1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MBFIWrapper.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/PrintPasses.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Allocator.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Transforms/Utils/CodeLayout.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <memory> 71 #include <string> 72 #include <tuple> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "block-placement" 79 80 STATISTIC(NumCondBranches, "Number of conditional branches"); 81 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 82 STATISTIC(CondBranchTakenFreq, 83 "Potential frequency of taking conditional branches"); 84 STATISTIC(UncondBranchTakenFreq, 85 "Potential frequency of taking unconditional branches"); 86 87 static cl::opt<unsigned> AlignAllBlock( 88 "align-all-blocks", 89 cl::desc("Force the alignment of all blocks in the function in log2 format " 90 "(e.g 4 means align on 16B boundaries)."), 91 cl::init(0), cl::Hidden); 92 93 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 94 "align-all-nofallthru-blocks", 95 cl::desc("Force the alignment of all blocks that have no fall-through " 96 "predecessors (i.e. don't add nops that are executed). In log2 " 97 "format (e.g 4 means align on 16B boundaries)."), 98 cl::init(0), cl::Hidden); 99 100 static cl::opt<unsigned> MaxBytesForAlignmentOverride( 101 "max-bytes-for-alignment", 102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for " 103 "alignment"), 104 cl::init(0), cl::Hidden); 105 106 // FIXME: Find a good default for this flag and remove the flag. 107 static cl::opt<unsigned> ExitBlockBias( 108 "block-placement-exit-block-bias", 109 cl::desc("Block frequency percentage a loop exit block needs " 110 "over the original exit to be considered the new exit."), 111 cl::init(0), cl::Hidden); 112 113 // Definition: 114 // - Outlining: placement of a basic block outside the chain or hot path. 115 116 static cl::opt<unsigned> LoopToColdBlockRatio( 117 "loop-to-cold-block-ratio", 118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 119 "(frequency of block) is greater than this ratio"), 120 cl::init(5), cl::Hidden); 121 122 static cl::opt<bool> ForceLoopColdBlock( 123 "force-loop-cold-block", 124 cl::desc("Force outlining cold blocks from loops."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<bool> 128 PreciseRotationCost("precise-rotation-cost", 129 cl::desc("Model the cost of loop rotation more " 130 "precisely by using profile data."), 131 cl::init(false), cl::Hidden); 132 133 static cl::opt<bool> 134 ForcePreciseRotationCost("force-precise-rotation-cost", 135 cl::desc("Force the use of precise cost " 136 "loop rotation strategy."), 137 cl::init(false), cl::Hidden); 138 139 static cl::opt<unsigned> MisfetchCost( 140 "misfetch-cost", 141 cl::desc("Cost that models the probabilistic risk of an instruction " 142 "misfetch due to a jump comparing to falling through, whose cost " 143 "is zero."), 144 cl::init(1), cl::Hidden); 145 146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 147 cl::desc("Cost of jump instructions."), 148 cl::init(1), cl::Hidden); 149 static cl::opt<bool> 150 TailDupPlacement("tail-dup-placement", 151 cl::desc("Perform tail duplication during placement. " 152 "Creates more fallthrough opportunites in " 153 "outline branches."), 154 cl::init(true), cl::Hidden); 155 156 static cl::opt<bool> 157 BranchFoldPlacement("branch-fold-placement", 158 cl::desc("Perform branch folding during placement. " 159 "Reduces code size."), 160 cl::init(true), cl::Hidden); 161 162 // Heuristic for tail duplication. 163 static cl::opt<unsigned> TailDupPlacementThreshold( 164 "tail-dup-placement-threshold", 165 cl::desc("Instruction cutoff for tail duplication during layout. " 166 "Tail merging during layout is forced to have a threshold " 167 "that won't conflict."), cl::init(2), 168 cl::Hidden); 169 170 // Heuristic for aggressive tail duplication. 171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 172 "tail-dup-placement-aggressive-threshold", 173 cl::desc("Instruction cutoff for aggressive tail duplication during " 174 "layout. Used at -O3. Tail merging during layout is forced to " 175 "have a threshold that won't conflict."), cl::init(4), 176 cl::Hidden); 177 178 // Heuristic for tail duplication. 179 static cl::opt<unsigned> TailDupPlacementPenalty( 180 "tail-dup-placement-penalty", 181 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 182 "Copying can increase fallthrough, but it also increases icache " 183 "pressure. This parameter controls the penalty to account for that. " 184 "Percent as integer."), 185 cl::init(2), 186 cl::Hidden); 187 188 // Heuristic for tail duplication if profile count is used in cost model. 189 static cl::opt<unsigned> TailDupProfilePercentThreshold( 190 "tail-dup-profile-percent-threshold", 191 cl::desc("If profile count information is used in tail duplication cost " 192 "model, the gained fall through number from tail duplication " 193 "should be at least this percent of hot count."), 194 cl::init(50), cl::Hidden); 195 196 // Heuristic for triangle chains. 197 static cl::opt<unsigned> TriangleChainCount( 198 "triangle-chain-count", 199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 200 "triangle tail duplication heuristic to kick in. 0 to disable."), 201 cl::init(2), 202 cl::Hidden); 203 204 // Use case: When block layout is visualized after MBP pass, the basic blocks 205 // are labeled in layout order; meanwhile blocks could be numbered in a 206 // different order. It's hard to map between the graph and pass output. 207 // With this option on, the basic blocks are renumbered in function layout 208 // order. For debugging only. 209 static cl::opt<bool> RenumberBlocksBeforeView( 210 "renumber-blocks-before-view", 211 cl::desc( 212 "If true, basic blocks are re-numbered before MBP layout is printed " 213 "into a dot graph. Only used when a function is being printed."), 214 cl::init(false), cl::Hidden); 215 216 namespace llvm { 217 extern cl::opt<bool> EnableExtTspBlockPlacement; 218 extern cl::opt<bool> ApplyExtTspWithoutProfile; 219 extern cl::opt<unsigned> StaticLikelyProb; 220 extern cl::opt<unsigned> ProfileLikelyProb; 221 222 // Internal option used to control BFI display only after MBP pass. 223 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 224 // -view-block-layout-with-bfi= 225 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 226 227 // Command line option to specify the name of the function for CFG dump 228 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 229 extern cl::opt<std::string> ViewBlockFreqFuncName; 230 } // namespace llvm 231 232 namespace { 233 234 class BlockChain; 235 236 /// Type for our function-wide basic block -> block chain mapping. 237 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 238 239 /// A chain of blocks which will be laid out contiguously. 240 /// 241 /// This is the datastructure representing a chain of consecutive blocks that 242 /// are profitable to layout together in order to maximize fallthrough 243 /// probabilities and code locality. We also can use a block chain to represent 244 /// a sequence of basic blocks which have some external (correctness) 245 /// requirement for sequential layout. 246 /// 247 /// Chains can be built around a single basic block and can be merged to grow 248 /// them. They participate in a block-to-chain mapping, which is updated 249 /// automatically as chains are merged together. 250 class BlockChain { 251 /// The sequence of blocks belonging to this chain. 252 /// 253 /// This is the sequence of blocks for a particular chain. These will be laid 254 /// out in-order within the function. 255 SmallVector<MachineBasicBlock *, 4> Blocks; 256 257 /// A handle to the function-wide basic block to block chain mapping. 258 /// 259 /// This is retained in each block chain to simplify the computation of child 260 /// block chains for SCC-formation and iteration. We store the edges to child 261 /// basic blocks, and map them back to their associated chains using this 262 /// structure. 263 BlockToChainMapType &BlockToChain; 264 265 public: 266 /// Construct a new BlockChain. 267 /// 268 /// This builds a new block chain representing a single basic block in the 269 /// function. It also registers itself as the chain that block participates 270 /// in with the BlockToChain mapping. 271 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 272 : Blocks(1, BB), BlockToChain(BlockToChain) { 273 assert(BB && "Cannot create a chain with a null basic block"); 274 BlockToChain[BB] = this; 275 } 276 277 /// Iterator over blocks within the chain. 278 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 279 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 280 281 /// Beginning of blocks within the chain. 282 iterator begin() { return Blocks.begin(); } 283 const_iterator begin() const { return Blocks.begin(); } 284 285 /// End of blocks within the chain. 286 iterator end() { return Blocks.end(); } 287 const_iterator end() const { return Blocks.end(); } 288 289 bool remove(MachineBasicBlock* BB) { 290 for(iterator i = begin(); i != end(); ++i) { 291 if (*i == BB) { 292 Blocks.erase(i); 293 return true; 294 } 295 } 296 return false; 297 } 298 299 /// Merge a block chain into this one. 300 /// 301 /// This routine merges a block chain into this one. It takes care of forming 302 /// a contiguous sequence of basic blocks, updating the edge list, and 303 /// updating the block -> chain mapping. It does not free or tear down the 304 /// old chain, but the old chain's block list is no longer valid. 305 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 306 assert(BB && "Can't merge a null block."); 307 assert(!Blocks.empty() && "Can't merge into an empty chain."); 308 309 // Fast path in case we don't have a chain already. 310 if (!Chain) { 311 assert(!BlockToChain[BB] && 312 "Passed chain is null, but BB has entry in BlockToChain."); 313 Blocks.push_back(BB); 314 BlockToChain[BB] = this; 315 return; 316 } 317 318 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 319 assert(Chain->begin() != Chain->end()); 320 321 // Update the incoming blocks to point to this chain, and add them to the 322 // chain structure. 323 for (MachineBasicBlock *ChainBB : *Chain) { 324 Blocks.push_back(ChainBB); 325 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 326 BlockToChain[ChainBB] = this; 327 } 328 } 329 330 #ifndef NDEBUG 331 /// Dump the blocks in this chain. 332 LLVM_DUMP_METHOD void dump() { 333 for (MachineBasicBlock *MBB : *this) 334 MBB->dump(); 335 } 336 #endif // NDEBUG 337 338 /// Count of predecessors of any block within the chain which have not 339 /// yet been scheduled. In general, we will delay scheduling this chain 340 /// until those predecessors are scheduled (or we find a sufficiently good 341 /// reason to override this heuristic.) Note that when forming loop chains, 342 /// blocks outside the loop are ignored and treated as if they were already 343 /// scheduled. 344 /// 345 /// Note: This field is reinitialized multiple times - once for each loop, 346 /// and then once for the function as a whole. 347 unsigned UnscheduledPredecessors = 0; 348 }; 349 350 class MachineBlockPlacement : public MachineFunctionPass { 351 /// A type for a block filter set. 352 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 353 354 /// Pair struct containing basic block and taildup profitability 355 struct BlockAndTailDupResult { 356 MachineBasicBlock *BB = nullptr; 357 bool ShouldTailDup; 358 }; 359 360 /// Triple struct containing edge weight and the edge. 361 struct WeightedEdge { 362 BlockFrequency Weight; 363 MachineBasicBlock *Src = nullptr; 364 MachineBasicBlock *Dest = nullptr; 365 }; 366 367 /// work lists of blocks that are ready to be laid out 368 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 369 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 370 371 /// Edges that have already been computed as optimal. 372 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 373 374 /// Machine Function 375 MachineFunction *F = nullptr; 376 377 /// A handle to the branch probability pass. 378 const MachineBranchProbabilityInfo *MBPI = nullptr; 379 380 /// A handle to the function-wide block frequency pass. 381 std::unique_ptr<MBFIWrapper> MBFI; 382 383 /// A handle to the loop info. 384 MachineLoopInfo *MLI = nullptr; 385 386 /// Preferred loop exit. 387 /// Member variable for convenience. It may be removed by duplication deep 388 /// in the call stack. 389 MachineBasicBlock *PreferredLoopExit = nullptr; 390 391 /// A handle to the target's instruction info. 392 const TargetInstrInfo *TII = nullptr; 393 394 /// A handle to the target's lowering info. 395 const TargetLoweringBase *TLI = nullptr; 396 397 /// A handle to the post dominator tree. 398 MachinePostDominatorTree *MPDT = nullptr; 399 400 ProfileSummaryInfo *PSI = nullptr; 401 402 /// Duplicator used to duplicate tails during placement. 403 /// 404 /// Placement decisions can open up new tail duplication opportunities, but 405 /// since tail duplication affects placement decisions of later blocks, it 406 /// must be done inline. 407 TailDuplicator TailDup; 408 409 /// Partial tail duplication threshold. 410 BlockFrequency DupThreshold; 411 412 /// True: use block profile count to compute tail duplication cost. 413 /// False: use block frequency to compute tail duplication cost. 414 bool UseProfileCount = false; 415 416 /// Allocator and owner of BlockChain structures. 417 /// 418 /// We build BlockChains lazily while processing the loop structure of 419 /// a function. To reduce malloc traffic, we allocate them using this 420 /// slab-like allocator, and destroy them after the pass completes. An 421 /// important guarantee is that this allocator produces stable pointers to 422 /// the chains. 423 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 424 425 /// Function wide BasicBlock to BlockChain mapping. 426 /// 427 /// This mapping allows efficiently moving from any given basic block to the 428 /// BlockChain it participates in, if any. We use it to, among other things, 429 /// allow implicitly defining edges between chains as the existing edges 430 /// between basic blocks. 431 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 432 433 #ifndef NDEBUG 434 /// The set of basic blocks that have terminators that cannot be fully 435 /// analyzed. These basic blocks cannot be re-ordered safely by 436 /// MachineBlockPlacement, and we must preserve physical layout of these 437 /// blocks and their successors through the pass. 438 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 439 #endif 440 441 /// Get block profile count or frequency according to UseProfileCount. 442 /// The return value is used to model tail duplication cost. 443 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 444 if (UseProfileCount) { 445 auto Count = MBFI->getBlockProfileCount(BB); 446 if (Count) 447 return BlockFrequency(*Count); 448 else 449 return BlockFrequency(0); 450 } else 451 return MBFI->getBlockFreq(BB); 452 } 453 454 /// Scale the DupThreshold according to basic block size. 455 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 456 void initDupThreshold(); 457 458 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 459 /// if the count goes to 0, add them to the appropriate work list. 460 void markChainSuccessors( 461 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 462 const BlockFilterSet *BlockFilter = nullptr); 463 464 /// Decrease the UnscheduledPredecessors count for a single block, and 465 /// if the count goes to 0, add them to the appropriate work list. 466 void markBlockSuccessors( 467 const BlockChain &Chain, const MachineBasicBlock *BB, 468 const MachineBasicBlock *LoopHeaderBB, 469 const BlockFilterSet *BlockFilter = nullptr); 470 471 BranchProbability 472 collectViableSuccessors( 473 const MachineBasicBlock *BB, const BlockChain &Chain, 474 const BlockFilterSet *BlockFilter, 475 SmallVector<MachineBasicBlock *, 4> &Successors); 476 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 477 BlockFilterSet *BlockFilter); 478 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 479 MachineBasicBlock *BB, 480 BlockFilterSet *BlockFilter); 481 bool repeatedlyTailDuplicateBlock( 482 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 483 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 484 BlockFilterSet *BlockFilter, 485 MachineFunction::iterator &PrevUnplacedBlockIt, 486 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt); 487 bool 488 maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 489 BlockChain &Chain, BlockFilterSet *BlockFilter, 490 MachineFunction::iterator &PrevUnplacedBlockIt, 491 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 492 bool &DuplicatedToLPred); 493 bool hasBetterLayoutPredecessor( 494 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 495 const BlockChain &SuccChain, BranchProbability SuccProb, 496 BranchProbability RealSuccProb, const BlockChain &Chain, 497 const BlockFilterSet *BlockFilter); 498 BlockAndTailDupResult selectBestSuccessor( 499 const MachineBasicBlock *BB, const BlockChain &Chain, 500 const BlockFilterSet *BlockFilter); 501 MachineBasicBlock *selectBestCandidateBlock( 502 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 503 MachineBasicBlock * 504 getFirstUnplacedBlock(const BlockChain &PlacedChain, 505 MachineFunction::iterator &PrevUnplacedBlockIt); 506 MachineBasicBlock * 507 getFirstUnplacedBlock(const BlockChain &PlacedChain, 508 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 509 const BlockFilterSet *BlockFilter); 510 511 /// Add a basic block to the work list if it is appropriate. 512 /// 513 /// If the optional parameter BlockFilter is provided, only MBB 514 /// present in the set will be added to the worklist. If nullptr 515 /// is provided, no filtering occurs. 516 void fillWorkLists(const MachineBasicBlock *MBB, 517 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 518 const BlockFilterSet *BlockFilter); 519 520 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 521 BlockFilterSet *BlockFilter = nullptr); 522 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 523 const MachineBasicBlock *OldTop); 524 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 525 const BlockFilterSet &LoopBlockSet); 526 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 527 const BlockFilterSet &LoopBlockSet); 528 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 529 const MachineBasicBlock *OldTop, 530 const MachineBasicBlock *ExitBB, 531 const BlockFilterSet &LoopBlockSet); 532 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 533 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 534 MachineBasicBlock *findBestLoopTop( 535 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 536 MachineBasicBlock *findBestLoopExit( 537 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 538 BlockFrequency &ExitFreq); 539 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 540 void buildLoopChains(const MachineLoop &L); 541 void rotateLoop( 542 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 543 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 544 void rotateLoopWithProfile( 545 BlockChain &LoopChain, const MachineLoop &L, 546 const BlockFilterSet &LoopBlockSet); 547 void buildCFGChains(); 548 void optimizeBranches(); 549 void alignBlocks(); 550 /// Returns true if a block should be tail-duplicated to increase fallthrough 551 /// opportunities. 552 bool shouldTailDuplicate(MachineBasicBlock *BB); 553 /// Check the edge frequencies to see if tail duplication will increase 554 /// fallthroughs. 555 bool isProfitableToTailDup( 556 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 557 BranchProbability QProb, 558 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 559 560 /// Check for a trellis layout. 561 bool isTrellis(const MachineBasicBlock *BB, 562 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 563 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 564 565 /// Get the best successor given a trellis layout. 566 BlockAndTailDupResult getBestTrellisSuccessor( 567 const MachineBasicBlock *BB, 568 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 569 BranchProbability AdjustedSumProb, const BlockChain &Chain, 570 const BlockFilterSet *BlockFilter); 571 572 /// Get the best pair of non-conflicting edges. 573 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 574 const MachineBasicBlock *BB, 575 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 576 577 /// Returns true if a block can tail duplicate into all unplaced 578 /// predecessors. Filters based on loop. 579 bool canTailDuplicateUnplacedPreds( 580 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 581 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 582 583 /// Find chains of triangles to tail-duplicate where a global analysis works, 584 /// but a local analysis would not find them. 585 void precomputeTriangleChains(); 586 587 /// Apply a post-processing step optimizing block placement. 588 void applyExtTsp(); 589 590 /// Modify the existing block placement in the function and adjust all jumps. 591 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); 592 593 /// Create a single CFG chain from the current block order. 594 void createCFGChainExtTsp(); 595 596 public: 597 static char ID; // Pass identification, replacement for typeid 598 599 MachineBlockPlacement() : MachineFunctionPass(ID) { 600 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 601 } 602 603 bool runOnMachineFunction(MachineFunction &F) override; 604 605 bool allowTailDupPlacement() const { 606 assert(F); 607 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 608 } 609 610 void getAnalysisUsage(AnalysisUsage &AU) const override { 611 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 612 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 613 if (TailDupPlacement) 614 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 615 AU.addRequired<MachineLoopInfoWrapperPass>(); 616 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 617 AU.addRequired<TargetPassConfig>(); 618 MachineFunctionPass::getAnalysisUsage(AU); 619 } 620 }; 621 622 } // end anonymous namespace 623 624 char MachineBlockPlacement::ID = 0; 625 626 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 627 628 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 629 "Branch Probability Basic Block Placement", false, false) 630 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 631 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 632 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 633 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 634 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 635 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 636 "Branch Probability Basic Block Placement", false, false) 637 638 #ifndef NDEBUG 639 /// Helper to print the name of a MBB. 640 /// 641 /// Only used by debug logging. 642 static std::string getBlockName(const MachineBasicBlock *BB) { 643 std::string Result; 644 raw_string_ostream OS(Result); 645 OS << printMBBReference(*BB); 646 OS << " ('" << BB->getName() << "')"; 647 OS.flush(); 648 return Result; 649 } 650 #endif 651 652 /// Mark a chain's successors as having one fewer preds. 653 /// 654 /// When a chain is being merged into the "placed" chain, this routine will 655 /// quickly walk the successors of each block in the chain and mark them as 656 /// having one fewer active predecessor. It also adds any successors of this 657 /// chain which reach the zero-predecessor state to the appropriate worklist. 658 void MachineBlockPlacement::markChainSuccessors( 659 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 660 const BlockFilterSet *BlockFilter) { 661 // Walk all the blocks in this chain, marking their successors as having 662 // a predecessor placed. 663 for (MachineBasicBlock *MBB : Chain) { 664 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 665 } 666 } 667 668 /// Mark a single block's successors as having one fewer preds. 669 /// 670 /// Under normal circumstances, this is only called by markChainSuccessors, 671 /// but if a block that was to be placed is completely tail-duplicated away, 672 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 673 /// for just that block. 674 void MachineBlockPlacement::markBlockSuccessors( 675 const BlockChain &Chain, const MachineBasicBlock *MBB, 676 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 677 // Add any successors for which this is the only un-placed in-loop 678 // predecessor to the worklist as a viable candidate for CFG-neutral 679 // placement. No subsequent placement of this block will violate the CFG 680 // shape, so we get to use heuristics to choose a favorable placement. 681 for (MachineBasicBlock *Succ : MBB->successors()) { 682 if (BlockFilter && !BlockFilter->count(Succ)) 683 continue; 684 BlockChain &SuccChain = *BlockToChain[Succ]; 685 // Disregard edges within a fixed chain, or edges to the loop header. 686 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 687 continue; 688 689 // This is a cross-chain edge that is within the loop, so decrement the 690 // loop predecessor count of the destination chain. 691 if (SuccChain.UnscheduledPredecessors == 0 || 692 --SuccChain.UnscheduledPredecessors > 0) 693 continue; 694 695 auto *NewBB = *SuccChain.begin(); 696 if (NewBB->isEHPad()) 697 EHPadWorkList.push_back(NewBB); 698 else 699 BlockWorkList.push_back(NewBB); 700 } 701 } 702 703 /// This helper function collects the set of successors of block 704 /// \p BB that are allowed to be its layout successors, and return 705 /// the total branch probability of edges from \p BB to those 706 /// blocks. 707 BranchProbability MachineBlockPlacement::collectViableSuccessors( 708 const MachineBasicBlock *BB, const BlockChain &Chain, 709 const BlockFilterSet *BlockFilter, 710 SmallVector<MachineBasicBlock *, 4> &Successors) { 711 // Adjust edge probabilities by excluding edges pointing to blocks that is 712 // either not in BlockFilter or is already in the current chain. Consider the 713 // following CFG: 714 // 715 // --->A 716 // | / \ 717 // | B C 718 // | \ / \ 719 // ----D E 720 // 721 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 722 // A->C is chosen as a fall-through, D won't be selected as a successor of C 723 // due to CFG constraint (the probability of C->D is not greater than 724 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 725 // when calculating the probability of C->D, D will be selected and we 726 // will get A C D B as the layout of this loop. 727 auto AdjustedSumProb = BranchProbability::getOne(); 728 for (MachineBasicBlock *Succ : BB->successors()) { 729 bool SkipSucc = false; 730 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 731 SkipSucc = true; 732 } else { 733 BlockChain *SuccChain = BlockToChain[Succ]; 734 if (SuccChain == &Chain) { 735 SkipSucc = true; 736 } else if (Succ != *SuccChain->begin()) { 737 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 738 << " -> Mid chain!\n"); 739 continue; 740 } 741 } 742 if (SkipSucc) 743 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 744 else 745 Successors.push_back(Succ); 746 } 747 748 return AdjustedSumProb; 749 } 750 751 /// The helper function returns the branch probability that is adjusted 752 /// or normalized over the new total \p AdjustedSumProb. 753 static BranchProbability 754 getAdjustedProbability(BranchProbability OrigProb, 755 BranchProbability AdjustedSumProb) { 756 BranchProbability SuccProb; 757 uint32_t SuccProbN = OrigProb.getNumerator(); 758 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 759 if (SuccProbN >= SuccProbD) 760 SuccProb = BranchProbability::getOne(); 761 else 762 SuccProb = BranchProbability(SuccProbN, SuccProbD); 763 764 return SuccProb; 765 } 766 767 /// Check if \p BB has exactly the successors in \p Successors. 768 static bool 769 hasSameSuccessors(MachineBasicBlock &BB, 770 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 771 if (BB.succ_size() != Successors.size()) 772 return false; 773 // We don't want to count self-loops 774 if (Successors.count(&BB)) 775 return false; 776 for (MachineBasicBlock *Succ : BB.successors()) 777 if (!Successors.count(Succ)) 778 return false; 779 return true; 780 } 781 782 /// Check if a block should be tail duplicated to increase fallthrough 783 /// opportunities. 784 /// \p BB Block to check. 785 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 786 // Blocks with single successors don't create additional fallthrough 787 // opportunities. Don't duplicate them. TODO: When conditional exits are 788 // analyzable, allow them to be duplicated. 789 bool IsSimple = TailDup.isSimpleBB(BB); 790 791 if (BB->succ_size() == 1) 792 return false; 793 return TailDup.shouldTailDuplicate(IsSimple, *BB); 794 } 795 796 /// Compare 2 BlockFrequency's with a small penalty for \p A. 797 /// In order to be conservative, we apply a X% penalty to account for 798 /// increased icache pressure and static heuristics. For small frequencies 799 /// we use only the numerators to improve accuracy. For simplicity, we assume the 800 /// penalty is less than 100% 801 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 802 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 803 BlockFrequency EntryFreq) { 804 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 805 BlockFrequency Gain = A - B; 806 return (Gain / ThresholdProb) >= EntryFreq; 807 } 808 809 /// Check the edge frequencies to see if tail duplication will increase 810 /// fallthroughs. It only makes sense to call this function when 811 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 812 /// always locally profitable if we would have picked \p Succ without 813 /// considering duplication. 814 bool MachineBlockPlacement::isProfitableToTailDup( 815 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 816 BranchProbability QProb, 817 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 818 // We need to do a probability calculation to make sure this is profitable. 819 // First: does succ have a successor that post-dominates? This affects the 820 // calculation. The 2 relevant cases are: 821 // BB BB 822 // | \Qout | \Qout 823 // P| C |P C 824 // = C' = C' 825 // | /Qin | /Qin 826 // | / | / 827 // Succ Succ 828 // / \ | \ V 829 // U/ =V |U \ 830 // / \ = D 831 // D E | / 832 // | / 833 // |/ 834 // PDom 835 // '=' : Branch taken for that CFG edge 836 // In the second case, Placing Succ while duplicating it into C prevents the 837 // fallthrough of Succ into either D or PDom, because they now have C as an 838 // unplaced predecessor 839 840 // Start by figuring out which case we fall into 841 MachineBasicBlock *PDom = nullptr; 842 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 843 // Only scan the relevant successors 844 auto AdjustedSuccSumProb = 845 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 846 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 847 auto BBFreq = MBFI->getBlockFreq(BB); 848 auto SuccFreq = MBFI->getBlockFreq(Succ); 849 BlockFrequency P = BBFreq * PProb; 850 BlockFrequency Qout = BBFreq * QProb; 851 BlockFrequency EntryFreq = MBFI->getEntryFreq(); 852 // If there are no more successors, it is profitable to copy, as it strictly 853 // increases fallthrough. 854 if (SuccSuccs.size() == 0) 855 return greaterWithBias(P, Qout, EntryFreq); 856 857 auto BestSuccSucc = BranchProbability::getZero(); 858 // Find the PDom or the best Succ if no PDom exists. 859 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 860 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 861 if (Prob > BestSuccSucc) 862 BestSuccSucc = Prob; 863 if (PDom == nullptr) 864 if (MPDT->dominates(SuccSucc, Succ)) { 865 PDom = SuccSucc; 866 break; 867 } 868 } 869 // For the comparisons, we need to know Succ's best incoming edge that isn't 870 // from BB. 871 auto SuccBestPred = BlockFrequency(0); 872 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 873 if (SuccPred == Succ || SuccPred == BB 874 || BlockToChain[SuccPred] == &Chain 875 || (BlockFilter && !BlockFilter->count(SuccPred))) 876 continue; 877 auto Freq = MBFI->getBlockFreq(SuccPred) 878 * MBPI->getEdgeProbability(SuccPred, Succ); 879 if (Freq > SuccBestPred) 880 SuccBestPred = Freq; 881 } 882 // Qin is Succ's best unplaced incoming edge that isn't BB 883 BlockFrequency Qin = SuccBestPred; 884 // If it doesn't have a post-dominating successor, here is the calculation: 885 // BB BB 886 // | \Qout | \ 887 // P| C | = 888 // = C' | C 889 // | /Qin | | 890 // | / | C' (+Succ) 891 // Succ Succ /| 892 // / \ | \/ | 893 // U/ =V | == | 894 // / \ | / \| 895 // D E D E 896 // '=' : Branch taken for that CFG edge 897 // Cost in the first case is: P + V 898 // For this calculation, we always assume P > Qout. If Qout > P 899 // The result of this function will be ignored at the caller. 900 // Let F = SuccFreq - Qin 901 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 902 903 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 904 BranchProbability UProb = BestSuccSucc; 905 BranchProbability VProb = AdjustedSuccSumProb - UProb; 906 BlockFrequency F = SuccFreq - Qin; 907 BlockFrequency V = SuccFreq * VProb; 908 BlockFrequency QinU = std::min(Qin, F) * UProb; 909 BlockFrequency BaseCost = P + V; 910 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 911 return greaterWithBias(BaseCost, DupCost, EntryFreq); 912 } 913 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 914 BranchProbability VProb = AdjustedSuccSumProb - UProb; 915 BlockFrequency U = SuccFreq * UProb; 916 BlockFrequency V = SuccFreq * VProb; 917 BlockFrequency F = SuccFreq - Qin; 918 // If there is a post-dominating successor, here is the calculation: 919 // BB BB BB BB 920 // | \Qout | \ | \Qout | \ 921 // |P C | = |P C | = 922 // = C' |P C = C' |P C 923 // | /Qin | | | /Qin | | 924 // | / | C' (+Succ) | / | C' (+Succ) 925 // Succ Succ /| Succ Succ /| 926 // | \ V | \/ | | \ V | \/ | 927 // |U \ |U /\ =? |U = |U /\ | 928 // = D = = =?| | D | = =| 929 // | / |/ D | / |/ D 930 // | / | / | = | / 931 // |/ | / |/ | = 932 // Dom Dom Dom Dom 933 // '=' : Branch taken for that CFG edge 934 // The cost for taken branches in the first case is P + U 935 // Let F = SuccFreq - Qin 936 // The cost in the second case (assuming independence), given the layout: 937 // BB, Succ, (C+Succ), D, Dom or the layout: 938 // BB, Succ, D, Dom, (C+Succ) 939 // is Qout + max(F, Qin) * U + min(F, Qin) 940 // compare P + U vs Qout + P * U + Qin. 941 // 942 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 943 // 944 // For the 3rd case, the cost is P + 2 * V 945 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 946 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 947 if (UProb > AdjustedSuccSumProb / 2 && 948 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 949 Chain, BlockFilter)) 950 // Cases 3 & 4 951 return greaterWithBias( 952 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 953 EntryFreq); 954 // Cases 1 & 2 955 return greaterWithBias((P + U), 956 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 957 std::max(Qin, F) * UProb), 958 EntryFreq); 959 } 960 961 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 962 /// successors form the lower part of a trellis. A successor set S forms the 963 /// lower part of a trellis if all of the predecessors of S are either in S or 964 /// have all of S as successors. We ignore trellises where BB doesn't have 2 965 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 966 /// are very uncommon and complex to compute optimally. Allowing edges within S 967 /// is not strictly a trellis, but the same algorithm works, so we allow it. 968 bool MachineBlockPlacement::isTrellis( 969 const MachineBasicBlock *BB, 970 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 971 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 972 // Technically BB could form a trellis with branching factor higher than 2. 973 // But that's extremely uncommon. 974 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 975 return false; 976 977 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 978 BB->succ_end()); 979 // To avoid reviewing the same predecessors twice. 980 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 981 982 for (MachineBasicBlock *Succ : ViableSuccs) { 983 int PredCount = 0; 984 for (auto *SuccPred : Succ->predecessors()) { 985 // Allow triangle successors, but don't count them. 986 if (Successors.count(SuccPred)) { 987 // Make sure that it is actually a triangle. 988 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 989 if (!Successors.count(CheckSucc)) 990 return false; 991 continue; 992 } 993 const BlockChain *PredChain = BlockToChain[SuccPred]; 994 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 995 PredChain == &Chain || PredChain == BlockToChain[Succ]) 996 continue; 997 ++PredCount; 998 // Perform the successor check only once. 999 if (!SeenPreds.insert(SuccPred).second) 1000 continue; 1001 if (!hasSameSuccessors(*SuccPred, Successors)) 1002 return false; 1003 } 1004 // If one of the successors has only BB as a predecessor, it is not a 1005 // trellis. 1006 if (PredCount < 1) 1007 return false; 1008 } 1009 return true; 1010 } 1011 1012 /// Pick the highest total weight pair of edges that can both be laid out. 1013 /// The edges in \p Edges[0] are assumed to have a different destination than 1014 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 1015 /// the individual highest weight edges to the 2 different destinations, or in 1016 /// case of a conflict, one of them should be replaced with a 2nd best edge. 1017 std::pair<MachineBlockPlacement::WeightedEdge, 1018 MachineBlockPlacement::WeightedEdge> 1019 MachineBlockPlacement::getBestNonConflictingEdges( 1020 const MachineBasicBlock *BB, 1021 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 1022 Edges) { 1023 // Sort the edges, and then for each successor, find the best incoming 1024 // predecessor. If the best incoming predecessors aren't the same, 1025 // then that is clearly the best layout. If there is a conflict, one of the 1026 // successors will have to fallthrough from the second best predecessor. We 1027 // compare which combination is better overall. 1028 1029 // Sort for highest frequency. 1030 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 1031 1032 llvm::stable_sort(Edges[0], Cmp); 1033 llvm::stable_sort(Edges[1], Cmp); 1034 auto BestA = Edges[0].begin(); 1035 auto BestB = Edges[1].begin(); 1036 // Arrange for the correct answer to be in BestA and BestB 1037 // If the 2 best edges don't conflict, the answer is already there. 1038 if (BestA->Src == BestB->Src) { 1039 // Compare the total fallthrough of (Best + Second Best) for both pairs 1040 auto SecondBestA = std::next(BestA); 1041 auto SecondBestB = std::next(BestB); 1042 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1043 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1044 if (BestAScore < BestBScore) 1045 BestA = SecondBestA; 1046 else 1047 BestB = SecondBestB; 1048 } 1049 // Arrange for the BB edge to be in BestA if it exists. 1050 if (BestB->Src == BB) 1051 std::swap(BestA, BestB); 1052 return std::make_pair(*BestA, *BestB); 1053 } 1054 1055 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1056 /// We only handle trellises with 2 successors, so the algorithm is 1057 /// straightforward: Find the best pair of edges that don't conflict. We find 1058 /// the best incoming edge for each successor in the trellis. If those conflict, 1059 /// we consider which of them should be replaced with the second best. 1060 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1061 /// comes from \p BB, it will be in \p BestEdges[0] 1062 MachineBlockPlacement::BlockAndTailDupResult 1063 MachineBlockPlacement::getBestTrellisSuccessor( 1064 const MachineBasicBlock *BB, 1065 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1066 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1067 const BlockFilterSet *BlockFilter) { 1068 1069 BlockAndTailDupResult Result = {nullptr, false}; 1070 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1071 BB->succ_end()); 1072 1073 // We assume size 2 because it's common. For general n, we would have to do 1074 // the Hungarian algorithm, but it's not worth the complexity because more 1075 // than 2 successors is fairly uncommon, and a trellis even more so. 1076 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1077 return Result; 1078 1079 // Collect the edge frequencies of all edges that form the trellis. 1080 SmallVector<WeightedEdge, 8> Edges[2]; 1081 int SuccIndex = 0; 1082 for (auto *Succ : ViableSuccs) { 1083 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1084 // Skip any placed predecessors that are not BB 1085 if (SuccPred != BB) 1086 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1087 BlockToChain[SuccPred] == &Chain || 1088 BlockToChain[SuccPred] == BlockToChain[Succ]) 1089 continue; 1090 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1091 MBPI->getEdgeProbability(SuccPred, Succ); 1092 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1093 } 1094 ++SuccIndex; 1095 } 1096 1097 // Pick the best combination of 2 edges from all the edges in the trellis. 1098 WeightedEdge BestA, BestB; 1099 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1100 1101 if (BestA.Src != BB) { 1102 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1103 // we shouldn't choose any successor. We've already looked and there's a 1104 // better fallthrough edge for all the successors. 1105 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1106 return Result; 1107 } 1108 1109 // Did we pick the triangle edge? If tail-duplication is profitable, do 1110 // that instead. Otherwise merge the triangle edge now while we know it is 1111 // optimal. 1112 if (BestA.Dest == BestB.Src) { 1113 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1114 // would be better. 1115 MachineBasicBlock *Succ1 = BestA.Dest; 1116 MachineBasicBlock *Succ2 = BestB.Dest; 1117 // Check to see if tail-duplication would be profitable. 1118 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1119 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1120 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1121 Chain, BlockFilter)) { 1122 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1123 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1124 dbgs() << " Selected: " << getBlockName(Succ2) 1125 << ", probability: " << Succ2Prob 1126 << " (Tail Duplicate)\n"); 1127 Result.BB = Succ2; 1128 Result.ShouldTailDup = true; 1129 return Result; 1130 } 1131 } 1132 // We have already computed the optimal edge for the other side of the 1133 // trellis. 1134 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1135 1136 auto TrellisSucc = BestA.Dest; 1137 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1138 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1139 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1140 << ", probability: " << SuccProb << " (Trellis)\n"); 1141 Result.BB = TrellisSucc; 1142 return Result; 1143 } 1144 1145 /// When the option allowTailDupPlacement() is on, this method checks if the 1146 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1147 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1148 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1149 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1150 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1151 if (!shouldTailDuplicate(Succ)) 1152 return false; 1153 1154 // The result of canTailDuplicate. 1155 bool Duplicate = true; 1156 // Number of possible duplication. 1157 unsigned int NumDup = 0; 1158 1159 // For CFG checking. 1160 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1161 BB->succ_end()); 1162 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1163 // Make sure all unplaced and unfiltered predecessors can be 1164 // tail-duplicated into. 1165 // Skip any blocks that are already placed or not in this loop. 1166 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1167 || (BlockToChain[Pred] == &Chain && !Succ->succ_empty())) 1168 continue; 1169 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1170 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1171 // This will result in a trellis after tail duplication, so we don't 1172 // need to copy Succ into this predecessor. In the presence 1173 // of a trellis tail duplication can continue to be profitable. 1174 // For example: 1175 // A A 1176 // |\ |\ 1177 // | \ | \ 1178 // | C | C+BB 1179 // | / | | 1180 // |/ | | 1181 // BB => BB | 1182 // |\ |\/| 1183 // | \ |/\| 1184 // | D | D 1185 // | / | / 1186 // |/ |/ 1187 // Succ Succ 1188 // 1189 // After BB was duplicated into C, the layout looks like the one on the 1190 // right. BB and C now have the same successors. When considering 1191 // whether Succ can be duplicated into all its unplaced predecessors, we 1192 // ignore C. 1193 // We can do this because C already has a profitable fallthrough, namely 1194 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1195 // duplication and for this test. 1196 // 1197 // This allows trellises to be laid out in 2 separate chains 1198 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1199 // because it allows the creation of 2 fallthrough paths with links 1200 // between them, and we correctly identify the best layout for these 1201 // CFGs. We want to extend trellises that the user created in addition 1202 // to trellises created by tail-duplication, so we just look for the 1203 // CFG. 1204 continue; 1205 Duplicate = false; 1206 continue; 1207 } 1208 NumDup++; 1209 } 1210 1211 // No possible duplication in current filter set. 1212 if (NumDup == 0) 1213 return false; 1214 1215 // If profile information is available, findDuplicateCandidates can do more 1216 // precise benefit analysis. 1217 if (F->getFunction().hasProfileData()) 1218 return true; 1219 1220 // This is mainly for function exit BB. 1221 // The integrated tail duplication is really designed for increasing 1222 // fallthrough from predecessors from Succ to its successors. We may need 1223 // other machanism to handle different cases. 1224 if (Succ->succ_empty()) 1225 return true; 1226 1227 // Plus the already placed predecessor. 1228 NumDup++; 1229 1230 // If the duplication candidate has more unplaced predecessors than 1231 // successors, the extra duplication can't bring more fallthrough. 1232 // 1233 // Pred1 Pred2 Pred3 1234 // \ | / 1235 // \ | / 1236 // \ | / 1237 // Dup 1238 // / \ 1239 // / \ 1240 // Succ1 Succ2 1241 // 1242 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1243 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1244 // but the duplication into Pred3 can't increase fallthrough. 1245 // 1246 // A small number of extra duplication may not hurt too much. We need a better 1247 // heuristic to handle it. 1248 if ((NumDup > Succ->succ_size()) || !Duplicate) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 /// Find chains of triangles where we believe it would be profitable to 1255 /// tail-duplicate them all, but a local analysis would not find them. 1256 /// There are 3 ways this can be profitable: 1257 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1258 /// longer chains) 1259 /// 2) The chains are statically correlated. Branch probabilities have a very 1260 /// U-shaped distribution. 1261 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1262 /// If the branches in a chain are likely to be from the same side of the 1263 /// distribution as their predecessor, but are independent at runtime, this 1264 /// transformation is profitable. (Because the cost of being wrong is a small 1265 /// fixed cost, unlike the standard triangle layout where the cost of being 1266 /// wrong scales with the # of triangles.) 1267 /// 3) The chains are dynamically correlated. If the probability that a previous 1268 /// branch was taken positively influences whether the next branch will be 1269 /// taken 1270 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1271 void MachineBlockPlacement::precomputeTriangleChains() { 1272 struct TriangleChain { 1273 std::vector<MachineBasicBlock *> Edges; 1274 1275 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1276 : Edges({src, dst}) {} 1277 1278 void append(MachineBasicBlock *dst) { 1279 assert(getKey()->isSuccessor(dst) && 1280 "Attempting to append a block that is not a successor."); 1281 Edges.push_back(dst); 1282 } 1283 1284 unsigned count() const { return Edges.size() - 1; } 1285 1286 MachineBasicBlock *getKey() const { 1287 return Edges.back(); 1288 } 1289 }; 1290 1291 if (TriangleChainCount == 0) 1292 return; 1293 1294 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1295 // Map from last block to the chain that contains it. This allows us to extend 1296 // chains as we find new triangles. 1297 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1298 for (MachineBasicBlock &BB : *F) { 1299 // If BB doesn't have 2 successors, it doesn't start a triangle. 1300 if (BB.succ_size() != 2) 1301 continue; 1302 MachineBasicBlock *PDom = nullptr; 1303 for (MachineBasicBlock *Succ : BB.successors()) { 1304 if (!MPDT->dominates(Succ, &BB)) 1305 continue; 1306 PDom = Succ; 1307 break; 1308 } 1309 // If BB doesn't have a post-dominating successor, it doesn't form a 1310 // triangle. 1311 if (PDom == nullptr) 1312 continue; 1313 // If PDom has a hint that it is low probability, skip this triangle. 1314 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1315 continue; 1316 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1317 // we're looking for. 1318 if (!shouldTailDuplicate(PDom)) 1319 continue; 1320 bool CanTailDuplicate = true; 1321 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1322 // isn't the kind of triangle we're looking for. 1323 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1324 if (Pred == &BB) 1325 continue; 1326 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1327 CanTailDuplicate = false; 1328 break; 1329 } 1330 } 1331 // If we can't tail-duplicate PDom to its predecessors, then skip this 1332 // triangle. 1333 if (!CanTailDuplicate) 1334 continue; 1335 1336 // Now we have an interesting triangle. Insert it if it's not part of an 1337 // existing chain. 1338 // Note: This cannot be replaced with a call insert() or emplace() because 1339 // the find key is BB, but the insert/emplace key is PDom. 1340 auto Found = TriangleChainMap.find(&BB); 1341 // If it is, remove the chain from the map, grow it, and put it back in the 1342 // map with the end as the new key. 1343 if (Found != TriangleChainMap.end()) { 1344 TriangleChain Chain = std::move(Found->second); 1345 TriangleChainMap.erase(Found); 1346 Chain.append(PDom); 1347 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1348 } else { 1349 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1350 assert(InsertResult.second && "Block seen twice."); 1351 (void)InsertResult; 1352 } 1353 } 1354 1355 // Iterating over a DenseMap is safe here, because the only thing in the body 1356 // of the loop is inserting into another DenseMap (ComputedEdges). 1357 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1358 for (auto &ChainPair : TriangleChainMap) { 1359 TriangleChain &Chain = ChainPair.second; 1360 // Benchmarking has shown that due to branch correlation duplicating 2 or 1361 // more triangles is profitable, despite the calculations assuming 1362 // independence. 1363 if (Chain.count() < TriangleChainCount) 1364 continue; 1365 MachineBasicBlock *dst = Chain.Edges.back(); 1366 Chain.Edges.pop_back(); 1367 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1368 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1369 << getBlockName(dst) 1370 << " as pre-computed based on triangles.\n"); 1371 1372 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1373 assert(InsertResult.second && "Block seen twice."); 1374 (void)InsertResult; 1375 1376 dst = src; 1377 } 1378 } 1379 } 1380 1381 // When profile is not present, return the StaticLikelyProb. 1382 // When profile is available, we need to handle the triangle-shape CFG. 1383 static BranchProbability getLayoutSuccessorProbThreshold( 1384 const MachineBasicBlock *BB) { 1385 if (!BB->getParent()->getFunction().hasProfileData()) 1386 return BranchProbability(StaticLikelyProb, 100); 1387 if (BB->succ_size() == 2) { 1388 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1389 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1390 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1391 /* See case 1 below for the cost analysis. For BB->Succ to 1392 * be taken with smaller cost, the following needs to hold: 1393 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1394 * So the threshold T in the calculation below 1395 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1396 * So T / (1 - T) = 2, Yielding T = 2/3 1397 * Also adding user specified branch bias, we have 1398 * T = (2/3)*(ProfileLikelyProb/50) 1399 * = (2*ProfileLikelyProb)/150) 1400 */ 1401 return BranchProbability(2 * ProfileLikelyProb, 150); 1402 } 1403 } 1404 return BranchProbability(ProfileLikelyProb, 100); 1405 } 1406 1407 /// Checks to see if the layout candidate block \p Succ has a better layout 1408 /// predecessor than \c BB. If yes, returns true. 1409 /// \p SuccProb: The probability adjusted for only remaining blocks. 1410 /// Only used for logging 1411 /// \p RealSuccProb: The un-adjusted probability. 1412 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1413 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1414 /// considered 1415 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1416 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1417 const BlockChain &SuccChain, BranchProbability SuccProb, 1418 BranchProbability RealSuccProb, const BlockChain &Chain, 1419 const BlockFilterSet *BlockFilter) { 1420 1421 // There isn't a better layout when there are no unscheduled predecessors. 1422 if (SuccChain.UnscheduledPredecessors == 0) 1423 return false; 1424 1425 // There are two basic scenarios here: 1426 // ------------------------------------- 1427 // Case 1: triangular shape CFG (if-then): 1428 // BB 1429 // | \ 1430 // | \ 1431 // | Pred 1432 // | / 1433 // Succ 1434 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1435 // set Succ as the layout successor of BB. Picking Succ as BB's 1436 // successor breaks the CFG constraints (FIXME: define these constraints). 1437 // With this layout, Pred BB 1438 // is forced to be outlined, so the overall cost will be cost of the 1439 // branch taken from BB to Pred, plus the cost of back taken branch 1440 // from Pred to Succ, as well as the additional cost associated 1441 // with the needed unconditional jump instruction from Pred To Succ. 1442 1443 // The cost of the topological order layout is the taken branch cost 1444 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1445 // must hold: 1446 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1447 // < freq(BB->Succ) * taken_branch_cost. 1448 // Ignoring unconditional jump cost, we get 1449 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1450 // prob(BB->Succ) > 2 * prob(BB->Pred) 1451 // 1452 // When real profile data is available, we can precisely compute the 1453 // probability threshold that is needed for edge BB->Succ to be considered. 1454 // Without profile data, the heuristic requires the branch bias to be 1455 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1456 // ----------------------------------------------------------------- 1457 // Case 2: diamond like CFG (if-then-else): 1458 // S 1459 // / \ 1460 // | \ 1461 // BB Pred 1462 // \ / 1463 // Succ 1464 // .. 1465 // 1466 // The current block is BB and edge BB->Succ is now being evaluated. 1467 // Note that edge S->BB was previously already selected because 1468 // prob(S->BB) > prob(S->Pred). 1469 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1470 // choose Pred, we will have a topological ordering as shown on the left 1471 // in the picture below. If we choose Succ, we have the solution as shown 1472 // on the right: 1473 // 1474 // topo-order: 1475 // 1476 // S----- ---S 1477 // | | | | 1478 // ---BB | | BB 1479 // | | | | 1480 // | Pred-- | Succ-- 1481 // | | | | 1482 // ---Succ ---Pred-- 1483 // 1484 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1485 // = freq(S->Pred) + freq(S->BB) 1486 // 1487 // If we have profile data (i.e, branch probabilities can be trusted), the 1488 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1489 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1490 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1491 // means the cost of topological order is greater. 1492 // When profile data is not available, however, we need to be more 1493 // conservative. If the branch prediction is wrong, breaking the topo-order 1494 // will actually yield a layout with large cost. For this reason, we need 1495 // strong biased branch at block S with Prob(S->BB) in order to select 1496 // BB->Succ. This is equivalent to looking the CFG backward with backward 1497 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1498 // profile data). 1499 // -------------------------------------------------------------------------- 1500 // Case 3: forked diamond 1501 // S 1502 // / \ 1503 // / \ 1504 // BB Pred 1505 // | \ / | 1506 // | \ / | 1507 // | X | 1508 // | / \ | 1509 // | / \ | 1510 // S1 S2 1511 // 1512 // The current block is BB and edge BB->S1 is now being evaluated. 1513 // As above S->BB was already selected because 1514 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1515 // 1516 // topo-order: 1517 // 1518 // S-------| ---S 1519 // | | | | 1520 // ---BB | | BB 1521 // | | | | 1522 // | Pred----| | S1---- 1523 // | | | | 1524 // --(S1 or S2) ---Pred-- 1525 // | 1526 // S2 1527 // 1528 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1529 // + min(freq(Pred->S1), freq(Pred->S2)) 1530 // Non-topo-order cost: 1531 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1532 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1533 // is 0. Then the non topo layout is better when 1534 // freq(S->Pred) < freq(BB->S1). 1535 // This is exactly what is checked below. 1536 // Note there are other shapes that apply (Pred may not be a single block, 1537 // but they all fit this general pattern.) 1538 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1539 1540 // Make sure that a hot successor doesn't have a globally more 1541 // important predecessor. 1542 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1543 bool BadCFGConflict = false; 1544 1545 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1546 BlockChain *PredChain = BlockToChain[Pred]; 1547 if (Pred == Succ || PredChain == &SuccChain || 1548 (BlockFilter && !BlockFilter->count(Pred)) || 1549 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1550 // This check is redundant except for look ahead. This function is 1551 // called for lookahead by isProfitableToTailDup when BB hasn't been 1552 // placed yet. 1553 (Pred == BB)) 1554 continue; 1555 // Do backward checking. 1556 // For all cases above, we need a backward checking to filter out edges that 1557 // are not 'strongly' biased. 1558 // BB Pred 1559 // \ / 1560 // Succ 1561 // We select edge BB->Succ if 1562 // freq(BB->Succ) > freq(Succ) * HotProb 1563 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1564 // HotProb 1565 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1566 // Case 1 is covered too, because the first equation reduces to: 1567 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1568 BlockFrequency PredEdgeFreq = 1569 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1570 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1571 BadCFGConflict = true; 1572 break; 1573 } 1574 } 1575 1576 if (BadCFGConflict) { 1577 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1578 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1579 return true; 1580 } 1581 1582 return false; 1583 } 1584 1585 /// Select the best successor for a block. 1586 /// 1587 /// This looks across all successors of a particular block and attempts to 1588 /// select the "best" one to be the layout successor. It only considers direct 1589 /// successors which also pass the block filter. It will attempt to avoid 1590 /// breaking CFG structure, but cave and break such structures in the case of 1591 /// very hot successor edges. 1592 /// 1593 /// \returns The best successor block found, or null if none are viable, along 1594 /// with a boolean indicating if tail duplication is necessary. 1595 MachineBlockPlacement::BlockAndTailDupResult 1596 MachineBlockPlacement::selectBestSuccessor( 1597 const MachineBasicBlock *BB, const BlockChain &Chain, 1598 const BlockFilterSet *BlockFilter) { 1599 const BranchProbability HotProb(StaticLikelyProb, 100); 1600 1601 BlockAndTailDupResult BestSucc = { nullptr, false }; 1602 auto BestProb = BranchProbability::getZero(); 1603 1604 SmallVector<MachineBasicBlock *, 4> Successors; 1605 auto AdjustedSumProb = 1606 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1607 1608 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1609 << "\n"); 1610 1611 // if we already precomputed the best successor for BB, return that if still 1612 // applicable. 1613 auto FoundEdge = ComputedEdges.find(BB); 1614 if (FoundEdge != ComputedEdges.end()) { 1615 MachineBasicBlock *Succ = FoundEdge->second.BB; 1616 ComputedEdges.erase(FoundEdge); 1617 BlockChain *SuccChain = BlockToChain[Succ]; 1618 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1619 SuccChain != &Chain && Succ == *SuccChain->begin()) 1620 return FoundEdge->second; 1621 } 1622 1623 // if BB is part of a trellis, Use the trellis to determine the optimal 1624 // fallthrough edges 1625 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1626 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1627 BlockFilter); 1628 1629 // For blocks with CFG violations, we may be able to lay them out anyway with 1630 // tail-duplication. We keep this vector so we can perform the probability 1631 // calculations the minimum number of times. 1632 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1633 DupCandidates; 1634 for (MachineBasicBlock *Succ : Successors) { 1635 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1636 BranchProbability SuccProb = 1637 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1638 1639 BlockChain &SuccChain = *BlockToChain[Succ]; 1640 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1641 // predecessor that yields lower global cost. 1642 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1643 Chain, BlockFilter)) { 1644 // If tail duplication would make Succ profitable, place it. 1645 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1646 DupCandidates.emplace_back(SuccProb, Succ); 1647 continue; 1648 } 1649 1650 LLVM_DEBUG( 1651 dbgs() << " Candidate: " << getBlockName(Succ) 1652 << ", probability: " << SuccProb 1653 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1654 << "\n"); 1655 1656 if (BestSucc.BB && BestProb >= SuccProb) { 1657 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1658 continue; 1659 } 1660 1661 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1662 BestSucc.BB = Succ; 1663 BestProb = SuccProb; 1664 } 1665 // Handle the tail duplication candidates in order of decreasing probability. 1666 // Stop at the first one that is profitable. Also stop if they are less 1667 // profitable than BestSucc. Position is important because we preserve it and 1668 // prefer first best match. Here we aren't comparing in order, so we capture 1669 // the position instead. 1670 llvm::stable_sort(DupCandidates, 1671 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1672 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1673 return std::get<0>(L) > std::get<0>(R); 1674 }); 1675 for (auto &Tup : DupCandidates) { 1676 BranchProbability DupProb; 1677 MachineBasicBlock *Succ; 1678 std::tie(DupProb, Succ) = Tup; 1679 if (DupProb < BestProb) 1680 break; 1681 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1682 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1683 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1684 << ", probability: " << DupProb 1685 << " (Tail Duplicate)\n"); 1686 BestSucc.BB = Succ; 1687 BestSucc.ShouldTailDup = true; 1688 break; 1689 } 1690 } 1691 1692 if (BestSucc.BB) 1693 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1694 1695 return BestSucc; 1696 } 1697 1698 /// Select the best block from a worklist. 1699 /// 1700 /// This looks through the provided worklist as a list of candidate basic 1701 /// blocks and select the most profitable one to place. The definition of 1702 /// profitable only really makes sense in the context of a loop. This returns 1703 /// the most frequently visited block in the worklist, which in the case of 1704 /// a loop, is the one most desirable to be physically close to the rest of the 1705 /// loop body in order to improve i-cache behavior. 1706 /// 1707 /// \returns The best block found, or null if none are viable. 1708 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1709 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1710 // Once we need to walk the worklist looking for a candidate, cleanup the 1711 // worklist of already placed entries. 1712 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1713 // some code complexity) into the loop below. 1714 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1715 return BlockToChain.lookup(BB) == &Chain; 1716 }); 1717 1718 if (WorkList.empty()) 1719 return nullptr; 1720 1721 bool IsEHPad = WorkList[0]->isEHPad(); 1722 1723 MachineBasicBlock *BestBlock = nullptr; 1724 BlockFrequency BestFreq; 1725 for (MachineBasicBlock *MBB : WorkList) { 1726 assert(MBB->isEHPad() == IsEHPad && 1727 "EHPad mismatch between block and work list."); 1728 1729 BlockChain &SuccChain = *BlockToChain[MBB]; 1730 if (&SuccChain == &Chain) 1731 continue; 1732 1733 assert(SuccChain.UnscheduledPredecessors == 0 && 1734 "Found CFG-violating block"); 1735 1736 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1737 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> " 1738 << printBlockFreq(MBFI->getMBFI(), CandidateFreq) 1739 << " (freq)\n"); 1740 1741 // For ehpad, we layout the least probable first as to avoid jumping back 1742 // from least probable landingpads to more probable ones. 1743 // 1744 // FIXME: Using probability is probably (!) not the best way to achieve 1745 // this. We should probably have a more principled approach to layout 1746 // cleanup code. 1747 // 1748 // The goal is to get: 1749 // 1750 // +--------------------------+ 1751 // | V 1752 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1753 // 1754 // Rather than: 1755 // 1756 // +-------------------------------------+ 1757 // V | 1758 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1759 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1760 continue; 1761 1762 BestBlock = MBB; 1763 BestFreq = CandidateFreq; 1764 } 1765 1766 return BestBlock; 1767 } 1768 1769 /// Retrieve the first unplaced basic block in the entire function. 1770 /// 1771 /// This routine is called when we are unable to use the CFG to walk through 1772 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1773 /// We walk through the function's blocks in order, starting from the 1774 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1775 /// re-scanning the entire sequence on repeated calls to this routine. 1776 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1777 const BlockChain &PlacedChain, 1778 MachineFunction::iterator &PrevUnplacedBlockIt) { 1779 1780 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1781 ++I) { 1782 if (BlockToChain[&*I] != &PlacedChain) { 1783 PrevUnplacedBlockIt = I; 1784 // Now select the head of the chain to which the unplaced block belongs 1785 // as the block to place. This will force the entire chain to be placed, 1786 // and satisfies the requirements of merging chains. 1787 return *BlockToChain[&*I]->begin(); 1788 } 1789 } 1790 return nullptr; 1791 } 1792 1793 /// Retrieve the first unplaced basic block among the blocks in BlockFilter. 1794 /// 1795 /// This is similar to getFirstUnplacedBlock for the entire function, but since 1796 /// the size of BlockFilter is typically far less than the number of blocks in 1797 /// the entire function, iterating through the BlockFilter is more efficient. 1798 /// When processing the entire funciton, using the version without BlockFilter 1799 /// has a complexity of #(loops in function) * #(blocks in function), while this 1800 /// version has a complexity of sum(#(loops in block) foreach block in function) 1801 /// which is always smaller. For long function mostly sequential in structure, 1802 /// the complexity is amortized to 1 * #(blocks in function). 1803 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1804 const BlockChain &PlacedChain, 1805 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 1806 const BlockFilterSet *BlockFilter) { 1807 assert(BlockFilter); 1808 for (; PrevUnplacedBlockInFilterIt != BlockFilter->end(); 1809 ++PrevUnplacedBlockInFilterIt) { 1810 BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt]; 1811 if (C != &PlacedChain) { 1812 return *C->begin(); 1813 } 1814 } 1815 return nullptr; 1816 } 1817 1818 void MachineBlockPlacement::fillWorkLists( 1819 const MachineBasicBlock *MBB, 1820 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1821 const BlockFilterSet *BlockFilter = nullptr) { 1822 BlockChain &Chain = *BlockToChain[MBB]; 1823 if (!UpdatedPreds.insert(&Chain).second) 1824 return; 1825 1826 assert( 1827 Chain.UnscheduledPredecessors == 0 && 1828 "Attempting to place block with unscheduled predecessors in worklist."); 1829 for (MachineBasicBlock *ChainBB : Chain) { 1830 assert(BlockToChain[ChainBB] == &Chain && 1831 "Block in chain doesn't match BlockToChain map."); 1832 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1833 if (BlockFilter && !BlockFilter->count(Pred)) 1834 continue; 1835 if (BlockToChain[Pred] == &Chain) 1836 continue; 1837 ++Chain.UnscheduledPredecessors; 1838 } 1839 } 1840 1841 if (Chain.UnscheduledPredecessors != 0) 1842 return; 1843 1844 MachineBasicBlock *BB = *Chain.begin(); 1845 if (BB->isEHPad()) 1846 EHPadWorkList.push_back(BB); 1847 else 1848 BlockWorkList.push_back(BB); 1849 } 1850 1851 void MachineBlockPlacement::buildChain( 1852 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1853 BlockFilterSet *BlockFilter) { 1854 assert(HeadBB && "BB must not be null.\n"); 1855 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1856 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1857 BlockFilterSet::iterator PrevUnplacedBlockInFilterIt; 1858 if (BlockFilter) 1859 PrevUnplacedBlockInFilterIt = BlockFilter->begin(); 1860 1861 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1862 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1863 MachineBasicBlock *BB = *std::prev(Chain.end()); 1864 while (true) { 1865 assert(BB && "null block found at end of chain in loop."); 1866 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1867 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1868 1869 1870 // Look for the best viable successor if there is one to place immediately 1871 // after this block. 1872 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1873 MachineBasicBlock* BestSucc = Result.BB; 1874 bool ShouldTailDup = Result.ShouldTailDup; 1875 if (allowTailDupPlacement()) 1876 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1877 Chain, 1878 BlockFilter)); 1879 1880 // If an immediate successor isn't available, look for the best viable 1881 // block among those we've identified as not violating the loop's CFG at 1882 // this point. This won't be a fallthrough, but it will increase locality. 1883 if (!BestSucc) 1884 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1885 if (!BestSucc) 1886 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1887 1888 if (!BestSucc) { 1889 if (BlockFilter) 1890 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt, 1891 BlockFilter); 1892 else 1893 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt); 1894 if (!BestSucc) 1895 break; 1896 1897 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1898 "layout successor until the CFG reduces\n"); 1899 } 1900 1901 // Placement may have changed tail duplication opportunities. 1902 // Check for that now. 1903 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1904 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1905 BlockFilter, PrevUnplacedBlockIt, 1906 PrevUnplacedBlockInFilterIt); 1907 // If the chosen successor was duplicated into BB, don't bother laying 1908 // it out, just go round the loop again with BB as the chain end. 1909 if (!BB->isSuccessor(BestSucc)) 1910 continue; 1911 } 1912 1913 // Place this block, updating the datastructures to reflect its placement. 1914 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1915 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1916 // we selected a successor that didn't fit naturally into the CFG. 1917 SuccChain.UnscheduledPredecessors = 0; 1918 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1919 << getBlockName(BestSucc) << "\n"); 1920 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1921 Chain.merge(BestSucc, &SuccChain); 1922 BB = *std::prev(Chain.end()); 1923 } 1924 1925 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1926 << getBlockName(*Chain.begin()) << "\n"); 1927 } 1928 1929 // If bottom of block BB has only one successor OldTop, in most cases it is 1930 // profitable to move it before OldTop, except the following case: 1931 // 1932 // -->OldTop<- 1933 // | . | 1934 // | . | 1935 // | . | 1936 // ---Pred | 1937 // | | 1938 // BB----- 1939 // 1940 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1941 // layout the other successor below it, so it can't reduce taken branch. 1942 // In this case we keep its original layout. 1943 bool 1944 MachineBlockPlacement::canMoveBottomBlockToTop( 1945 const MachineBasicBlock *BottomBlock, 1946 const MachineBasicBlock *OldTop) { 1947 if (BottomBlock->pred_size() != 1) 1948 return true; 1949 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1950 if (Pred->succ_size() != 2) 1951 return true; 1952 1953 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1954 if (OtherBB == BottomBlock) 1955 OtherBB = *Pred->succ_rbegin(); 1956 if (OtherBB == OldTop) 1957 return false; 1958 1959 return true; 1960 } 1961 1962 // Find out the possible fall through frequence to the top of a loop. 1963 BlockFrequency 1964 MachineBlockPlacement::TopFallThroughFreq( 1965 const MachineBasicBlock *Top, 1966 const BlockFilterSet &LoopBlockSet) { 1967 BlockFrequency MaxFreq = BlockFrequency(0); 1968 for (MachineBasicBlock *Pred : Top->predecessors()) { 1969 BlockChain *PredChain = BlockToChain[Pred]; 1970 if (!LoopBlockSet.count(Pred) && 1971 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1972 // Found a Pred block can be placed before Top. 1973 // Check if Top is the best successor of Pred. 1974 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1975 bool TopOK = true; 1976 for (MachineBasicBlock *Succ : Pred->successors()) { 1977 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1978 BlockChain *SuccChain = BlockToChain[Succ]; 1979 // Check if Succ can be placed after Pred. 1980 // Succ should not be in any chain, or it is the head of some chain. 1981 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1982 (!SuccChain || Succ == *SuccChain->begin())) { 1983 TopOK = false; 1984 break; 1985 } 1986 } 1987 if (TopOK) { 1988 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1989 MBPI->getEdgeProbability(Pred, Top); 1990 if (EdgeFreq > MaxFreq) 1991 MaxFreq = EdgeFreq; 1992 } 1993 } 1994 } 1995 return MaxFreq; 1996 } 1997 1998 // Compute the fall through gains when move NewTop before OldTop. 1999 // 2000 // In following diagram, edges marked as "-" are reduced fallthrough, edges 2001 // marked as "+" are increased fallthrough, this function computes 2002 // 2003 // SUM(increased fallthrough) - SUM(decreased fallthrough) 2004 // 2005 // | 2006 // | - 2007 // V 2008 // --->OldTop 2009 // | . 2010 // | . 2011 // +| . + 2012 // | Pred ---> 2013 // | |- 2014 // | V 2015 // --- NewTop <--- 2016 // |- 2017 // V 2018 // 2019 BlockFrequency 2020 MachineBlockPlacement::FallThroughGains( 2021 const MachineBasicBlock *NewTop, 2022 const MachineBasicBlock *OldTop, 2023 const MachineBasicBlock *ExitBB, 2024 const BlockFilterSet &LoopBlockSet) { 2025 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 2026 BlockFrequency FallThrough2Exit = BlockFrequency(0); 2027 if (ExitBB) 2028 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 2029 MBPI->getEdgeProbability(NewTop, ExitBB); 2030 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 2031 MBPI->getEdgeProbability(NewTop, OldTop); 2032 2033 // Find the best Pred of NewTop. 2034 MachineBasicBlock *BestPred = nullptr; 2035 BlockFrequency FallThroughFromPred = BlockFrequency(0); 2036 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 2037 if (!LoopBlockSet.count(Pred)) 2038 continue; 2039 BlockChain *PredChain = BlockToChain[Pred]; 2040 if (!PredChain || Pred == *std::prev(PredChain->end())) { 2041 BlockFrequency EdgeFreq = 2042 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop); 2043 if (EdgeFreq > FallThroughFromPred) { 2044 FallThroughFromPred = EdgeFreq; 2045 BestPred = Pred; 2046 } 2047 } 2048 } 2049 2050 // If NewTop is not placed after Pred, another successor can be placed 2051 // after Pred. 2052 BlockFrequency NewFreq = BlockFrequency(0); 2053 if (BestPred) { 2054 for (MachineBasicBlock *Succ : BestPred->successors()) { 2055 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 2056 continue; 2057 if (ComputedEdges.contains(Succ)) 2058 continue; 2059 BlockChain *SuccChain = BlockToChain[Succ]; 2060 if ((SuccChain && (Succ != *SuccChain->begin())) || 2061 (SuccChain == BlockToChain[BestPred])) 2062 continue; 2063 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 2064 MBPI->getEdgeProbability(BestPred, Succ); 2065 if (EdgeFreq > NewFreq) 2066 NewFreq = EdgeFreq; 2067 } 2068 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2069 MBPI->getEdgeProbability(BestPred, NewTop); 2070 if (NewFreq > OrigEdgeFreq) { 2071 // If NewTop is not the best successor of Pred, then Pred doesn't 2072 // fallthrough to NewTop. So there is no FallThroughFromPred and 2073 // NewFreq. 2074 NewFreq = BlockFrequency(0); 2075 FallThroughFromPred = BlockFrequency(0); 2076 } 2077 } 2078 2079 BlockFrequency Result = BlockFrequency(0); 2080 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2081 BlockFrequency Lost = 2082 FallThrough2Top + FallThrough2Exit + FallThroughFromPred; 2083 if (Gains > Lost) 2084 Result = Gains - Lost; 2085 return Result; 2086 } 2087 2088 /// Helper function of findBestLoopTop. Find the best loop top block 2089 /// from predecessors of old top. 2090 /// 2091 /// Look for a block which is strictly better than the old top for laying 2092 /// out before the old top of the loop. This looks for only two patterns: 2093 /// 2094 /// 1. a block has only one successor, the old loop top 2095 /// 2096 /// Because such a block will always result in an unconditional jump, 2097 /// rotating it in front of the old top is always profitable. 2098 /// 2099 /// 2. a block has two successors, one is old top, another is exit 2100 /// and it has more than one predecessors 2101 /// 2102 /// If it is below one of its predecessors P, only P can fall through to 2103 /// it, all other predecessors need a jump to it, and another conditional 2104 /// jump to loop header. If it is moved before loop header, all its 2105 /// predecessors jump to it, then fall through to loop header. So all its 2106 /// predecessors except P can reduce one taken branch. 2107 /// At the same time, move it before old top increases the taken branch 2108 /// to loop exit block, so the reduced taken branch will be compared with 2109 /// the increased taken branch to the loop exit block. 2110 MachineBasicBlock * 2111 MachineBlockPlacement::findBestLoopTopHelper( 2112 MachineBasicBlock *OldTop, 2113 const MachineLoop &L, 2114 const BlockFilterSet &LoopBlockSet) { 2115 // Check that the header hasn't been fused with a preheader block due to 2116 // crazy branches. If it has, we need to start with the header at the top to 2117 // prevent pulling the preheader into the loop body. 2118 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2119 if (!LoopBlockSet.count(*HeaderChain.begin())) 2120 return OldTop; 2121 if (OldTop != *HeaderChain.begin()) 2122 return OldTop; 2123 2124 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2125 << "\n"); 2126 2127 BlockFrequency BestGains = BlockFrequency(0); 2128 MachineBasicBlock *BestPred = nullptr; 2129 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2130 if (!LoopBlockSet.count(Pred)) 2131 continue; 2132 if (Pred == L.getHeader()) 2133 continue; 2134 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2135 << Pred->succ_size() << " successors, " 2136 << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n"); 2137 if (Pred->succ_size() > 2) 2138 continue; 2139 2140 MachineBasicBlock *OtherBB = nullptr; 2141 if (Pred->succ_size() == 2) { 2142 OtherBB = *Pred->succ_begin(); 2143 if (OtherBB == OldTop) 2144 OtherBB = *Pred->succ_rbegin(); 2145 } 2146 2147 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2148 continue; 2149 2150 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2151 LoopBlockSet); 2152 if ((Gains > BlockFrequency(0)) && 2153 (Gains > BestGains || 2154 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2155 BestPred = Pred; 2156 BestGains = Gains; 2157 } 2158 } 2159 2160 // If no direct predecessor is fine, just use the loop header. 2161 if (!BestPred) { 2162 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2163 return OldTop; 2164 } 2165 2166 // Walk backwards through any straight line of predecessors. 2167 while (BestPred->pred_size() == 1 && 2168 (*BestPred->pred_begin())->succ_size() == 1 && 2169 *BestPred->pred_begin() != L.getHeader()) 2170 BestPred = *BestPred->pred_begin(); 2171 2172 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2173 return BestPred; 2174 } 2175 2176 /// Find the best loop top block for layout. 2177 /// 2178 /// This function iteratively calls findBestLoopTopHelper, until no new better 2179 /// BB can be found. 2180 MachineBasicBlock * 2181 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2182 const BlockFilterSet &LoopBlockSet) { 2183 // Placing the latch block before the header may introduce an extra branch 2184 // that skips this block the first time the loop is executed, which we want 2185 // to avoid when optimising for size. 2186 // FIXME: in theory there is a case that does not introduce a new branch, 2187 // i.e. when the layout predecessor does not fallthrough to the loop header. 2188 // In practice this never happens though: there always seems to be a preheader 2189 // that can fallthrough and that is also placed before the header. 2190 bool OptForSize = F->getFunction().hasOptSize() || 2191 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2192 if (OptForSize) 2193 return L.getHeader(); 2194 2195 MachineBasicBlock *OldTop = nullptr; 2196 MachineBasicBlock *NewTop = L.getHeader(); 2197 while (NewTop != OldTop) { 2198 OldTop = NewTop; 2199 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2200 if (NewTop != OldTop) 2201 ComputedEdges[NewTop] = { OldTop, false }; 2202 } 2203 return NewTop; 2204 } 2205 2206 /// Find the best loop exiting block for layout. 2207 /// 2208 /// This routine implements the logic to analyze the loop looking for the best 2209 /// block to layout at the top of the loop. Typically this is done to maximize 2210 /// fallthrough opportunities. 2211 MachineBasicBlock * 2212 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2213 const BlockFilterSet &LoopBlockSet, 2214 BlockFrequency &ExitFreq) { 2215 // We don't want to layout the loop linearly in all cases. If the loop header 2216 // is just a normal basic block in the loop, we want to look for what block 2217 // within the loop is the best one to layout at the top. However, if the loop 2218 // header has be pre-merged into a chain due to predecessors not having 2219 // analyzable branches, *and* the predecessor it is merged with is *not* part 2220 // of the loop, rotating the header into the middle of the loop will create 2221 // a non-contiguous range of blocks which is Very Bad. So start with the 2222 // header and only rotate if safe. 2223 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2224 if (!LoopBlockSet.count(*HeaderChain.begin())) 2225 return nullptr; 2226 2227 BlockFrequency BestExitEdgeFreq; 2228 unsigned BestExitLoopDepth = 0; 2229 MachineBasicBlock *ExitingBB = nullptr; 2230 // If there are exits to outer loops, loop rotation can severely limit 2231 // fallthrough opportunities unless it selects such an exit. Keep a set of 2232 // blocks where rotating to exit with that block will reach an outer loop. 2233 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2234 2235 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2236 << getBlockName(L.getHeader()) << "\n"); 2237 for (MachineBasicBlock *MBB : L.getBlocks()) { 2238 BlockChain &Chain = *BlockToChain[MBB]; 2239 // Ensure that this block is at the end of a chain; otherwise it could be 2240 // mid-way through an inner loop or a successor of an unanalyzable branch. 2241 if (MBB != *std::prev(Chain.end())) 2242 continue; 2243 2244 // Now walk the successors. We need to establish whether this has a viable 2245 // exiting successor and whether it has a viable non-exiting successor. 2246 // We store the old exiting state and restore it if a viable looping 2247 // successor isn't found. 2248 MachineBasicBlock *OldExitingBB = ExitingBB; 2249 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2250 bool HasLoopingSucc = false; 2251 for (MachineBasicBlock *Succ : MBB->successors()) { 2252 if (Succ->isEHPad()) 2253 continue; 2254 if (Succ == MBB) 2255 continue; 2256 BlockChain &SuccChain = *BlockToChain[Succ]; 2257 // Don't split chains, either this chain or the successor's chain. 2258 if (&Chain == &SuccChain) { 2259 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2260 << getBlockName(Succ) << " (chain conflict)\n"); 2261 continue; 2262 } 2263 2264 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2265 if (LoopBlockSet.count(Succ)) { 2266 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2267 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2268 HasLoopingSucc = true; 2269 continue; 2270 } 2271 2272 unsigned SuccLoopDepth = 0; 2273 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2274 SuccLoopDepth = ExitLoop->getLoopDepth(); 2275 if (ExitLoop->contains(&L)) 2276 BlocksExitingToOuterLoop.insert(MBB); 2277 } 2278 2279 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2280 LLVM_DEBUG( 2281 dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2282 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (" 2283 << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n"); 2284 // Note that we bias this toward an existing layout successor to retain 2285 // incoming order in the absence of better information. The exit must have 2286 // a frequency higher than the current exit before we consider breaking 2287 // the layout. 2288 BranchProbability Bias(100 - ExitBlockBias, 100); 2289 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2290 ExitEdgeFreq > BestExitEdgeFreq || 2291 (MBB->isLayoutSuccessor(Succ) && 2292 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2293 BestExitEdgeFreq = ExitEdgeFreq; 2294 ExitingBB = MBB; 2295 } 2296 } 2297 2298 if (!HasLoopingSucc) { 2299 // Restore the old exiting state, no viable looping successor was found. 2300 ExitingBB = OldExitingBB; 2301 BestExitEdgeFreq = OldBestExitEdgeFreq; 2302 } 2303 } 2304 // Without a candidate exiting block or with only a single block in the 2305 // loop, just use the loop header to layout the loop. 2306 if (!ExitingBB) { 2307 LLVM_DEBUG( 2308 dbgs() << " No other candidate exit blocks, using loop header\n"); 2309 return nullptr; 2310 } 2311 if (L.getNumBlocks() == 1) { 2312 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2313 return nullptr; 2314 } 2315 2316 // Also, if we have exit blocks which lead to outer loops but didn't select 2317 // one of them as the exiting block we are rotating toward, disable loop 2318 // rotation altogether. 2319 if (!BlocksExitingToOuterLoop.empty() && 2320 !BlocksExitingToOuterLoop.count(ExitingBB)) 2321 return nullptr; 2322 2323 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2324 << "\n"); 2325 ExitFreq = BestExitEdgeFreq; 2326 return ExitingBB; 2327 } 2328 2329 /// Check if there is a fallthrough to loop header Top. 2330 /// 2331 /// 1. Look for a Pred that can be layout before Top. 2332 /// 2. Check if Top is the most possible successor of Pred. 2333 bool 2334 MachineBlockPlacement::hasViableTopFallthrough( 2335 const MachineBasicBlock *Top, 2336 const BlockFilterSet &LoopBlockSet) { 2337 for (MachineBasicBlock *Pred : Top->predecessors()) { 2338 BlockChain *PredChain = BlockToChain[Pred]; 2339 if (!LoopBlockSet.count(Pred) && 2340 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2341 // Found a Pred block can be placed before Top. 2342 // Check if Top is the best successor of Pred. 2343 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2344 bool TopOK = true; 2345 for (MachineBasicBlock *Succ : Pred->successors()) { 2346 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2347 BlockChain *SuccChain = BlockToChain[Succ]; 2348 // Check if Succ can be placed after Pred. 2349 // Succ should not be in any chain, or it is the head of some chain. 2350 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2351 TopOK = false; 2352 break; 2353 } 2354 } 2355 if (TopOK) 2356 return true; 2357 } 2358 } 2359 return false; 2360 } 2361 2362 /// Attempt to rotate an exiting block to the bottom of the loop. 2363 /// 2364 /// Once we have built a chain, try to rotate it to line up the hot exit block 2365 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2366 /// branches. For example, if the loop has fallthrough into its header and out 2367 /// of its bottom already, don't rotate it. 2368 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2369 const MachineBasicBlock *ExitingBB, 2370 BlockFrequency ExitFreq, 2371 const BlockFilterSet &LoopBlockSet) { 2372 if (!ExitingBB) 2373 return; 2374 2375 MachineBasicBlock *Top = *LoopChain.begin(); 2376 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2377 2378 // If ExitingBB is already the last one in a chain then nothing to do. 2379 if (Bottom == ExitingBB) 2380 return; 2381 2382 // The entry block should always be the first BB in a function. 2383 if (Top->isEntryBlock()) 2384 return; 2385 2386 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2387 2388 // If the header has viable fallthrough, check whether the current loop 2389 // bottom is a viable exiting block. If so, bail out as rotating will 2390 // introduce an unnecessary branch. 2391 if (ViableTopFallthrough) { 2392 for (MachineBasicBlock *Succ : Bottom->successors()) { 2393 BlockChain *SuccChain = BlockToChain[Succ]; 2394 if (!LoopBlockSet.count(Succ) && 2395 (!SuccChain || Succ == *SuccChain->begin())) 2396 return; 2397 } 2398 2399 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2400 // frequency is larger than top fallthrough. 2401 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2402 if (FallThrough2Top >= ExitFreq) 2403 return; 2404 } 2405 2406 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2407 if (ExitIt == LoopChain.end()) 2408 return; 2409 2410 // Rotating a loop exit to the bottom when there is a fallthrough to top 2411 // trades the entry fallthrough for an exit fallthrough. 2412 // If there is no bottom->top edge, but the chosen exit block does have 2413 // a fallthrough, we break that fallthrough for nothing in return. 2414 2415 // Let's consider an example. We have a built chain of basic blocks 2416 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2417 // By doing a rotation we get 2418 // Bk+1, ..., Bn, B1, ..., Bk 2419 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2420 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2421 // It might be compensated by fallthrough Bn -> B1. 2422 // So we have a condition to avoid creation of extra branch by loop rotation. 2423 // All below must be true to avoid loop rotation: 2424 // If there is a fallthrough to top (B1) 2425 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2426 // There is no fallthrough from bottom (Bn) to top (B1). 2427 // Please note that there is no exit fallthrough from Bn because we checked it 2428 // above. 2429 if (ViableTopFallthrough) { 2430 assert(std::next(ExitIt) != LoopChain.end() && 2431 "Exit should not be last BB"); 2432 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2433 if (ExitingBB->isSuccessor(NextBlockInChain)) 2434 if (!Bottom->isSuccessor(Top)) 2435 return; 2436 } 2437 2438 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2439 << " at bottom\n"); 2440 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2441 } 2442 2443 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2444 /// 2445 /// With profile data, we can determine the cost in terms of missed fall through 2446 /// opportunities when rotating a loop chain and select the best rotation. 2447 /// Basically, there are three kinds of cost to consider for each rotation: 2448 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2449 /// the loop to the loop header. 2450 /// 2. The possibly missed fall through edges (if they exist) from the loop 2451 /// exits to BB out of the loop. 2452 /// 3. The missed fall through edge (if it exists) from the last BB to the 2453 /// first BB in the loop chain. 2454 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2455 /// We select the best rotation with the smallest cost. 2456 void MachineBlockPlacement::rotateLoopWithProfile( 2457 BlockChain &LoopChain, const MachineLoop &L, 2458 const BlockFilterSet &LoopBlockSet) { 2459 auto RotationPos = LoopChain.end(); 2460 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2461 2462 // The entry block should always be the first BB in a function. 2463 if (ChainHeaderBB->isEntryBlock()) 2464 return; 2465 2466 BlockFrequency SmallestRotationCost = BlockFrequency::max(); 2467 2468 // A utility lambda that scales up a block frequency by dividing it by a 2469 // branch probability which is the reciprocal of the scale. 2470 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2471 unsigned Scale) -> BlockFrequency { 2472 if (Scale == 0) 2473 return BlockFrequency(0); 2474 // Use operator / between BlockFrequency and BranchProbability to implement 2475 // saturating multiplication. 2476 return Freq / BranchProbability(1, Scale); 2477 }; 2478 2479 // Compute the cost of the missed fall-through edge to the loop header if the 2480 // chain head is not the loop header. As we only consider natural loops with 2481 // single header, this computation can be done only once. 2482 BlockFrequency HeaderFallThroughCost(0); 2483 for (auto *Pred : ChainHeaderBB->predecessors()) { 2484 BlockChain *PredChain = BlockToChain[Pred]; 2485 if (!LoopBlockSet.count(Pred) && 2486 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2487 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2488 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2489 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2490 // If the predecessor has only an unconditional jump to the header, we 2491 // need to consider the cost of this jump. 2492 if (Pred->succ_size() == 1) 2493 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2494 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2495 } 2496 } 2497 2498 // Here we collect all exit blocks in the loop, and for each exit we find out 2499 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2500 // as the sum of frequencies of exit edges we collect here, excluding the exit 2501 // edge from the tail of the loop chain. 2502 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2503 for (auto *BB : LoopChain) { 2504 auto LargestExitEdgeProb = BranchProbability::getZero(); 2505 for (auto *Succ : BB->successors()) { 2506 BlockChain *SuccChain = BlockToChain[Succ]; 2507 if (!LoopBlockSet.count(Succ) && 2508 (!SuccChain || Succ == *SuccChain->begin())) { 2509 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2510 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2511 } 2512 } 2513 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2514 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2515 ExitsWithFreq.emplace_back(BB, ExitFreq); 2516 } 2517 } 2518 2519 // In this loop we iterate every block in the loop chain and calculate the 2520 // cost assuming the block is the head of the loop chain. When the loop ends, 2521 // we should have found the best candidate as the loop chain's head. 2522 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2523 EndIter = LoopChain.end(); 2524 Iter != EndIter; Iter++, TailIter++) { 2525 // TailIter is used to track the tail of the loop chain if the block we are 2526 // checking (pointed by Iter) is the head of the chain. 2527 if (TailIter == LoopChain.end()) 2528 TailIter = LoopChain.begin(); 2529 2530 auto TailBB = *TailIter; 2531 2532 // Calculate the cost by putting this BB to the top. 2533 BlockFrequency Cost = BlockFrequency(0); 2534 2535 // If the current BB is the loop header, we need to take into account the 2536 // cost of the missed fall through edge from outside of the loop to the 2537 // header. 2538 if (Iter != LoopChain.begin()) 2539 Cost += HeaderFallThroughCost; 2540 2541 // Collect the loop exit cost by summing up frequencies of all exit edges 2542 // except the one from the chain tail. 2543 for (auto &ExitWithFreq : ExitsWithFreq) 2544 if (TailBB != ExitWithFreq.first) 2545 Cost += ExitWithFreq.second; 2546 2547 // The cost of breaking the once fall-through edge from the tail to the top 2548 // of the loop chain. Here we need to consider three cases: 2549 // 1. If the tail node has only one successor, then we will get an 2550 // additional jmp instruction. So the cost here is (MisfetchCost + 2551 // JumpInstCost) * tail node frequency. 2552 // 2. If the tail node has two successors, then we may still get an 2553 // additional jmp instruction if the layout successor after the loop 2554 // chain is not its CFG successor. Note that the more frequently executed 2555 // jmp instruction will be put ahead of the other one. Assume the 2556 // frequency of those two branches are x and y, where x is the frequency 2557 // of the edge to the chain head, then the cost will be 2558 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2559 // 3. If the tail node has more than two successors (this rarely happens), 2560 // we won't consider any additional cost. 2561 if (TailBB->isSuccessor(*Iter)) { 2562 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2563 if (TailBB->succ_size() == 1) 2564 Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost); 2565 else if (TailBB->succ_size() == 2) { 2566 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2567 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2568 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2569 ? TailBBFreq * TailToHeadProb.getCompl() 2570 : TailToHeadFreq; 2571 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2572 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2573 } 2574 } 2575 2576 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2577 << getBlockName(*Iter) << " to the top: " 2578 << printBlockFreq(MBFI->getMBFI(), Cost) << "\n"); 2579 2580 if (Cost < SmallestRotationCost) { 2581 SmallestRotationCost = Cost; 2582 RotationPos = Iter; 2583 } 2584 } 2585 2586 if (RotationPos != LoopChain.end()) { 2587 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2588 << " to the top\n"); 2589 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2590 } 2591 } 2592 2593 /// Collect blocks in the given loop that are to be placed. 2594 /// 2595 /// When profile data is available, exclude cold blocks from the returned set; 2596 /// otherwise, collect all blocks in the loop. 2597 MachineBlockPlacement::BlockFilterSet 2598 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2599 BlockFilterSet LoopBlockSet; 2600 2601 // Filter cold blocks off from LoopBlockSet when profile data is available. 2602 // Collect the sum of frequencies of incoming edges to the loop header from 2603 // outside. If we treat the loop as a super block, this is the frequency of 2604 // the loop. Then for each block in the loop, we calculate the ratio between 2605 // its frequency and the frequency of the loop block. When it is too small, 2606 // don't add it to the loop chain. If there are outer loops, then this block 2607 // will be merged into the first outer loop chain for which this block is not 2608 // cold anymore. This needs precise profile data and we only do this when 2609 // profile data is available. 2610 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2611 BlockFrequency LoopFreq(0); 2612 for (auto *LoopPred : L.getHeader()->predecessors()) 2613 if (!L.contains(LoopPred)) 2614 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2615 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2616 2617 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2618 if (LoopBlockSet.count(LoopBB)) 2619 continue; 2620 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2621 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2622 continue; 2623 BlockChain *Chain = BlockToChain[LoopBB]; 2624 for (MachineBasicBlock *ChainBB : *Chain) 2625 LoopBlockSet.insert(ChainBB); 2626 } 2627 } else 2628 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2629 2630 return LoopBlockSet; 2631 } 2632 2633 /// Forms basic block chains from the natural loop structures. 2634 /// 2635 /// These chains are designed to preserve the existing *structure* of the code 2636 /// as much as possible. We can then stitch the chains together in a way which 2637 /// both preserves the topological structure and minimizes taken conditional 2638 /// branches. 2639 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2640 // First recurse through any nested loops, building chains for those inner 2641 // loops. 2642 for (const MachineLoop *InnerLoop : L) 2643 buildLoopChains(*InnerLoop); 2644 2645 assert(BlockWorkList.empty() && 2646 "BlockWorkList not empty when starting to build loop chains."); 2647 assert(EHPadWorkList.empty() && 2648 "EHPadWorkList not empty when starting to build loop chains."); 2649 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2650 2651 // Check if we have profile data for this function. If yes, we will rotate 2652 // this loop by modeling costs more precisely which requires the profile data 2653 // for better layout. 2654 bool RotateLoopWithProfile = 2655 ForcePreciseRotationCost || 2656 (PreciseRotationCost && F->getFunction().hasProfileData()); 2657 2658 // First check to see if there is an obviously preferable top block for the 2659 // loop. This will default to the header, but may end up as one of the 2660 // predecessors to the header if there is one which will result in strictly 2661 // fewer branches in the loop body. 2662 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2663 2664 // If we selected just the header for the loop top, look for a potentially 2665 // profitable exit block in the event that rotating the loop can eliminate 2666 // branches by placing an exit edge at the bottom. 2667 // 2668 // Loops are processed innermost to uttermost, make sure we clear 2669 // PreferredLoopExit before processing a new loop. 2670 PreferredLoopExit = nullptr; 2671 BlockFrequency ExitFreq; 2672 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2673 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2674 2675 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2676 2677 // FIXME: This is a really lame way of walking the chains in the loop: we 2678 // walk the blocks, and use a set to prevent visiting a particular chain 2679 // twice. 2680 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2681 assert(LoopChain.UnscheduledPredecessors == 0 && 2682 "LoopChain should not have unscheduled predecessors."); 2683 UpdatedPreds.insert(&LoopChain); 2684 2685 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2686 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2687 2688 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2689 2690 if (RotateLoopWithProfile) 2691 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2692 else 2693 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2694 2695 LLVM_DEBUG({ 2696 // Crash at the end so we get all of the debugging output first. 2697 bool BadLoop = false; 2698 if (LoopChain.UnscheduledPredecessors) { 2699 BadLoop = true; 2700 dbgs() << "Loop chain contains a block without its preds placed!\n" 2701 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2702 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2703 } 2704 for (MachineBasicBlock *ChainBB : LoopChain) { 2705 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2706 if (!LoopBlockSet.remove(ChainBB)) { 2707 // We don't mark the loop as bad here because there are real situations 2708 // where this can occur. For example, with an unanalyzable fallthrough 2709 // from a loop block to a non-loop block or vice versa. 2710 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2711 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2712 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2713 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2714 } 2715 } 2716 2717 if (!LoopBlockSet.empty()) { 2718 BadLoop = true; 2719 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2720 dbgs() << "Loop contains blocks never placed into a chain!\n" 2721 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2722 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2723 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2724 } 2725 assert(!BadLoop && "Detected problems with the placement of this loop."); 2726 }); 2727 2728 BlockWorkList.clear(); 2729 EHPadWorkList.clear(); 2730 } 2731 2732 void MachineBlockPlacement::buildCFGChains() { 2733 // Ensure that every BB in the function has an associated chain to simplify 2734 // the assumptions of the remaining algorithm. 2735 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2736 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2737 ++FI) { 2738 MachineBasicBlock *BB = &*FI; 2739 BlockChain *Chain = 2740 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2741 // Also, merge any blocks which we cannot reason about and must preserve 2742 // the exact fallthrough behavior for. 2743 while (true) { 2744 Cond.clear(); 2745 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2746 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2747 break; 2748 2749 MachineFunction::iterator NextFI = std::next(FI); 2750 MachineBasicBlock *NextBB = &*NextFI; 2751 // Ensure that the layout successor is a viable block, as we know that 2752 // fallthrough is a possibility. 2753 assert(NextFI != FE && "Can't fallthrough past the last block."); 2754 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2755 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2756 << "\n"); 2757 Chain->merge(NextBB, nullptr); 2758 #ifndef NDEBUG 2759 BlocksWithUnanalyzableExits.insert(&*BB); 2760 #endif 2761 FI = NextFI; 2762 BB = NextBB; 2763 } 2764 } 2765 2766 // Build any loop-based chains. 2767 PreferredLoopExit = nullptr; 2768 for (MachineLoop *L : *MLI) 2769 buildLoopChains(*L); 2770 2771 assert(BlockWorkList.empty() && 2772 "BlockWorkList should be empty before building final chain."); 2773 assert(EHPadWorkList.empty() && 2774 "EHPadWorkList should be empty before building final chain."); 2775 2776 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2777 for (MachineBasicBlock &MBB : *F) 2778 fillWorkLists(&MBB, UpdatedPreds); 2779 2780 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2781 buildChain(&F->front(), FunctionChain); 2782 2783 #ifndef NDEBUG 2784 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2785 #endif 2786 LLVM_DEBUG({ 2787 // Crash at the end so we get all of the debugging output first. 2788 bool BadFunc = false; 2789 FunctionBlockSetType FunctionBlockSet; 2790 for (MachineBasicBlock &MBB : *F) 2791 FunctionBlockSet.insert(&MBB); 2792 2793 for (MachineBasicBlock *ChainBB : FunctionChain) 2794 if (!FunctionBlockSet.erase(ChainBB)) { 2795 BadFunc = true; 2796 dbgs() << "Function chain contains a block not in the function!\n" 2797 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2798 } 2799 2800 if (!FunctionBlockSet.empty()) { 2801 BadFunc = true; 2802 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2803 dbgs() << "Function contains blocks never placed into a chain!\n" 2804 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2805 } 2806 assert(!BadFunc && "Detected problems with the block placement."); 2807 }); 2808 2809 // Remember original layout ordering, so we can update terminators after 2810 // reordering to point to the original layout successor. 2811 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2812 F->getNumBlockIDs()); 2813 { 2814 MachineBasicBlock *LastMBB = nullptr; 2815 for (auto &MBB : *F) { 2816 if (LastMBB != nullptr) 2817 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2818 LastMBB = &MBB; 2819 } 2820 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2821 } 2822 2823 // Splice the blocks into place. 2824 MachineFunction::iterator InsertPos = F->begin(); 2825 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2826 for (MachineBasicBlock *ChainBB : FunctionChain) { 2827 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2828 : " ... ") 2829 << getBlockName(ChainBB) << "\n"); 2830 if (InsertPos != MachineFunction::iterator(ChainBB)) 2831 F->splice(InsertPos, ChainBB); 2832 else 2833 ++InsertPos; 2834 2835 // Update the terminator of the previous block. 2836 if (ChainBB == *FunctionChain.begin()) 2837 continue; 2838 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2839 2840 // FIXME: It would be awesome of updateTerminator would just return rather 2841 // than assert when the branch cannot be analyzed in order to remove this 2842 // boiler plate. 2843 Cond.clear(); 2844 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2845 2846 #ifndef NDEBUG 2847 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2848 // Given the exact block placement we chose, we may actually not _need_ to 2849 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2850 // do that at this point is a bug. 2851 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2852 !PrevBB->canFallThrough()) && 2853 "Unexpected block with un-analyzable fallthrough!"); 2854 Cond.clear(); 2855 TBB = FBB = nullptr; 2856 } 2857 #endif 2858 2859 // The "PrevBB" is not yet updated to reflect current code layout, so, 2860 // o. it may fall-through to a block without explicit "goto" instruction 2861 // before layout, and no longer fall-through it after layout; or 2862 // o. just opposite. 2863 // 2864 // analyzeBranch() may return erroneous value for FBB when these two 2865 // situations take place. For the first scenario FBB is mistakenly set NULL; 2866 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2867 // mistakenly pointing to "*BI". 2868 // Thus, if the future change needs to use FBB before the layout is set, it 2869 // has to correct FBB first by using the code similar to the following: 2870 // 2871 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2872 // PrevBB->updateTerminator(); 2873 // Cond.clear(); 2874 // TBB = FBB = nullptr; 2875 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2876 // // FIXME: This should never take place. 2877 // TBB = FBB = nullptr; 2878 // } 2879 // } 2880 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2881 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2882 } 2883 } 2884 2885 // Fixup the last block. 2886 Cond.clear(); 2887 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2888 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2889 MachineBasicBlock *PrevBB = &F->back(); 2890 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2891 } 2892 2893 BlockWorkList.clear(); 2894 EHPadWorkList.clear(); 2895 } 2896 2897 void MachineBlockPlacement::optimizeBranches() { 2898 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2899 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2900 2901 // Now that all the basic blocks in the chain have the proper layout, 2902 // make a final call to analyzeBranch with AllowModify set. 2903 // Indeed, the target may be able to optimize the branches in a way we 2904 // cannot because all branches may not be analyzable. 2905 // E.g., the target may be able to remove an unconditional branch to 2906 // a fallthrough when it occurs after predicated terminators. 2907 for (MachineBasicBlock *ChainBB : FunctionChain) { 2908 Cond.clear(); 2909 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2910 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2911 // If PrevBB has a two-way branch, try to re-order the branches 2912 // such that we branch to the successor with higher probability first. 2913 if (TBB && !Cond.empty() && FBB && 2914 MBPI->getEdgeProbability(ChainBB, FBB) > 2915 MBPI->getEdgeProbability(ChainBB, TBB) && 2916 !TII->reverseBranchCondition(Cond)) { 2917 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2918 << getBlockName(ChainBB) << "\n"); 2919 LLVM_DEBUG(dbgs() << " Edge probability: " 2920 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2921 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2922 DebugLoc dl; // FIXME: this is nowhere 2923 TII->removeBranch(*ChainBB); 2924 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2925 } 2926 } 2927 } 2928 } 2929 2930 void MachineBlockPlacement::alignBlocks() { 2931 // Walk through the backedges of the function now that we have fully laid out 2932 // the basic blocks and align the destination of each backedge. We don't rely 2933 // exclusively on the loop info here so that we can align backedges in 2934 // unnatural CFGs and backedges that were introduced purely because of the 2935 // loop rotations done during this layout pass. 2936 if (F->getFunction().hasMinSize() || 2937 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2938 return; 2939 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2940 if (FunctionChain.begin() == FunctionChain.end()) 2941 return; // Empty chain. 2942 2943 const BranchProbability ColdProb(1, 5); // 20% 2944 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2945 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2946 for (MachineBasicBlock *ChainBB : FunctionChain) { 2947 if (ChainBB == *FunctionChain.begin()) 2948 continue; 2949 2950 // Don't align non-looping basic blocks. These are unlikely to execute 2951 // enough times to matter in practice. Note that we'll still handle 2952 // unnatural CFGs inside of a natural outer loop (the common case) and 2953 // rotated loops. 2954 MachineLoop *L = MLI->getLoopFor(ChainBB); 2955 if (!L) 2956 continue; 2957 2958 const Align TLIAlign = TLI->getPrefLoopAlignment(L); 2959 unsigned MDAlign = 1; 2960 MDNode *LoopID = L->getLoopID(); 2961 if (LoopID) { 2962 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 2963 MDNode *MD = dyn_cast<MDNode>(MDO); 2964 if (MD == nullptr) 2965 continue; 2966 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 2967 if (S == nullptr) 2968 continue; 2969 if (S->getString() == "llvm.loop.align") { 2970 assert(MD->getNumOperands() == 2 && 2971 "per-loop align metadata should have two operands."); 2972 MDAlign = 2973 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 2974 assert(MDAlign >= 1 && "per-loop align value must be positive."); 2975 } 2976 } 2977 } 2978 2979 // Use max of the TLIAlign and MDAlign 2980 const Align LoopAlign = std::max(TLIAlign, Align(MDAlign)); 2981 if (LoopAlign == 1) 2982 continue; // Don't care about loop alignment. 2983 2984 // If the block is cold relative to the function entry don't waste space 2985 // aligning it. 2986 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2987 if (Freq < WeightedEntryFreq) 2988 continue; 2989 2990 // If the block is cold relative to its loop header, don't align it 2991 // regardless of what edges into the block exist. 2992 MachineBasicBlock *LoopHeader = L->getHeader(); 2993 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2994 if (Freq < (LoopHeaderFreq * ColdProb)) 2995 continue; 2996 2997 // If the global profiles indicates so, don't align it. 2998 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2999 !TLI->alignLoopsWithOptSize()) 3000 continue; 3001 3002 // Check for the existence of a non-layout predecessor which would benefit 3003 // from aligning this block. 3004 MachineBasicBlock *LayoutPred = 3005 &*std::prev(MachineFunction::iterator(ChainBB)); 3006 3007 auto DetermineMaxAlignmentPadding = [&]() { 3008 // Set the maximum bytes allowed to be emitted for alignment. 3009 unsigned MaxBytes; 3010 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) 3011 MaxBytes = MaxBytesForAlignmentOverride; 3012 else 3013 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB); 3014 ChainBB->setMaxBytesForAlignment(MaxBytes); 3015 }; 3016 3017 // Force alignment if all the predecessors are jumps. We already checked 3018 // that the block isn't cold above. 3019 if (!LayoutPred->isSuccessor(ChainBB)) { 3020 ChainBB->setAlignment(LoopAlign); 3021 DetermineMaxAlignmentPadding(); 3022 continue; 3023 } 3024 3025 // Align this block if the layout predecessor's edge into this block is 3026 // cold relative to the block. When this is true, other predecessors make up 3027 // all of the hot entries into the block and thus alignment is likely to be 3028 // important. 3029 BranchProbability LayoutProb = 3030 MBPI->getEdgeProbability(LayoutPred, ChainBB); 3031 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 3032 if (LayoutEdgeFreq <= (Freq * ColdProb)) { 3033 ChainBB->setAlignment(LoopAlign); 3034 DetermineMaxAlignmentPadding(); 3035 } 3036 } 3037 } 3038 3039 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 3040 /// it was duplicated into its chain predecessor and removed. 3041 /// \p BB - Basic block that may be duplicated. 3042 /// 3043 /// \p LPred - Chosen layout predecessor of \p BB. 3044 /// Updated to be the chain end if LPred is removed. 3045 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3046 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3047 /// Used to identify which blocks to update predecessor 3048 /// counts. 3049 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3050 /// chosen in the given order due to unnatural CFG 3051 /// only needed if \p BB is removed and 3052 /// \p PrevUnplacedBlockIt pointed to \p BB. 3053 /// @return true if \p BB was removed. 3054 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 3055 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 3056 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 3057 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3058 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) { 3059 bool Removed, DuplicatedToLPred; 3060 bool DuplicatedToOriginalLPred; 3061 Removed = maybeTailDuplicateBlock( 3062 BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3063 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3064 if (!Removed) 3065 return false; 3066 DuplicatedToOriginalLPred = DuplicatedToLPred; 3067 // Iteratively try to duplicate again. It can happen that a block that is 3068 // duplicated into is still small enough to be duplicated again. 3069 // No need to call markBlockSuccessors in this case, as the blocks being 3070 // duplicated from here on are already scheduled. 3071 while (DuplicatedToLPred && Removed) { 3072 MachineBasicBlock *DupBB, *DupPred; 3073 // The removal callback causes Chain.end() to be updated when a block is 3074 // removed. On the first pass through the loop, the chain end should be the 3075 // same as it was on function entry. On subsequent passes, because we are 3076 // duplicating the block at the end of the chain, if it is removed the 3077 // chain will have shrunk by one block. 3078 BlockChain::iterator ChainEnd = Chain.end(); 3079 DupBB = *(--ChainEnd); 3080 // Now try to duplicate again. 3081 if (ChainEnd == Chain.begin()) 3082 break; 3083 DupPred = *std::prev(ChainEnd); 3084 Removed = maybeTailDuplicateBlock( 3085 DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3086 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3087 } 3088 // If BB was duplicated into LPred, it is now scheduled. But because it was 3089 // removed, markChainSuccessors won't be called for its chain. Instead we 3090 // call markBlockSuccessors for LPred to achieve the same effect. This must go 3091 // at the end because repeating the tail duplication can increase the number 3092 // of unscheduled predecessors. 3093 LPred = *std::prev(Chain.end()); 3094 if (DuplicatedToOriginalLPred) 3095 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 3096 return true; 3097 } 3098 3099 /// Tail duplicate \p BB into (some) predecessors if profitable. 3100 /// \p BB - Basic block that may be duplicated 3101 /// \p LPred - Chosen layout predecessor of \p BB 3102 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3103 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3104 /// Used to identify which blocks to update predecessor 3105 /// counts. 3106 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3107 /// chosen in the given order due to unnatural CFG 3108 /// only needed if \p BB is removed and 3109 /// \p PrevUnplacedBlockIt pointed to \p BB. 3110 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3111 /// \return - True if the block was duplicated into all preds and removed. 3112 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3113 MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain, 3114 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3115 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 3116 bool &DuplicatedToLPred) { 3117 DuplicatedToLPred = false; 3118 if (!shouldTailDuplicate(BB)) 3119 return false; 3120 3121 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3122 << "\n"); 3123 3124 // This has to be a callback because none of it can be done after 3125 // BB is deleted. 3126 bool Removed = false; 3127 auto RemovalCallback = 3128 [&](MachineBasicBlock *RemBB) { 3129 // Signal to outer function 3130 Removed = true; 3131 3132 // Conservative default. 3133 bool InWorkList = true; 3134 // Remove from the Chain and Chain Map 3135 if (BlockToChain.count(RemBB)) { 3136 BlockChain *Chain = BlockToChain[RemBB]; 3137 InWorkList = Chain->UnscheduledPredecessors == 0; 3138 Chain->remove(RemBB); 3139 BlockToChain.erase(RemBB); 3140 } 3141 3142 // Handle the unplaced block iterator 3143 if (&(*PrevUnplacedBlockIt) == RemBB) { 3144 PrevUnplacedBlockIt++; 3145 } 3146 3147 // Handle the Work Lists 3148 if (InWorkList) { 3149 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3150 if (RemBB->isEHPad()) 3151 RemoveList = EHPadWorkList; 3152 llvm::erase(RemoveList, RemBB); 3153 } 3154 3155 // Handle the filter set 3156 if (BlockFilter) { 3157 auto It = llvm::find(*BlockFilter, RemBB); 3158 // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt 3159 // pointing to the same element as before. 3160 if (It != BlockFilter->end()) { 3161 if (It < PrevUnplacedBlockInFilterIt) { 3162 const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt; 3163 // BlockFilter is a SmallVector so all elements after RemBB are 3164 // shifted to the front by 1 after its deletion. 3165 auto Distance = PrevUnplacedBlockInFilterIt - It - 1; 3166 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance; 3167 assert(*PrevUnplacedBlockInFilterIt == PrevBB); 3168 (void)PrevBB; 3169 } else if (It == PrevUnplacedBlockInFilterIt) 3170 // The block pointed by PrevUnplacedBlockInFilterIt is erased, we 3171 // have to set it to the next element. 3172 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It); 3173 else 3174 BlockFilter->erase(It); 3175 } 3176 } 3177 3178 // Remove the block from loop info. 3179 MLI->removeBlock(RemBB); 3180 if (RemBB == PreferredLoopExit) 3181 PreferredLoopExit = nullptr; 3182 3183 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3184 << getBlockName(RemBB) << "\n"); 3185 }; 3186 auto RemovalCallbackRef = 3187 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3188 3189 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3190 bool IsSimple = TailDup.isSimpleBB(BB); 3191 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3192 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3193 if (F->getFunction().hasProfileData()) { 3194 // We can do partial duplication with precise profile information. 3195 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3196 if (CandidatePreds.size() == 0) 3197 return false; 3198 if (CandidatePreds.size() < BB->pred_size()) 3199 CandidatePtr = &CandidatePreds; 3200 } 3201 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3202 &RemovalCallbackRef, CandidatePtr); 3203 3204 // Update UnscheduledPredecessors to reflect tail-duplication. 3205 DuplicatedToLPred = false; 3206 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3207 // We're only looking for unscheduled predecessors that match the filter. 3208 BlockChain* PredChain = BlockToChain[Pred]; 3209 if (Pred == LPred) 3210 DuplicatedToLPred = true; 3211 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3212 || PredChain == &Chain) 3213 continue; 3214 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3215 if (BlockFilter && !BlockFilter->count(NewSucc)) 3216 continue; 3217 BlockChain *NewChain = BlockToChain[NewSucc]; 3218 if (NewChain != &Chain && NewChain != PredChain) 3219 NewChain->UnscheduledPredecessors++; 3220 } 3221 } 3222 return Removed; 3223 } 3224 3225 // Count the number of actual machine instructions. 3226 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3227 uint64_t InstrCount = 0; 3228 for (MachineInstr &MI : *MBB) { 3229 if (!MI.isPHI() && !MI.isMetaInstruction()) 3230 InstrCount += 1; 3231 } 3232 return InstrCount; 3233 } 3234 3235 // The size cost of duplication is the instruction size of the duplicated block. 3236 // So we should scale the threshold accordingly. But the instruction size is not 3237 // available on all targets, so we use the number of instructions instead. 3238 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3239 return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB)); 3240 } 3241 3242 // Returns true if BB is Pred's best successor. 3243 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3244 MachineBasicBlock *Pred, 3245 BlockFilterSet *BlockFilter) { 3246 if (BB == Pred) 3247 return false; 3248 if (BlockFilter && !BlockFilter->count(Pred)) 3249 return false; 3250 BlockChain *PredChain = BlockToChain[Pred]; 3251 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3252 return false; 3253 3254 // Find the successor with largest probability excluding BB. 3255 BranchProbability BestProb = BranchProbability::getZero(); 3256 for (MachineBasicBlock *Succ : Pred->successors()) 3257 if (Succ != BB) { 3258 if (BlockFilter && !BlockFilter->count(Succ)) 3259 continue; 3260 BlockChain *SuccChain = BlockToChain[Succ]; 3261 if (SuccChain && (Succ != *SuccChain->begin())) 3262 continue; 3263 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3264 if (SuccProb > BestProb) 3265 BestProb = SuccProb; 3266 } 3267 3268 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3269 if (BBProb <= BestProb) 3270 return false; 3271 3272 // Compute the number of reduced taken branches if Pred falls through to BB 3273 // instead of another successor. Then compare it with threshold. 3274 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3275 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3276 return Gain > scaleThreshold(BB); 3277 } 3278 3279 // Find out the predecessors of BB and BB can be beneficially duplicated into 3280 // them. 3281 void MachineBlockPlacement::findDuplicateCandidates( 3282 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3283 MachineBasicBlock *BB, 3284 BlockFilterSet *BlockFilter) { 3285 MachineBasicBlock *Fallthrough = nullptr; 3286 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3287 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3288 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3289 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3290 3291 // Sort for highest frequency. 3292 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3293 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3294 }; 3295 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3296 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3297 }; 3298 llvm::stable_sort(Succs, CmpSucc); 3299 llvm::stable_sort(Preds, CmpPred); 3300 3301 auto SuccIt = Succs.begin(); 3302 if (SuccIt != Succs.end()) { 3303 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3304 } 3305 3306 // For each predecessors of BB, compute the benefit of duplicating BB, 3307 // if it is larger than the threshold, add it into Candidates. 3308 // 3309 // If we have following control flow. 3310 // 3311 // PB1 PB2 PB3 PB4 3312 // \ | / /\ 3313 // \ | / / \ 3314 // \ |/ / \ 3315 // BB----/ OB 3316 // /\ 3317 // / \ 3318 // SB1 SB2 3319 // 3320 // And it can be partially duplicated as 3321 // 3322 // PB2+BB 3323 // | PB1 PB3 PB4 3324 // | | / /\ 3325 // | | / / \ 3326 // | |/ / \ 3327 // | BB----/ OB 3328 // |\ /| 3329 // | X | 3330 // |/ \| 3331 // SB2 SB1 3332 // 3333 // The benefit of duplicating into a predecessor is defined as 3334 // Orig_taken_branch - Duplicated_taken_branch 3335 // 3336 // The Orig_taken_branch is computed with the assumption that predecessor 3337 // jumps to BB and the most possible successor is laid out after BB. 3338 // 3339 // The Duplicated_taken_branch is computed with the assumption that BB is 3340 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3341 // SB2 for PB2 in our case). If there is no available successor, the combined 3342 // block jumps to all BB's successor, like PB3 in this example. 3343 // 3344 // If a predecessor has multiple successors, so BB can't be duplicated into 3345 // it. But it can beneficially fall through to BB, and duplicate BB into other 3346 // predecessors. 3347 for (MachineBasicBlock *Pred : Preds) { 3348 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3349 3350 if (!TailDup.canTailDuplicate(BB, Pred)) { 3351 // BB can't be duplicated into Pred, but it is possible to be layout 3352 // below Pred. 3353 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3354 Fallthrough = Pred; 3355 if (SuccIt != Succs.end()) 3356 SuccIt++; 3357 } 3358 continue; 3359 } 3360 3361 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3362 BlockFrequency DupCost; 3363 if (SuccIt == Succs.end()) { 3364 // Jump to all successors; 3365 if (Succs.size() > 0) 3366 DupCost += PredFreq; 3367 } else { 3368 // Fallthrough to *SuccIt, jump to all other successors; 3369 DupCost += PredFreq; 3370 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3371 } 3372 3373 assert(OrigCost >= DupCost); 3374 OrigCost -= DupCost; 3375 if (OrigCost > BBDupThreshold) { 3376 Candidates.push_back(Pred); 3377 if (SuccIt != Succs.end()) 3378 SuccIt++; 3379 } 3380 } 3381 3382 // No predecessors can optimally fallthrough to BB. 3383 // So we can change one duplication into fallthrough. 3384 if (!Fallthrough) { 3385 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3386 Candidates[0] = Candidates.back(); 3387 Candidates.pop_back(); 3388 } 3389 } 3390 } 3391 3392 void MachineBlockPlacement::initDupThreshold() { 3393 DupThreshold = BlockFrequency(0); 3394 if (!F->getFunction().hasProfileData()) 3395 return; 3396 3397 // We prefer to use prifile count. 3398 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3399 if (HotThreshold != UINT64_MAX) { 3400 UseProfileCount = true; 3401 DupThreshold = 3402 BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100); 3403 return; 3404 } 3405 3406 // Profile count is not available, we can use block frequency instead. 3407 BlockFrequency MaxFreq = BlockFrequency(0); 3408 for (MachineBasicBlock &MBB : *F) { 3409 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3410 if (Freq > MaxFreq) 3411 MaxFreq = Freq; 3412 } 3413 3414 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3415 DupThreshold = BlockFrequency(MaxFreq * ThresholdProb); 3416 UseProfileCount = false; 3417 } 3418 3419 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3420 if (skipFunction(MF.getFunction())) 3421 return false; 3422 3423 // Check for single-block functions and skip them. 3424 if (std::next(MF.begin()) == MF.end()) 3425 return false; 3426 3427 F = &MF; 3428 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3429 MBFI = std::make_unique<MBFIWrapper>( 3430 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); 3431 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 3432 TII = MF.getSubtarget().getInstrInfo(); 3433 TLI = MF.getSubtarget().getTargetLowering(); 3434 MPDT = nullptr; 3435 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3436 3437 initDupThreshold(); 3438 3439 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3440 // there are no MachineLoops. 3441 PreferredLoopExit = nullptr; 3442 3443 assert(BlockToChain.empty() && 3444 "BlockToChain map should be empty before starting placement."); 3445 assert(ComputedEdges.empty() && 3446 "Computed Edge map should be empty before starting placement."); 3447 3448 unsigned TailDupSize = TailDupPlacementThreshold; 3449 // If only the aggressive threshold is explicitly set, use it. 3450 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3451 TailDupPlacementThreshold.getNumOccurrences() == 0) 3452 TailDupSize = TailDupPlacementAggressiveThreshold; 3453 3454 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3455 // For aggressive optimization, we can adjust some thresholds to be less 3456 // conservative. 3457 if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) { 3458 // At O3 we should be more willing to copy blocks for tail duplication. This 3459 // increases size pressure, so we only do it at O3 3460 // Do this unless only the regular threshold is explicitly set. 3461 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3462 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3463 TailDupSize = TailDupPlacementAggressiveThreshold; 3464 } 3465 3466 // If there's no threshold provided through options, query the target 3467 // information for a threshold instead. 3468 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3469 (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive || 3470 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3471 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3472 3473 if (allowTailDupPlacement()) { 3474 MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 3475 bool OptForSize = MF.getFunction().hasOptSize() || 3476 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3477 if (OptForSize) 3478 TailDupSize = 1; 3479 bool PreRegAlloc = false; 3480 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3481 /* LayoutMode */ true, TailDupSize); 3482 precomputeTriangleChains(); 3483 } 3484 3485 buildCFGChains(); 3486 3487 // Changing the layout can create new tail merging opportunities. 3488 // TailMerge can create jump into if branches that make CFG irreducible for 3489 // HW that requires structured CFG. 3490 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3491 PassConfig->getEnableTailMerge() && 3492 BranchFoldPlacement; 3493 // No tail merging opportunities if the block number is less than four. 3494 if (MF.size() > 3 && EnableTailMerge) { 3495 unsigned TailMergeSize = TailDupSize + 1; 3496 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3497 *MBFI, *MBPI, PSI, TailMergeSize); 3498 3499 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3500 /*AfterPlacement=*/true)) { 3501 // Redo the layout if tail merging creates/removes/moves blocks. 3502 BlockToChain.clear(); 3503 ComputedEdges.clear(); 3504 // Must redo the post-dominator tree if blocks were changed. 3505 if (MPDT) 3506 MPDT->recalculate(MF); 3507 ChainAllocator.DestroyAll(); 3508 buildCFGChains(); 3509 } 3510 } 3511 3512 // Apply a post-processing optimizing block placement. 3513 if (MF.size() >= 3 && EnableExtTspBlockPlacement && 3514 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) { 3515 // Find a new placement and modify the layout of the blocks in the function. 3516 applyExtTsp(); 3517 3518 // Re-create CFG chain so that we can optimizeBranches and alignBlocks. 3519 createCFGChainExtTsp(); 3520 } 3521 3522 optimizeBranches(); 3523 alignBlocks(); 3524 3525 BlockToChain.clear(); 3526 ComputedEdges.clear(); 3527 ChainAllocator.DestroyAll(); 3528 3529 bool HasMaxBytesOverride = 3530 MaxBytesForAlignmentOverride.getNumOccurrences() > 0; 3531 3532 if (AlignAllBlock) 3533 // Align all of the blocks in the function to a specific alignment. 3534 for (MachineBasicBlock &MBB : MF) { 3535 if (HasMaxBytesOverride) 3536 MBB.setAlignment(Align(1ULL << AlignAllBlock), 3537 MaxBytesForAlignmentOverride); 3538 else 3539 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3540 } 3541 else if (AlignAllNonFallThruBlocks) { 3542 // Align all of the blocks that have no fall-through predecessors to a 3543 // specific alignment. 3544 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3545 auto LayoutPred = std::prev(MBI); 3546 if (!LayoutPred->isSuccessor(&*MBI)) { 3547 if (HasMaxBytesOverride) 3548 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks), 3549 MaxBytesForAlignmentOverride); 3550 else 3551 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3552 } 3553 } 3554 } 3555 if (ViewBlockLayoutWithBFI != GVDT_None && 3556 (ViewBlockFreqFuncName.empty() || 3557 F->getFunction().getName() == ViewBlockFreqFuncName)) { 3558 if (RenumberBlocksBeforeView) 3559 MF.RenumberBlocks(); 3560 MBFI->view("MBP." + MF.getName(), false); 3561 } 3562 3563 // We always return true as we have no way to track whether the final order 3564 // differs from the original order. 3565 return true; 3566 } 3567 3568 void MachineBlockPlacement::applyExtTsp() { 3569 // Prepare data; blocks are indexed by their index in the current ordering. 3570 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; 3571 BlockIndex.reserve(F->size()); 3572 std::vector<const MachineBasicBlock *> CurrentBlockOrder; 3573 CurrentBlockOrder.reserve(F->size()); 3574 size_t NumBlocks = 0; 3575 for (const MachineBasicBlock &MBB : *F) { 3576 BlockIndex[&MBB] = NumBlocks++; 3577 CurrentBlockOrder.push_back(&MBB); 3578 } 3579 3580 auto BlockSizes = std::vector<uint64_t>(F->size()); 3581 auto BlockCounts = std::vector<uint64_t>(F->size()); 3582 std::vector<codelayout::EdgeCount> JumpCounts; 3583 for (MachineBasicBlock &MBB : *F) { 3584 // Getting the block frequency. 3585 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3586 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency(); 3587 // Getting the block size: 3588 // - approximate the size of an instruction by 4 bytes, and 3589 // - ignore debug instructions. 3590 // Note: getting the exact size of each block is target-dependent and can be 3591 // done by extending the interface of MCCodeEmitter. Experimentally we do 3592 // not see a perf improvement with the exact block sizes. 3593 auto NonDbgInsts = 3594 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end()); 3595 int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end()); 3596 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; 3597 // Getting jump frequencies. 3598 for (MachineBasicBlock *Succ : MBB.successors()) { 3599 auto EP = MBPI->getEdgeProbability(&MBB, Succ); 3600 BlockFrequency JumpFreq = BlockFreq * EP; 3601 JumpCounts.push_back( 3602 {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()}); 3603 } 3604 } 3605 3606 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() 3607 << " with profile = " << F->getFunction().hasProfileData() 3608 << " (" << F->getName().str() << ")" 3609 << "\n"); 3610 LLVM_DEBUG( 3611 dbgs() << format(" original layout score: %0.2f\n", 3612 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts))); 3613 3614 // Run the layout algorithm. 3615 auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts); 3616 std::vector<const MachineBasicBlock *> NewBlockOrder; 3617 NewBlockOrder.reserve(F->size()); 3618 for (uint64_t Node : NewOrder) { 3619 NewBlockOrder.push_back(CurrentBlockOrder[Node]); 3620 } 3621 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n", 3622 calcExtTspScore(NewOrder, BlockSizes, BlockCounts, 3623 JumpCounts))); 3624 3625 // Assign new block order. 3626 assignBlockOrder(NewBlockOrder); 3627 } 3628 3629 void MachineBlockPlacement::assignBlockOrder( 3630 const std::vector<const MachineBasicBlock *> &NewBlockOrder) { 3631 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order"); 3632 F->RenumberBlocks(); 3633 3634 bool HasChanges = false; 3635 for (size_t I = 0; I < NewBlockOrder.size(); I++) { 3636 if (NewBlockOrder[I] != F->getBlockNumbered(I)) { 3637 HasChanges = true; 3638 break; 3639 } 3640 } 3641 // Stop early if the new block order is identical to the existing one. 3642 if (!HasChanges) 3643 return; 3644 3645 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); 3646 for (auto &MBB : *F) { 3647 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 3648 } 3649 3650 // Sort basic blocks in the function according to the computed order. 3651 DenseMap<const MachineBasicBlock *, size_t> NewIndex; 3652 for (const MachineBasicBlock *MBB : NewBlockOrder) { 3653 NewIndex[MBB] = NewIndex.size(); 3654 } 3655 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) { 3656 return NewIndex[&L] < NewIndex[&R]; 3657 }); 3658 3659 // Update basic block branches by inserting explicit fallthrough branches 3660 // when required and re-optimize branches when possible. 3661 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); 3662 SmallVector<MachineOperand, 4> Cond; 3663 for (auto &MBB : *F) { 3664 MachineFunction::iterator NextMBB = std::next(MBB.getIterator()); 3665 MachineFunction::iterator EndIt = MBB.getParent()->end(); 3666 auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; 3667 // If this block had a fallthrough before we need an explicit unconditional 3668 // branch to that block if the fallthrough block is not adjacent to the 3669 // block in the new order. 3670 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { 3671 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 3672 } 3673 3674 // It might be possible to optimize branches by flipping the condition. 3675 Cond.clear(); 3676 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 3677 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 3678 continue; 3679 MBB.updateTerminator(FTMBB); 3680 } 3681 3682 #ifndef NDEBUG 3683 // Make sure we correctly constructed all branches. 3684 F->verify(this, "After optimized block reordering"); 3685 #endif 3686 } 3687 3688 void MachineBlockPlacement::createCFGChainExtTsp() { 3689 BlockToChain.clear(); 3690 ComputedEdges.clear(); 3691 ChainAllocator.DestroyAll(); 3692 3693 MachineBasicBlock *HeadBB = &F->front(); 3694 BlockChain *FunctionChain = 3695 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); 3696 3697 for (MachineBasicBlock &MBB : *F) { 3698 if (HeadBB == &MBB) 3699 continue; // Ignore head of the chain 3700 FunctionChain->merge(&MBB, nullptr); 3701 } 3702 } 3703 3704 namespace { 3705 3706 /// A pass to compute block placement statistics. 3707 /// 3708 /// A separate pass to compute interesting statistics for evaluating block 3709 /// placement. This is separate from the actual placement pass so that they can 3710 /// be computed in the absence of any placement transformations or when using 3711 /// alternative placement strategies. 3712 class MachineBlockPlacementStats : public MachineFunctionPass { 3713 /// A handle to the branch probability pass. 3714 const MachineBranchProbabilityInfo *MBPI; 3715 3716 /// A handle to the function-wide block frequency pass. 3717 const MachineBlockFrequencyInfo *MBFI; 3718 3719 public: 3720 static char ID; // Pass identification, replacement for typeid 3721 3722 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3723 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3724 } 3725 3726 bool runOnMachineFunction(MachineFunction &F) override; 3727 3728 void getAnalysisUsage(AnalysisUsage &AU) const override { 3729 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 3730 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 3731 AU.setPreservesAll(); 3732 MachineFunctionPass::getAnalysisUsage(AU); 3733 } 3734 }; 3735 3736 } // end anonymous namespace 3737 3738 char MachineBlockPlacementStats::ID = 0; 3739 3740 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3741 3742 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3743 "Basic Block Placement Stats", false, false) 3744 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 3745 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 3746 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3747 "Basic Block Placement Stats", false, false) 3748 3749 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3750 // Check for single-block functions and skip them. 3751 if (std::next(F.begin()) == F.end()) 3752 return false; 3753 3754 if (!isFunctionInPrintList(F.getName())) 3755 return false; 3756 3757 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3758 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 3759 3760 for (MachineBasicBlock &MBB : F) { 3761 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3762 Statistic &NumBranches = 3763 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3764 Statistic &BranchTakenFreq = 3765 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3766 for (MachineBasicBlock *Succ : MBB.successors()) { 3767 // Skip if this successor is a fallthrough. 3768 if (MBB.isLayoutSuccessor(Succ)) 3769 continue; 3770 3771 BlockFrequency EdgeFreq = 3772 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3773 ++NumBranches; 3774 BranchTakenFreq += EdgeFreq.getFrequency(); 3775 } 3776 } 3777 3778 return false; 3779 } 3780