FIXME: Using probability is probably (!) not the best way to achieve
1619     // this. We should probably have a more principled approach to layout
1620     // cleanup code.
1621     //
1622     // The goal is to get:
1623     //
1624     //                 +--------------------------+
1625     //                 |                          V
1626     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1627     //
1628     // Rather than:
1629     //
1630     //                 +-------------------------------------+
1631     //                 V                                     |
1632     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1633     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1634       continue;
1635 
1636     BestBlock = MBB;
1637     BestFreq = CandidateFreq;
1638   }
1639 
1640   return BestBlock;
1641 }
1642 
1643 /// Retrieve the first unplaced basic block.
1644 ///
1645 /// This routine is called when we are unable to use the CFG to walk through
1646 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1647 /// We walk through the function's blocks in order, starting from the
1648 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1649 /// re-scanning the entire sequence on repeated calls to this routine.
1650 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1651     const BlockChain &PlacedChain,
1652     MachineFunction::iterator &PrevUnplacedBlockIt,
1653     const BlockFilterSet *BlockFilter) {
1654   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1655        ++I) {
1656     if (BlockFilter && !BlockFilter->count(&*I))
1657       continue;
1658     if (BlockToChain[&*I] != &PlacedChain) {
1659       PrevUnplacedBlockIt = I;
1660       // Now select the head of the chain to which the unplaced block belongs
1661       // as the block to place. This will force the entire chain to be placed,
1662       // and satisfies the requirements of merging chains.
1663       return *BlockToChain[&*I]->begin();
1664     }
1665   }
1666   return nullptr;
1667 }
1668 
1669 void MachineBlockPlacement::fillWorkLists(
1670     const MachineBasicBlock *MBB,
1671     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1672     const BlockFilterSet *BlockFilter = nullptr) {
1673   BlockChain &Chain = *BlockToChain[MBB];
1674   if (!UpdatedPreds.insert(&Chain).second)
1675     return;
1676 
1677   assert(
1678       Chain.UnscheduledPredecessors == 0 &&
1679       "Attempting to place block with unscheduled predecessors in worklist.");
1680   for (MachineBasicBlock *ChainBB : Chain) {
1681     assert(BlockToChain[ChainBB] == &Chain &&
1682            "Block in chain doesn't match BlockToChain map.");
1683     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1684       if (BlockFilter && !BlockFilter->count(Pred))
1685         continue;
1686       if (BlockToChain[Pred] == &Chain)
1687         continue;
1688       ++Chain.UnscheduledPredecessors;
1689     }
1690   }
1691 
1692   if (Chain.UnscheduledPredecessors != 0)
1693     return;
1694 
1695   MachineBasicBlock *BB = *Chain.begin();
1696   if (BB->isEHPad())
1697     EHPadWorkList.push_back(BB);
1698   else
1699     BlockWorkList.push_back(BB);
1700 }
1701 
1702 void MachineBlockPlacement::buildChain(
1703     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1704     BlockFilterSet *BlockFilter) {
1705   assert(HeadBB && "BB must not be null.\n");
1706   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1707   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1708 
1709   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1710   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1711   MachineBasicBlock *BB = *std::prev(Chain.end());
1712   while (true) {
1713     assert(BB && "null block found at end of chain in loop.");
1714     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1715     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1716 
1717 
1718     // Look for the best viable successor if there is one to place immediately
1719     // after this block.
1720     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1721     MachineBasicBlock* BestSucc = Result.BB;
1722     bool ShouldTailDup = Result.ShouldTailDup;
1723     if (allowTailDupPlacement())
1724       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1725 
1726     // If an immediate successor isn't available, look for the best viable
1727     // block among those we've identified as not violating the loop's CFG at
1728     // this point. This won't be a fallthrough, but it will increase locality.
1729     if (!BestSucc)
1730       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1731     if (!BestSucc)
1732       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1733 
1734     if (!BestSucc) {
1735       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1736       if (!BestSucc)
1737         break;
1738 
1739       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1740                            "layout successor until the CFG reduces\n");
1741     }
1742 
1743     // Placement may have changed tail duplication opportunities.
1744     // Check for that now.
1745     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1746       // If the chosen successor was duplicated into all its predecessors,
1747       // don't bother laying it out, just go round the loop again with BB as
1748       // the chain end.
1749       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1750                                        BlockFilter, PrevUnplacedBlockIt))
1751         continue;
1752     }
1753 
1754     // Place this block, updating the datastructures to reflect its placement.
1755     BlockChain &SuccChain = *BlockToChain[BestSucc];
1756     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1757     // we selected a successor that didn't fit naturally into the CFG.
1758     SuccChain.UnscheduledPredecessors = 0;
1759     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1760                       << getBlockName(BestSucc) << "\n");
1761     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1762     Chain.merge(BestSucc, &SuccChain);
1763     BB = *std::prev(Chain.end());
1764   }
1765 
1766   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1767                     << getBlockName(*Chain.begin()) << "\n");
1768 }
1769 
1770 // If bottom of block BB has only one successor OldTop, in most cases it is
1771 // profitable to move it before OldTop, except the following case:
1772 //
1773 //     -->OldTop<-
1774 //     |    .    |
1775 //     |    .    |
1776 //     |    .    |
1777 //     ---Pred   |
1778 //          |    |
1779 //         BB-----
1780 //
1781 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1782 // layout the other successor below it, so it can't reduce taken branch.
1783 // In this case we keep its original layout.
1784 bool
1785 MachineBlockPlacement::canMoveBottomBlockToTop(
1786     const MachineBasicBlock *BottomBlock,
1787     const MachineBasicBlock *OldTop) {
1788   if (BottomBlock->pred_size() != 1)
1789     return true;
1790   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1791   if (Pred->succ_size() != 2)
1792     return true;
1793 
1794   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1795   if (OtherBB == BottomBlock)
1796     OtherBB = *Pred->succ_rbegin();
1797   if (OtherBB == OldTop)
1798     return false;
1799 
1800   return true;
1801 }
1802 
1803 // Find out the possible fall through frequence to the top of a loop.
1804 BlockFrequency
1805 MachineBlockPlacement::TopFallThroughFreq(
1806     const MachineBasicBlock *Top,
1807     const BlockFilterSet &LoopBlockSet) {
1808   BlockFrequency MaxFreq = 0;
1809   for (MachineBasicBlock *Pred : Top->predecessors()) {
1810     BlockChain *PredChain = BlockToChain[Pred];
1811     if (!LoopBlockSet.count(Pred) &&
1812         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1813       // Found a Pred block can be placed before Top.
1814       // Check if Top is the best successor of Pred.
1815       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1816       bool TopOK = true;
1817       for (MachineBasicBlock *Succ : Pred->successors()) {
1818         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1819         BlockChain *SuccChain = BlockToChain[Succ];
1820         // Check if Succ can be placed after Pred.
1821         // Succ should not be in any chain, or it is the head of some chain.
1822         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1823             (!SuccChain || Succ == *SuccChain->begin())) {
1824           TopOK = false;
1825           break;
1826         }
1827       }
1828       if (TopOK) {
1829         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1830                                   MBPI->getEdgeProbability(Pred, Top);
1831         if (EdgeFreq > MaxFreq)
1832           MaxFreq = EdgeFreq;
1833       }
1834     }
1835   }
1836   return MaxFreq;
1837 }
1838 
1839 // Compute the fall through gains when move NewTop before OldTop.
1840 //
1841 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1842 // marked as "+" are increased fallthrough, this function computes
1843 //
1844 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1845 //
1846 //              |
1847 //              | -
1848 //              V
1849 //        --->OldTop
1850 //        |     .
1851 //        |     .
1852 //       +|     .    +
1853 //        |   Pred --->
1854 //        |     |-
1855 //        |     V
1856 //        --- NewTop <---
1857 //              |-
1858 //              V
1859 //
1860 BlockFrequency
1861 MachineBlockPlacement::FallThroughGains(
1862     const MachineBasicBlock *NewTop,
1863     const MachineBasicBlock *OldTop,
1864     const MachineBasicBlock *ExitBB,
1865     const BlockFilterSet &LoopBlockSet) {
1866   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1867   BlockFrequency FallThrough2Exit = 0;
1868   if (ExitBB)
1869     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1870         MBPI->getEdgeProbability(NewTop, ExitBB);
1871   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1872       MBPI->getEdgeProbability(NewTop, OldTop);
1873 
1874   // Find the best Pred of NewTop.
1875    MachineBasicBlock *BestPred = nullptr;
1876    BlockFrequency FallThroughFromPred = 0;
1877    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1878      if (!LoopBlockSet.count(Pred))
1879        continue;
1880      BlockChain *PredChain = BlockToChain[Pred];
1881      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1882        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1883            MBPI->getEdgeProbability(Pred, NewTop);
1884        if (EdgeFreq > FallThroughFromPred) {
1885          FallThroughFromPred = EdgeFreq;
1886          BestPred = Pred;
1887        }
1888      }
1889    }
1890 
1891    // If NewTop is not placed after Pred, another successor can be placed
1892    // after Pred.
1893    BlockFrequency NewFreq = 0;
1894    if (BestPred) {
1895      for (MachineBasicBlock *Succ : BestPred->successors()) {
1896        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1897          continue;
1898        if (ComputedEdges.find(Succ) != ComputedEdges.end())
1899          continue;
1900        BlockChain *SuccChain = BlockToChain[Succ];
1901        if ((SuccChain && (Succ != *SuccChain->begin())) ||
1902            (SuccChain == BlockToChain[BestPred]))
1903          continue;
1904        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1905            MBPI->getEdgeProbability(BestPred, Succ);
1906        if (EdgeFreq > NewFreq)
1907          NewFreq = EdgeFreq;
1908      }
1909      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1910          MBPI->getEdgeProbability(BestPred, NewTop);
1911      if (NewFreq > OrigEdgeFreq) {
1912        // If NewTop is not the best successor of Pred, then Pred doesn't
1913        // fallthrough to NewTop. So there is no FallThroughFromPred and
1914        // NewFreq.
1915        NewFreq = 0;
1916        FallThroughFromPred = 0;
1917      }
1918    }
1919 
1920    BlockFrequency Result = 0;
1921    BlockFrequency Gains = BackEdgeFreq + NewFreq;
1922    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1923        FallThroughFromPred;
1924    if (Gains > Lost)
1925      Result = Gains - Lost;
1926    return Result;
1927 }
1928 
1929 /// Helper function of findBestLoopTop. Find the best loop top block
1930 /// from predecessors of old top.
1931 ///
1932 /// Look for a block which is strictly better than the old top for laying
1933 /// out before the old top of the loop. This looks for only two patterns:
1934 ///
1935 ///     1. a block has only one successor, the old loop top
1936 ///
1937 ///        Because such a block will always result in an unconditional jump,
1938 ///        rotating it in front of the old top is always profitable.
1939 ///
1940 ///     2. a block has two successors, one is old top, another is exit
1941 ///        and it has more than one predecessors
1942 ///
1943 ///        If it is below one of its predecessors P, only P can fall through to
1944 ///        it, all other predecessors need a jump to it, and another conditional
1945 ///        jump to loop header. If it is moved before loop header, all its
1946 ///        predecessors jump to it, then fall through to loop header. So all its
1947 ///        predecessors except P can reduce one taken branch.
1948 ///        At the same time, move it before old top increases the taken branch
1949 ///        to loop exit block, so the reduced taken branch will be compared with
1950 ///        the increased taken branch to the loop exit block.
1951 MachineBasicBlock *
1952 MachineBlockPlacement::findBestLoopTopHelper(
1953     MachineBasicBlock *OldTop,
1954     const MachineLoop &L,
1955     const BlockFilterSet &LoopBlockSet) {
1956   // Check that the header hasn't been fused with a preheader block due to
1957   // crazy branches. If it has, we need to start with the header at the top to
1958   // prevent pulling the preheader into the loop body.
1959   BlockChain &HeaderChain = *BlockToChain[OldTop];
1960   if (!LoopBlockSet.count(*HeaderChain.begin()))
1961     return OldTop;
1962 
1963   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
1964                     << "\n");
1965 
1966   BlockFrequency BestGains = 0;
1967   MachineBasicBlock *BestPred = nullptr;
1968   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
1969     if (!LoopBlockSet.count(Pred))
1970       continue;
1971     if (Pred == L.getHeader())
1972       continue;
1973     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
1974                       << Pred->succ_size() << " successors, ";
1975                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1976     if (Pred->succ_size() > 2)
1977       continue;
1978 
1979     MachineBasicBlock *OtherBB = nullptr;
1980     if (Pred->succ_size() == 2) {
1981       OtherBB = *Pred->succ_begin();
1982       if (OtherBB == OldTop)
1983         OtherBB = *Pred->succ_rbegin();
1984     }
1985 
1986     if (!canMoveBottomBlockToTop(Pred, OldTop))
1987       continue;
1988 
1989     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
1990                                             LoopBlockSet);
1991     if ((Gains > 0) && (Gains > BestGains ||
1992         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
1993       BestPred = Pred;
1994       BestGains = Gains;
1995     }
1996   }
1997 
1998   // If no direct predecessor is fine, just use the loop header.
1999   if (!BestPred) {
2000     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2001     return OldTop;
2002   }
2003 
2004   // Walk backwards through any straight line of predecessors.
2005   while (BestPred->pred_size() == 1 &&
2006          (*BestPred->pred_begin())->succ_size() == 1 &&
2007          *BestPred->pred_begin() != L.getHeader())
2008     BestPred = *BestPred->pred_begin();
2009 
2010   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2011   return BestPred;
2012 }
2013 
2014 /// Find the best loop top block for layout.
2015 ///
2016 /// This function iteratively calls findBestLoopTopHelper, until no new better
2017 /// BB can be found.
2018 MachineBasicBlock *
2019 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2020                                        const BlockFilterSet &LoopBlockSet) {
2021   // Placing the latch block before the header may introduce an extra branch
2022   // that skips this block the first time the loop is executed, which we want
2023   // to avoid when optimising for size.
2024   // FIXME: in theory there is a case that does not introduce a new branch,
2025   // i.e. when the layout predecessor does not fallthrough to the loop header.
2026   // In practice this never happens though: there always seems to be a preheader
2027   // that can fallthrough and that is also placed before the header.
2028   if (F->getFunction().hasOptSize())
2029     return L.getHeader();
2030 
2031   MachineBasicBlock *OldTop = nullptr;
2032   MachineBasicBlock *NewTop = L.getHeader();
2033   while (NewTop != OldTop) {
2034     OldTop = NewTop;
2035     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2036     if (NewTop != OldTop)
2037       ComputedEdges[NewTop] = { OldTop, false };
2038   }
2039   return NewTop;
2040 }
2041 
2042 /// Find the best loop exiting block for layout.
2043 ///
2044 /// This routine implements the logic to analyze the loop looking for the best
2045 /// block to layout at the top of the loop. Typically this is done to maximize
2046 /// fallthrough opportunities.
2047 MachineBasicBlock *
2048 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2049                                         const BlockFilterSet &LoopBlockSet,
2050                                         BlockFrequency &ExitFreq) {
2051   // We don't want to layout the loop linearly in all cases. If the loop header
2052   // is just a normal basic block in the loop, we want to look for what block
2053   // within the loop is the best one to layout at the top. However, if the loop
2054   // header has be pre-merged into a chain due to predecessors not having
2055   // analyzable branches, *and* the predecessor it is merged with is *not* part
2056   // of the loop, rotating the header into the middle of the loop will create
2057   // a non-contiguous range of blocks which is Very Bad. So start with the
2058   // header and only rotate if safe.
2059   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2060   if (!LoopBlockSet.count(*HeaderChain.begin()))
2061     return nullptr;
2062 
2063   BlockFrequency BestExitEdgeFreq;
2064   unsigned BestExitLoopDepth = 0;
2065   MachineBasicBlock *ExitingBB = nullptr;
2066   // If there are exits to outer loops, loop rotation can severely limit
2067   // fallthrough opportunities unless it selects such an exit. Keep a set of
2068   // blocks where rotating to exit with that block will reach an outer loop.
2069   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2070 
2071   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2072                     << getBlockName(L.getHeader()) << "\n");
2073   for (MachineBasicBlock *MBB : L.getBlocks()) {
2074     BlockChain &Chain = *BlockToChain[MBB];
2075     // Ensure that this block is at the end of a chain; otherwise it could be
2076     // mid-way through an inner loop or a successor of an unanalyzable branch.
2077     if (MBB != *std::prev(Chain.end()))
2078       continue;
2079 
2080     // Now walk the successors. We need to establish whether this has a viable
2081     // exiting successor and whether it has a viable non-exiting successor.
2082     // We store the old exiting state and restore it if a viable looping
2083     // successor isn't found.
2084     MachineBasicBlock *OldExitingBB = ExitingBB;
2085     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2086     bool HasLoopingSucc = false;
2087     for (MachineBasicBlock *Succ : MBB->successors()) {
2088       if (Succ->isEHPad())
2089         continue;
2090       if (Succ == MBB)
2091         continue;
2092       BlockChain &SuccChain = *BlockToChain[Succ];
2093       // Don't split chains, either this chain or the successor's chain.
2094       if (&Chain == &SuccChain) {
2095         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2096                           << getBlockName(Succ) << " (chain conflict)\n");
2097         continue;
2098       }
2099 
2100       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2101       if (LoopBlockSet.count(Succ)) {
2102         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2103                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2104         HasLoopingSucc = true;
2105         continue;
2106       }
2107 
2108       unsigned SuccLoopDepth = 0;
2109       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2110         SuccLoopDepth = ExitLoop->getLoopDepth();
2111         if (ExitLoop->contains(&L))
2112           BlocksExitingToOuterLoop.insert(MBB);
2113       }
2114 
2115       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2116       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2117                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2118                         << "] (";
2119                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2120       // Note that we bias this toward an existing layout successor to retain
2121       // incoming order in the absence of better information. The exit must have
2122       // a frequency higher than the current exit before we consider breaking
2123       // the layout.
2124       BranchProbability Bias(100 - ExitBlockBias, 100);
2125       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2126           ExitEdgeFreq > BestExitEdgeFreq ||
2127           (MBB->isLayoutSuccessor(Succ) &&
2128            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2129         BestExitEdgeFreq = ExitEdgeFreq;
2130         ExitingBB = MBB;
2131       }
2132     }
2133 
2134     if (!HasLoopingSucc) {
2135       // Restore the old exiting state, no viable looping successor was found.
2136       ExitingBB = OldExitingBB;
2137       BestExitEdgeFreq = OldBestExitEdgeFreq;
2138     }
2139   }
2140   // Without a candidate exiting block or with only a single block in the
2141   // loop, just use the loop header to layout the loop.
2142   if (!ExitingBB) {
2143     LLVM_DEBUG(
2144         dbgs() << "    No other candidate exit blocks, using loop header\n");
2145     return nullptr;
2146   }
2147   if (L.getNumBlocks() == 1) {
2148     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2149     return nullptr;
2150   }
2151 
2152   // Also, if we have exit blocks which lead to outer loops but didn't select
2153   // one of them as the exiting block we are rotating toward, disable loop
2154   // rotation altogether.
2155   if (!BlocksExitingToOuterLoop.empty() &&
2156       !BlocksExitingToOuterLoop.count(ExitingBB))
2157     return nullptr;
2158 
2159   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2160                     << "\n");
2161   ExitFreq = BestExitEdgeFreq;
2162   return ExitingBB;
2163 }
2164 
2165 /// Check if there is a fallthrough to loop header Top.
2166 ///
2167 ///   1. Look for a Pred that can be layout before Top.
2168 ///   2. Check if Top is the most possible successor of Pred.
2169 bool
2170 MachineBlockPlacement::hasViableTopFallthrough(
2171     const MachineBasicBlock *Top,
2172     const BlockFilterSet &LoopBlockSet) {
2173   for (MachineBasicBlock *Pred : Top->predecessors()) {
2174     BlockChain *PredChain = BlockToChain[Pred];
2175     if (!LoopBlockSet.count(Pred) &&
2176         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2177       // Found a Pred block can be placed before Top.
2178       // Check if Top is the best successor of Pred.
2179       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2180       bool TopOK = true;
2181       for (MachineBasicBlock *Succ : Pred->successors()) {
2182         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2183         BlockChain *SuccChain = BlockToChain[Succ];
2184         // Check if Succ can be placed after Pred.
2185         // Succ should not be in any chain, or it is the head of some chain.
2186         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2187           TopOK = false;
2188           break;
2189         }
2190       }
2191       if (TopOK)
2192         return true;
2193     }
2194   }
2195   return false;
2196 }
2197 
2198 /// Attempt to rotate an exiting block to the bottom of the loop.
2199 ///
2200 /// Once we have built a chain, try to rotate it to line up the hot exit block
2201 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2202 /// branches. For example, if the loop has fallthrough into its header and out
2203 /// of its bottom already, don't rotate it.
2204 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2205                                        const MachineBasicBlock *ExitingBB,
2206                                        BlockFrequency ExitFreq,
2207                                        const BlockFilterSet &LoopBlockSet) {
2208   if (!ExitingBB)
2209     return;
2210 
2211   MachineBasicBlock *Top = *LoopChain.begin();
2212   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2213 
2214   // If ExitingBB is already the last one in a chain then nothing to do.
2215   if (Bottom == ExitingBB)
2216     return;
2217 
2218   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2219 
2220   // If the header has viable fallthrough, check whether the current loop
2221   // bottom is a viable exiting block. If so, bail out as rotating will
2222   // introduce an unnecessary branch.
2223   if (ViableTopFallthrough) {
2224     for (MachineBasicBlock *Succ : Bottom->successors()) {
2225       BlockChain *SuccChain = BlockToChain[Succ];
2226       if (!LoopBlockSet.count(Succ) &&
2227           (!SuccChain || Succ == *SuccChain->begin()))
2228         return;
2229     }
2230 
2231     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2232     // frequency is larger than top fallthrough.
2233     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2234     if (FallThrough2Top >= ExitFreq)
2235       return;
2236   }
2237 
2238   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2239   if (ExitIt == LoopChain.end())
2240     return;
2241 
2242   // Rotating a loop exit to the bottom when there is a fallthrough to top
2243   // trades the entry fallthrough for an exit fallthrough.
2244   // If there is no bottom->top edge, but the chosen exit block does have
2245   // a fallthrough, we break that fallthrough for nothing in return.
2246 
2247   // Let's consider an example. We have a built chain of basic blocks
2248   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2249   // By doing a rotation we get
2250   // Bk+1, ..., Bn, B1, ..., Bk
2251   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2252   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2253   // It might be compensated by fallthrough Bn -> B1.
2254   // So we have a condition to avoid creation of extra branch by loop rotation.
2255   // All below must be true to avoid loop rotation:
2256   //   If there is a fallthrough to top (B1)
2257   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2258   //   There is no fallthrough from bottom (Bn) to top (B1).
2259   // Please note that there is no exit fallthrough from Bn because we checked it
2260   // above.
2261   if (ViableTopFallthrough) {
2262     assert(std::next(ExitIt) != LoopChain.end() &&
2263            "Exit should not be last BB");
2264     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2265     if (ExitingBB->isSuccessor(NextBlockInChain))
2266       if (!Bottom->isSuccessor(Top))
2267         return;
2268   }
2269 
2270   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2271                     << " at bottom\n");
2272   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2273 }
2274 
2275 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2276 ///
2277 /// With profile data, we can determine the cost in terms of missed fall through
2278 /// opportunities when rotating a loop chain and select the best rotation.
2279 /// Basically, there are three kinds of cost to consider for each rotation:
2280 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2281 ///    the loop to the loop header.
2282 ///    2. The possibly missed fall through edges (if they exist) from the loop
2283 ///    exits to BB out of the loop.
2284 ///    3. The missed fall through edge (if it exists) from the last BB to the
2285 ///    first BB in the loop chain.
2286 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2287 ///  We select the best rotation with the smallest cost.
2288 void MachineBlockPlacement::rotateLoopWithProfile(
2289     BlockChain &LoopChain, const MachineLoop &L,
2290     const BlockFilterSet &LoopBlockSet) {
2291   auto RotationPos = LoopChain.end();
2292 
2293   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2294 
2295   // A utility lambda that scales up a block frequency by dividing it by a
2296   // branch probability which is the reciprocal of the scale.
2297   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2298                                 unsigned Scale) -> BlockFrequency {
2299     if (Scale == 0)
2300       return 0;
2301     // Use operator / between BlockFrequency and BranchProbability to implement
2302     // saturating multiplication.
2303     return Freq / BranchProbability(1, Scale);
2304   };
2305 
2306   // Compute the cost of the missed fall-through edge to the loop header if the
2307   // chain head is not the loop header. As we only consider natural loops with
2308   // single header, this computation can be done only once.
2309   BlockFrequency HeaderFallThroughCost(0);
2310   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2311   for (auto *Pred : ChainHeaderBB->predecessors()) {
2312     BlockChain *PredChain = BlockToChain[Pred];
2313     if (!LoopBlockSet.count(Pred) &&
2314         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2315       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2316           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2317       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2318       // If the predecessor has only an unconditional jump to the header, we
2319       // need to consider the cost of this jump.
2320       if (Pred->succ_size() == 1)
2321         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2322       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2323     }
2324   }
2325 
2326   // Here we collect all exit blocks in the loop, and for each exit we find out
2327   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2328   // as the sum of frequencies of exit edges we collect here, excluding the exit
2329   // edge from the tail of the loop chain.
2330   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2331   for (auto BB : LoopChain) {
2332     auto LargestExitEdgeProb = BranchProbability::getZero();
2333     for (auto *Succ : BB->successors()) {
2334       BlockChain *SuccChain = BlockToChain[Succ];
2335       if (!LoopBlockSet.count(Succ) &&
2336           (!SuccChain || Succ == *SuccChain->begin())) {
2337         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2338         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2339       }
2340     }
2341     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2342       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2343       ExitsWithFreq.emplace_back(BB, ExitFreq);
2344     }
2345   }
2346 
2347   // In this loop we iterate every block in the loop chain and calculate the
2348   // cost assuming the block is the head of the loop chain. When the loop ends,
2349   // we should have found the best candidate as the loop chain's head.
2350   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2351             EndIter = LoopChain.end();
2352        Iter != EndIter; Iter++, TailIter++) {
2353     // TailIter is used to track the tail of the loop chain if the block we are
2354     // checking (pointed by Iter) is the head of the chain.
2355     if (TailIter == LoopChain.end())
2356       TailIter = LoopChain.begin();
2357 
2358     auto TailBB = *TailIter;
2359 
2360     // Calculate the cost by putting this BB to the top.
2361     BlockFrequency Cost = 0;
2362 
2363     // If the current BB is the loop header, we need to take into account the
2364     // cost of the missed fall through edge from outside of the loop to the
2365     // header.
2366     if (Iter != LoopChain.begin())
2367       Cost += HeaderFallThroughCost;
2368 
2369     // Collect the loop exit cost by summing up frequencies of all exit edges
2370     // except the one from the chain tail.
2371     for (auto &ExitWithFreq : ExitsWithFreq)
2372       if (TailBB != ExitWithFreq.first)
2373         Cost += ExitWithFreq.second;
2374 
2375     // The cost of breaking the once fall-through edge from the tail to the top
2376     // of the loop chain. Here we need to consider three cases:
2377     // 1. If the tail node has only one successor, then we will get an
2378     //    additional jmp instruction. So the cost here is (MisfetchCost +
2379     //    JumpInstCost) * tail node frequency.
2380     // 2. If the tail node has two successors, then we may still get an
2381     //    additional jmp instruction if the layout successor after the loop
2382     //    chain is not its CFG successor. Note that the more frequently executed
2383     //    jmp instruction will be put ahead of the other one. Assume the
2384     //    frequency of those two branches are x and y, where x is the frequency
2385     //    of the edge to the chain head, then the cost will be
2386     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2387     // 3. If the tail node has more than two successors (this rarely happens),
2388     //    we won't consider any additional cost.
2389     if (TailBB->isSuccessor(*Iter)) {
2390       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2391       if (TailBB->succ_size() == 1)
2392         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2393                                     MisfetchCost + JumpInstCost);
2394       else if (TailBB->succ_size() == 2) {
2395         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2396         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2397         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2398                                   ? TailBBFreq * TailToHeadProb.getCompl()
2399                                   : TailToHeadFreq;
2400         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2401                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2402       }
2403     }
2404 
2405     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2406                       << getBlockName(*Iter)
2407                       << " to the top: " << Cost.getFrequency() << "\n");
2408 
2409     if (Cost < SmallestRotationCost) {
2410       SmallestRotationCost = Cost;
2411       RotationPos = Iter;
2412     }
2413   }
2414 
2415   if (RotationPos != LoopChain.end()) {
2416     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2417                       << " to the top\n");
2418     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2419   }
2420 }
2421 
2422 /// Collect blocks in the given loop that are to be placed.
2423 ///
2424 /// When profile data is available, exclude cold blocks from the returned set;
2425 /// otherwise, collect all blocks in the loop.
2426 MachineBlockPlacement::BlockFilterSet
2427 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2428   BlockFilterSet LoopBlockSet;
2429 
2430   // Filter cold blocks off from LoopBlockSet when profile data is available.
2431   // Collect the sum of frequencies of incoming edges to the loop header from
2432   // outside. If we treat the loop as a super block, this is the frequency of
2433   // the loop. Then for each block in the loop, we calculate the ratio between
2434   // its frequency and the frequency of the loop block. When it is too small,
2435   // don't add it to the loop chain. If there are outer loops, then this block
2436   // will be merged into the first outer loop chain for which this block is not
2437   // cold anymore. This needs precise profile data and we only do this when
2438   // profile data is available.
2439   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2440     BlockFrequency LoopFreq(0);
2441     for (auto LoopPred : L.getHeader()->predecessors())
2442       if (!L.contains(LoopPred))
2443         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2444                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2445 
2446     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2447       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2448       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2449         continue;
2450       LoopBlockSet.insert(LoopBB);
2451     }
2452   } else
2453     LoopBlockSet.insert(L.block_begin(), L.block_end());
2454 
2455   return LoopBlockSet;
2456 }
2457 
2458 /// Forms basic block chains from the natural loop structures.
2459 ///
2460 /// These chains are designed to preserve the existing *structure* of the code
2461 /// as much as possible. We can then stitch the chains together in a way which
2462 /// both preserves the topological structure and minimizes taken conditional
2463 /// branches.
2464 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2465   // First recurse through any nested loops, building chains for those inner
2466   // loops.
2467   for (const MachineLoop *InnerLoop : L)
2468     buildLoopChains(*InnerLoop);
2469 
2470   assert(BlockWorkList.empty() &&
2471          "BlockWorkList not empty when starting to build loop chains.");
2472   assert(EHPadWorkList.empty() &&
2473          "EHPadWorkList not empty when starting to build loop chains.");
2474   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2475 
2476   // Check if we have profile data for this function. If yes, we will rotate
2477   // this loop by modeling costs more precisely which requires the profile data
2478   // for better layout.
2479   bool RotateLoopWithProfile =
2480       ForcePreciseRotationCost ||
2481       (PreciseRotationCost && F->getFunction().hasProfileData());
2482 
2483   // First check to see if there is an obviously preferable top block for the
2484   // loop. This will default to the header, but may end up as one of the
2485   // predecessors to the header if there is one which will result in strictly
2486   // fewer branches in the loop body.
2487   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2488 
2489   // If we selected just the header for the loop top, look for a potentially
2490   // profitable exit block in the event that rotating the loop can eliminate
2491   // branches by placing an exit edge at the bottom.
2492   //
2493   // Loops are processed innermost to uttermost, make sure we clear
2494   // PreferredLoopExit before processing a new loop.
2495   PreferredLoopExit = nullptr;
2496   BlockFrequency ExitFreq;
2497   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2498     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2499 
2500   BlockChain &LoopChain = *BlockToChain[LoopTop];
2501 
2502   // FIXME: This is a really lame way of walking the chains in the loop: we
2503   // walk the blocks, and use a set to prevent visiting a particular chain
2504   // twice.
2505   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2506   assert(LoopChain.UnscheduledPredecessors == 0 &&
2507          "LoopChain should not have unscheduled predecessors.");
2508   UpdatedPreds.insert(&LoopChain);
2509 
2510   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2511     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2512 
2513   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2514 
2515   if (RotateLoopWithProfile)
2516     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2517   else
2518     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2519 
2520   LLVM_DEBUG({
2521     // Crash at the end so we get all of the debugging output first.
2522     bool BadLoop = false;
2523     if (LoopChain.UnscheduledPredecessors) {
2524       BadLoop = true;
2525       dbgs() << "Loop chain contains a block without its preds placed!\n"
2526              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2527              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2528     }
2529     for (MachineBasicBlock *ChainBB : LoopChain) {
2530       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2531       if (!LoopBlockSet.remove(ChainBB)) {
2532         // We don't mark the loop as bad here because there are real situations
2533         // where this can occur. For example, with an unanalyzable fallthrough
2534         // from a loop block to a non-loop block or vice versa.
2535         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2536                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2537                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2538                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2539       }
2540     }
2541 
2542     if (!LoopBlockSet.empty()) {
2543       BadLoop = true;
2544       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2545         dbgs() << "Loop contains blocks never placed into a chain!\n"
2546                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2547                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2548                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2549     }
2550     assert(!BadLoop && "Detected problems with the placement of this loop.");
2551   });
2552 
2553   BlockWorkList.clear();
2554   EHPadWorkList.clear();
2555 }
2556 
2557 void MachineBlockPlacement::buildCFGChains() {
2558   // Ensure that every BB in the function has an associated chain to simplify
2559   // the assumptions of the remaining algorithm.
2560   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2561   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2562        ++FI) {
2563     MachineBasicBlock *BB = &*FI;
2564     BlockChain *Chain =
2565         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2566     // Also, merge any blocks which we cannot reason about and must preserve
2567     // the exact fallthrough behavior for.
2568     while (true) {
2569       Cond.clear();
2570       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2571       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2572         break;
2573 
2574       MachineFunction::iterator NextFI = std::next(FI);
2575       MachineBasicBlock *NextBB = &*NextFI;
2576       // Ensure that the layout successor is a viable block, as we know that
2577       // fallthrough is a possibility.
2578       assert(NextFI != FE && "Can't fallthrough past the last block.");
2579       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2580                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2581                         << "\n");
2582       Chain->merge(NextBB, nullptr);
2583 #ifndef NDEBUG
2584       BlocksWithUnanalyzableExits.insert(&*BB);
2585 #endif
2586       FI = NextFI;
2587       BB = NextBB;
2588     }
2589   }
2590 
2591   // Build any loop-based chains.
2592   PreferredLoopExit = nullptr;
2593   for (MachineLoop *L : *MLI)
2594     buildLoopChains(*L);
2595 
2596   assert(BlockWorkList.empty() &&
2597          "BlockWorkList should be empty before building final chain.");
2598   assert(EHPadWorkList.empty() &&
2599          "EHPadWorkList should be empty before building final chain.");
2600 
2601   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2602   for (MachineBasicBlock &MBB : *F)
2603     fillWorkLists(&MBB, UpdatedPreds);
2604 
2605   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2606   buildChain(&F->front(), FunctionChain);
2607 
2608 #ifndef NDEBUG
2609   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2610 #endif
2611   LLVM_DEBUG({
2612     // Crash at the end so we get all of the debugging output first.
2613     bool BadFunc = false;
2614     FunctionBlockSetType FunctionBlockSet;
2615     for (MachineBasicBlock &MBB : *F)
2616       FunctionBlockSet.insert(&MBB);
2617 
2618     for (MachineBasicBlock *ChainBB : FunctionChain)
2619       if (!FunctionBlockSet.erase(ChainBB)) {
2620         BadFunc = true;
2621         dbgs() << "Function chain contains a block not in the function!\n"
2622                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2623       }
2624 
2625     if (!FunctionBlockSet.empty()) {
2626       BadFunc = true;
2627       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2628         dbgs() << "Function contains blocks never placed into a chain!\n"
2629                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2630     }
2631     assert(!BadFunc && "Detected problems with the block placement.");
2632   });
2633 
2634   // Splice the blocks into place.
2635   MachineFunction::iterator InsertPos = F->begin();
2636   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2637   for (MachineBasicBlock *ChainBB : FunctionChain) {
2638     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2639                                                             : "          ... ")
2640                       << getBlockName(ChainBB) << "\n");
2641     if (InsertPos != MachineFunction::iterator(ChainBB))
2642       F->splice(InsertPos, ChainBB);
2643     else
2644       ++InsertPos;
2645 
2646     // Update the terminator of the previous block.
2647     if (ChainBB == *FunctionChain.begin())
2648       continue;
2649     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2650 
2651     // FIXME: It would be awesome of updateTerminator would just return rather
2652     // than assert when the branch cannot be analyzed in order to remove this
2653     // boiler plate.
2654     Cond.clear();
2655     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2656 
2657 #ifndef NDEBUG
2658     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2659       // Given the exact block placement we chose, we may actually not _need_ to
2660       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2661       // do that at this point is a bug.
2662       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2663               !PrevBB->canFallThrough()) &&
2664              "Unexpected block with un-analyzable fallthrough!");
2665       Cond.clear();
2666       TBB = FBB = nullptr;
2667     }
2668 #endif
2669 
2670     // The "PrevBB" is not yet updated to reflect current code layout, so,
2671     //   o. it may fall-through to a block without explicit "goto" instruction
2672     //      before layout, and no longer fall-through it after layout; or
2673     //   o. just opposite.
2674     //
2675     // analyzeBranch() may return erroneous value for FBB when these two
2676     // situations take place. For the first scenario FBB is mistakenly set NULL;
2677     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2678     // mistakenly pointing to "*BI".
2679     // Thus, if the future change needs to use FBB before the layout is set, it
2680     // has to correct FBB first by using the code similar to the following:
2681     //
2682     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2683     //   PrevBB->updateTerminator();
2684     //   Cond.clear();
2685     //   TBB = FBB = nullptr;
2686     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2687     //     // FIXME: This should never take place.
2688     //     TBB = FBB = nullptr;
2689     //   }
2690     // }
2691     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2692       PrevBB->updateTerminator();
2693   }
2694 
2695   // Fixup the last block.
2696   Cond.clear();
2697   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2698   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2699     F->back().updateTerminator();
2700 
2701   BlockWorkList.clear();
2702   EHPadWorkList.clear();
2703 }
2704 
2705 void MachineBlockPlacement::optimizeBranches() {
2706   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2707   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2708 
2709   // Now that all the basic blocks in the chain have the proper layout,
2710   // make a final call to AnalyzeBranch with AllowModify set.
2711   // Indeed, the target may be able to optimize the branches in a way we
2712   // cannot because all branches may not be analyzable.
2713   // E.g., the target may be able to remove an unconditional branch to
2714   // a fallthrough when it occurs after predicated terminators.
2715   for (MachineBasicBlock *ChainBB : FunctionChain) {
2716     Cond.clear();
2717     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2718     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2719       // If PrevBB has a two-way branch, try to re-order the branches
2720       // such that we branch to the successor with higher probability first.
2721       if (TBB && !Cond.empty() && FBB &&
2722           MBPI->getEdgeProbability(ChainBB, FBB) >
2723               MBPI->getEdgeProbability(ChainBB, TBB) &&
2724           !TII->reverseBranchCondition(Cond)) {
2725         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2726                           << getBlockName(ChainBB) << "\n");
2727         LLVM_DEBUG(dbgs() << "    Edge probability: "
2728                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2729                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2730         DebugLoc dl; // FIXME: this is nowhere
2731         TII->removeBranch(*ChainBB);
2732         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2733         ChainBB->updateTerminator();
2734       }
2735     }
2736   }
2737 }
2738 
2739 void MachineBlockPlacement::alignBlocks() {
2740   // Walk through the backedges of the function now that we have fully laid out
2741   // the basic blocks and align the destination of each backedge. We don't rely
2742   // exclusively on the loop info here so that we can align backedges in
2743   // unnatural CFGs and backedges that were introduced purely because of the
2744   // loop rotations done during this layout pass.
2745   if (F->getFunction().hasMinSize() ||
2746       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2747     return;
2748   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2749   if (FunctionChain.begin() == FunctionChain.end())
2750     return; // Empty chain.
2751 
2752   const BranchProbability ColdProb(1, 5); // 20%
2753   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2754   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2755   for (MachineBasicBlock *ChainBB : FunctionChain) {
2756     if (ChainBB == *FunctionChain.begin())
2757       continue;
2758 
2759     // Don't align non-looping basic blocks. These are unlikely to execute
2760     // enough times to matter in practice. Note that we'll still handle
2761     // unnatural CFGs inside of a natural outer loop (the common case) and
2762     // rotated loops.
2763     MachineLoop *L = MLI->getLoopFor(ChainBB);
2764     if (!L)
2765       continue;
2766 
2767     const Align Align = TLI->getPrefLoopAlignment(L);
2768     if (Align == 1)
2769       continue; // Don't care about loop alignment.
2770 
2771     // If the block is cold relative to the function entry don't waste space
2772     // aligning it.
2773     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2774     if (Freq < WeightedEntryFreq)
2775       continue;
2776 
2777     // If the block is cold relative to its loop header, don't align it
2778     // regardless of what edges into the block exist.
2779     MachineBasicBlock *LoopHeader = L->getHeader();
2780     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2781     if (Freq < (LoopHeaderFreq * ColdProb))
2782       continue;
2783 
2784     // Check for the existence of a non-layout predecessor which would benefit
2785     // from aligning this block.
2786     MachineBasicBlock *LayoutPred =
2787         &*std::prev(MachineFunction::iterator(ChainBB));
2788 
2789     // Force alignment if all the predecessors are jumps. We already checked
2790     // that the block isn't cold above.
2791     if (!LayoutPred->isSuccessor(ChainBB)) {
2792       ChainBB->setAlignment(Align);
2793       continue;
2794     }
2795 
2796     // Align this block if the layout predecessor's edge into this block is
2797     // cold relative to the block. When this is true, other predecessors make up
2798     // all of the hot entries into the block and thus alignment is likely to be
2799     // important.
2800     BranchProbability LayoutProb =
2801         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2802     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2803     if (LayoutEdgeFreq <= (Freq * ColdProb))
2804       ChainBB->setAlignment(Align);
2805   }
2806 }
2807 
2808 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2809 /// it was duplicated into its chain predecessor and removed.
2810 /// \p BB    - Basic block that may be duplicated.
2811 ///
2812 /// \p LPred - Chosen layout predecessor of \p BB.
2813 ///            Updated to be the chain end if LPred is removed.
2814 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2815 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2816 ///                  Used to identify which blocks to update predecessor
2817 ///                  counts.
2818 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2819 ///                          chosen in the given order due to unnatural CFG
2820 ///                          only needed if \p BB is removed and
2821 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2822 /// @return true if \p BB was removed.
2823 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2824     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2825     const MachineBasicBlock *LoopHeaderBB,
2826     BlockChain &Chain, BlockFilterSet *BlockFilter,
2827     MachineFunction::iterator &PrevUnplacedBlockIt) {
2828   bool Removed, DuplicatedToLPred;
2829   bool DuplicatedToOriginalLPred;
2830   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2831                                     PrevUnplacedBlockIt,
2832                                     DuplicatedToLPred);
2833   if (!Removed)
2834     return false;
2835   DuplicatedToOriginalLPred = DuplicatedToLPred;
2836   // Iteratively try to duplicate again. It can happen that a block that is
2837   // duplicated into is still small enough to be duplicated again.
2838   // No need to call markBlockSuccessors in this case, as the blocks being
2839   // duplicated from here on are already scheduled.
2840   // Note that DuplicatedToLPred always implies Removed.
2841   while (DuplicatedToLPred) {
2842     assert(Removed && "Block must have been removed to be duplicated into its "
2843            "layout predecessor.");
2844     MachineBasicBlock *DupBB, *DupPred;
2845     // The removal callback causes Chain.end() to be updated when a block is
2846     // removed. On the first pass through the loop, the chain end should be the
2847     // same as it was on function entry. On subsequent passes, because we are
2848     // duplicating the block at the end of the chain, if it is removed the
2849     // chain will have shrunk by one block.
2850     BlockChain::iterator ChainEnd = Chain.end();
2851     DupBB = *(--ChainEnd);
2852     // Now try to duplicate again.
2853     if (ChainEnd == Chain.begin())
2854       break;
2855     DupPred = *std::prev(ChainEnd);
2856     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2857                                       PrevUnplacedBlockIt,
2858                                       DuplicatedToLPred);
2859   }
2860   // If BB was duplicated into LPred, it is now scheduled. But because it was
2861   // removed, markChainSuccessors won't be called for its chain. Instead we
2862   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2863   // at the end because repeating the tail duplication can increase the number
2864   // of unscheduled predecessors.
2865   LPred = *std::prev(Chain.end());
2866   if (DuplicatedToOriginalLPred)
2867     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2868   return true;
2869 }
2870 
2871 /// Tail duplicate \p BB into (some) predecessors if profitable.
2872 /// \p BB    - Basic block that may be duplicated
2873 /// \p LPred - Chosen layout predecessor of \p BB
2874 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2875 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2876 ///                  Used to identify which blocks to update predecessor
2877 ///                  counts.
2878 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2879 ///                          chosen in the given order due to unnatural CFG
2880 ///                          only needed if \p BB is removed and
2881 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2882 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2883 ///                        only be true if the block was removed.
2884 /// \return  - True if the block was duplicated into all preds and removed.
2885 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2886     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2887     BlockChain &Chain, BlockFilterSet *BlockFilter,
2888     MachineFunction::iterator &PrevUnplacedBlockIt,
2889     bool &DuplicatedToLPred) {
2890   DuplicatedToLPred = false;
2891   if (!shouldTailDuplicate(BB))
2892     return false;
2893 
2894   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2895                     << "\n");
2896 
2897   // This has to be a callback because none of it can be done after
2898   // BB is deleted.
2899   bool Removed = false;
2900   auto RemovalCallback =
2901       [&](MachineBasicBlock *RemBB) {
2902         // Signal to outer function
2903         Removed = true;
2904 
2905         // Conservative default.
2906         bool InWorkList = true;
2907         // Remove from the Chain and Chain Map
2908         if (BlockToChain.count(RemBB)) {
2909           BlockChain *Chain = BlockToChain[RemBB];
2910           InWorkList = Chain->UnscheduledPredecessors == 0;
2911           Chain->remove(RemBB);
2912           BlockToChain.erase(RemBB);
2913         }
2914 
2915         // Handle the unplaced block iterator
2916         if (&(*PrevUnplacedBlockIt) == RemBB) {
2917           PrevUnplacedBlockIt++;
2918         }
2919 
2920         // Handle the Work Lists
2921         if (InWorkList) {
2922           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2923           if (RemBB->isEHPad())
2924             RemoveList = EHPadWorkList;
2925           RemoveList.erase(
2926               llvm::remove_if(RemoveList,
2927                               [RemBB](MachineBasicBlock *BB) {
2928                                 return BB == RemBB;
2929                               }),
2930               RemoveList.end());
2931         }
2932 
2933         // Handle the filter set
2934         if (BlockFilter) {
2935           BlockFilter->remove(RemBB);
2936         }
2937 
2938         // Remove the block from loop info.
2939         MLI->removeBlock(RemBB);
2940         if (RemBB == PreferredLoopExit)
2941           PreferredLoopExit = nullptr;
2942 
2943         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2944                           << getBlockName(RemBB) << "\n");
2945       };
2946   auto RemovalCallbackRef =
2947       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2948 
2949   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2950   bool IsSimple = TailDup.isSimpleBB(BB);
2951   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2952                                  &DuplicatedPreds, &RemovalCallbackRef);
2953 
2954   // Update UnscheduledPredecessors to reflect tail-duplication.
2955   DuplicatedToLPred = false;
2956   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2957     // We're only looking for unscheduled predecessors that match the filter.
2958     BlockChain* PredChain = BlockToChain[Pred];
2959     if (Pred == LPred)
2960       DuplicatedToLPred = true;
2961     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2962         || PredChain == &Chain)
2963       continue;
2964     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2965       if (BlockFilter && !BlockFilter->count(NewSucc))
2966         continue;
2967       BlockChain *NewChain = BlockToChain[NewSucc];
2968       if (NewChain != &Chain && NewChain != PredChain)
2969         NewChain->UnscheduledPredecessors++;
2970     }
2971   }
2972   return Removed;
2973 }
2974 
2975 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2976   if (skipFunction(MF.getFunction()))
2977     return false;
2978 
2979   // Check for single-block functions and skip them.
2980   if (std::next(MF.begin()) == MF.end())
2981     return false;
2982 
2983   F = &MF;
2984   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2985   MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
2986       getAnalysis<MachineBlockFrequencyInfo>());
2987   MLI = &getAnalysis<MachineLoopInfo>();
2988   TII = MF.getSubtarget().getInstrInfo();
2989   TLI = MF.getSubtarget().getTargetLowering();
2990   MPDT = nullptr;
2991 
2992   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2993   // there are no MachineLoops.
2994   PreferredLoopExit = nullptr;
2995 
2996   assert(BlockToChain.empty() &&
2997          "BlockToChain map should be empty before starting placement.");
2998   assert(ComputedEdges.empty() &&
2999          "Computed Edge map should be empty before starting placement.");
3000 
3001   unsigned TailDupSize = TailDupPlacementThreshold;
3002   // If only the aggressive threshold is explicitly set, use it.
3003   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3004       TailDupPlacementThreshold.getNumOccurrences() == 0)
3005     TailDupSize = TailDupPlacementAggressiveThreshold;
3006 
3007   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3008   // For aggressive optimization, we can adjust some thresholds to be less
3009   // conservative.
3010   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3011     // At O3 we should be more willing to copy blocks for tail duplication. This
3012     // increases size pressure, so we only do it at O3
3013     // Do this unless only the regular threshold is explicitly set.
3014     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3015         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3016       TailDupSize = TailDupPlacementAggressiveThreshold;
3017   }
3018 
3019   if (allowTailDupPlacement()) {
3020     MPDT = &getAnalysis<MachinePostDominatorTree>();
3021     if (MF.getFunction().hasOptSize())
3022       TailDupSize = 1;
3023     bool PreRegAlloc = false;
3024     TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3025     precomputeTriangleChains();
3026   }
3027 
3028   buildCFGChains();
3029 
3030   // Changing the layout can create new tail merging opportunities.
3031   // TailMerge can create jump into if branches that make CFG irreducible for
3032   // HW that requires structured CFG.
3033   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3034                          PassConfig->getEnableTailMerge() &&
3035                          BranchFoldPlacement;
3036   // No tail merging opportunities if the block number is less than four.
3037   if (MF.size() > 3 && EnableTailMerge) {
3038     unsigned TailMergeSize = TailDupSize + 1;
3039     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3040                     *MBPI, TailMergeSize);
3041 
3042     auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
3043     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3044                             MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
3045                             /*AfterPlacement=*/true)) {
3046       // Redo the layout if tail merging creates/removes/moves blocks.
3047       BlockToChain.clear();
3048       ComputedEdges.clear();
3049       // Must redo the post-dominator tree if blocks were changed.
3050       if (MPDT)
3051         MPDT->runOnMachineFunction(MF);
3052       ChainAllocator.DestroyAll();
3053       buildCFGChains();
3054     }
3055   }
3056 
3057   optimizeBranches();
3058   alignBlocks();
3059 
3060   BlockToChain.clear();
3061   ComputedEdges.clear();
3062   ChainAllocator.DestroyAll();
3063 
3064   if (AlignAllBlock)
3065     // Align all of the blocks in the function to a specific alignment.
3066     for (MachineBasicBlock &MBB : MF)
3067       MBB.setAlignment(Align(1ULL << AlignAllBlock));
3068   else if (AlignAllNonFallThruBlocks) {
3069     // Align all of the blocks that have no fall-through predecessors to a
3070     // specific alignment.
3071     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3072       auto LayoutPred = std::prev(MBI);
3073       if (!LayoutPred->isSuccessor(&*MBI))
3074         MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3075     }
3076   }
3077   if (ViewBlockLayoutWithBFI != GVDT_None &&
3078       (ViewBlockFreqFuncName.empty() ||
3079        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3080     MBFI->view("MBP." + MF.getName(), false);
3081   }
3082 
3083 
3084   // We always return true as we have no way to track whether the final order
3085   // differs from the original order.
3086   return true;
3087 }
3088 
3089 namespace {
3090 
3091 /// A pass to compute block placement statistics.
3092 ///
3093 /// A separate pass to compute interesting statistics for evaluating block
3094 /// placement. This is separate from the actual placement pass so that they can
3095 /// be computed in the absence of any placement transformations or when using
3096 /// alternative placement strategies.
3097 class MachineBlockPlacementStats : public MachineFunctionPass {
3098   /// A handle to the branch probability pass.
3099   const MachineBranchProbabilityInfo *MBPI;
3100 
3101   /// A handle to the function-wide block frequency pass.
3102   const MachineBlockFrequencyInfo *MBFI;
3103 
3104 public:
3105   static char ID; // Pass identification, replacement for typeid
3106 
3107   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3108     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3109   }
3110 
3111   bool runOnMachineFunction(MachineFunction &F) override;
3112 
3113   void getAnalysisUsage(AnalysisUsage &AU) const override {
3114     AU.addRequired<MachineBranchProbabilityInfo>();
3115     AU.addRequired<MachineBlockFrequencyInfo>();
3116     AU.setPreservesAll();
3117     MachineFunctionPass::getAnalysisUsage(AU);
3118   }
3119 };
3120 
3121 } // end anonymous namespace
3122 
3123 char MachineBlockPlacementStats::ID = 0;
3124 
3125 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3126 
3127 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3128                       "Basic Block Placement Stats", false, false)
3129 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3130 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3131 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3132                     "Basic Block Placement Stats", false, false)
3133 
3134 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3135   // Check for single-block functions and skip them.
3136   if (std::next(F.begin()) == F.end())
3137     return false;
3138 
3139   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3140   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3141 
3142   for (MachineBasicBlock &MBB : F) {
3143     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3144     Statistic &NumBranches =
3145         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3146     Statistic &BranchTakenFreq =
3147         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3148     for (MachineBasicBlock *Succ : MBB.successors()) {
3149       // Skip if this successor is a fallthrough.
3150       if (MBB.isLayoutSuccessor(Succ))
3151         continue;
3152 
3153       BlockFrequency EdgeFreq =
3154           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3155       ++NumBranches;
3156       BranchTakenFreq += EdgeFreq.getFrequency();
3157     }
3158   }
3159 
3160   return false;
3161 }
3162