1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Allocator.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "block-placement" 74 75 STATISTIC(NumCondBranches, "Number of conditional branches"); 76 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 77 STATISTIC(CondBranchTakenFreq, 78 "Potential frequency of taking conditional branches"); 79 STATISTIC(UncondBranchTakenFreq, 80 "Potential frequency of taking unconditional branches"); 81 82 static cl::opt<unsigned> AlignAllBlock( 83 "align-all-blocks", 84 cl::desc("Force the alignment of all blocks in the function in log2 format " 85 "(e.g 4 means align on 16B boundaries)."), 86 cl::init(0), cl::Hidden); 87 88 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 89 "align-all-nofallthru-blocks", 90 cl::desc("Force the alignment of all blocks that have no fall-through " 91 "predecessors (i.e. don't add nops that are executed). In log2 " 92 "format (e.g 4 means align on 16B boundaries)."), 93 cl::init(0), cl::Hidden); 94 95 // FIXME: Find a good default for this flag and remove the flag. 96 static cl::opt<unsigned> ExitBlockBias( 97 "block-placement-exit-block-bias", 98 cl::desc("Block frequency percentage a loop exit block needs " 99 "over the original exit to be considered the new exit."), 100 cl::init(0), cl::Hidden); 101 102 // Definition: 103 // - Outlining: placement of a basic block outside the chain or hot path. 104 105 static cl::opt<unsigned> LoopToColdBlockRatio( 106 "loop-to-cold-block-ratio", 107 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 108 "(frequency of block) is greater than this ratio"), 109 cl::init(5), cl::Hidden); 110 111 static cl::opt<bool> ForceLoopColdBlock( 112 "force-loop-cold-block", 113 cl::desc("Force outlining cold blocks from loops."), 114 cl::init(false), cl::Hidden); 115 116 static cl::opt<bool> 117 PreciseRotationCost("precise-rotation-cost", 118 cl::desc("Model the cost of loop rotation more " 119 "precisely by using profile data."), 120 cl::init(false), cl::Hidden); 121 122 static cl::opt<bool> 123 ForcePreciseRotationCost("force-precise-rotation-cost", 124 cl::desc("Force the use of precise cost " 125 "loop rotation strategy."), 126 cl::init(false), cl::Hidden); 127 128 static cl::opt<unsigned> MisfetchCost( 129 "misfetch-cost", 130 cl::desc("Cost that models the probabilistic risk of an instruction " 131 "misfetch due to a jump comparing to falling through, whose cost " 132 "is zero."), 133 cl::init(1), cl::Hidden); 134 135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 136 cl::desc("Cost of jump instructions."), 137 cl::init(1), cl::Hidden); 138 static cl::opt<bool> 139 TailDupPlacement("tail-dup-placement", 140 cl::desc("Perform tail duplication during placement. " 141 "Creates more fallthrough opportunites in " 142 "outline branches."), 143 cl::init(true), cl::Hidden); 144 145 static cl::opt<bool> 146 BranchFoldPlacement("branch-fold-placement", 147 cl::desc("Perform branch folding during placement. " 148 "Reduces code size."), 149 cl::init(true), cl::Hidden); 150 151 // Heuristic for tail duplication. 152 static cl::opt<unsigned> TailDupPlacementThreshold( 153 "tail-dup-placement-threshold", 154 cl::desc("Instruction cutoff for tail duplication during layout. " 155 "Tail merging during layout is forced to have a threshold " 156 "that won't conflict."), cl::init(2), 157 cl::Hidden); 158 159 // Heuristic for aggressive tail duplication. 160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 161 "tail-dup-placement-aggressive-threshold", 162 cl::desc("Instruction cutoff for aggressive tail duplication during " 163 "layout. Used at -O3. Tail merging during layout is forced to " 164 "have a threshold that won't conflict."), cl::init(4), 165 cl::Hidden); 166 167 // Heuristic for tail duplication. 168 static cl::opt<unsigned> TailDupPlacementPenalty( 169 "tail-dup-placement-penalty", 170 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 171 "Copying can increase fallthrough, but it also increases icache " 172 "pressure. This parameter controls the penalty to account for that. " 173 "Percent as integer."), 174 cl::init(2), 175 cl::Hidden); 176 177 // Heuristic for triangle chains. 178 static cl::opt<unsigned> TriangleChainCount( 179 "triangle-chain-count", 180 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 181 "triangle tail duplication heuristic to kick in. 0 to disable."), 182 cl::init(2), 183 cl::Hidden); 184 185 extern cl::opt<unsigned> StaticLikelyProb; 186 extern cl::opt<unsigned> ProfileLikelyProb; 187 188 // Internal option used to control BFI display only after MBP pass. 189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 190 // -view-block-layout-with-bfi= 191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 192 193 // Command line option to specify the name of the function for CFG dump 194 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 195 extern cl::opt<std::string> ViewBlockFreqFuncName; 196 197 namespace { 198 199 class BlockChain; 200 201 /// Type for our function-wide basic block -> block chain mapping. 202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 203 204 /// A chain of blocks which will be laid out contiguously. 205 /// 206 /// This is the datastructure representing a chain of consecutive blocks that 207 /// are profitable to layout together in order to maximize fallthrough 208 /// probabilities and code locality. We also can use a block chain to represent 209 /// a sequence of basic blocks which have some external (correctness) 210 /// requirement for sequential layout. 211 /// 212 /// Chains can be built around a single basic block and can be merged to grow 213 /// them. They participate in a block-to-chain mapping, which is updated 214 /// automatically as chains are merged together. 215 class BlockChain { 216 /// The sequence of blocks belonging to this chain. 217 /// 218 /// This is the sequence of blocks for a particular chain. These will be laid 219 /// out in-order within the function. 220 SmallVector<MachineBasicBlock *, 4> Blocks; 221 222 /// A handle to the function-wide basic block to block chain mapping. 223 /// 224 /// This is retained in each block chain to simplify the computation of child 225 /// block chains for SCC-formation and iteration. We store the edges to child 226 /// basic blocks, and map them back to their associated chains using this 227 /// structure. 228 BlockToChainMapType &BlockToChain; 229 230 public: 231 /// Construct a new BlockChain. 232 /// 233 /// This builds a new block chain representing a single basic block in the 234 /// function. It also registers itself as the chain that block participates 235 /// in with the BlockToChain mapping. 236 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 237 : Blocks(1, BB), BlockToChain(BlockToChain) { 238 assert(BB && "Cannot create a chain with a null basic block"); 239 BlockToChain[BB] = this; 240 } 241 242 /// Iterator over blocks within the chain. 243 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 244 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 245 246 /// Beginning of blocks within the chain. 247 iterator begin() { return Blocks.begin(); } 248 const_iterator begin() const { return Blocks.begin(); } 249 250 /// End of blocks within the chain. 251 iterator end() { return Blocks.end(); } 252 const_iterator end() const { return Blocks.end(); } 253 254 bool remove(MachineBasicBlock* BB) { 255 for(iterator i = begin(); i != end(); ++i) { 256 if (*i == BB) { 257 Blocks.erase(i); 258 return true; 259 } 260 } 261 return false; 262 } 263 264 /// Merge a block chain into this one. 265 /// 266 /// This routine merges a block chain into this one. It takes care of forming 267 /// a contiguous sequence of basic blocks, updating the edge list, and 268 /// updating the block -> chain mapping. It does not free or tear down the 269 /// old chain, but the old chain's block list is no longer valid. 270 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 271 assert(BB && "Can't merge a null block."); 272 assert(!Blocks.empty() && "Can't merge into an empty chain."); 273 274 // Fast path in case we don't have a chain already. 275 if (!Chain) { 276 assert(!BlockToChain[BB] && 277 "Passed chain is null, but BB has entry in BlockToChain."); 278 Blocks.push_back(BB); 279 BlockToChain[BB] = this; 280 return; 281 } 282 283 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 284 assert(Chain->begin() != Chain->end()); 285 286 // Update the incoming blocks to point to this chain, and add them to the 287 // chain structure. 288 for (MachineBasicBlock *ChainBB : *Chain) { 289 Blocks.push_back(ChainBB); 290 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 291 BlockToChain[ChainBB] = this; 292 } 293 } 294 295 #ifndef NDEBUG 296 /// Dump the blocks in this chain. 297 LLVM_DUMP_METHOD void dump() { 298 for (MachineBasicBlock *MBB : *this) 299 MBB->dump(); 300 } 301 #endif // NDEBUG 302 303 /// Count of predecessors of any block within the chain which have not 304 /// yet been scheduled. In general, we will delay scheduling this chain 305 /// until those predecessors are scheduled (or we find a sufficiently good 306 /// reason to override this heuristic.) Note that when forming loop chains, 307 /// blocks outside the loop are ignored and treated as if they were already 308 /// scheduled. 309 /// 310 /// Note: This field is reinitialized multiple times - once for each loop, 311 /// and then once for the function as a whole. 312 unsigned UnscheduledPredecessors = 0; 313 }; 314 315 class MachineBlockPlacement : public MachineFunctionPass { 316 /// A type for a block filter set. 317 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 318 319 /// Pair struct containing basic block and taildup profitability 320 struct BlockAndTailDupResult { 321 MachineBasicBlock *BB; 322 bool ShouldTailDup; 323 }; 324 325 /// Triple struct containing edge weight and the edge. 326 struct WeightedEdge { 327 BlockFrequency Weight; 328 MachineBasicBlock *Src; 329 MachineBasicBlock *Dest; 330 }; 331 332 /// work lists of blocks that are ready to be laid out 333 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 334 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 335 336 /// Edges that have already been computed as optimal. 337 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 338 339 /// Machine Function 340 MachineFunction *F; 341 342 /// A handle to the branch probability pass. 343 const MachineBranchProbabilityInfo *MBPI; 344 345 /// A handle to the function-wide block frequency pass. 346 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 347 348 /// A handle to the loop info. 349 MachineLoopInfo *MLI; 350 351 /// Preferred loop exit. 352 /// Member variable for convenience. It may be removed by duplication deep 353 /// in the call stack. 354 MachineBasicBlock *PreferredLoopExit; 355 356 /// A handle to the target's instruction info. 357 const TargetInstrInfo *TII; 358 359 /// A handle to the target's lowering info. 360 const TargetLoweringBase *TLI; 361 362 /// A handle to the post dominator tree. 363 MachinePostDominatorTree *MPDT; 364 365 /// Duplicator used to duplicate tails during placement. 366 /// 367 /// Placement decisions can open up new tail duplication opportunities, but 368 /// since tail duplication affects placement decisions of later blocks, it 369 /// must be done inline. 370 TailDuplicator TailDup; 371 372 /// Allocator and owner of BlockChain structures. 373 /// 374 /// We build BlockChains lazily while processing the loop structure of 375 /// a function. To reduce malloc traffic, we allocate them using this 376 /// slab-like allocator, and destroy them after the pass completes. An 377 /// important guarantee is that this allocator produces stable pointers to 378 /// the chains. 379 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 380 381 /// Function wide BasicBlock to BlockChain mapping. 382 /// 383 /// This mapping allows efficiently moving from any given basic block to the 384 /// BlockChain it participates in, if any. We use it to, among other things, 385 /// allow implicitly defining edges between chains as the existing edges 386 /// between basic blocks. 387 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 388 389 #ifndef NDEBUG 390 /// The set of basic blocks that have terminators that cannot be fully 391 /// analyzed. These basic blocks cannot be re-ordered safely by 392 /// MachineBlockPlacement, and we must preserve physical layout of these 393 /// blocks and their successors through the pass. 394 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 395 #endif 396 397 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 398 /// if the count goes to 0, add them to the appropriate work list. 399 void markChainSuccessors( 400 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 401 const BlockFilterSet *BlockFilter = nullptr); 402 403 /// Decrease the UnscheduledPredecessors count for a single block, and 404 /// if the count goes to 0, add them to the appropriate work list. 405 void markBlockSuccessors( 406 const BlockChain &Chain, const MachineBasicBlock *BB, 407 const MachineBasicBlock *LoopHeaderBB, 408 const BlockFilterSet *BlockFilter = nullptr); 409 410 BranchProbability 411 collectViableSuccessors( 412 const MachineBasicBlock *BB, const BlockChain &Chain, 413 const BlockFilterSet *BlockFilter, 414 SmallVector<MachineBasicBlock *, 4> &Successors); 415 bool shouldPredBlockBeOutlined( 416 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 417 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 418 BranchProbability SuccProb, BranchProbability HotProb); 419 bool repeatedlyTailDuplicateBlock( 420 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 421 const MachineBasicBlock *LoopHeaderBB, 422 BlockChain &Chain, BlockFilterSet *BlockFilter, 423 MachineFunction::iterator &PrevUnplacedBlockIt); 424 bool maybeTailDuplicateBlock( 425 MachineBasicBlock *BB, MachineBasicBlock *LPred, 426 BlockChain &Chain, BlockFilterSet *BlockFilter, 427 MachineFunction::iterator &PrevUnplacedBlockIt, 428 bool &DuplicatedToLPred); 429 bool hasBetterLayoutPredecessor( 430 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 431 const BlockChain &SuccChain, BranchProbability SuccProb, 432 BranchProbability RealSuccProb, const BlockChain &Chain, 433 const BlockFilterSet *BlockFilter); 434 BlockAndTailDupResult selectBestSuccessor( 435 const MachineBasicBlock *BB, const BlockChain &Chain, 436 const BlockFilterSet *BlockFilter); 437 MachineBasicBlock *selectBestCandidateBlock( 438 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 439 MachineBasicBlock *getFirstUnplacedBlock( 440 const BlockChain &PlacedChain, 441 MachineFunction::iterator &PrevUnplacedBlockIt, 442 const BlockFilterSet *BlockFilter); 443 444 /// Add a basic block to the work list if it is appropriate. 445 /// 446 /// If the optional parameter BlockFilter is provided, only MBB 447 /// present in the set will be added to the worklist. If nullptr 448 /// is provided, no filtering occurs. 449 void fillWorkLists(const MachineBasicBlock *MBB, 450 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 451 const BlockFilterSet *BlockFilter); 452 453 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 454 BlockFilterSet *BlockFilter = nullptr); 455 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 456 const MachineBasicBlock *OldTop); 457 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 458 const BlockFilterSet &LoopBlockSet); 459 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 460 const BlockFilterSet &LoopBlockSet); 461 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 462 const MachineBasicBlock *OldTop, 463 const MachineBasicBlock *ExitBB, 464 const BlockFilterSet &LoopBlockSet); 465 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 466 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 467 MachineBasicBlock *findBestLoopTop( 468 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 469 MachineBasicBlock *findBestLoopExit( 470 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 471 BlockFrequency &ExitFreq); 472 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 473 void buildLoopChains(const MachineLoop &L); 474 void rotateLoop( 475 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 476 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 477 void rotateLoopWithProfile( 478 BlockChain &LoopChain, const MachineLoop &L, 479 const BlockFilterSet &LoopBlockSet); 480 void buildCFGChains(); 481 void optimizeBranches(); 482 void alignBlocks(); 483 /// Returns true if a block should be tail-duplicated to increase fallthrough 484 /// opportunities. 485 bool shouldTailDuplicate(MachineBasicBlock *BB); 486 /// Check the edge frequencies to see if tail duplication will increase 487 /// fallthroughs. 488 bool isProfitableToTailDup( 489 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 490 BranchProbability QProb, 491 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 492 493 /// Check for a trellis layout. 494 bool isTrellis(const MachineBasicBlock *BB, 495 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 496 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 497 498 /// Get the best successor given a trellis layout. 499 BlockAndTailDupResult getBestTrellisSuccessor( 500 const MachineBasicBlock *BB, 501 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 502 BranchProbability AdjustedSumProb, const BlockChain &Chain, 503 const BlockFilterSet *BlockFilter); 504 505 /// Get the best pair of non-conflicting edges. 506 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 507 const MachineBasicBlock *BB, 508 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 509 510 /// Returns true if a block can tail duplicate into all unplaced 511 /// predecessors. Filters based on loop. 512 bool canTailDuplicateUnplacedPreds( 513 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 514 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 515 516 /// Find chains of triangles to tail-duplicate where a global analysis works, 517 /// but a local analysis would not find them. 518 void precomputeTriangleChains(); 519 520 public: 521 static char ID; // Pass identification, replacement for typeid 522 523 MachineBlockPlacement() : MachineFunctionPass(ID) { 524 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 525 } 526 527 bool runOnMachineFunction(MachineFunction &F) override; 528 529 bool allowTailDupPlacement() const { 530 assert(F); 531 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 532 } 533 534 void getAnalysisUsage(AnalysisUsage &AU) const override { 535 AU.addRequired<MachineBranchProbabilityInfo>(); 536 AU.addRequired<MachineBlockFrequencyInfo>(); 537 if (TailDupPlacement) 538 AU.addRequired<MachinePostDominatorTree>(); 539 AU.addRequired<MachineLoopInfo>(); 540 AU.addRequired<TargetPassConfig>(); 541 MachineFunctionPass::getAnalysisUsage(AU); 542 } 543 }; 544 545 } // end anonymous namespace 546 547 char MachineBlockPlacement::ID = 0; 548 549 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 550 551 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 552 "Branch Probability Basic Block Placement", false, false) 553 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 554 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 555 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 556 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 557 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 558 "Branch Probability Basic Block Placement", false, false) 559 560 #ifndef NDEBUG 561 /// Helper to print the name of a MBB. 562 /// 563 /// Only used by debug logging. 564 static std::string getBlockName(const MachineBasicBlock *BB) { 565 std::string Result; 566 raw_string_ostream OS(Result); 567 OS << printMBBReference(*BB); 568 OS << " ('" << BB->getName() << "')"; 569 OS.flush(); 570 return Result; 571 } 572 #endif 573 574 /// Mark a chain's successors as having one fewer preds. 575 /// 576 /// When a chain is being merged into the "placed" chain, this routine will 577 /// quickly walk the successors of each block in the chain and mark them as 578 /// having one fewer active predecessor. It also adds any successors of this 579 /// chain which reach the zero-predecessor state to the appropriate worklist. 580 void MachineBlockPlacement::markChainSuccessors( 581 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 582 const BlockFilterSet *BlockFilter) { 583 // Walk all the blocks in this chain, marking their successors as having 584 // a predecessor placed. 585 for (MachineBasicBlock *MBB : Chain) { 586 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 587 } 588 } 589 590 /// Mark a single block's successors as having one fewer preds. 591 /// 592 /// Under normal circumstances, this is only called by markChainSuccessors, 593 /// but if a block that was to be placed is completely tail-duplicated away, 594 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 595 /// for just that block. 596 void MachineBlockPlacement::markBlockSuccessors( 597 const BlockChain &Chain, const MachineBasicBlock *MBB, 598 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 599 // Add any successors for which this is the only un-placed in-loop 600 // predecessor to the worklist as a viable candidate for CFG-neutral 601 // placement. No subsequent placement of this block will violate the CFG 602 // shape, so we get to use heuristics to choose a favorable placement. 603 for (MachineBasicBlock *Succ : MBB->successors()) { 604 if (BlockFilter && !BlockFilter->count(Succ)) 605 continue; 606 BlockChain &SuccChain = *BlockToChain[Succ]; 607 // Disregard edges within a fixed chain, or edges to the loop header. 608 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 609 continue; 610 611 // This is a cross-chain edge that is within the loop, so decrement the 612 // loop predecessor count of the destination chain. 613 if (SuccChain.UnscheduledPredecessors == 0 || 614 --SuccChain.UnscheduledPredecessors > 0) 615 continue; 616 617 auto *NewBB = *SuccChain.begin(); 618 if (NewBB->isEHPad()) 619 EHPadWorkList.push_back(NewBB); 620 else 621 BlockWorkList.push_back(NewBB); 622 } 623 } 624 625 /// This helper function collects the set of successors of block 626 /// \p BB that are allowed to be its layout successors, and return 627 /// the total branch probability of edges from \p BB to those 628 /// blocks. 629 BranchProbability MachineBlockPlacement::collectViableSuccessors( 630 const MachineBasicBlock *BB, const BlockChain &Chain, 631 const BlockFilterSet *BlockFilter, 632 SmallVector<MachineBasicBlock *, 4> &Successors) { 633 // Adjust edge probabilities by excluding edges pointing to blocks that is 634 // either not in BlockFilter or is already in the current chain. Consider the 635 // following CFG: 636 // 637 // --->A 638 // | / \ 639 // | B C 640 // | \ / \ 641 // ----D E 642 // 643 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 644 // A->C is chosen as a fall-through, D won't be selected as a successor of C 645 // due to CFG constraint (the probability of C->D is not greater than 646 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 647 // when calculating the probability of C->D, D will be selected and we 648 // will get A C D B as the layout of this loop. 649 auto AdjustedSumProb = BranchProbability::getOne(); 650 for (MachineBasicBlock *Succ : BB->successors()) { 651 bool SkipSucc = false; 652 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 653 SkipSucc = true; 654 } else { 655 BlockChain *SuccChain = BlockToChain[Succ]; 656 if (SuccChain == &Chain) { 657 SkipSucc = true; 658 } else if (Succ != *SuccChain->begin()) { 659 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 660 << " -> Mid chain!\n"); 661 continue; 662 } 663 } 664 if (SkipSucc) 665 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 666 else 667 Successors.push_back(Succ); 668 } 669 670 return AdjustedSumProb; 671 } 672 673 /// The helper function returns the branch probability that is adjusted 674 /// or normalized over the new total \p AdjustedSumProb. 675 static BranchProbability 676 getAdjustedProbability(BranchProbability OrigProb, 677 BranchProbability AdjustedSumProb) { 678 BranchProbability SuccProb; 679 uint32_t SuccProbN = OrigProb.getNumerator(); 680 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 681 if (SuccProbN >= SuccProbD) 682 SuccProb = BranchProbability::getOne(); 683 else 684 SuccProb = BranchProbability(SuccProbN, SuccProbD); 685 686 return SuccProb; 687 } 688 689 /// Check if \p BB has exactly the successors in \p Successors. 690 static bool 691 hasSameSuccessors(MachineBasicBlock &BB, 692 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 693 if (BB.succ_size() != Successors.size()) 694 return false; 695 // We don't want to count self-loops 696 if (Successors.count(&BB)) 697 return false; 698 for (MachineBasicBlock *Succ : BB.successors()) 699 if (!Successors.count(Succ)) 700 return false; 701 return true; 702 } 703 704 /// Check if a block should be tail duplicated to increase fallthrough 705 /// opportunities. 706 /// \p BB Block to check. 707 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 708 // Blocks with single successors don't create additional fallthrough 709 // opportunities. Don't duplicate them. TODO: When conditional exits are 710 // analyzable, allow them to be duplicated. 711 bool IsSimple = TailDup.isSimpleBB(BB); 712 713 if (BB->succ_size() == 1) 714 return false; 715 return TailDup.shouldTailDuplicate(IsSimple, *BB); 716 } 717 718 /// Compare 2 BlockFrequency's with a small penalty for \p A. 719 /// In order to be conservative, we apply a X% penalty to account for 720 /// increased icache pressure and static heuristics. For small frequencies 721 /// we use only the numerators to improve accuracy. For simplicity, we assume the 722 /// penalty is less than 100% 723 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 724 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 725 uint64_t EntryFreq) { 726 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 727 BlockFrequency Gain = A - B; 728 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 729 } 730 731 /// Check the edge frequencies to see if tail duplication will increase 732 /// fallthroughs. It only makes sense to call this function when 733 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 734 /// always locally profitable if we would have picked \p Succ without 735 /// considering duplication. 736 bool MachineBlockPlacement::isProfitableToTailDup( 737 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 738 BranchProbability QProb, 739 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 740 // We need to do a probability calculation to make sure this is profitable. 741 // First: does succ have a successor that post-dominates? This affects the 742 // calculation. The 2 relevant cases are: 743 // BB BB 744 // | \Qout | \Qout 745 // P| C |P C 746 // = C' = C' 747 // | /Qin | /Qin 748 // | / | / 749 // Succ Succ 750 // / \ | \ V 751 // U/ =V |U \ 752 // / \ = D 753 // D E | / 754 // | / 755 // |/ 756 // PDom 757 // '=' : Branch taken for that CFG edge 758 // In the second case, Placing Succ while duplicating it into C prevents the 759 // fallthrough of Succ into either D or PDom, because they now have C as an 760 // unplaced predecessor 761 762 // Start by figuring out which case we fall into 763 MachineBasicBlock *PDom = nullptr; 764 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 765 // Only scan the relevant successors 766 auto AdjustedSuccSumProb = 767 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 768 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 769 auto BBFreq = MBFI->getBlockFreq(BB); 770 auto SuccFreq = MBFI->getBlockFreq(Succ); 771 BlockFrequency P = BBFreq * PProb; 772 BlockFrequency Qout = BBFreq * QProb; 773 uint64_t EntryFreq = MBFI->getEntryFreq(); 774 // If there are no more successors, it is profitable to copy, as it strictly 775 // increases fallthrough. 776 if (SuccSuccs.size() == 0) 777 return greaterWithBias(P, Qout, EntryFreq); 778 779 auto BestSuccSucc = BranchProbability::getZero(); 780 // Find the PDom or the best Succ if no PDom exists. 781 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 782 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 783 if (Prob > BestSuccSucc) 784 BestSuccSucc = Prob; 785 if (PDom == nullptr) 786 if (MPDT->dominates(SuccSucc, Succ)) { 787 PDom = SuccSucc; 788 break; 789 } 790 } 791 // For the comparisons, we need to know Succ's best incoming edge that isn't 792 // from BB. 793 auto SuccBestPred = BlockFrequency(0); 794 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 795 if (SuccPred == Succ || SuccPred == BB 796 || BlockToChain[SuccPred] == &Chain 797 || (BlockFilter && !BlockFilter->count(SuccPred))) 798 continue; 799 auto Freq = MBFI->getBlockFreq(SuccPred) 800 * MBPI->getEdgeProbability(SuccPred, Succ); 801 if (Freq > SuccBestPred) 802 SuccBestPred = Freq; 803 } 804 // Qin is Succ's best unplaced incoming edge that isn't BB 805 BlockFrequency Qin = SuccBestPred; 806 // If it doesn't have a post-dominating successor, here is the calculation: 807 // BB BB 808 // | \Qout | \ 809 // P| C | = 810 // = C' | C 811 // | /Qin | | 812 // | / | C' (+Succ) 813 // Succ Succ /| 814 // / \ | \/ | 815 // U/ =V | == | 816 // / \ | / \| 817 // D E D E 818 // '=' : Branch taken for that CFG edge 819 // Cost in the first case is: P + V 820 // For this calculation, we always assume P > Qout. If Qout > P 821 // The result of this function will be ignored at the caller. 822 // Let F = SuccFreq - Qin 823 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 824 825 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 826 BranchProbability UProb = BestSuccSucc; 827 BranchProbability VProb = AdjustedSuccSumProb - UProb; 828 BlockFrequency F = SuccFreq - Qin; 829 BlockFrequency V = SuccFreq * VProb; 830 BlockFrequency QinU = std::min(Qin, F) * UProb; 831 BlockFrequency BaseCost = P + V; 832 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 833 return greaterWithBias(BaseCost, DupCost, EntryFreq); 834 } 835 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 836 BranchProbability VProb = AdjustedSuccSumProb - UProb; 837 BlockFrequency U = SuccFreq * UProb; 838 BlockFrequency V = SuccFreq * VProb; 839 BlockFrequency F = SuccFreq - Qin; 840 // If there is a post-dominating successor, here is the calculation: 841 // BB BB BB BB 842 // | \Qout | \ | \Qout | \ 843 // |P C | = |P C | = 844 // = C' |P C = C' |P C 845 // | /Qin | | | /Qin | | 846 // | / | C' (+Succ) | / | C' (+Succ) 847 // Succ Succ /| Succ Succ /| 848 // | \ V | \/ | | \ V | \/ | 849 // |U \ |U /\ =? |U = |U /\ | 850 // = D = = =?| | D | = =| 851 // | / |/ D | / |/ D 852 // | / | / | = | / 853 // |/ | / |/ | = 854 // Dom Dom Dom Dom 855 // '=' : Branch taken for that CFG edge 856 // The cost for taken branches in the first case is P + U 857 // Let F = SuccFreq - Qin 858 // The cost in the second case (assuming independence), given the layout: 859 // BB, Succ, (C+Succ), D, Dom or the layout: 860 // BB, Succ, D, Dom, (C+Succ) 861 // is Qout + max(F, Qin) * U + min(F, Qin) 862 // compare P + U vs Qout + P * U + Qin. 863 // 864 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 865 // 866 // For the 3rd case, the cost is P + 2 * V 867 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 868 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 869 if (UProb > AdjustedSuccSumProb / 2 && 870 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 871 Chain, BlockFilter)) 872 // Cases 3 & 4 873 return greaterWithBias( 874 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 875 EntryFreq); 876 // Cases 1 & 2 877 return greaterWithBias((P + U), 878 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 879 std::max(Qin, F) * UProb), 880 EntryFreq); 881 } 882 883 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 884 /// successors form the lower part of a trellis. A successor set S forms the 885 /// lower part of a trellis if all of the predecessors of S are either in S or 886 /// have all of S as successors. We ignore trellises where BB doesn't have 2 887 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 888 /// are very uncommon and complex to compute optimally. Allowing edges within S 889 /// is not strictly a trellis, but the same algorithm works, so we allow it. 890 bool MachineBlockPlacement::isTrellis( 891 const MachineBasicBlock *BB, 892 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 893 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 894 // Technically BB could form a trellis with branching factor higher than 2. 895 // But that's extremely uncommon. 896 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 897 return false; 898 899 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 900 BB->succ_end()); 901 // To avoid reviewing the same predecessors twice. 902 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 903 904 for (MachineBasicBlock *Succ : ViableSuccs) { 905 int PredCount = 0; 906 for (auto SuccPred : Succ->predecessors()) { 907 // Allow triangle successors, but don't count them. 908 if (Successors.count(SuccPred)) { 909 // Make sure that it is actually a triangle. 910 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 911 if (!Successors.count(CheckSucc)) 912 return false; 913 continue; 914 } 915 const BlockChain *PredChain = BlockToChain[SuccPred]; 916 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 917 PredChain == &Chain || PredChain == BlockToChain[Succ]) 918 continue; 919 ++PredCount; 920 // Perform the successor check only once. 921 if (!SeenPreds.insert(SuccPred).second) 922 continue; 923 if (!hasSameSuccessors(*SuccPred, Successors)) 924 return false; 925 } 926 // If one of the successors has only BB as a predecessor, it is not a 927 // trellis. 928 if (PredCount < 1) 929 return false; 930 } 931 return true; 932 } 933 934 /// Pick the highest total weight pair of edges that can both be laid out. 935 /// The edges in \p Edges[0] are assumed to have a different destination than 936 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 937 /// the individual highest weight edges to the 2 different destinations, or in 938 /// case of a conflict, one of them should be replaced with a 2nd best edge. 939 std::pair<MachineBlockPlacement::WeightedEdge, 940 MachineBlockPlacement::WeightedEdge> 941 MachineBlockPlacement::getBestNonConflictingEdges( 942 const MachineBasicBlock *BB, 943 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 944 Edges) { 945 // Sort the edges, and then for each successor, find the best incoming 946 // predecessor. If the best incoming predecessors aren't the same, 947 // then that is clearly the best layout. If there is a conflict, one of the 948 // successors will have to fallthrough from the second best predecessor. We 949 // compare which combination is better overall. 950 951 // Sort for highest frequency. 952 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 953 954 llvm::stable_sort(Edges[0], Cmp); 955 llvm::stable_sort(Edges[1], Cmp); 956 auto BestA = Edges[0].begin(); 957 auto BestB = Edges[1].begin(); 958 // Arrange for the correct answer to be in BestA and BestB 959 // If the 2 best edges don't conflict, the answer is already there. 960 if (BestA->Src == BestB->Src) { 961 // Compare the total fallthrough of (Best + Second Best) for both pairs 962 auto SecondBestA = std::next(BestA); 963 auto SecondBestB = std::next(BestB); 964 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 965 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 966 if (BestAScore < BestBScore) 967 BestA = SecondBestA; 968 else 969 BestB = SecondBestB; 970 } 971 // Arrange for the BB edge to be in BestA if it exists. 972 if (BestB->Src == BB) 973 std::swap(BestA, BestB); 974 return std::make_pair(*BestA, *BestB); 975 } 976 977 /// Get the best successor from \p BB based on \p BB being part of a trellis. 978 /// We only handle trellises with 2 successors, so the algorithm is 979 /// straightforward: Find the best pair of edges that don't conflict. We find 980 /// the best incoming edge for each successor in the trellis. If those conflict, 981 /// we consider which of them should be replaced with the second best. 982 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 983 /// comes from \p BB, it will be in \p BestEdges[0] 984 MachineBlockPlacement::BlockAndTailDupResult 985 MachineBlockPlacement::getBestTrellisSuccessor( 986 const MachineBasicBlock *BB, 987 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 988 BranchProbability AdjustedSumProb, const BlockChain &Chain, 989 const BlockFilterSet *BlockFilter) { 990 991 BlockAndTailDupResult Result = {nullptr, false}; 992 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 993 BB->succ_end()); 994 995 // We assume size 2 because it's common. For general n, we would have to do 996 // the Hungarian algorithm, but it's not worth the complexity because more 997 // than 2 successors is fairly uncommon, and a trellis even more so. 998 if (Successors.size() != 2 || ViableSuccs.size() != 2) 999 return Result; 1000 1001 // Collect the edge frequencies of all edges that form the trellis. 1002 SmallVector<WeightedEdge, 8> Edges[2]; 1003 int SuccIndex = 0; 1004 for (auto Succ : ViableSuccs) { 1005 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1006 // Skip any placed predecessors that are not BB 1007 if (SuccPred != BB) 1008 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1009 BlockToChain[SuccPred] == &Chain || 1010 BlockToChain[SuccPred] == BlockToChain[Succ]) 1011 continue; 1012 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1013 MBPI->getEdgeProbability(SuccPred, Succ); 1014 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1015 } 1016 ++SuccIndex; 1017 } 1018 1019 // Pick the best combination of 2 edges from all the edges in the trellis. 1020 WeightedEdge BestA, BestB; 1021 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1022 1023 if (BestA.Src != BB) { 1024 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1025 // we shouldn't choose any successor. We've already looked and there's a 1026 // better fallthrough edge for all the successors. 1027 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1028 return Result; 1029 } 1030 1031 // Did we pick the triangle edge? If tail-duplication is profitable, do 1032 // that instead. Otherwise merge the triangle edge now while we know it is 1033 // optimal. 1034 if (BestA.Dest == BestB.Src) { 1035 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1036 // would be better. 1037 MachineBasicBlock *Succ1 = BestA.Dest; 1038 MachineBasicBlock *Succ2 = BestB.Dest; 1039 // Check to see if tail-duplication would be profitable. 1040 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1041 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1042 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1043 Chain, BlockFilter)) { 1044 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1045 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1046 dbgs() << " Selected: " << getBlockName(Succ2) 1047 << ", probability: " << Succ2Prob 1048 << " (Tail Duplicate)\n"); 1049 Result.BB = Succ2; 1050 Result.ShouldTailDup = true; 1051 return Result; 1052 } 1053 } 1054 // We have already computed the optimal edge for the other side of the 1055 // trellis. 1056 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1057 1058 auto TrellisSucc = BestA.Dest; 1059 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1060 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1061 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1062 << ", probability: " << SuccProb << " (Trellis)\n"); 1063 Result.BB = TrellisSucc; 1064 return Result; 1065 } 1066 1067 /// When the option allowTailDupPlacement() is on, this method checks if the 1068 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1069 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1070 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1071 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1072 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1073 if (!shouldTailDuplicate(Succ)) 1074 return false; 1075 1076 // For CFG checking. 1077 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1078 BB->succ_end()); 1079 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1080 // Make sure all unplaced and unfiltered predecessors can be 1081 // tail-duplicated into. 1082 // Skip any blocks that are already placed or not in this loop. 1083 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1084 || BlockToChain[Pred] == &Chain) 1085 continue; 1086 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1087 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1088 // This will result in a trellis after tail duplication, so we don't 1089 // need to copy Succ into this predecessor. In the presence 1090 // of a trellis tail duplication can continue to be profitable. 1091 // For example: 1092 // A A 1093 // |\ |\ 1094 // | \ | \ 1095 // | C | C+BB 1096 // | / | | 1097 // |/ | | 1098 // BB => BB | 1099 // |\ |\/| 1100 // | \ |/\| 1101 // | D | D 1102 // | / | / 1103 // |/ |/ 1104 // Succ Succ 1105 // 1106 // After BB was duplicated into C, the layout looks like the one on the 1107 // right. BB and C now have the same successors. When considering 1108 // whether Succ can be duplicated into all its unplaced predecessors, we 1109 // ignore C. 1110 // We can do this because C already has a profitable fallthrough, namely 1111 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1112 // duplication and for this test. 1113 // 1114 // This allows trellises to be laid out in 2 separate chains 1115 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1116 // because it allows the creation of 2 fallthrough paths with links 1117 // between them, and we correctly identify the best layout for these 1118 // CFGs. We want to extend trellises that the user created in addition 1119 // to trellises created by tail-duplication, so we just look for the 1120 // CFG. 1121 continue; 1122 return false; 1123 } 1124 } 1125 return true; 1126 } 1127 1128 /// Find chains of triangles where we believe it would be profitable to 1129 /// tail-duplicate them all, but a local analysis would not find them. 1130 /// There are 3 ways this can be profitable: 1131 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1132 /// longer chains) 1133 /// 2) The chains are statically correlated. Branch probabilities have a very 1134 /// U-shaped distribution. 1135 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1136 /// If the branches in a chain are likely to be from the same side of the 1137 /// distribution as their predecessor, but are independent at runtime, this 1138 /// transformation is profitable. (Because the cost of being wrong is a small 1139 /// fixed cost, unlike the standard triangle layout where the cost of being 1140 /// wrong scales with the # of triangles.) 1141 /// 3) The chains are dynamically correlated. If the probability that a previous 1142 /// branch was taken positively influences whether the next branch will be 1143 /// taken 1144 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1145 void MachineBlockPlacement::precomputeTriangleChains() { 1146 struct TriangleChain { 1147 std::vector<MachineBasicBlock *> Edges; 1148 1149 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1150 : Edges({src, dst}) {} 1151 1152 void append(MachineBasicBlock *dst) { 1153 assert(getKey()->isSuccessor(dst) && 1154 "Attempting to append a block that is not a successor."); 1155 Edges.push_back(dst); 1156 } 1157 1158 unsigned count() const { return Edges.size() - 1; } 1159 1160 MachineBasicBlock *getKey() const { 1161 return Edges.back(); 1162 } 1163 }; 1164 1165 if (TriangleChainCount == 0) 1166 return; 1167 1168 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1169 // Map from last block to the chain that contains it. This allows us to extend 1170 // chains as we find new triangles. 1171 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1172 for (MachineBasicBlock &BB : *F) { 1173 // If BB doesn't have 2 successors, it doesn't start a triangle. 1174 if (BB.succ_size() != 2) 1175 continue; 1176 MachineBasicBlock *PDom = nullptr; 1177 for (MachineBasicBlock *Succ : BB.successors()) { 1178 if (!MPDT->dominates(Succ, &BB)) 1179 continue; 1180 PDom = Succ; 1181 break; 1182 } 1183 // If BB doesn't have a post-dominating successor, it doesn't form a 1184 // triangle. 1185 if (PDom == nullptr) 1186 continue; 1187 // If PDom has a hint that it is low probability, skip this triangle. 1188 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1189 continue; 1190 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1191 // we're looking for. 1192 if (!shouldTailDuplicate(PDom)) 1193 continue; 1194 bool CanTailDuplicate = true; 1195 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1196 // isn't the kind of triangle we're looking for. 1197 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1198 if (Pred == &BB) 1199 continue; 1200 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1201 CanTailDuplicate = false; 1202 break; 1203 } 1204 } 1205 // If we can't tail-duplicate PDom to its predecessors, then skip this 1206 // triangle. 1207 if (!CanTailDuplicate) 1208 continue; 1209 1210 // Now we have an interesting triangle. Insert it if it's not part of an 1211 // existing chain. 1212 // Note: This cannot be replaced with a call insert() or emplace() because 1213 // the find key is BB, but the insert/emplace key is PDom. 1214 auto Found = TriangleChainMap.find(&BB); 1215 // If it is, remove the chain from the map, grow it, and put it back in the 1216 // map with the end as the new key. 1217 if (Found != TriangleChainMap.end()) { 1218 TriangleChain Chain = std::move(Found->second); 1219 TriangleChainMap.erase(Found); 1220 Chain.append(PDom); 1221 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1222 } else { 1223 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1224 assert(InsertResult.second && "Block seen twice."); 1225 (void)InsertResult; 1226 } 1227 } 1228 1229 // Iterating over a DenseMap is safe here, because the only thing in the body 1230 // of the loop is inserting into another DenseMap (ComputedEdges). 1231 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1232 for (auto &ChainPair : TriangleChainMap) { 1233 TriangleChain &Chain = ChainPair.second; 1234 // Benchmarking has shown that due to branch correlation duplicating 2 or 1235 // more triangles is profitable, despite the calculations assuming 1236 // independence. 1237 if (Chain.count() < TriangleChainCount) 1238 continue; 1239 MachineBasicBlock *dst = Chain.Edges.back(); 1240 Chain.Edges.pop_back(); 1241 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1242 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1243 << getBlockName(dst) 1244 << " as pre-computed based on triangles.\n"); 1245 1246 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1247 assert(InsertResult.second && "Block seen twice."); 1248 (void)InsertResult; 1249 1250 dst = src; 1251 } 1252 } 1253 } 1254 1255 // When profile is not present, return the StaticLikelyProb. 1256 // When profile is available, we need to handle the triangle-shape CFG. 1257 static BranchProbability getLayoutSuccessorProbThreshold( 1258 const MachineBasicBlock *BB) { 1259 if (!BB->getParent()->getFunction().hasProfileData()) 1260 return BranchProbability(StaticLikelyProb, 100); 1261 if (BB->succ_size() == 2) { 1262 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1263 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1264 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1265 /* See case 1 below for the cost analysis. For BB->Succ to 1266 * be taken with smaller cost, the following needs to hold: 1267 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1268 * So the threshold T in the calculation below 1269 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1270 * So T / (1 - T) = 2, Yielding T = 2/3 1271 * Also adding user specified branch bias, we have 1272 * T = (2/3)*(ProfileLikelyProb/50) 1273 * = (2*ProfileLikelyProb)/150) 1274 */ 1275 return BranchProbability(2 * ProfileLikelyProb, 150); 1276 } 1277 } 1278 return BranchProbability(ProfileLikelyProb, 100); 1279 } 1280 1281 /// Checks to see if the layout candidate block \p Succ has a better layout 1282 /// predecessor than \c BB. If yes, returns true. 1283 /// \p SuccProb: The probability adjusted for only remaining blocks. 1284 /// Only used for logging 1285 /// \p RealSuccProb: The un-adjusted probability. 1286 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1287 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1288 /// considered 1289 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1290 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1291 const BlockChain &SuccChain, BranchProbability SuccProb, 1292 BranchProbability RealSuccProb, const BlockChain &Chain, 1293 const BlockFilterSet *BlockFilter) { 1294 1295 // There isn't a better layout when there are no unscheduled predecessors. 1296 if (SuccChain.UnscheduledPredecessors == 0) 1297 return false; 1298 1299 // There are two basic scenarios here: 1300 // ------------------------------------- 1301 // Case 1: triangular shape CFG (if-then): 1302 // BB 1303 // | \ 1304 // | \ 1305 // | Pred 1306 // | / 1307 // Succ 1308 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1309 // set Succ as the layout successor of BB. Picking Succ as BB's 1310 // successor breaks the CFG constraints (FIXME: define these constraints). 1311 // With this layout, Pred BB 1312 // is forced to be outlined, so the overall cost will be cost of the 1313 // branch taken from BB to Pred, plus the cost of back taken branch 1314 // from Pred to Succ, as well as the additional cost associated 1315 // with the needed unconditional jump instruction from Pred To Succ. 1316 1317 // The cost of the topological order layout is the taken branch cost 1318 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1319 // must hold: 1320 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1321 // < freq(BB->Succ) * taken_branch_cost. 1322 // Ignoring unconditional jump cost, we get 1323 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1324 // prob(BB->Succ) > 2 * prob(BB->Pred) 1325 // 1326 // When real profile data is available, we can precisely compute the 1327 // probability threshold that is needed for edge BB->Succ to be considered. 1328 // Without profile data, the heuristic requires the branch bias to be 1329 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1330 // ----------------------------------------------------------------- 1331 // Case 2: diamond like CFG (if-then-else): 1332 // S 1333 // / \ 1334 // | \ 1335 // BB Pred 1336 // \ / 1337 // Succ 1338 // .. 1339 // 1340 // The current block is BB and edge BB->Succ is now being evaluated. 1341 // Note that edge S->BB was previously already selected because 1342 // prob(S->BB) > prob(S->Pred). 1343 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1344 // choose Pred, we will have a topological ordering as shown on the left 1345 // in the picture below. If we choose Succ, we have the solution as shown 1346 // on the right: 1347 // 1348 // topo-order: 1349 // 1350 // S----- ---S 1351 // | | | | 1352 // ---BB | | BB 1353 // | | | | 1354 // | Pred-- | Succ-- 1355 // | | | | 1356 // ---Succ ---Pred-- 1357 // 1358 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1359 // = freq(S->Pred) + freq(S->BB) 1360 // 1361 // If we have profile data (i.e, branch probabilities can be trusted), the 1362 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1363 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1364 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1365 // means the cost of topological order is greater. 1366 // When profile data is not available, however, we need to be more 1367 // conservative. If the branch prediction is wrong, breaking the topo-order 1368 // will actually yield a layout with large cost. For this reason, we need 1369 // strong biased branch at block S with Prob(S->BB) in order to select 1370 // BB->Succ. This is equivalent to looking the CFG backward with backward 1371 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1372 // profile data). 1373 // -------------------------------------------------------------------------- 1374 // Case 3: forked diamond 1375 // S 1376 // / \ 1377 // / \ 1378 // BB Pred 1379 // | \ / | 1380 // | \ / | 1381 // | X | 1382 // | / \ | 1383 // | / \ | 1384 // S1 S2 1385 // 1386 // The current block is BB and edge BB->S1 is now being evaluated. 1387 // As above S->BB was already selected because 1388 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1389 // 1390 // topo-order: 1391 // 1392 // S-------| ---S 1393 // | | | | 1394 // ---BB | | BB 1395 // | | | | 1396 // | Pred----| | S1---- 1397 // | | | | 1398 // --(S1 or S2) ---Pred-- 1399 // | 1400 // S2 1401 // 1402 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1403 // + min(freq(Pred->S1), freq(Pred->S2)) 1404 // Non-topo-order cost: 1405 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1406 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1407 // is 0. Then the non topo layout is better when 1408 // freq(S->Pred) < freq(BB->S1). 1409 // This is exactly what is checked below. 1410 // Note there are other shapes that apply (Pred may not be a single block, 1411 // but they all fit this general pattern.) 1412 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1413 1414 // Make sure that a hot successor doesn't have a globally more 1415 // important predecessor. 1416 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1417 bool BadCFGConflict = false; 1418 1419 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1420 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1421 (BlockFilter && !BlockFilter->count(Pred)) || 1422 BlockToChain[Pred] == &Chain || 1423 // This check is redundant except for look ahead. This function is 1424 // called for lookahead by isProfitableToTailDup when BB hasn't been 1425 // placed yet. 1426 (Pred == BB)) 1427 continue; 1428 // Do backward checking. 1429 // For all cases above, we need a backward checking to filter out edges that 1430 // are not 'strongly' biased. 1431 // BB Pred 1432 // \ / 1433 // Succ 1434 // We select edge BB->Succ if 1435 // freq(BB->Succ) > freq(Succ) * HotProb 1436 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1437 // HotProb 1438 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1439 // Case 1 is covered too, because the first equation reduces to: 1440 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1441 BlockFrequency PredEdgeFreq = 1442 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1443 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1444 BadCFGConflict = true; 1445 break; 1446 } 1447 } 1448 1449 if (BadCFGConflict) { 1450 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1451 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1452 return true; 1453 } 1454 1455 return false; 1456 } 1457 1458 /// Select the best successor for a block. 1459 /// 1460 /// This looks across all successors of a particular block and attempts to 1461 /// select the "best" one to be the layout successor. It only considers direct 1462 /// successors which also pass the block filter. It will attempt to avoid 1463 /// breaking CFG structure, but cave and break such structures in the case of 1464 /// very hot successor edges. 1465 /// 1466 /// \returns The best successor block found, or null if none are viable, along 1467 /// with a boolean indicating if tail duplication is necessary. 1468 MachineBlockPlacement::BlockAndTailDupResult 1469 MachineBlockPlacement::selectBestSuccessor( 1470 const MachineBasicBlock *BB, const BlockChain &Chain, 1471 const BlockFilterSet *BlockFilter) { 1472 const BranchProbability HotProb(StaticLikelyProb, 100); 1473 1474 BlockAndTailDupResult BestSucc = { nullptr, false }; 1475 auto BestProb = BranchProbability::getZero(); 1476 1477 SmallVector<MachineBasicBlock *, 4> Successors; 1478 auto AdjustedSumProb = 1479 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1480 1481 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1482 << "\n"); 1483 1484 // if we already precomputed the best successor for BB, return that if still 1485 // applicable. 1486 auto FoundEdge = ComputedEdges.find(BB); 1487 if (FoundEdge != ComputedEdges.end()) { 1488 MachineBasicBlock *Succ = FoundEdge->second.BB; 1489 ComputedEdges.erase(FoundEdge); 1490 BlockChain *SuccChain = BlockToChain[Succ]; 1491 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1492 SuccChain != &Chain && Succ == *SuccChain->begin()) 1493 return FoundEdge->second; 1494 } 1495 1496 // if BB is part of a trellis, Use the trellis to determine the optimal 1497 // fallthrough edges 1498 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1499 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1500 BlockFilter); 1501 1502 // For blocks with CFG violations, we may be able to lay them out anyway with 1503 // tail-duplication. We keep this vector so we can perform the probability 1504 // calculations the minimum number of times. 1505 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1506 DupCandidates; 1507 for (MachineBasicBlock *Succ : Successors) { 1508 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1509 BranchProbability SuccProb = 1510 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1511 1512 BlockChain &SuccChain = *BlockToChain[Succ]; 1513 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1514 // predecessor that yields lower global cost. 1515 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1516 Chain, BlockFilter)) { 1517 // If tail duplication would make Succ profitable, place it. 1518 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1519 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1520 continue; 1521 } 1522 1523 LLVM_DEBUG( 1524 dbgs() << " Candidate: " << getBlockName(Succ) 1525 << ", probability: " << SuccProb 1526 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1527 << "\n"); 1528 1529 if (BestSucc.BB && BestProb >= SuccProb) { 1530 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1531 continue; 1532 } 1533 1534 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1535 BestSucc.BB = Succ; 1536 BestProb = SuccProb; 1537 } 1538 // Handle the tail duplication candidates in order of decreasing probability. 1539 // Stop at the first one that is profitable. Also stop if they are less 1540 // profitable than BestSucc. Position is important because we preserve it and 1541 // prefer first best match. Here we aren't comparing in order, so we capture 1542 // the position instead. 1543 llvm::stable_sort(DupCandidates, 1544 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1545 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1546 return std::get<0>(L) > std::get<0>(R); 1547 }); 1548 for (auto &Tup : DupCandidates) { 1549 BranchProbability DupProb; 1550 MachineBasicBlock *Succ; 1551 std::tie(DupProb, Succ) = Tup; 1552 if (DupProb < BestProb) 1553 break; 1554 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1555 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1556 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1557 << ", probability: " << DupProb 1558 << " (Tail Duplicate)\n"); 1559 BestSucc.BB = Succ; 1560 BestSucc.ShouldTailDup = true; 1561 break; 1562 } 1563 } 1564 1565 if (BestSucc.BB) 1566 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1567 1568 return BestSucc; 1569 } 1570 1571 /// Select the best block from a worklist. 1572 /// 1573 /// This looks through the provided worklist as a list of candidate basic 1574 /// blocks and select the most profitable one to place. The definition of 1575 /// profitable only really makes sense in the context of a loop. This returns 1576 /// the most frequently visited block in the worklist, which in the case of 1577 /// a loop, is the one most desirable to be physically close to the rest of the 1578 /// loop body in order to improve i-cache behavior. 1579 /// 1580 /// \returns The best block found, or null if none are viable. 1581 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1582 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1583 // Once we need to walk the worklist looking for a candidate, cleanup the 1584 // worklist of already placed entries. 1585 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1586 // some code complexity) into the loop below. 1587 WorkList.erase(llvm::remove_if(WorkList, 1588 [&](MachineBasicBlock *BB) { 1589 return BlockToChain.lookup(BB) == &Chain; 1590 }), 1591 WorkList.end()); 1592 1593 if (WorkList.empty()) 1594 return nullptr; 1595 1596 bool IsEHPad = WorkList[0]->isEHPad(); 1597 1598 MachineBasicBlock *BestBlock = nullptr; 1599 BlockFrequency BestFreq; 1600 for (MachineBasicBlock *MBB : WorkList) { 1601 assert(MBB->isEHPad() == IsEHPad && 1602 "EHPad mismatch between block and work list."); 1603 1604 BlockChain &SuccChain = *BlockToChain[MBB]; 1605 if (&SuccChain == &Chain) 1606 continue; 1607 1608 assert(SuccChain.UnscheduledPredecessors == 0 && 1609 "Found CFG-violating block"); 1610 1611 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1612 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1613 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1614 1615 // For ehpad, we layout the least probable first as to avoid jumping back 1616 // from least probable landingpads to more probable ones. 1617 // 1618 // FIXME: Using probability is probably (!) not the best way to achieve 1619 // this. We should probably have a more principled approach to layout 1620 // cleanup code. 1621 // 1622 // The goal is to get: 1623 // 1624 // +--------------------------+ 1625 // | V 1626 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1627 // 1628 // Rather than: 1629 // 1630 // +-------------------------------------+ 1631 // V | 1632 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1633 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1634 continue; 1635 1636 BestBlock = MBB; 1637 BestFreq = CandidateFreq; 1638 } 1639 1640 return BestBlock; 1641 } 1642 1643 /// Retrieve the first unplaced basic block. 1644 /// 1645 /// This routine is called when we are unable to use the CFG to walk through 1646 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1647 /// We walk through the function's blocks in order, starting from the 1648 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1649 /// re-scanning the entire sequence on repeated calls to this routine. 1650 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1651 const BlockChain &PlacedChain, 1652 MachineFunction::iterator &PrevUnplacedBlockIt, 1653 const BlockFilterSet *BlockFilter) { 1654 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1655 ++I) { 1656 if (BlockFilter && !BlockFilter->count(&*I)) 1657 continue; 1658 if (BlockToChain[&*I] != &PlacedChain) { 1659 PrevUnplacedBlockIt = I; 1660 // Now select the head of the chain to which the unplaced block belongs 1661 // as the block to place. This will force the entire chain to be placed, 1662 // and satisfies the requirements of merging chains. 1663 return *BlockToChain[&*I]->begin(); 1664 } 1665 } 1666 return nullptr; 1667 } 1668 1669 void MachineBlockPlacement::fillWorkLists( 1670 const MachineBasicBlock *MBB, 1671 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1672 const BlockFilterSet *BlockFilter = nullptr) { 1673 BlockChain &Chain = *BlockToChain[MBB]; 1674 if (!UpdatedPreds.insert(&Chain).second) 1675 return; 1676 1677 assert( 1678 Chain.UnscheduledPredecessors == 0 && 1679 "Attempting to place block with unscheduled predecessors in worklist."); 1680 for (MachineBasicBlock *ChainBB : Chain) { 1681 assert(BlockToChain[ChainBB] == &Chain && 1682 "Block in chain doesn't match BlockToChain map."); 1683 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1684 if (BlockFilter && !BlockFilter->count(Pred)) 1685 continue; 1686 if (BlockToChain[Pred] == &Chain) 1687 continue; 1688 ++Chain.UnscheduledPredecessors; 1689 } 1690 } 1691 1692 if (Chain.UnscheduledPredecessors != 0) 1693 return; 1694 1695 MachineBasicBlock *BB = *Chain.begin(); 1696 if (BB->isEHPad()) 1697 EHPadWorkList.push_back(BB); 1698 else 1699 BlockWorkList.push_back(BB); 1700 } 1701 1702 void MachineBlockPlacement::buildChain( 1703 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1704 BlockFilterSet *BlockFilter) { 1705 assert(HeadBB && "BB must not be null.\n"); 1706 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1707 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1708 1709 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1710 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1711 MachineBasicBlock *BB = *std::prev(Chain.end()); 1712 while (true) { 1713 assert(BB && "null block found at end of chain in loop."); 1714 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1715 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1716 1717 1718 // Look for the best viable successor if there is one to place immediately 1719 // after this block. 1720 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1721 MachineBasicBlock* BestSucc = Result.BB; 1722 bool ShouldTailDup = Result.ShouldTailDup; 1723 if (allowTailDupPlacement()) 1724 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1725 1726 // If an immediate successor isn't available, look for the best viable 1727 // block among those we've identified as not violating the loop's CFG at 1728 // this point. This won't be a fallthrough, but it will increase locality. 1729 if (!BestSucc) 1730 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1731 if (!BestSucc) 1732 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1733 1734 if (!BestSucc) { 1735 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1736 if (!BestSucc) 1737 break; 1738 1739 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1740 "layout successor until the CFG reduces\n"); 1741 } 1742 1743 // Placement may have changed tail duplication opportunities. 1744 // Check for that now. 1745 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1746 // If the chosen successor was duplicated into all its predecessors, 1747 // don't bother laying it out, just go round the loop again with BB as 1748 // the chain end. 1749 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1750 BlockFilter, PrevUnplacedBlockIt)) 1751 continue; 1752 } 1753 1754 // Place this block, updating the datastructures to reflect its placement. 1755 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1756 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1757 // we selected a successor that didn't fit naturally into the CFG. 1758 SuccChain.UnscheduledPredecessors = 0; 1759 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1760 << getBlockName(BestSucc) << "\n"); 1761 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1762 Chain.merge(BestSucc, &SuccChain); 1763 BB = *std::prev(Chain.end()); 1764 } 1765 1766 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1767 << getBlockName(*Chain.begin()) << "\n"); 1768 } 1769 1770 // If bottom of block BB has only one successor OldTop, in most cases it is 1771 // profitable to move it before OldTop, except the following case: 1772 // 1773 // -->OldTop<- 1774 // | . | 1775 // | . | 1776 // | . | 1777 // ---Pred | 1778 // | | 1779 // BB----- 1780 // 1781 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1782 // layout the other successor below it, so it can't reduce taken branch. 1783 // In this case we keep its original layout. 1784 bool 1785 MachineBlockPlacement::canMoveBottomBlockToTop( 1786 const MachineBasicBlock *BottomBlock, 1787 const MachineBasicBlock *OldTop) { 1788 if (BottomBlock->pred_size() != 1) 1789 return true; 1790 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1791 if (Pred->succ_size() != 2) 1792 return true; 1793 1794 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1795 if (OtherBB == BottomBlock) 1796 OtherBB = *Pred->succ_rbegin(); 1797 if (OtherBB == OldTop) 1798 return false; 1799 1800 return true; 1801 } 1802 1803 // Find out the possible fall through frequence to the top of a loop. 1804 BlockFrequency 1805 MachineBlockPlacement::TopFallThroughFreq( 1806 const MachineBasicBlock *Top, 1807 const BlockFilterSet &LoopBlockSet) { 1808 BlockFrequency MaxFreq = 0; 1809 for (MachineBasicBlock *Pred : Top->predecessors()) { 1810 BlockChain *PredChain = BlockToChain[Pred]; 1811 if (!LoopBlockSet.count(Pred) && 1812 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1813 // Found a Pred block can be placed before Top. 1814 // Check if Top is the best successor of Pred. 1815 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1816 bool TopOK = true; 1817 for (MachineBasicBlock *Succ : Pred->successors()) { 1818 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1819 BlockChain *SuccChain = BlockToChain[Succ]; 1820 // Check if Succ can be placed after Pred. 1821 // Succ should not be in any chain, or it is the head of some chain. 1822 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1823 (!SuccChain || Succ == *SuccChain->begin())) { 1824 TopOK = false; 1825 break; 1826 } 1827 } 1828 if (TopOK) { 1829 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1830 MBPI->getEdgeProbability(Pred, Top); 1831 if (EdgeFreq > MaxFreq) 1832 MaxFreq = EdgeFreq; 1833 } 1834 } 1835 } 1836 return MaxFreq; 1837 } 1838 1839 // Compute the fall through gains when move NewTop before OldTop. 1840 // 1841 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1842 // marked as "+" are increased fallthrough, this function computes 1843 // 1844 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1845 // 1846 // | 1847 // | - 1848 // V 1849 // --->OldTop 1850 // | . 1851 // | . 1852 // +| . + 1853 // | Pred ---> 1854 // | |- 1855 // | V 1856 // --- NewTop <--- 1857 // |- 1858 // V 1859 // 1860 BlockFrequency 1861 MachineBlockPlacement::FallThroughGains( 1862 const MachineBasicBlock *NewTop, 1863 const MachineBasicBlock *OldTop, 1864 const MachineBasicBlock *ExitBB, 1865 const BlockFilterSet &LoopBlockSet) { 1866 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1867 BlockFrequency FallThrough2Exit = 0; 1868 if (ExitBB) 1869 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1870 MBPI->getEdgeProbability(NewTop, ExitBB); 1871 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1872 MBPI->getEdgeProbability(NewTop, OldTop); 1873 1874 // Find the best Pred of NewTop. 1875 MachineBasicBlock *BestPred = nullptr; 1876 BlockFrequency FallThroughFromPred = 0; 1877 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1878 if (!LoopBlockSet.count(Pred)) 1879 continue; 1880 BlockChain *PredChain = BlockToChain[Pred]; 1881 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1882 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1883 MBPI->getEdgeProbability(Pred, NewTop); 1884 if (EdgeFreq > FallThroughFromPred) { 1885 FallThroughFromPred = EdgeFreq; 1886 BestPred = Pred; 1887 } 1888 } 1889 } 1890 1891 // If NewTop is not placed after Pred, another successor can be placed 1892 // after Pred. 1893 BlockFrequency NewFreq = 0; 1894 if (BestPred) { 1895 for (MachineBasicBlock *Succ : BestPred->successors()) { 1896 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1897 continue; 1898 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1899 continue; 1900 BlockChain *SuccChain = BlockToChain[Succ]; 1901 if ((SuccChain && (Succ != *SuccChain->begin())) || 1902 (SuccChain == BlockToChain[BestPred])) 1903 continue; 1904 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1905 MBPI->getEdgeProbability(BestPred, Succ); 1906 if (EdgeFreq > NewFreq) 1907 NewFreq = EdgeFreq; 1908 } 1909 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 1910 MBPI->getEdgeProbability(BestPred, NewTop); 1911 if (NewFreq > OrigEdgeFreq) { 1912 // If NewTop is not the best successor of Pred, then Pred doesn't 1913 // fallthrough to NewTop. So there is no FallThroughFromPred and 1914 // NewFreq. 1915 NewFreq = 0; 1916 FallThroughFromPred = 0; 1917 } 1918 } 1919 1920 BlockFrequency Result = 0; 1921 BlockFrequency Gains = BackEdgeFreq + NewFreq; 1922 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 1923 FallThroughFromPred; 1924 if (Gains > Lost) 1925 Result = Gains - Lost; 1926 return Result; 1927 } 1928 1929 /// Helper function of findBestLoopTop. Find the best loop top block 1930 /// from predecessors of old top. 1931 /// 1932 /// Look for a block which is strictly better than the old top for laying 1933 /// out before the old top of the loop. This looks for only two patterns: 1934 /// 1935 /// 1. a block has only one successor, the old loop top 1936 /// 1937 /// Because such a block will always result in an unconditional jump, 1938 /// rotating it in front of the old top is always profitable. 1939 /// 1940 /// 2. a block has two successors, one is old top, another is exit 1941 /// and it has more than one predecessors 1942 /// 1943 /// If it is below one of its predecessors P, only P can fall through to 1944 /// it, all other predecessors need a jump to it, and another conditional 1945 /// jump to loop header. If it is moved before loop header, all its 1946 /// predecessors jump to it, then fall through to loop header. So all its 1947 /// predecessors except P can reduce one taken branch. 1948 /// At the same time, move it before old top increases the taken branch 1949 /// to loop exit block, so the reduced taken branch will be compared with 1950 /// the increased taken branch to the loop exit block. 1951 MachineBasicBlock * 1952 MachineBlockPlacement::findBestLoopTopHelper( 1953 MachineBasicBlock *OldTop, 1954 const MachineLoop &L, 1955 const BlockFilterSet &LoopBlockSet) { 1956 // Check that the header hasn't been fused with a preheader block due to 1957 // crazy branches. If it has, we need to start with the header at the top to 1958 // prevent pulling the preheader into the loop body. 1959 BlockChain &HeaderChain = *BlockToChain[OldTop]; 1960 if (!LoopBlockSet.count(*HeaderChain.begin())) 1961 return OldTop; 1962 1963 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 1964 << "\n"); 1965 1966 BlockFrequency BestGains = 0; 1967 MachineBasicBlock *BestPred = nullptr; 1968 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 1969 if (!LoopBlockSet.count(Pred)) 1970 continue; 1971 if (Pred == L.getHeader()) 1972 continue; 1973 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 1974 << Pred->succ_size() << " successors, "; 1975 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1976 if (Pred->succ_size() > 2) 1977 continue; 1978 1979 MachineBasicBlock *OtherBB = nullptr; 1980 if (Pred->succ_size() == 2) { 1981 OtherBB = *Pred->succ_begin(); 1982 if (OtherBB == OldTop) 1983 OtherBB = *Pred->succ_rbegin(); 1984 } 1985 1986 if (!canMoveBottomBlockToTop(Pred, OldTop)) 1987 continue; 1988 1989 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 1990 LoopBlockSet); 1991 if ((Gains > 0) && (Gains > BestGains || 1992 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 1993 BestPred = Pred; 1994 BestGains = Gains; 1995 } 1996 } 1997 1998 // If no direct predecessor is fine, just use the loop header. 1999 if (!BestPred) { 2000 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2001 return OldTop; 2002 } 2003 2004 // Walk backwards through any straight line of predecessors. 2005 while (BestPred->pred_size() == 1 && 2006 (*BestPred->pred_begin())->succ_size() == 1 && 2007 *BestPred->pred_begin() != L.getHeader()) 2008 BestPred = *BestPred->pred_begin(); 2009 2010 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2011 return BestPred; 2012 } 2013 2014 /// Find the best loop top block for layout. 2015 /// 2016 /// This function iteratively calls findBestLoopTopHelper, until no new better 2017 /// BB can be found. 2018 MachineBasicBlock * 2019 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2020 const BlockFilterSet &LoopBlockSet) { 2021 // Placing the latch block before the header may introduce an extra branch 2022 // that skips this block the first time the loop is executed, which we want 2023 // to avoid when optimising for size. 2024 // FIXME: in theory there is a case that does not introduce a new branch, 2025 // i.e. when the layout predecessor does not fallthrough to the loop header. 2026 // In practice this never happens though: there always seems to be a preheader 2027 // that can fallthrough and that is also placed before the header. 2028 if (F->getFunction().hasOptSize()) 2029 return L.getHeader(); 2030 2031 MachineBasicBlock *OldTop = nullptr; 2032 MachineBasicBlock *NewTop = L.getHeader(); 2033 while (NewTop != OldTop) { 2034 OldTop = NewTop; 2035 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2036 if (NewTop != OldTop) 2037 ComputedEdges[NewTop] = { OldTop, false }; 2038 } 2039 return NewTop; 2040 } 2041 2042 /// Find the best loop exiting block for layout. 2043 /// 2044 /// This routine implements the logic to analyze the loop looking for the best 2045 /// block to layout at the top of the loop. Typically this is done to maximize 2046 /// fallthrough opportunities. 2047 MachineBasicBlock * 2048 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2049 const BlockFilterSet &LoopBlockSet, 2050 BlockFrequency &ExitFreq) { 2051 // We don't want to layout the loop linearly in all cases. If the loop header 2052 // is just a normal basic block in the loop, we want to look for what block 2053 // within the loop is the best one to layout at the top. However, if the loop 2054 // header has be pre-merged into a chain due to predecessors not having 2055 // analyzable branches, *and* the predecessor it is merged with is *not* part 2056 // of the loop, rotating the header into the middle of the loop will create 2057 // a non-contiguous range of blocks which is Very Bad. So start with the 2058 // header and only rotate if safe. 2059 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2060 if (!LoopBlockSet.count(*HeaderChain.begin())) 2061 return nullptr; 2062 2063 BlockFrequency BestExitEdgeFreq; 2064 unsigned BestExitLoopDepth = 0; 2065 MachineBasicBlock *ExitingBB = nullptr; 2066 // If there are exits to outer loops, loop rotation can severely limit 2067 // fallthrough opportunities unless it selects such an exit. Keep a set of 2068 // blocks where rotating to exit with that block will reach an outer loop. 2069 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2070 2071 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2072 << getBlockName(L.getHeader()) << "\n"); 2073 for (MachineBasicBlock *MBB : L.getBlocks()) { 2074 BlockChain &Chain = *BlockToChain[MBB]; 2075 // Ensure that this block is at the end of a chain; otherwise it could be 2076 // mid-way through an inner loop or a successor of an unanalyzable branch. 2077 if (MBB != *std::prev(Chain.end())) 2078 continue; 2079 2080 // Now walk the successors. We need to establish whether this has a viable 2081 // exiting successor and whether it has a viable non-exiting successor. 2082 // We store the old exiting state and restore it if a viable looping 2083 // successor isn't found. 2084 MachineBasicBlock *OldExitingBB = ExitingBB; 2085 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2086 bool HasLoopingSucc = false; 2087 for (MachineBasicBlock *Succ : MBB->successors()) { 2088 if (Succ->isEHPad()) 2089 continue; 2090 if (Succ == MBB) 2091 continue; 2092 BlockChain &SuccChain = *BlockToChain[Succ]; 2093 // Don't split chains, either this chain or the successor's chain. 2094 if (&Chain == &SuccChain) { 2095 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2096 << getBlockName(Succ) << " (chain conflict)\n"); 2097 continue; 2098 } 2099 2100 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2101 if (LoopBlockSet.count(Succ)) { 2102 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2103 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2104 HasLoopingSucc = true; 2105 continue; 2106 } 2107 2108 unsigned SuccLoopDepth = 0; 2109 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2110 SuccLoopDepth = ExitLoop->getLoopDepth(); 2111 if (ExitLoop->contains(&L)) 2112 BlocksExitingToOuterLoop.insert(MBB); 2113 } 2114 2115 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2116 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2117 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2118 << "] ("; 2119 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2120 // Note that we bias this toward an existing layout successor to retain 2121 // incoming order in the absence of better information. The exit must have 2122 // a frequency higher than the current exit before we consider breaking 2123 // the layout. 2124 BranchProbability Bias(100 - ExitBlockBias, 100); 2125 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2126 ExitEdgeFreq > BestExitEdgeFreq || 2127 (MBB->isLayoutSuccessor(Succ) && 2128 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2129 BestExitEdgeFreq = ExitEdgeFreq; 2130 ExitingBB = MBB; 2131 } 2132 } 2133 2134 if (!HasLoopingSucc) { 2135 // Restore the old exiting state, no viable looping successor was found. 2136 ExitingBB = OldExitingBB; 2137 BestExitEdgeFreq = OldBestExitEdgeFreq; 2138 } 2139 } 2140 // Without a candidate exiting block or with only a single block in the 2141 // loop, just use the loop header to layout the loop. 2142 if (!ExitingBB) { 2143 LLVM_DEBUG( 2144 dbgs() << " No other candidate exit blocks, using loop header\n"); 2145 return nullptr; 2146 } 2147 if (L.getNumBlocks() == 1) { 2148 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2149 return nullptr; 2150 } 2151 2152 // Also, if we have exit blocks which lead to outer loops but didn't select 2153 // one of them as the exiting block we are rotating toward, disable loop 2154 // rotation altogether. 2155 if (!BlocksExitingToOuterLoop.empty() && 2156 !BlocksExitingToOuterLoop.count(ExitingBB)) 2157 return nullptr; 2158 2159 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2160 << "\n"); 2161 ExitFreq = BestExitEdgeFreq; 2162 return ExitingBB; 2163 } 2164 2165 /// Check if there is a fallthrough to loop header Top. 2166 /// 2167 /// 1. Look for a Pred that can be layout before Top. 2168 /// 2. Check if Top is the most possible successor of Pred. 2169 bool 2170 MachineBlockPlacement::hasViableTopFallthrough( 2171 const MachineBasicBlock *Top, 2172 const BlockFilterSet &LoopBlockSet) { 2173 for (MachineBasicBlock *Pred : Top->predecessors()) { 2174 BlockChain *PredChain = BlockToChain[Pred]; 2175 if (!LoopBlockSet.count(Pred) && 2176 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2177 // Found a Pred block can be placed before Top. 2178 // Check if Top is the best successor of Pred. 2179 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2180 bool TopOK = true; 2181 for (MachineBasicBlock *Succ : Pred->successors()) { 2182 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2183 BlockChain *SuccChain = BlockToChain[Succ]; 2184 // Check if Succ can be placed after Pred. 2185 // Succ should not be in any chain, or it is the head of some chain. 2186 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2187 TopOK = false; 2188 break; 2189 } 2190 } 2191 if (TopOK) 2192 return true; 2193 } 2194 } 2195 return false; 2196 } 2197 2198 /// Attempt to rotate an exiting block to the bottom of the loop. 2199 /// 2200 /// Once we have built a chain, try to rotate it to line up the hot exit block 2201 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2202 /// branches. For example, if the loop has fallthrough into its header and out 2203 /// of its bottom already, don't rotate it. 2204 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2205 const MachineBasicBlock *ExitingBB, 2206 BlockFrequency ExitFreq, 2207 const BlockFilterSet &LoopBlockSet) { 2208 if (!ExitingBB) 2209 return; 2210 2211 MachineBasicBlock *Top = *LoopChain.begin(); 2212 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2213 2214 // If ExitingBB is already the last one in a chain then nothing to do. 2215 if (Bottom == ExitingBB) 2216 return; 2217 2218 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2219 2220 // If the header has viable fallthrough, check whether the current loop 2221 // bottom is a viable exiting block. If so, bail out as rotating will 2222 // introduce an unnecessary branch. 2223 if (ViableTopFallthrough) { 2224 for (MachineBasicBlock *Succ : Bottom->successors()) { 2225 BlockChain *SuccChain = BlockToChain[Succ]; 2226 if (!LoopBlockSet.count(Succ) && 2227 (!SuccChain || Succ == *SuccChain->begin())) 2228 return; 2229 } 2230 2231 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2232 // frequency is larger than top fallthrough. 2233 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2234 if (FallThrough2Top >= ExitFreq) 2235 return; 2236 } 2237 2238 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2239 if (ExitIt == LoopChain.end()) 2240 return; 2241 2242 // Rotating a loop exit to the bottom when there is a fallthrough to top 2243 // trades the entry fallthrough for an exit fallthrough. 2244 // If there is no bottom->top edge, but the chosen exit block does have 2245 // a fallthrough, we break that fallthrough for nothing in return. 2246 2247 // Let's consider an example. We have a built chain of basic blocks 2248 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2249 // By doing a rotation we get 2250 // Bk+1, ..., Bn, B1, ..., Bk 2251 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2252 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2253 // It might be compensated by fallthrough Bn -> B1. 2254 // So we have a condition to avoid creation of extra branch by loop rotation. 2255 // All below must be true to avoid loop rotation: 2256 // If there is a fallthrough to top (B1) 2257 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2258 // There is no fallthrough from bottom (Bn) to top (B1). 2259 // Please note that there is no exit fallthrough from Bn because we checked it 2260 // above. 2261 if (ViableTopFallthrough) { 2262 assert(std::next(ExitIt) != LoopChain.end() && 2263 "Exit should not be last BB"); 2264 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2265 if (ExitingBB->isSuccessor(NextBlockInChain)) 2266 if (!Bottom->isSuccessor(Top)) 2267 return; 2268 } 2269 2270 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2271 << " at bottom\n"); 2272 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2273 } 2274 2275 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2276 /// 2277 /// With profile data, we can determine the cost in terms of missed fall through 2278 /// opportunities when rotating a loop chain and select the best rotation. 2279 /// Basically, there are three kinds of cost to consider for each rotation: 2280 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2281 /// the loop to the loop header. 2282 /// 2. The possibly missed fall through edges (if they exist) from the loop 2283 /// exits to BB out of the loop. 2284 /// 3. The missed fall through edge (if it exists) from the last BB to the 2285 /// first BB in the loop chain. 2286 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2287 /// We select the best rotation with the smallest cost. 2288 void MachineBlockPlacement::rotateLoopWithProfile( 2289 BlockChain &LoopChain, const MachineLoop &L, 2290 const BlockFilterSet &LoopBlockSet) { 2291 auto RotationPos = LoopChain.end(); 2292 2293 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2294 2295 // A utility lambda that scales up a block frequency by dividing it by a 2296 // branch probability which is the reciprocal of the scale. 2297 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2298 unsigned Scale) -> BlockFrequency { 2299 if (Scale == 0) 2300 return 0; 2301 // Use operator / between BlockFrequency and BranchProbability to implement 2302 // saturating multiplication. 2303 return Freq / BranchProbability(1, Scale); 2304 }; 2305 2306 // Compute the cost of the missed fall-through edge to the loop header if the 2307 // chain head is not the loop header. As we only consider natural loops with 2308 // single header, this computation can be done only once. 2309 BlockFrequency HeaderFallThroughCost(0); 2310 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2311 for (auto *Pred : ChainHeaderBB->predecessors()) { 2312 BlockChain *PredChain = BlockToChain[Pred]; 2313 if (!LoopBlockSet.count(Pred) && 2314 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2315 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2316 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2317 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2318 // If the predecessor has only an unconditional jump to the header, we 2319 // need to consider the cost of this jump. 2320 if (Pred->succ_size() == 1) 2321 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2322 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2323 } 2324 } 2325 2326 // Here we collect all exit blocks in the loop, and for each exit we find out 2327 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2328 // as the sum of frequencies of exit edges we collect here, excluding the exit 2329 // edge from the tail of the loop chain. 2330 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2331 for (auto BB : LoopChain) { 2332 auto LargestExitEdgeProb = BranchProbability::getZero(); 2333 for (auto *Succ : BB->successors()) { 2334 BlockChain *SuccChain = BlockToChain[Succ]; 2335 if (!LoopBlockSet.count(Succ) && 2336 (!SuccChain || Succ == *SuccChain->begin())) { 2337 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2338 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2339 } 2340 } 2341 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2342 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2343 ExitsWithFreq.emplace_back(BB, ExitFreq); 2344 } 2345 } 2346 2347 // In this loop we iterate every block in the loop chain and calculate the 2348 // cost assuming the block is the head of the loop chain. When the loop ends, 2349 // we should have found the best candidate as the loop chain's head. 2350 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2351 EndIter = LoopChain.end(); 2352 Iter != EndIter; Iter++, TailIter++) { 2353 // TailIter is used to track the tail of the loop chain if the block we are 2354 // checking (pointed by Iter) is the head of the chain. 2355 if (TailIter == LoopChain.end()) 2356 TailIter = LoopChain.begin(); 2357 2358 auto TailBB = *TailIter; 2359 2360 // Calculate the cost by putting this BB to the top. 2361 BlockFrequency Cost = 0; 2362 2363 // If the current BB is the loop header, we need to take into account the 2364 // cost of the missed fall through edge from outside of the loop to the 2365 // header. 2366 if (Iter != LoopChain.begin()) 2367 Cost += HeaderFallThroughCost; 2368 2369 // Collect the loop exit cost by summing up frequencies of all exit edges 2370 // except the one from the chain tail. 2371 for (auto &ExitWithFreq : ExitsWithFreq) 2372 if (TailBB != ExitWithFreq.first) 2373 Cost += ExitWithFreq.second; 2374 2375 // The cost of breaking the once fall-through edge from the tail to the top 2376 // of the loop chain. Here we need to consider three cases: 2377 // 1. If the tail node has only one successor, then we will get an 2378 // additional jmp instruction. So the cost here is (MisfetchCost + 2379 // JumpInstCost) * tail node frequency. 2380 // 2. If the tail node has two successors, then we may still get an 2381 // additional jmp instruction if the layout successor after the loop 2382 // chain is not its CFG successor. Note that the more frequently executed 2383 // jmp instruction will be put ahead of the other one. Assume the 2384 // frequency of those two branches are x and y, where x is the frequency 2385 // of the edge to the chain head, then the cost will be 2386 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2387 // 3. If the tail node has more than two successors (this rarely happens), 2388 // we won't consider any additional cost. 2389 if (TailBB->isSuccessor(*Iter)) { 2390 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2391 if (TailBB->succ_size() == 1) 2392 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2393 MisfetchCost + JumpInstCost); 2394 else if (TailBB->succ_size() == 2) { 2395 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2396 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2397 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2398 ? TailBBFreq * TailToHeadProb.getCompl() 2399 : TailToHeadFreq; 2400 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2401 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2402 } 2403 } 2404 2405 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2406 << getBlockName(*Iter) 2407 << " to the top: " << Cost.getFrequency() << "\n"); 2408 2409 if (Cost < SmallestRotationCost) { 2410 SmallestRotationCost = Cost; 2411 RotationPos = Iter; 2412 } 2413 } 2414 2415 if (RotationPos != LoopChain.end()) { 2416 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2417 << " to the top\n"); 2418 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2419 } 2420 } 2421 2422 /// Collect blocks in the given loop that are to be placed. 2423 /// 2424 /// When profile data is available, exclude cold blocks from the returned set; 2425 /// otherwise, collect all blocks in the loop. 2426 MachineBlockPlacement::BlockFilterSet 2427 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2428 BlockFilterSet LoopBlockSet; 2429 2430 // Filter cold blocks off from LoopBlockSet when profile data is available. 2431 // Collect the sum of frequencies of incoming edges to the loop header from 2432 // outside. If we treat the loop as a super block, this is the frequency of 2433 // the loop. Then for each block in the loop, we calculate the ratio between 2434 // its frequency and the frequency of the loop block. When it is too small, 2435 // don't add it to the loop chain. If there are outer loops, then this block 2436 // will be merged into the first outer loop chain for which this block is not 2437 // cold anymore. This needs precise profile data and we only do this when 2438 // profile data is available. 2439 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2440 BlockFrequency LoopFreq(0); 2441 for (auto LoopPred : L.getHeader()->predecessors()) 2442 if (!L.contains(LoopPred)) 2443 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2444 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2445 2446 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2447 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2448 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2449 continue; 2450 LoopBlockSet.insert(LoopBB); 2451 } 2452 } else 2453 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2454 2455 return LoopBlockSet; 2456 } 2457 2458 /// Forms basic block chains from the natural loop structures. 2459 /// 2460 /// These chains are designed to preserve the existing *structure* of the code 2461 /// as much as possible. We can then stitch the chains together in a way which 2462 /// both preserves the topological structure and minimizes taken conditional 2463 /// branches. 2464 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2465 // First recurse through any nested loops, building chains for those inner 2466 // loops. 2467 for (const MachineLoop *InnerLoop : L) 2468 buildLoopChains(*InnerLoop); 2469 2470 assert(BlockWorkList.empty() && 2471 "BlockWorkList not empty when starting to build loop chains."); 2472 assert(EHPadWorkList.empty() && 2473 "EHPadWorkList not empty when starting to build loop chains."); 2474 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2475 2476 // Check if we have profile data for this function. If yes, we will rotate 2477 // this loop by modeling costs more precisely which requires the profile data 2478 // for better layout. 2479 bool RotateLoopWithProfile = 2480 ForcePreciseRotationCost || 2481 (PreciseRotationCost && F->getFunction().hasProfileData()); 2482 2483 // First check to see if there is an obviously preferable top block for the 2484 // loop. This will default to the header, but may end up as one of the 2485 // predecessors to the header if there is one which will result in strictly 2486 // fewer branches in the loop body. 2487 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2488 2489 // If we selected just the header for the loop top, look for a potentially 2490 // profitable exit block in the event that rotating the loop can eliminate 2491 // branches by placing an exit edge at the bottom. 2492 // 2493 // Loops are processed innermost to uttermost, make sure we clear 2494 // PreferredLoopExit before processing a new loop. 2495 PreferredLoopExit = nullptr; 2496 BlockFrequency ExitFreq; 2497 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2498 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2499 2500 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2501 2502 // FIXME: This is a really lame way of walking the chains in the loop: we 2503 // walk the blocks, and use a set to prevent visiting a particular chain 2504 // twice. 2505 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2506 assert(LoopChain.UnscheduledPredecessors == 0 && 2507 "LoopChain should not have unscheduled predecessors."); 2508 UpdatedPreds.insert(&LoopChain); 2509 2510 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2511 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2512 2513 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2514 2515 if (RotateLoopWithProfile) 2516 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2517 else 2518 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2519 2520 LLVM_DEBUG({ 2521 // Crash at the end so we get all of the debugging output first. 2522 bool BadLoop = false; 2523 if (LoopChain.UnscheduledPredecessors) { 2524 BadLoop = true; 2525 dbgs() << "Loop chain contains a block without its preds placed!\n" 2526 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2527 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2528 } 2529 for (MachineBasicBlock *ChainBB : LoopChain) { 2530 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2531 if (!LoopBlockSet.remove(ChainBB)) { 2532 // We don't mark the loop as bad here because there are real situations 2533 // where this can occur. For example, with an unanalyzable fallthrough 2534 // from a loop block to a non-loop block or vice versa. 2535 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2536 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2537 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2538 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2539 } 2540 } 2541 2542 if (!LoopBlockSet.empty()) { 2543 BadLoop = true; 2544 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2545 dbgs() << "Loop contains blocks never placed into a chain!\n" 2546 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2547 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2548 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2549 } 2550 assert(!BadLoop && "Detected problems with the placement of this loop."); 2551 }); 2552 2553 BlockWorkList.clear(); 2554 EHPadWorkList.clear(); 2555 } 2556 2557 void MachineBlockPlacement::buildCFGChains() { 2558 // Ensure that every BB in the function has an associated chain to simplify 2559 // the assumptions of the remaining algorithm. 2560 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2561 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2562 ++FI) { 2563 MachineBasicBlock *BB = &*FI; 2564 BlockChain *Chain = 2565 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2566 // Also, merge any blocks which we cannot reason about and must preserve 2567 // the exact fallthrough behavior for. 2568 while (true) { 2569 Cond.clear(); 2570 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2571 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2572 break; 2573 2574 MachineFunction::iterator NextFI = std::next(FI); 2575 MachineBasicBlock *NextBB = &*NextFI; 2576 // Ensure that the layout successor is a viable block, as we know that 2577 // fallthrough is a possibility. 2578 assert(NextFI != FE && "Can't fallthrough past the last block."); 2579 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2580 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2581 << "\n"); 2582 Chain->merge(NextBB, nullptr); 2583 #ifndef NDEBUG 2584 BlocksWithUnanalyzableExits.insert(&*BB); 2585 #endif 2586 FI = NextFI; 2587 BB = NextBB; 2588 } 2589 } 2590 2591 // Build any loop-based chains. 2592 PreferredLoopExit = nullptr; 2593 for (MachineLoop *L : *MLI) 2594 buildLoopChains(*L); 2595 2596 assert(BlockWorkList.empty() && 2597 "BlockWorkList should be empty before building final chain."); 2598 assert(EHPadWorkList.empty() && 2599 "EHPadWorkList should be empty before building final chain."); 2600 2601 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2602 for (MachineBasicBlock &MBB : *F) 2603 fillWorkLists(&MBB, UpdatedPreds); 2604 2605 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2606 buildChain(&F->front(), FunctionChain); 2607 2608 #ifndef NDEBUG 2609 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2610 #endif 2611 LLVM_DEBUG({ 2612 // Crash at the end so we get all of the debugging output first. 2613 bool BadFunc = false; 2614 FunctionBlockSetType FunctionBlockSet; 2615 for (MachineBasicBlock &MBB : *F) 2616 FunctionBlockSet.insert(&MBB); 2617 2618 for (MachineBasicBlock *ChainBB : FunctionChain) 2619 if (!FunctionBlockSet.erase(ChainBB)) { 2620 BadFunc = true; 2621 dbgs() << "Function chain contains a block not in the function!\n" 2622 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2623 } 2624 2625 if (!FunctionBlockSet.empty()) { 2626 BadFunc = true; 2627 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2628 dbgs() << "Function contains blocks never placed into a chain!\n" 2629 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2630 } 2631 assert(!BadFunc && "Detected problems with the block placement."); 2632 }); 2633 2634 // Splice the blocks into place. 2635 MachineFunction::iterator InsertPos = F->begin(); 2636 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2637 for (MachineBasicBlock *ChainBB : FunctionChain) { 2638 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2639 : " ... ") 2640 << getBlockName(ChainBB) << "\n"); 2641 if (InsertPos != MachineFunction::iterator(ChainBB)) 2642 F->splice(InsertPos, ChainBB); 2643 else 2644 ++InsertPos; 2645 2646 // Update the terminator of the previous block. 2647 if (ChainBB == *FunctionChain.begin()) 2648 continue; 2649 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2650 2651 // FIXME: It would be awesome of updateTerminator would just return rather 2652 // than assert when the branch cannot be analyzed in order to remove this 2653 // boiler plate. 2654 Cond.clear(); 2655 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2656 2657 #ifndef NDEBUG 2658 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2659 // Given the exact block placement we chose, we may actually not _need_ to 2660 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2661 // do that at this point is a bug. 2662 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2663 !PrevBB->canFallThrough()) && 2664 "Unexpected block with un-analyzable fallthrough!"); 2665 Cond.clear(); 2666 TBB = FBB = nullptr; 2667 } 2668 #endif 2669 2670 // The "PrevBB" is not yet updated to reflect current code layout, so, 2671 // o. it may fall-through to a block without explicit "goto" instruction 2672 // before layout, and no longer fall-through it after layout; or 2673 // o. just opposite. 2674 // 2675 // analyzeBranch() may return erroneous value for FBB when these two 2676 // situations take place. For the first scenario FBB is mistakenly set NULL; 2677 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2678 // mistakenly pointing to "*BI". 2679 // Thus, if the future change needs to use FBB before the layout is set, it 2680 // has to correct FBB first by using the code similar to the following: 2681 // 2682 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2683 // PrevBB->updateTerminator(); 2684 // Cond.clear(); 2685 // TBB = FBB = nullptr; 2686 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2687 // // FIXME: This should never take place. 2688 // TBB = FBB = nullptr; 2689 // } 2690 // } 2691 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2692 PrevBB->updateTerminator(); 2693 } 2694 2695 // Fixup the last block. 2696 Cond.clear(); 2697 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2698 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2699 F->back().updateTerminator(); 2700 2701 BlockWorkList.clear(); 2702 EHPadWorkList.clear(); 2703 } 2704 2705 void MachineBlockPlacement::optimizeBranches() { 2706 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2707 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2708 2709 // Now that all the basic blocks in the chain have the proper layout, 2710 // make a final call to AnalyzeBranch with AllowModify set. 2711 // Indeed, the target may be able to optimize the branches in a way we 2712 // cannot because all branches may not be analyzable. 2713 // E.g., the target may be able to remove an unconditional branch to 2714 // a fallthrough when it occurs after predicated terminators. 2715 for (MachineBasicBlock *ChainBB : FunctionChain) { 2716 Cond.clear(); 2717 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2718 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2719 // If PrevBB has a two-way branch, try to re-order the branches 2720 // such that we branch to the successor with higher probability first. 2721 if (TBB && !Cond.empty() && FBB && 2722 MBPI->getEdgeProbability(ChainBB, FBB) > 2723 MBPI->getEdgeProbability(ChainBB, TBB) && 2724 !TII->reverseBranchCondition(Cond)) { 2725 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2726 << getBlockName(ChainBB) << "\n"); 2727 LLVM_DEBUG(dbgs() << " Edge probability: " 2728 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2729 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2730 DebugLoc dl; // FIXME: this is nowhere 2731 TII->removeBranch(*ChainBB); 2732 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2733 ChainBB->updateTerminator(); 2734 } 2735 } 2736 } 2737 } 2738 2739 void MachineBlockPlacement::alignBlocks() { 2740 // Walk through the backedges of the function now that we have fully laid out 2741 // the basic blocks and align the destination of each backedge. We don't rely 2742 // exclusively on the loop info here so that we can align backedges in 2743 // unnatural CFGs and backedges that were introduced purely because of the 2744 // loop rotations done during this layout pass. 2745 if (F->getFunction().hasMinSize() || 2746 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2747 return; 2748 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2749 if (FunctionChain.begin() == FunctionChain.end()) 2750 return; // Empty chain. 2751 2752 const BranchProbability ColdProb(1, 5); // 20% 2753 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2754 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2755 for (MachineBasicBlock *ChainBB : FunctionChain) { 2756 if (ChainBB == *FunctionChain.begin()) 2757 continue; 2758 2759 // Don't align non-looping basic blocks. These are unlikely to execute 2760 // enough times to matter in practice. Note that we'll still handle 2761 // unnatural CFGs inside of a natural outer loop (the common case) and 2762 // rotated loops. 2763 MachineLoop *L = MLI->getLoopFor(ChainBB); 2764 if (!L) 2765 continue; 2766 2767 const Align Align = TLI->getPrefLoopAlignment(L); 2768 if (Align == 1) 2769 continue; // Don't care about loop alignment. 2770 2771 // If the block is cold relative to the function entry don't waste space 2772 // aligning it. 2773 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2774 if (Freq < WeightedEntryFreq) 2775 continue; 2776 2777 // If the block is cold relative to its loop header, don't align it 2778 // regardless of what edges into the block exist. 2779 MachineBasicBlock *LoopHeader = L->getHeader(); 2780 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2781 if (Freq < (LoopHeaderFreq * ColdProb)) 2782 continue; 2783 2784 // Check for the existence of a non-layout predecessor which would benefit 2785 // from aligning this block. 2786 MachineBasicBlock *LayoutPred = 2787 &*std::prev(MachineFunction::iterator(ChainBB)); 2788 2789 // Force alignment if all the predecessors are jumps. We already checked 2790 // that the block isn't cold above. 2791 if (!LayoutPred->isSuccessor(ChainBB)) { 2792 ChainBB->setAlignment(Align); 2793 continue; 2794 } 2795 2796 // Align this block if the layout predecessor's edge into this block is 2797 // cold relative to the block. When this is true, other predecessors make up 2798 // all of the hot entries into the block and thus alignment is likely to be 2799 // important. 2800 BranchProbability LayoutProb = 2801 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2802 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2803 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2804 ChainBB->setAlignment(Align); 2805 } 2806 } 2807 2808 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2809 /// it was duplicated into its chain predecessor and removed. 2810 /// \p BB - Basic block that may be duplicated. 2811 /// 2812 /// \p LPred - Chosen layout predecessor of \p BB. 2813 /// Updated to be the chain end if LPred is removed. 2814 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2815 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2816 /// Used to identify which blocks to update predecessor 2817 /// counts. 2818 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2819 /// chosen in the given order due to unnatural CFG 2820 /// only needed if \p BB is removed and 2821 /// \p PrevUnplacedBlockIt pointed to \p BB. 2822 /// @return true if \p BB was removed. 2823 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2824 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2825 const MachineBasicBlock *LoopHeaderBB, 2826 BlockChain &Chain, BlockFilterSet *BlockFilter, 2827 MachineFunction::iterator &PrevUnplacedBlockIt) { 2828 bool Removed, DuplicatedToLPred; 2829 bool DuplicatedToOriginalLPred; 2830 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2831 PrevUnplacedBlockIt, 2832 DuplicatedToLPred); 2833 if (!Removed) 2834 return false; 2835 DuplicatedToOriginalLPred = DuplicatedToLPred; 2836 // Iteratively try to duplicate again. It can happen that a block that is 2837 // duplicated into is still small enough to be duplicated again. 2838 // No need to call markBlockSuccessors in this case, as the blocks being 2839 // duplicated from here on are already scheduled. 2840 // Note that DuplicatedToLPred always implies Removed. 2841 while (DuplicatedToLPred) { 2842 assert(Removed && "Block must have been removed to be duplicated into its " 2843 "layout predecessor."); 2844 MachineBasicBlock *DupBB, *DupPred; 2845 // The removal callback causes Chain.end() to be updated when a block is 2846 // removed. On the first pass through the loop, the chain end should be the 2847 // same as it was on function entry. On subsequent passes, because we are 2848 // duplicating the block at the end of the chain, if it is removed the 2849 // chain will have shrunk by one block. 2850 BlockChain::iterator ChainEnd = Chain.end(); 2851 DupBB = *(--ChainEnd); 2852 // Now try to duplicate again. 2853 if (ChainEnd == Chain.begin()) 2854 break; 2855 DupPred = *std::prev(ChainEnd); 2856 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2857 PrevUnplacedBlockIt, 2858 DuplicatedToLPred); 2859 } 2860 // If BB was duplicated into LPred, it is now scheduled. But because it was 2861 // removed, markChainSuccessors won't be called for its chain. Instead we 2862 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2863 // at the end because repeating the tail duplication can increase the number 2864 // of unscheduled predecessors. 2865 LPred = *std::prev(Chain.end()); 2866 if (DuplicatedToOriginalLPred) 2867 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2868 return true; 2869 } 2870 2871 /// Tail duplicate \p BB into (some) predecessors if profitable. 2872 /// \p BB - Basic block that may be duplicated 2873 /// \p LPred - Chosen layout predecessor of \p BB 2874 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2875 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2876 /// Used to identify which blocks to update predecessor 2877 /// counts. 2878 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2879 /// chosen in the given order due to unnatural CFG 2880 /// only needed if \p BB is removed and 2881 /// \p PrevUnplacedBlockIt pointed to \p BB. 2882 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2883 /// only be true if the block was removed. 2884 /// \return - True if the block was duplicated into all preds and removed. 2885 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2886 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2887 BlockChain &Chain, BlockFilterSet *BlockFilter, 2888 MachineFunction::iterator &PrevUnplacedBlockIt, 2889 bool &DuplicatedToLPred) { 2890 DuplicatedToLPred = false; 2891 if (!shouldTailDuplicate(BB)) 2892 return false; 2893 2894 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2895 << "\n"); 2896 2897 // This has to be a callback because none of it can be done after 2898 // BB is deleted. 2899 bool Removed = false; 2900 auto RemovalCallback = 2901 [&](MachineBasicBlock *RemBB) { 2902 // Signal to outer function 2903 Removed = true; 2904 2905 // Conservative default. 2906 bool InWorkList = true; 2907 // Remove from the Chain and Chain Map 2908 if (BlockToChain.count(RemBB)) { 2909 BlockChain *Chain = BlockToChain[RemBB]; 2910 InWorkList = Chain->UnscheduledPredecessors == 0; 2911 Chain->remove(RemBB); 2912 BlockToChain.erase(RemBB); 2913 } 2914 2915 // Handle the unplaced block iterator 2916 if (&(*PrevUnplacedBlockIt) == RemBB) { 2917 PrevUnplacedBlockIt++; 2918 } 2919 2920 // Handle the Work Lists 2921 if (InWorkList) { 2922 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2923 if (RemBB->isEHPad()) 2924 RemoveList = EHPadWorkList; 2925 RemoveList.erase( 2926 llvm::remove_if(RemoveList, 2927 [RemBB](MachineBasicBlock *BB) { 2928 return BB == RemBB; 2929 }), 2930 RemoveList.end()); 2931 } 2932 2933 // Handle the filter set 2934 if (BlockFilter) { 2935 BlockFilter->remove(RemBB); 2936 } 2937 2938 // Remove the block from loop info. 2939 MLI->removeBlock(RemBB); 2940 if (RemBB == PreferredLoopExit) 2941 PreferredLoopExit = nullptr; 2942 2943 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2944 << getBlockName(RemBB) << "\n"); 2945 }; 2946 auto RemovalCallbackRef = 2947 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2948 2949 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2950 bool IsSimple = TailDup.isSimpleBB(BB); 2951 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2952 &DuplicatedPreds, &RemovalCallbackRef); 2953 2954 // Update UnscheduledPredecessors to reflect tail-duplication. 2955 DuplicatedToLPred = false; 2956 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2957 // We're only looking for unscheduled predecessors that match the filter. 2958 BlockChain* PredChain = BlockToChain[Pred]; 2959 if (Pred == LPred) 2960 DuplicatedToLPred = true; 2961 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2962 || PredChain == &Chain) 2963 continue; 2964 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2965 if (BlockFilter && !BlockFilter->count(NewSucc)) 2966 continue; 2967 BlockChain *NewChain = BlockToChain[NewSucc]; 2968 if (NewChain != &Chain && NewChain != PredChain) 2969 NewChain->UnscheduledPredecessors++; 2970 } 2971 } 2972 return Removed; 2973 } 2974 2975 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2976 if (skipFunction(MF.getFunction())) 2977 return false; 2978 2979 // Check for single-block functions and skip them. 2980 if (std::next(MF.begin()) == MF.end()) 2981 return false; 2982 2983 F = &MF; 2984 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2985 MBFI = std::make_unique<BranchFolder::MBFIWrapper>( 2986 getAnalysis<MachineBlockFrequencyInfo>()); 2987 MLI = &getAnalysis<MachineLoopInfo>(); 2988 TII = MF.getSubtarget().getInstrInfo(); 2989 TLI = MF.getSubtarget().getTargetLowering(); 2990 MPDT = nullptr; 2991 2992 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2993 // there are no MachineLoops. 2994 PreferredLoopExit = nullptr; 2995 2996 assert(BlockToChain.empty() && 2997 "BlockToChain map should be empty before starting placement."); 2998 assert(ComputedEdges.empty() && 2999 "Computed Edge map should be empty before starting placement."); 3000 3001 unsigned TailDupSize = TailDupPlacementThreshold; 3002 // If only the aggressive threshold is explicitly set, use it. 3003 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3004 TailDupPlacementThreshold.getNumOccurrences() == 0) 3005 TailDupSize = TailDupPlacementAggressiveThreshold; 3006 3007 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3008 // For aggressive optimization, we can adjust some thresholds to be less 3009 // conservative. 3010 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3011 // At O3 we should be more willing to copy blocks for tail duplication. This 3012 // increases size pressure, so we only do it at O3 3013 // Do this unless only the regular threshold is explicitly set. 3014 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3015 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3016 TailDupSize = TailDupPlacementAggressiveThreshold; 3017 } 3018 3019 if (allowTailDupPlacement()) { 3020 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3021 if (MF.getFunction().hasOptSize()) 3022 TailDupSize = 1; 3023 bool PreRegAlloc = false; 3024 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 3025 precomputeTriangleChains(); 3026 } 3027 3028 buildCFGChains(); 3029 3030 // Changing the layout can create new tail merging opportunities. 3031 // TailMerge can create jump into if branches that make CFG irreducible for 3032 // HW that requires structured CFG. 3033 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3034 PassConfig->getEnableTailMerge() && 3035 BranchFoldPlacement; 3036 // No tail merging opportunities if the block number is less than four. 3037 if (MF.size() > 3 && EnableTailMerge) { 3038 unsigned TailMergeSize = TailDupSize + 1; 3039 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 3040 *MBPI, TailMergeSize); 3041 3042 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 3043 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 3044 MMIWP ? &MMIWP->getMMI() : nullptr, MLI, 3045 /*AfterPlacement=*/true)) { 3046 // Redo the layout if tail merging creates/removes/moves blocks. 3047 BlockToChain.clear(); 3048 ComputedEdges.clear(); 3049 // Must redo the post-dominator tree if blocks were changed. 3050 if (MPDT) 3051 MPDT->runOnMachineFunction(MF); 3052 ChainAllocator.DestroyAll(); 3053 buildCFGChains(); 3054 } 3055 } 3056 3057 optimizeBranches(); 3058 alignBlocks(); 3059 3060 BlockToChain.clear(); 3061 ComputedEdges.clear(); 3062 ChainAllocator.DestroyAll(); 3063 3064 if (AlignAllBlock) 3065 // Align all of the blocks in the function to a specific alignment. 3066 for (MachineBasicBlock &MBB : MF) 3067 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3068 else if (AlignAllNonFallThruBlocks) { 3069 // Align all of the blocks that have no fall-through predecessors to a 3070 // specific alignment. 3071 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3072 auto LayoutPred = std::prev(MBI); 3073 if (!LayoutPred->isSuccessor(&*MBI)) 3074 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3075 } 3076 } 3077 if (ViewBlockLayoutWithBFI != GVDT_None && 3078 (ViewBlockFreqFuncName.empty() || 3079 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3080 MBFI->view("MBP." + MF.getName(), false); 3081 } 3082 3083 3084 // We always return true as we have no way to track whether the final order 3085 // differs from the original order. 3086 return true; 3087 } 3088 3089 namespace { 3090 3091 /// A pass to compute block placement statistics. 3092 /// 3093 /// A separate pass to compute interesting statistics for evaluating block 3094 /// placement. This is separate from the actual placement pass so that they can 3095 /// be computed in the absence of any placement transformations or when using 3096 /// alternative placement strategies. 3097 class MachineBlockPlacementStats : public MachineFunctionPass { 3098 /// A handle to the branch probability pass. 3099 const MachineBranchProbabilityInfo *MBPI; 3100 3101 /// A handle to the function-wide block frequency pass. 3102 const MachineBlockFrequencyInfo *MBFI; 3103 3104 public: 3105 static char ID; // Pass identification, replacement for typeid 3106 3107 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3108 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3109 } 3110 3111 bool runOnMachineFunction(MachineFunction &F) override; 3112 3113 void getAnalysisUsage(AnalysisUsage &AU) const override { 3114 AU.addRequired<MachineBranchProbabilityInfo>(); 3115 AU.addRequired<MachineBlockFrequencyInfo>(); 3116 AU.setPreservesAll(); 3117 MachineFunctionPass::getAnalysisUsage(AU); 3118 } 3119 }; 3120 3121 } // end anonymous namespace 3122 3123 char MachineBlockPlacementStats::ID = 0; 3124 3125 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3126 3127 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3128 "Basic Block Placement Stats", false, false) 3129 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3130 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3131 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3132 "Basic Block Placement Stats", false, false) 3133 3134 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3135 // Check for single-block functions and skip them. 3136 if (std::next(F.begin()) == F.end()) 3137 return false; 3138 3139 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3140 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3141 3142 for (MachineBasicBlock &MBB : F) { 3143 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3144 Statistic &NumBranches = 3145 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3146 Statistic &BranchTakenFreq = 3147 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3148 for (MachineBasicBlock *Succ : MBB.successors()) { 3149 // Skip if this successor is a fallthrough. 3150 if (MBB.isLayoutSuccessor(Succ)) 3151 continue; 3152 3153 BlockFrequency EdgeFreq = 3154 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3155 ++NumBranches; 3156 BranchTakenFreq += EdgeFreq.getFrequency(); 3157 } 3158 } 3159 3160 return false; 3161 } 3162