1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "block-placement" 77 78 STATISTIC(NumCondBranches, "Number of conditional branches"); 79 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 80 STATISTIC(CondBranchTakenFreq, 81 "Potential frequency of taking conditional branches"); 82 STATISTIC(UncondBranchTakenFreq, 83 "Potential frequency of taking unconditional branches"); 84 85 static cl::opt<unsigned> AlignAllBlock( 86 "align-all-blocks", 87 cl::desc("Force the alignment of all blocks in the function in log2 format " 88 "(e.g 4 means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 92 "align-all-nofallthru-blocks", 93 cl::desc("Force the alignment of all blocks that have no fall-through " 94 "predecessors (i.e. don't add nops that are executed). In log2 " 95 "format (e.g 4 means align on 16B boundaries)."), 96 cl::init(0), cl::Hidden); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> ExitBlockBias( 100 "block-placement-exit-block-bias", 101 cl::desc("Block frequency percentage a loop exit block needs " 102 "over the original exit to be considered the new exit."), 103 cl::init(0), cl::Hidden); 104 105 // Definition: 106 // - Outlining: placement of a basic block outside the chain or hot path. 107 108 static cl::opt<unsigned> LoopToColdBlockRatio( 109 "loop-to-cold-block-ratio", 110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 111 "(frequency of block) is greater than this ratio"), 112 cl::init(5), cl::Hidden); 113 114 static cl::opt<bool> ForceLoopColdBlock( 115 "force-loop-cold-block", 116 cl::desc("Force outlining cold blocks from loops."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<bool> 120 PreciseRotationCost("precise-rotation-cost", 121 cl::desc("Model the cost of loop rotation more " 122 "precisely by using profile data."), 123 cl::init(false), cl::Hidden); 124 125 static cl::opt<bool> 126 ForcePreciseRotationCost("force-precise-rotation-cost", 127 cl::desc("Force the use of precise cost " 128 "loop rotation strategy."), 129 cl::init(false), cl::Hidden); 130 131 static cl::opt<unsigned> MisfetchCost( 132 "misfetch-cost", 133 cl::desc("Cost that models the probabilistic risk of an instruction " 134 "misfetch due to a jump comparing to falling through, whose cost " 135 "is zero."), 136 cl::init(1), cl::Hidden); 137 138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 139 cl::desc("Cost of jump instructions."), 140 cl::init(1), cl::Hidden); 141 static cl::opt<bool> 142 TailDupPlacement("tail-dup-placement", 143 cl::desc("Perform tail duplication during placement. " 144 "Creates more fallthrough opportunites in " 145 "outline branches."), 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 BranchFoldPlacement("branch-fold-placement", 150 cl::desc("Perform branch folding during placement. " 151 "Reduces code size."), 152 cl::init(true), cl::Hidden); 153 154 // Heuristic for tail duplication. 155 static cl::opt<unsigned> TailDupPlacementThreshold( 156 "tail-dup-placement-threshold", 157 cl::desc("Instruction cutoff for tail duplication during layout. " 158 "Tail merging during layout is forced to have a threshold " 159 "that won't conflict."), cl::init(2), 160 cl::Hidden); 161 162 // Heuristic for aggressive tail duplication. 163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 164 "tail-dup-placement-aggressive-threshold", 165 cl::desc("Instruction cutoff for aggressive tail duplication during " 166 "layout. Used at -O3. Tail merging during layout is forced to " 167 "have a threshold that won't conflict."), cl::init(4), 168 cl::Hidden); 169 170 // Heuristic for tail duplication. 171 static cl::opt<unsigned> TailDupPlacementPenalty( 172 "tail-dup-placement-penalty", 173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 174 "Copying can increase fallthrough, but it also increases icache " 175 "pressure. This parameter controls the penalty to account for that. " 176 "Percent as integer."), 177 cl::init(2), 178 cl::Hidden); 179 180 // Heuristic for triangle chains. 181 static cl::opt<unsigned> TriangleChainCount( 182 "triangle-chain-count", 183 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 184 "triangle tail duplication heuristic to kick in. 0 to disable."), 185 cl::init(2), 186 cl::Hidden); 187 188 extern cl::opt<unsigned> StaticLikelyProb; 189 extern cl::opt<unsigned> ProfileLikelyProb; 190 191 // Internal option used to control BFI display only after MBP pass. 192 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 193 // -view-block-layout-with-bfi= 194 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 195 196 // Command line option to specify the name of the function for CFG dump 197 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 198 extern cl::opt<std::string> ViewBlockFreqFuncName; 199 200 namespace { 201 202 class BlockChain; 203 204 /// Type for our function-wide basic block -> block chain mapping. 205 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 206 207 /// A chain of blocks which will be laid out contiguously. 208 /// 209 /// This is the datastructure representing a chain of consecutive blocks that 210 /// are profitable to layout together in order to maximize fallthrough 211 /// probabilities and code locality. We also can use a block chain to represent 212 /// a sequence of basic blocks which have some external (correctness) 213 /// requirement for sequential layout. 214 /// 215 /// Chains can be built around a single basic block and can be merged to grow 216 /// them. They participate in a block-to-chain mapping, which is updated 217 /// automatically as chains are merged together. 218 class BlockChain { 219 /// The sequence of blocks belonging to this chain. 220 /// 221 /// This is the sequence of blocks for a particular chain. These will be laid 222 /// out in-order within the function. 223 SmallVector<MachineBasicBlock *, 4> Blocks; 224 225 /// A handle to the function-wide basic block to block chain mapping. 226 /// 227 /// This is retained in each block chain to simplify the computation of child 228 /// block chains for SCC-formation and iteration. We store the edges to child 229 /// basic blocks, and map them back to their associated chains using this 230 /// structure. 231 BlockToChainMapType &BlockToChain; 232 233 public: 234 /// Construct a new BlockChain. 235 /// 236 /// This builds a new block chain representing a single basic block in the 237 /// function. It also registers itself as the chain that block participates 238 /// in with the BlockToChain mapping. 239 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 240 : Blocks(1, BB), BlockToChain(BlockToChain) { 241 assert(BB && "Cannot create a chain with a null basic block"); 242 BlockToChain[BB] = this; 243 } 244 245 /// Iterator over blocks within the chain. 246 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 247 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 248 249 /// Beginning of blocks within the chain. 250 iterator begin() { return Blocks.begin(); } 251 const_iterator begin() const { return Blocks.begin(); } 252 253 /// End of blocks within the chain. 254 iterator end() { return Blocks.end(); } 255 const_iterator end() const { return Blocks.end(); } 256 257 bool remove(MachineBasicBlock* BB) { 258 for(iterator i = begin(); i != end(); ++i) { 259 if (*i == BB) { 260 Blocks.erase(i); 261 return true; 262 } 263 } 264 return false; 265 } 266 267 /// Merge a block chain into this one. 268 /// 269 /// This routine merges a block chain into this one. It takes care of forming 270 /// a contiguous sequence of basic blocks, updating the edge list, and 271 /// updating the block -> chain mapping. It does not free or tear down the 272 /// old chain, but the old chain's block list is no longer valid. 273 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 274 assert(BB && "Can't merge a null block."); 275 assert(!Blocks.empty() && "Can't merge into an empty chain."); 276 277 // Fast path in case we don't have a chain already. 278 if (!Chain) { 279 assert(!BlockToChain[BB] && 280 "Passed chain is null, but BB has entry in BlockToChain."); 281 Blocks.push_back(BB); 282 BlockToChain[BB] = this; 283 return; 284 } 285 286 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 287 assert(Chain->begin() != Chain->end()); 288 289 // Update the incoming blocks to point to this chain, and add them to the 290 // chain structure. 291 for (MachineBasicBlock *ChainBB : *Chain) { 292 Blocks.push_back(ChainBB); 293 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 294 BlockToChain[ChainBB] = this; 295 } 296 } 297 298 #ifndef NDEBUG 299 /// Dump the blocks in this chain. 300 LLVM_DUMP_METHOD void dump() { 301 for (MachineBasicBlock *MBB : *this) 302 MBB->dump(); 303 } 304 #endif // NDEBUG 305 306 /// Count of predecessors of any block within the chain which have not 307 /// yet been scheduled. In general, we will delay scheduling this chain 308 /// until those predecessors are scheduled (or we find a sufficiently good 309 /// reason to override this heuristic.) Note that when forming loop chains, 310 /// blocks outside the loop are ignored and treated as if they were already 311 /// scheduled. 312 /// 313 /// Note: This field is reinitialized multiple times - once for each loop, 314 /// and then once for the function as a whole. 315 unsigned UnscheduledPredecessors = 0; 316 }; 317 318 class MachineBlockPlacement : public MachineFunctionPass { 319 /// A type for a block filter set. 320 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 321 322 /// Pair struct containing basic block and taildup profitability 323 struct BlockAndTailDupResult { 324 MachineBasicBlock *BB; 325 bool ShouldTailDup; 326 }; 327 328 /// Triple struct containing edge weight and the edge. 329 struct WeightedEdge { 330 BlockFrequency Weight; 331 MachineBasicBlock *Src; 332 MachineBasicBlock *Dest; 333 }; 334 335 /// work lists of blocks that are ready to be laid out 336 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 337 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 338 339 /// Edges that have already been computed as optimal. 340 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 341 342 /// Machine Function 343 MachineFunction *F; 344 345 /// A handle to the branch probability pass. 346 const MachineBranchProbabilityInfo *MBPI; 347 348 /// A handle to the function-wide block frequency pass. 349 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 350 351 /// A handle to the loop info. 352 MachineLoopInfo *MLI; 353 354 /// Preferred loop exit. 355 /// Member variable for convenience. It may be removed by duplication deep 356 /// in the call stack. 357 MachineBasicBlock *PreferredLoopExit; 358 359 /// A handle to the target's instruction info. 360 const TargetInstrInfo *TII; 361 362 /// A handle to the target's lowering info. 363 const TargetLoweringBase *TLI; 364 365 /// A handle to the post dominator tree. 366 MachinePostDominatorTree *MPDT; 367 368 ProfileSummaryInfo *PSI; 369 370 /// Duplicator used to duplicate tails during placement. 371 /// 372 /// Placement decisions can open up new tail duplication opportunities, but 373 /// since tail duplication affects placement decisions of later blocks, it 374 /// must be done inline. 375 TailDuplicator TailDup; 376 377 /// Allocator and owner of BlockChain structures. 378 /// 379 /// We build BlockChains lazily while processing the loop structure of 380 /// a function. To reduce malloc traffic, we allocate them using this 381 /// slab-like allocator, and destroy them after the pass completes. An 382 /// important guarantee is that this allocator produces stable pointers to 383 /// the chains. 384 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 385 386 /// Function wide BasicBlock to BlockChain mapping. 387 /// 388 /// This mapping allows efficiently moving from any given basic block to the 389 /// BlockChain it participates in, if any. We use it to, among other things, 390 /// allow implicitly defining edges between chains as the existing edges 391 /// between basic blocks. 392 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 393 394 #ifndef NDEBUG 395 /// The set of basic blocks that have terminators that cannot be fully 396 /// analyzed. These basic blocks cannot be re-ordered safely by 397 /// MachineBlockPlacement, and we must preserve physical layout of these 398 /// blocks and their successors through the pass. 399 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 400 #endif 401 402 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 403 /// if the count goes to 0, add them to the appropriate work list. 404 void markChainSuccessors( 405 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 406 const BlockFilterSet *BlockFilter = nullptr); 407 408 /// Decrease the UnscheduledPredecessors count for a single block, and 409 /// if the count goes to 0, add them to the appropriate work list. 410 void markBlockSuccessors( 411 const BlockChain &Chain, const MachineBasicBlock *BB, 412 const MachineBasicBlock *LoopHeaderBB, 413 const BlockFilterSet *BlockFilter = nullptr); 414 415 BranchProbability 416 collectViableSuccessors( 417 const MachineBasicBlock *BB, const BlockChain &Chain, 418 const BlockFilterSet *BlockFilter, 419 SmallVector<MachineBasicBlock *, 4> &Successors); 420 bool shouldPredBlockBeOutlined( 421 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 422 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 423 BranchProbability SuccProb, BranchProbability HotProb); 424 bool repeatedlyTailDuplicateBlock( 425 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 426 const MachineBasicBlock *LoopHeaderBB, 427 BlockChain &Chain, BlockFilterSet *BlockFilter, 428 MachineFunction::iterator &PrevUnplacedBlockIt); 429 bool maybeTailDuplicateBlock( 430 MachineBasicBlock *BB, MachineBasicBlock *LPred, 431 BlockChain &Chain, BlockFilterSet *BlockFilter, 432 MachineFunction::iterator &PrevUnplacedBlockIt, 433 bool &DuplicatedToLPred); 434 bool hasBetterLayoutPredecessor( 435 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 436 const BlockChain &SuccChain, BranchProbability SuccProb, 437 BranchProbability RealSuccProb, const BlockChain &Chain, 438 const BlockFilterSet *BlockFilter); 439 BlockAndTailDupResult selectBestSuccessor( 440 const MachineBasicBlock *BB, const BlockChain &Chain, 441 const BlockFilterSet *BlockFilter); 442 MachineBasicBlock *selectBestCandidateBlock( 443 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 444 MachineBasicBlock *getFirstUnplacedBlock( 445 const BlockChain &PlacedChain, 446 MachineFunction::iterator &PrevUnplacedBlockIt, 447 const BlockFilterSet *BlockFilter); 448 449 /// Add a basic block to the work list if it is appropriate. 450 /// 451 /// If the optional parameter BlockFilter is provided, only MBB 452 /// present in the set will be added to the worklist. If nullptr 453 /// is provided, no filtering occurs. 454 void fillWorkLists(const MachineBasicBlock *MBB, 455 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 456 const BlockFilterSet *BlockFilter); 457 458 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 459 BlockFilterSet *BlockFilter = nullptr); 460 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 461 const MachineBasicBlock *OldTop); 462 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 463 const BlockFilterSet &LoopBlockSet); 464 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 465 const BlockFilterSet &LoopBlockSet); 466 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 467 const MachineBasicBlock *OldTop, 468 const MachineBasicBlock *ExitBB, 469 const BlockFilterSet &LoopBlockSet); 470 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 471 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 472 MachineBasicBlock *findBestLoopTop( 473 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 474 MachineBasicBlock *findBestLoopExit( 475 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 476 BlockFrequency &ExitFreq); 477 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 478 void buildLoopChains(const MachineLoop &L); 479 void rotateLoop( 480 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 481 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 482 void rotateLoopWithProfile( 483 BlockChain &LoopChain, const MachineLoop &L, 484 const BlockFilterSet &LoopBlockSet); 485 void buildCFGChains(); 486 void optimizeBranches(); 487 void alignBlocks(); 488 /// Returns true if a block should be tail-duplicated to increase fallthrough 489 /// opportunities. 490 bool shouldTailDuplicate(MachineBasicBlock *BB); 491 /// Check the edge frequencies to see if tail duplication will increase 492 /// fallthroughs. 493 bool isProfitableToTailDup( 494 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 495 BranchProbability QProb, 496 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 497 498 /// Check for a trellis layout. 499 bool isTrellis(const MachineBasicBlock *BB, 500 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 501 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 502 503 /// Get the best successor given a trellis layout. 504 BlockAndTailDupResult getBestTrellisSuccessor( 505 const MachineBasicBlock *BB, 506 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 507 BranchProbability AdjustedSumProb, const BlockChain &Chain, 508 const BlockFilterSet *BlockFilter); 509 510 /// Get the best pair of non-conflicting edges. 511 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 512 const MachineBasicBlock *BB, 513 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 514 515 /// Returns true if a block can tail duplicate into all unplaced 516 /// predecessors. Filters based on loop. 517 bool canTailDuplicateUnplacedPreds( 518 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 519 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 520 521 /// Find chains of triangles to tail-duplicate where a global analysis works, 522 /// but a local analysis would not find them. 523 void precomputeTriangleChains(); 524 525 public: 526 static char ID; // Pass identification, replacement for typeid 527 528 MachineBlockPlacement() : MachineFunctionPass(ID) { 529 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 530 } 531 532 bool runOnMachineFunction(MachineFunction &F) override; 533 534 bool allowTailDupPlacement() const { 535 assert(F); 536 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 537 } 538 539 void getAnalysisUsage(AnalysisUsage &AU) const override { 540 AU.addRequired<MachineBranchProbabilityInfo>(); 541 AU.addRequired<MachineBlockFrequencyInfo>(); 542 if (TailDupPlacement) 543 AU.addRequired<MachinePostDominatorTree>(); 544 AU.addRequired<MachineLoopInfo>(); 545 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 546 AU.addRequired<TargetPassConfig>(); 547 MachineFunctionPass::getAnalysisUsage(AU); 548 } 549 }; 550 551 } // end anonymous namespace 552 553 char MachineBlockPlacement::ID = 0; 554 555 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 556 557 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 558 "Branch Probability Basic Block Placement", false, false) 559 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 560 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 561 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 562 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 563 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 564 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 565 "Branch Probability Basic Block Placement", false, false) 566 567 #ifndef NDEBUG 568 /// Helper to print the name of a MBB. 569 /// 570 /// Only used by debug logging. 571 static std::string getBlockName(const MachineBasicBlock *BB) { 572 std::string Result; 573 raw_string_ostream OS(Result); 574 OS << printMBBReference(*BB); 575 OS << " ('" << BB->getName() << "')"; 576 OS.flush(); 577 return Result; 578 } 579 #endif 580 581 /// Mark a chain's successors as having one fewer preds. 582 /// 583 /// When a chain is being merged into the "placed" chain, this routine will 584 /// quickly walk the successors of each block in the chain and mark them as 585 /// having one fewer active predecessor. It also adds any successors of this 586 /// chain which reach the zero-predecessor state to the appropriate worklist. 587 void MachineBlockPlacement::markChainSuccessors( 588 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 589 const BlockFilterSet *BlockFilter) { 590 // Walk all the blocks in this chain, marking their successors as having 591 // a predecessor placed. 592 for (MachineBasicBlock *MBB : Chain) { 593 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 594 } 595 } 596 597 /// Mark a single block's successors as having one fewer preds. 598 /// 599 /// Under normal circumstances, this is only called by markChainSuccessors, 600 /// but if a block that was to be placed is completely tail-duplicated away, 601 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 602 /// for just that block. 603 void MachineBlockPlacement::markBlockSuccessors( 604 const BlockChain &Chain, const MachineBasicBlock *MBB, 605 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 606 // Add any successors for which this is the only un-placed in-loop 607 // predecessor to the worklist as a viable candidate for CFG-neutral 608 // placement. No subsequent placement of this block will violate the CFG 609 // shape, so we get to use heuristics to choose a favorable placement. 610 for (MachineBasicBlock *Succ : MBB->successors()) { 611 if (BlockFilter && !BlockFilter->count(Succ)) 612 continue; 613 BlockChain &SuccChain = *BlockToChain[Succ]; 614 // Disregard edges within a fixed chain, or edges to the loop header. 615 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 616 continue; 617 618 // This is a cross-chain edge that is within the loop, so decrement the 619 // loop predecessor count of the destination chain. 620 if (SuccChain.UnscheduledPredecessors == 0 || 621 --SuccChain.UnscheduledPredecessors > 0) 622 continue; 623 624 auto *NewBB = *SuccChain.begin(); 625 if (NewBB->isEHPad()) 626 EHPadWorkList.push_back(NewBB); 627 else 628 BlockWorkList.push_back(NewBB); 629 } 630 } 631 632 /// This helper function collects the set of successors of block 633 /// \p BB that are allowed to be its layout successors, and return 634 /// the total branch probability of edges from \p BB to those 635 /// blocks. 636 BranchProbability MachineBlockPlacement::collectViableSuccessors( 637 const MachineBasicBlock *BB, const BlockChain &Chain, 638 const BlockFilterSet *BlockFilter, 639 SmallVector<MachineBasicBlock *, 4> &Successors) { 640 // Adjust edge probabilities by excluding edges pointing to blocks that is 641 // either not in BlockFilter or is already in the current chain. Consider the 642 // following CFG: 643 // 644 // --->A 645 // | / \ 646 // | B C 647 // | \ / \ 648 // ----D E 649 // 650 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 651 // A->C is chosen as a fall-through, D won't be selected as a successor of C 652 // due to CFG constraint (the probability of C->D is not greater than 653 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 654 // when calculating the probability of C->D, D will be selected and we 655 // will get A C D B as the layout of this loop. 656 auto AdjustedSumProb = BranchProbability::getOne(); 657 for (MachineBasicBlock *Succ : BB->successors()) { 658 bool SkipSucc = false; 659 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 660 SkipSucc = true; 661 } else { 662 BlockChain *SuccChain = BlockToChain[Succ]; 663 if (SuccChain == &Chain) { 664 SkipSucc = true; 665 } else if (Succ != *SuccChain->begin()) { 666 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 667 << " -> Mid chain!\n"); 668 continue; 669 } 670 } 671 if (SkipSucc) 672 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 673 else 674 Successors.push_back(Succ); 675 } 676 677 return AdjustedSumProb; 678 } 679 680 /// The helper function returns the branch probability that is adjusted 681 /// or normalized over the new total \p AdjustedSumProb. 682 static BranchProbability 683 getAdjustedProbability(BranchProbability OrigProb, 684 BranchProbability AdjustedSumProb) { 685 BranchProbability SuccProb; 686 uint32_t SuccProbN = OrigProb.getNumerator(); 687 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 688 if (SuccProbN >= SuccProbD) 689 SuccProb = BranchProbability::getOne(); 690 else 691 SuccProb = BranchProbability(SuccProbN, SuccProbD); 692 693 return SuccProb; 694 } 695 696 /// Check if \p BB has exactly the successors in \p Successors. 697 static bool 698 hasSameSuccessors(MachineBasicBlock &BB, 699 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 700 if (BB.succ_size() != Successors.size()) 701 return false; 702 // We don't want to count self-loops 703 if (Successors.count(&BB)) 704 return false; 705 for (MachineBasicBlock *Succ : BB.successors()) 706 if (!Successors.count(Succ)) 707 return false; 708 return true; 709 } 710 711 /// Check if a block should be tail duplicated to increase fallthrough 712 /// opportunities. 713 /// \p BB Block to check. 714 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 715 // Blocks with single successors don't create additional fallthrough 716 // opportunities. Don't duplicate them. TODO: When conditional exits are 717 // analyzable, allow them to be duplicated. 718 bool IsSimple = TailDup.isSimpleBB(BB); 719 720 if (BB->succ_size() == 1) 721 return false; 722 return TailDup.shouldTailDuplicate(IsSimple, *BB); 723 } 724 725 /// Compare 2 BlockFrequency's with a small penalty for \p A. 726 /// In order to be conservative, we apply a X% penalty to account for 727 /// increased icache pressure and static heuristics. For small frequencies 728 /// we use only the numerators to improve accuracy. For simplicity, we assume the 729 /// penalty is less than 100% 730 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 731 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 732 uint64_t EntryFreq) { 733 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 734 BlockFrequency Gain = A - B; 735 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 736 } 737 738 /// Check the edge frequencies to see if tail duplication will increase 739 /// fallthroughs. It only makes sense to call this function when 740 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 741 /// always locally profitable if we would have picked \p Succ without 742 /// considering duplication. 743 bool MachineBlockPlacement::isProfitableToTailDup( 744 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 745 BranchProbability QProb, 746 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 747 // We need to do a probability calculation to make sure this is profitable. 748 // First: does succ have a successor that post-dominates? This affects the 749 // calculation. The 2 relevant cases are: 750 // BB BB 751 // | \Qout | \Qout 752 // P| C |P C 753 // = C' = C' 754 // | /Qin | /Qin 755 // | / | / 756 // Succ Succ 757 // / \ | \ V 758 // U/ =V |U \ 759 // / \ = D 760 // D E | / 761 // | / 762 // |/ 763 // PDom 764 // '=' : Branch taken for that CFG edge 765 // In the second case, Placing Succ while duplicating it into C prevents the 766 // fallthrough of Succ into either D or PDom, because they now have C as an 767 // unplaced predecessor 768 769 // Start by figuring out which case we fall into 770 MachineBasicBlock *PDom = nullptr; 771 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 772 // Only scan the relevant successors 773 auto AdjustedSuccSumProb = 774 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 775 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 776 auto BBFreq = MBFI->getBlockFreq(BB); 777 auto SuccFreq = MBFI->getBlockFreq(Succ); 778 BlockFrequency P = BBFreq * PProb; 779 BlockFrequency Qout = BBFreq * QProb; 780 uint64_t EntryFreq = MBFI->getEntryFreq(); 781 // If there are no more successors, it is profitable to copy, as it strictly 782 // increases fallthrough. 783 if (SuccSuccs.size() == 0) 784 return greaterWithBias(P, Qout, EntryFreq); 785 786 auto BestSuccSucc = BranchProbability::getZero(); 787 // Find the PDom or the best Succ if no PDom exists. 788 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 789 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 790 if (Prob > BestSuccSucc) 791 BestSuccSucc = Prob; 792 if (PDom == nullptr) 793 if (MPDT->dominates(SuccSucc, Succ)) { 794 PDom = SuccSucc; 795 break; 796 } 797 } 798 // For the comparisons, we need to know Succ's best incoming edge that isn't 799 // from BB. 800 auto SuccBestPred = BlockFrequency(0); 801 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 802 if (SuccPred == Succ || SuccPred == BB 803 || BlockToChain[SuccPred] == &Chain 804 || (BlockFilter && !BlockFilter->count(SuccPred))) 805 continue; 806 auto Freq = MBFI->getBlockFreq(SuccPred) 807 * MBPI->getEdgeProbability(SuccPred, Succ); 808 if (Freq > SuccBestPred) 809 SuccBestPred = Freq; 810 } 811 // Qin is Succ's best unplaced incoming edge that isn't BB 812 BlockFrequency Qin = SuccBestPred; 813 // If it doesn't have a post-dominating successor, here is the calculation: 814 // BB BB 815 // | \Qout | \ 816 // P| C | = 817 // = C' | C 818 // | /Qin | | 819 // | / | C' (+Succ) 820 // Succ Succ /| 821 // / \ | \/ | 822 // U/ =V | == | 823 // / \ | / \| 824 // D E D E 825 // '=' : Branch taken for that CFG edge 826 // Cost in the first case is: P + V 827 // For this calculation, we always assume P > Qout. If Qout > P 828 // The result of this function will be ignored at the caller. 829 // Let F = SuccFreq - Qin 830 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 831 832 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 833 BranchProbability UProb = BestSuccSucc; 834 BranchProbability VProb = AdjustedSuccSumProb - UProb; 835 BlockFrequency F = SuccFreq - Qin; 836 BlockFrequency V = SuccFreq * VProb; 837 BlockFrequency QinU = std::min(Qin, F) * UProb; 838 BlockFrequency BaseCost = P + V; 839 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 840 return greaterWithBias(BaseCost, DupCost, EntryFreq); 841 } 842 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 843 BranchProbability VProb = AdjustedSuccSumProb - UProb; 844 BlockFrequency U = SuccFreq * UProb; 845 BlockFrequency V = SuccFreq * VProb; 846 BlockFrequency F = SuccFreq - Qin; 847 // If there is a post-dominating successor, here is the calculation: 848 // BB BB BB BB 849 // | \Qout | \ | \Qout | \ 850 // |P C | = |P C | = 851 // = C' |P C = C' |P C 852 // | /Qin | | | /Qin | | 853 // | / | C' (+Succ) | / | C' (+Succ) 854 // Succ Succ /| Succ Succ /| 855 // | \ V | \/ | | \ V | \/ | 856 // |U \ |U /\ =? |U = |U /\ | 857 // = D = = =?| | D | = =| 858 // | / |/ D | / |/ D 859 // | / | / | = | / 860 // |/ | / |/ | = 861 // Dom Dom Dom Dom 862 // '=' : Branch taken for that CFG edge 863 // The cost for taken branches in the first case is P + U 864 // Let F = SuccFreq - Qin 865 // The cost in the second case (assuming independence), given the layout: 866 // BB, Succ, (C+Succ), D, Dom or the layout: 867 // BB, Succ, D, Dom, (C+Succ) 868 // is Qout + max(F, Qin) * U + min(F, Qin) 869 // compare P + U vs Qout + P * U + Qin. 870 // 871 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 872 // 873 // For the 3rd case, the cost is P + 2 * V 874 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 875 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 876 if (UProb > AdjustedSuccSumProb / 2 && 877 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 878 Chain, BlockFilter)) 879 // Cases 3 & 4 880 return greaterWithBias( 881 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 882 EntryFreq); 883 // Cases 1 & 2 884 return greaterWithBias((P + U), 885 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 886 std::max(Qin, F) * UProb), 887 EntryFreq); 888 } 889 890 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 891 /// successors form the lower part of a trellis. A successor set S forms the 892 /// lower part of a trellis if all of the predecessors of S are either in S or 893 /// have all of S as successors. We ignore trellises where BB doesn't have 2 894 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 895 /// are very uncommon and complex to compute optimally. Allowing edges within S 896 /// is not strictly a trellis, but the same algorithm works, so we allow it. 897 bool MachineBlockPlacement::isTrellis( 898 const MachineBasicBlock *BB, 899 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 900 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 901 // Technically BB could form a trellis with branching factor higher than 2. 902 // But that's extremely uncommon. 903 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 904 return false; 905 906 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 907 BB->succ_end()); 908 // To avoid reviewing the same predecessors twice. 909 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 910 911 for (MachineBasicBlock *Succ : ViableSuccs) { 912 int PredCount = 0; 913 for (auto SuccPred : Succ->predecessors()) { 914 // Allow triangle successors, but don't count them. 915 if (Successors.count(SuccPred)) { 916 // Make sure that it is actually a triangle. 917 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 918 if (!Successors.count(CheckSucc)) 919 return false; 920 continue; 921 } 922 const BlockChain *PredChain = BlockToChain[SuccPred]; 923 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 924 PredChain == &Chain || PredChain == BlockToChain[Succ]) 925 continue; 926 ++PredCount; 927 // Perform the successor check only once. 928 if (!SeenPreds.insert(SuccPred).second) 929 continue; 930 if (!hasSameSuccessors(*SuccPred, Successors)) 931 return false; 932 } 933 // If one of the successors has only BB as a predecessor, it is not a 934 // trellis. 935 if (PredCount < 1) 936 return false; 937 } 938 return true; 939 } 940 941 /// Pick the highest total weight pair of edges that can both be laid out. 942 /// The edges in \p Edges[0] are assumed to have a different destination than 943 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 944 /// the individual highest weight edges to the 2 different destinations, or in 945 /// case of a conflict, one of them should be replaced with a 2nd best edge. 946 std::pair<MachineBlockPlacement::WeightedEdge, 947 MachineBlockPlacement::WeightedEdge> 948 MachineBlockPlacement::getBestNonConflictingEdges( 949 const MachineBasicBlock *BB, 950 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 951 Edges) { 952 // Sort the edges, and then for each successor, find the best incoming 953 // predecessor. If the best incoming predecessors aren't the same, 954 // then that is clearly the best layout. If there is a conflict, one of the 955 // successors will have to fallthrough from the second best predecessor. We 956 // compare which combination is better overall. 957 958 // Sort for highest frequency. 959 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 960 961 llvm::stable_sort(Edges[0], Cmp); 962 llvm::stable_sort(Edges[1], Cmp); 963 auto BestA = Edges[0].begin(); 964 auto BestB = Edges[1].begin(); 965 // Arrange for the correct answer to be in BestA and BestB 966 // If the 2 best edges don't conflict, the answer is already there. 967 if (BestA->Src == BestB->Src) { 968 // Compare the total fallthrough of (Best + Second Best) for both pairs 969 auto SecondBestA = std::next(BestA); 970 auto SecondBestB = std::next(BestB); 971 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 972 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 973 if (BestAScore < BestBScore) 974 BestA = SecondBestA; 975 else 976 BestB = SecondBestB; 977 } 978 // Arrange for the BB edge to be in BestA if it exists. 979 if (BestB->Src == BB) 980 std::swap(BestA, BestB); 981 return std::make_pair(*BestA, *BestB); 982 } 983 984 /// Get the best successor from \p BB based on \p BB being part of a trellis. 985 /// We only handle trellises with 2 successors, so the algorithm is 986 /// straightforward: Find the best pair of edges that don't conflict. We find 987 /// the best incoming edge for each successor in the trellis. If those conflict, 988 /// we consider which of them should be replaced with the second best. 989 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 990 /// comes from \p BB, it will be in \p BestEdges[0] 991 MachineBlockPlacement::BlockAndTailDupResult 992 MachineBlockPlacement::getBestTrellisSuccessor( 993 const MachineBasicBlock *BB, 994 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 995 BranchProbability AdjustedSumProb, const BlockChain &Chain, 996 const BlockFilterSet *BlockFilter) { 997 998 BlockAndTailDupResult Result = {nullptr, false}; 999 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1000 BB->succ_end()); 1001 1002 // We assume size 2 because it's common. For general n, we would have to do 1003 // the Hungarian algorithm, but it's not worth the complexity because more 1004 // than 2 successors is fairly uncommon, and a trellis even more so. 1005 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1006 return Result; 1007 1008 // Collect the edge frequencies of all edges that form the trellis. 1009 SmallVector<WeightedEdge, 8> Edges[2]; 1010 int SuccIndex = 0; 1011 for (auto Succ : ViableSuccs) { 1012 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1013 // Skip any placed predecessors that are not BB 1014 if (SuccPred != BB) 1015 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1016 BlockToChain[SuccPred] == &Chain || 1017 BlockToChain[SuccPred] == BlockToChain[Succ]) 1018 continue; 1019 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1020 MBPI->getEdgeProbability(SuccPred, Succ); 1021 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1022 } 1023 ++SuccIndex; 1024 } 1025 1026 // Pick the best combination of 2 edges from all the edges in the trellis. 1027 WeightedEdge BestA, BestB; 1028 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1029 1030 if (BestA.Src != BB) { 1031 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1032 // we shouldn't choose any successor. We've already looked and there's a 1033 // better fallthrough edge for all the successors. 1034 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1035 return Result; 1036 } 1037 1038 // Did we pick the triangle edge? If tail-duplication is profitable, do 1039 // that instead. Otherwise merge the triangle edge now while we know it is 1040 // optimal. 1041 if (BestA.Dest == BestB.Src) { 1042 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1043 // would be better. 1044 MachineBasicBlock *Succ1 = BestA.Dest; 1045 MachineBasicBlock *Succ2 = BestB.Dest; 1046 // Check to see if tail-duplication would be profitable. 1047 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1048 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1049 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1050 Chain, BlockFilter)) { 1051 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1052 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1053 dbgs() << " Selected: " << getBlockName(Succ2) 1054 << ", probability: " << Succ2Prob 1055 << " (Tail Duplicate)\n"); 1056 Result.BB = Succ2; 1057 Result.ShouldTailDup = true; 1058 return Result; 1059 } 1060 } 1061 // We have already computed the optimal edge for the other side of the 1062 // trellis. 1063 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1064 1065 auto TrellisSucc = BestA.Dest; 1066 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1067 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1068 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1069 << ", probability: " << SuccProb << " (Trellis)\n"); 1070 Result.BB = TrellisSucc; 1071 return Result; 1072 } 1073 1074 /// When the option allowTailDupPlacement() is on, this method checks if the 1075 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1076 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1077 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1078 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1079 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1080 if (!shouldTailDuplicate(Succ)) 1081 return false; 1082 1083 // The result of canTailDuplicate. 1084 bool Duplicate = true; 1085 // Number of possible duplication. 1086 unsigned int NumDup = 0; 1087 1088 // For CFG checking. 1089 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1090 BB->succ_end()); 1091 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1092 // Make sure all unplaced and unfiltered predecessors can be 1093 // tail-duplicated into. 1094 // Skip any blocks that are already placed or not in this loop. 1095 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1096 || BlockToChain[Pred] == &Chain) 1097 continue; 1098 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1099 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1100 // This will result in a trellis after tail duplication, so we don't 1101 // need to copy Succ into this predecessor. In the presence 1102 // of a trellis tail duplication can continue to be profitable. 1103 // For example: 1104 // A A 1105 // |\ |\ 1106 // | \ | \ 1107 // | C | C+BB 1108 // | / | | 1109 // |/ | | 1110 // BB => BB | 1111 // |\ |\/| 1112 // | \ |/\| 1113 // | D | D 1114 // | / | / 1115 // |/ |/ 1116 // Succ Succ 1117 // 1118 // After BB was duplicated into C, the layout looks like the one on the 1119 // right. BB and C now have the same successors. When considering 1120 // whether Succ can be duplicated into all its unplaced predecessors, we 1121 // ignore C. 1122 // We can do this because C already has a profitable fallthrough, namely 1123 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1124 // duplication and for this test. 1125 // 1126 // This allows trellises to be laid out in 2 separate chains 1127 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1128 // because it allows the creation of 2 fallthrough paths with links 1129 // between them, and we correctly identify the best layout for these 1130 // CFGs. We want to extend trellises that the user created in addition 1131 // to trellises created by tail-duplication, so we just look for the 1132 // CFG. 1133 continue; 1134 Duplicate = false; 1135 continue; 1136 } 1137 NumDup++; 1138 } 1139 1140 // No possible duplication in current filter set. 1141 if (NumDup == 0) 1142 return false; 1143 1144 // This is mainly for function exit BB. 1145 // The integrated tail duplication is really designed for increasing 1146 // fallthrough from predecessors from Succ to its successors. We may need 1147 // other machanism to handle different cases. 1148 if (Succ->succ_size() == 0) 1149 return true; 1150 1151 // Plus the already placed predecessor. 1152 NumDup++; 1153 1154 // If the duplication candidate has more unplaced predecessors than 1155 // successors, the extra duplication can't bring more fallthrough. 1156 // 1157 // Pred1 Pred2 Pred3 1158 // \ | / 1159 // \ | / 1160 // \ | / 1161 // Dup 1162 // / \ 1163 // / \ 1164 // Succ1 Succ2 1165 // 1166 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1167 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1168 // but the duplication into Pred3 can't increase fallthrough. 1169 // 1170 // A small number of extra duplication may not hurt too much. We need a better 1171 // heuristic to handle it. 1172 // 1173 // FIXME: we should selectively tail duplicate a BB into part of its 1174 // predecessors. 1175 if ((NumDup > Succ->succ_size()) || !Duplicate) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 /// Find chains of triangles where we believe it would be profitable to 1182 /// tail-duplicate them all, but a local analysis would not find them. 1183 /// There are 3 ways this can be profitable: 1184 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1185 /// longer chains) 1186 /// 2) The chains are statically correlated. Branch probabilities have a very 1187 /// U-shaped distribution. 1188 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1189 /// If the branches in a chain are likely to be from the same side of the 1190 /// distribution as their predecessor, but are independent at runtime, this 1191 /// transformation is profitable. (Because the cost of being wrong is a small 1192 /// fixed cost, unlike the standard triangle layout where the cost of being 1193 /// wrong scales with the # of triangles.) 1194 /// 3) The chains are dynamically correlated. If the probability that a previous 1195 /// branch was taken positively influences whether the next branch will be 1196 /// taken 1197 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1198 void MachineBlockPlacement::precomputeTriangleChains() { 1199 struct TriangleChain { 1200 std::vector<MachineBasicBlock *> Edges; 1201 1202 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1203 : Edges({src, dst}) {} 1204 1205 void append(MachineBasicBlock *dst) { 1206 assert(getKey()->isSuccessor(dst) && 1207 "Attempting to append a block that is not a successor."); 1208 Edges.push_back(dst); 1209 } 1210 1211 unsigned count() const { return Edges.size() - 1; } 1212 1213 MachineBasicBlock *getKey() const { 1214 return Edges.back(); 1215 } 1216 }; 1217 1218 if (TriangleChainCount == 0) 1219 return; 1220 1221 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1222 // Map from last block to the chain that contains it. This allows us to extend 1223 // chains as we find new triangles. 1224 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1225 for (MachineBasicBlock &BB : *F) { 1226 // If BB doesn't have 2 successors, it doesn't start a triangle. 1227 if (BB.succ_size() != 2) 1228 continue; 1229 MachineBasicBlock *PDom = nullptr; 1230 for (MachineBasicBlock *Succ : BB.successors()) { 1231 if (!MPDT->dominates(Succ, &BB)) 1232 continue; 1233 PDom = Succ; 1234 break; 1235 } 1236 // If BB doesn't have a post-dominating successor, it doesn't form a 1237 // triangle. 1238 if (PDom == nullptr) 1239 continue; 1240 // If PDom has a hint that it is low probability, skip this triangle. 1241 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1242 continue; 1243 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1244 // we're looking for. 1245 if (!shouldTailDuplicate(PDom)) 1246 continue; 1247 bool CanTailDuplicate = true; 1248 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1249 // isn't the kind of triangle we're looking for. 1250 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1251 if (Pred == &BB) 1252 continue; 1253 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1254 CanTailDuplicate = false; 1255 break; 1256 } 1257 } 1258 // If we can't tail-duplicate PDom to its predecessors, then skip this 1259 // triangle. 1260 if (!CanTailDuplicate) 1261 continue; 1262 1263 // Now we have an interesting triangle. Insert it if it's not part of an 1264 // existing chain. 1265 // Note: This cannot be replaced with a call insert() or emplace() because 1266 // the find key is BB, but the insert/emplace key is PDom. 1267 auto Found = TriangleChainMap.find(&BB); 1268 // If it is, remove the chain from the map, grow it, and put it back in the 1269 // map with the end as the new key. 1270 if (Found != TriangleChainMap.end()) { 1271 TriangleChain Chain = std::move(Found->second); 1272 TriangleChainMap.erase(Found); 1273 Chain.append(PDom); 1274 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1275 } else { 1276 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1277 assert(InsertResult.second && "Block seen twice."); 1278 (void)InsertResult; 1279 } 1280 } 1281 1282 // Iterating over a DenseMap is safe here, because the only thing in the body 1283 // of the loop is inserting into another DenseMap (ComputedEdges). 1284 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1285 for (auto &ChainPair : TriangleChainMap) { 1286 TriangleChain &Chain = ChainPair.second; 1287 // Benchmarking has shown that due to branch correlation duplicating 2 or 1288 // more triangles is profitable, despite the calculations assuming 1289 // independence. 1290 if (Chain.count() < TriangleChainCount) 1291 continue; 1292 MachineBasicBlock *dst = Chain.Edges.back(); 1293 Chain.Edges.pop_back(); 1294 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1295 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1296 << getBlockName(dst) 1297 << " as pre-computed based on triangles.\n"); 1298 1299 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1300 assert(InsertResult.second && "Block seen twice."); 1301 (void)InsertResult; 1302 1303 dst = src; 1304 } 1305 } 1306 } 1307 1308 // When profile is not present, return the StaticLikelyProb. 1309 // When profile is available, we need to handle the triangle-shape CFG. 1310 static BranchProbability getLayoutSuccessorProbThreshold( 1311 const MachineBasicBlock *BB) { 1312 if (!BB->getParent()->getFunction().hasProfileData()) 1313 return BranchProbability(StaticLikelyProb, 100); 1314 if (BB->succ_size() == 2) { 1315 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1316 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1317 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1318 /* See case 1 below for the cost analysis. For BB->Succ to 1319 * be taken with smaller cost, the following needs to hold: 1320 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1321 * So the threshold T in the calculation below 1322 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1323 * So T / (1 - T) = 2, Yielding T = 2/3 1324 * Also adding user specified branch bias, we have 1325 * T = (2/3)*(ProfileLikelyProb/50) 1326 * = (2*ProfileLikelyProb)/150) 1327 */ 1328 return BranchProbability(2 * ProfileLikelyProb, 150); 1329 } 1330 } 1331 return BranchProbability(ProfileLikelyProb, 100); 1332 } 1333 1334 /// Checks to see if the layout candidate block \p Succ has a better layout 1335 /// predecessor than \c BB. If yes, returns true. 1336 /// \p SuccProb: The probability adjusted for only remaining blocks. 1337 /// Only used for logging 1338 /// \p RealSuccProb: The un-adjusted probability. 1339 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1340 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1341 /// considered 1342 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1343 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1344 const BlockChain &SuccChain, BranchProbability SuccProb, 1345 BranchProbability RealSuccProb, const BlockChain &Chain, 1346 const BlockFilterSet *BlockFilter) { 1347 1348 // There isn't a better layout when there are no unscheduled predecessors. 1349 if (SuccChain.UnscheduledPredecessors == 0) 1350 return false; 1351 1352 // There are two basic scenarios here: 1353 // ------------------------------------- 1354 // Case 1: triangular shape CFG (if-then): 1355 // BB 1356 // | \ 1357 // | \ 1358 // | Pred 1359 // | / 1360 // Succ 1361 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1362 // set Succ as the layout successor of BB. Picking Succ as BB's 1363 // successor breaks the CFG constraints (FIXME: define these constraints). 1364 // With this layout, Pred BB 1365 // is forced to be outlined, so the overall cost will be cost of the 1366 // branch taken from BB to Pred, plus the cost of back taken branch 1367 // from Pred to Succ, as well as the additional cost associated 1368 // with the needed unconditional jump instruction from Pred To Succ. 1369 1370 // The cost of the topological order layout is the taken branch cost 1371 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1372 // must hold: 1373 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1374 // < freq(BB->Succ) * taken_branch_cost. 1375 // Ignoring unconditional jump cost, we get 1376 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1377 // prob(BB->Succ) > 2 * prob(BB->Pred) 1378 // 1379 // When real profile data is available, we can precisely compute the 1380 // probability threshold that is needed for edge BB->Succ to be considered. 1381 // Without profile data, the heuristic requires the branch bias to be 1382 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1383 // ----------------------------------------------------------------- 1384 // Case 2: diamond like CFG (if-then-else): 1385 // S 1386 // / \ 1387 // | \ 1388 // BB Pred 1389 // \ / 1390 // Succ 1391 // .. 1392 // 1393 // The current block is BB and edge BB->Succ is now being evaluated. 1394 // Note that edge S->BB was previously already selected because 1395 // prob(S->BB) > prob(S->Pred). 1396 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1397 // choose Pred, we will have a topological ordering as shown on the left 1398 // in the picture below. If we choose Succ, we have the solution as shown 1399 // on the right: 1400 // 1401 // topo-order: 1402 // 1403 // S----- ---S 1404 // | | | | 1405 // ---BB | | BB 1406 // | | | | 1407 // | Pred-- | Succ-- 1408 // | | | | 1409 // ---Succ ---Pred-- 1410 // 1411 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1412 // = freq(S->Pred) + freq(S->BB) 1413 // 1414 // If we have profile data (i.e, branch probabilities can be trusted), the 1415 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1416 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1417 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1418 // means the cost of topological order is greater. 1419 // When profile data is not available, however, we need to be more 1420 // conservative. If the branch prediction is wrong, breaking the topo-order 1421 // will actually yield a layout with large cost. For this reason, we need 1422 // strong biased branch at block S with Prob(S->BB) in order to select 1423 // BB->Succ. This is equivalent to looking the CFG backward with backward 1424 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1425 // profile data). 1426 // -------------------------------------------------------------------------- 1427 // Case 3: forked diamond 1428 // S 1429 // / \ 1430 // / \ 1431 // BB Pred 1432 // | \ / | 1433 // | \ / | 1434 // | X | 1435 // | / \ | 1436 // | / \ | 1437 // S1 S2 1438 // 1439 // The current block is BB and edge BB->S1 is now being evaluated. 1440 // As above S->BB was already selected because 1441 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1442 // 1443 // topo-order: 1444 // 1445 // S-------| ---S 1446 // | | | | 1447 // ---BB | | BB 1448 // | | | | 1449 // | Pred----| | S1---- 1450 // | | | | 1451 // --(S1 or S2) ---Pred-- 1452 // | 1453 // S2 1454 // 1455 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1456 // + min(freq(Pred->S1), freq(Pred->S2)) 1457 // Non-topo-order cost: 1458 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1459 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1460 // is 0. Then the non topo layout is better when 1461 // freq(S->Pred) < freq(BB->S1). 1462 // This is exactly what is checked below. 1463 // Note there are other shapes that apply (Pred may not be a single block, 1464 // but they all fit this general pattern.) 1465 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1466 1467 // Make sure that a hot successor doesn't have a globally more 1468 // important predecessor. 1469 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1470 bool BadCFGConflict = false; 1471 1472 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1473 BlockChain *PredChain = BlockToChain[Pred]; 1474 if (Pred == Succ || PredChain == &SuccChain || 1475 (BlockFilter && !BlockFilter->count(Pred)) || 1476 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1477 // This check is redundant except for look ahead. This function is 1478 // called for lookahead by isProfitableToTailDup when BB hasn't been 1479 // placed yet. 1480 (Pred == BB)) 1481 continue; 1482 // Do backward checking. 1483 // For all cases above, we need a backward checking to filter out edges that 1484 // are not 'strongly' biased. 1485 // BB Pred 1486 // \ / 1487 // Succ 1488 // We select edge BB->Succ if 1489 // freq(BB->Succ) > freq(Succ) * HotProb 1490 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1491 // HotProb 1492 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1493 // Case 1 is covered too, because the first equation reduces to: 1494 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1495 BlockFrequency PredEdgeFreq = 1496 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1497 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1498 BadCFGConflict = true; 1499 break; 1500 } 1501 } 1502 1503 if (BadCFGConflict) { 1504 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1505 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1506 return true; 1507 } 1508 1509 return false; 1510 } 1511 1512 /// Select the best successor for a block. 1513 /// 1514 /// This looks across all successors of a particular block and attempts to 1515 /// select the "best" one to be the layout successor. It only considers direct 1516 /// successors which also pass the block filter. It will attempt to avoid 1517 /// breaking CFG structure, but cave and break such structures in the case of 1518 /// very hot successor edges. 1519 /// 1520 /// \returns The best successor block found, or null if none are viable, along 1521 /// with a boolean indicating if tail duplication is necessary. 1522 MachineBlockPlacement::BlockAndTailDupResult 1523 MachineBlockPlacement::selectBestSuccessor( 1524 const MachineBasicBlock *BB, const BlockChain &Chain, 1525 const BlockFilterSet *BlockFilter) { 1526 const BranchProbability HotProb(StaticLikelyProb, 100); 1527 1528 BlockAndTailDupResult BestSucc = { nullptr, false }; 1529 auto BestProb = BranchProbability::getZero(); 1530 1531 SmallVector<MachineBasicBlock *, 4> Successors; 1532 auto AdjustedSumProb = 1533 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1534 1535 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1536 << "\n"); 1537 1538 // if we already precomputed the best successor for BB, return that if still 1539 // applicable. 1540 auto FoundEdge = ComputedEdges.find(BB); 1541 if (FoundEdge != ComputedEdges.end()) { 1542 MachineBasicBlock *Succ = FoundEdge->second.BB; 1543 ComputedEdges.erase(FoundEdge); 1544 BlockChain *SuccChain = BlockToChain[Succ]; 1545 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1546 SuccChain != &Chain && Succ == *SuccChain->begin()) 1547 return FoundEdge->second; 1548 } 1549 1550 // if BB is part of a trellis, Use the trellis to determine the optimal 1551 // fallthrough edges 1552 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1553 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1554 BlockFilter); 1555 1556 // For blocks with CFG violations, we may be able to lay them out anyway with 1557 // tail-duplication. We keep this vector so we can perform the probability 1558 // calculations the minimum number of times. 1559 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1560 DupCandidates; 1561 for (MachineBasicBlock *Succ : Successors) { 1562 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1563 BranchProbability SuccProb = 1564 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1565 1566 BlockChain &SuccChain = *BlockToChain[Succ]; 1567 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1568 // predecessor that yields lower global cost. 1569 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1570 Chain, BlockFilter)) { 1571 // If tail duplication would make Succ profitable, place it. 1572 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1573 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1574 continue; 1575 } 1576 1577 LLVM_DEBUG( 1578 dbgs() << " Candidate: " << getBlockName(Succ) 1579 << ", probability: " << SuccProb 1580 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1581 << "\n"); 1582 1583 if (BestSucc.BB && BestProb >= SuccProb) { 1584 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1585 continue; 1586 } 1587 1588 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1589 BestSucc.BB = Succ; 1590 BestProb = SuccProb; 1591 } 1592 // Handle the tail duplication candidates in order of decreasing probability. 1593 // Stop at the first one that is profitable. Also stop if they are less 1594 // profitable than BestSucc. Position is important because we preserve it and 1595 // prefer first best match. Here we aren't comparing in order, so we capture 1596 // the position instead. 1597 llvm::stable_sort(DupCandidates, 1598 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1599 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1600 return std::get<0>(L) > std::get<0>(R); 1601 }); 1602 for (auto &Tup : DupCandidates) { 1603 BranchProbability DupProb; 1604 MachineBasicBlock *Succ; 1605 std::tie(DupProb, Succ) = Tup; 1606 if (DupProb < BestProb) 1607 break; 1608 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1609 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1610 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1611 << ", probability: " << DupProb 1612 << " (Tail Duplicate)\n"); 1613 BestSucc.BB = Succ; 1614 BestSucc.ShouldTailDup = true; 1615 break; 1616 } 1617 } 1618 1619 if (BestSucc.BB) 1620 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1621 1622 return BestSucc; 1623 } 1624 1625 /// Select the best block from a worklist. 1626 /// 1627 /// This looks through the provided worklist as a list of candidate basic 1628 /// blocks and select the most profitable one to place. The definition of 1629 /// profitable only really makes sense in the context of a loop. This returns 1630 /// the most frequently visited block in the worklist, which in the case of 1631 /// a loop, is the one most desirable to be physically close to the rest of the 1632 /// loop body in order to improve i-cache behavior. 1633 /// 1634 /// \returns The best block found, or null if none are viable. 1635 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1636 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1637 // Once we need to walk the worklist looking for a candidate, cleanup the 1638 // worklist of already placed entries. 1639 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1640 // some code complexity) into the loop below. 1641 WorkList.erase(llvm::remove_if(WorkList, 1642 [&](MachineBasicBlock *BB) { 1643 return BlockToChain.lookup(BB) == &Chain; 1644 }), 1645 WorkList.end()); 1646 1647 if (WorkList.empty()) 1648 return nullptr; 1649 1650 bool IsEHPad = WorkList[0]->isEHPad(); 1651 1652 MachineBasicBlock *BestBlock = nullptr; 1653 BlockFrequency BestFreq; 1654 for (MachineBasicBlock *MBB : WorkList) { 1655 assert(MBB->isEHPad() == IsEHPad && 1656 "EHPad mismatch between block and work list."); 1657 1658 BlockChain &SuccChain = *BlockToChain[MBB]; 1659 if (&SuccChain == &Chain) 1660 continue; 1661 1662 assert(SuccChain.UnscheduledPredecessors == 0 && 1663 "Found CFG-violating block"); 1664 1665 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1666 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1667 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1668 1669 // For ehpad, we layout the least probable first as to avoid jumping back 1670 // from least probable landingpads to more probable ones. 1671 // 1672 // FIXME: Using probability is probably (!) not the best way to achieve 1673 // this. We should probably have a more principled approach to layout 1674 // cleanup code. 1675 // 1676 // The goal is to get: 1677 // 1678 // +--------------------------+ 1679 // | V 1680 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1681 // 1682 // Rather than: 1683 // 1684 // +-------------------------------------+ 1685 // V | 1686 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1687 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1688 continue; 1689 1690 BestBlock = MBB; 1691 BestFreq = CandidateFreq; 1692 } 1693 1694 return BestBlock; 1695 } 1696 1697 /// Retrieve the first unplaced basic block. 1698 /// 1699 /// This routine is called when we are unable to use the CFG to walk through 1700 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1701 /// We walk through the function's blocks in order, starting from the 1702 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1703 /// re-scanning the entire sequence on repeated calls to this routine. 1704 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1705 const BlockChain &PlacedChain, 1706 MachineFunction::iterator &PrevUnplacedBlockIt, 1707 const BlockFilterSet *BlockFilter) { 1708 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1709 ++I) { 1710 if (BlockFilter && !BlockFilter->count(&*I)) 1711 continue; 1712 if (BlockToChain[&*I] != &PlacedChain) { 1713 PrevUnplacedBlockIt = I; 1714 // Now select the head of the chain to which the unplaced block belongs 1715 // as the block to place. This will force the entire chain to be placed, 1716 // and satisfies the requirements of merging chains. 1717 return *BlockToChain[&*I]->begin(); 1718 } 1719 } 1720 return nullptr; 1721 } 1722 1723 void MachineBlockPlacement::fillWorkLists( 1724 const MachineBasicBlock *MBB, 1725 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1726 const BlockFilterSet *BlockFilter = nullptr) { 1727 BlockChain &Chain = *BlockToChain[MBB]; 1728 if (!UpdatedPreds.insert(&Chain).second) 1729 return; 1730 1731 assert( 1732 Chain.UnscheduledPredecessors == 0 && 1733 "Attempting to place block with unscheduled predecessors in worklist."); 1734 for (MachineBasicBlock *ChainBB : Chain) { 1735 assert(BlockToChain[ChainBB] == &Chain && 1736 "Block in chain doesn't match BlockToChain map."); 1737 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1738 if (BlockFilter && !BlockFilter->count(Pred)) 1739 continue; 1740 if (BlockToChain[Pred] == &Chain) 1741 continue; 1742 ++Chain.UnscheduledPredecessors; 1743 } 1744 } 1745 1746 if (Chain.UnscheduledPredecessors != 0) 1747 return; 1748 1749 MachineBasicBlock *BB = *Chain.begin(); 1750 if (BB->isEHPad()) 1751 EHPadWorkList.push_back(BB); 1752 else 1753 BlockWorkList.push_back(BB); 1754 } 1755 1756 void MachineBlockPlacement::buildChain( 1757 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1758 BlockFilterSet *BlockFilter) { 1759 assert(HeadBB && "BB must not be null.\n"); 1760 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1761 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1762 1763 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1764 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1765 MachineBasicBlock *BB = *std::prev(Chain.end()); 1766 while (true) { 1767 assert(BB && "null block found at end of chain in loop."); 1768 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1769 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1770 1771 1772 // Look for the best viable successor if there is one to place immediately 1773 // after this block. 1774 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1775 MachineBasicBlock* BestSucc = Result.BB; 1776 bool ShouldTailDup = Result.ShouldTailDup; 1777 if (allowTailDupPlacement()) 1778 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1779 Chain, 1780 BlockFilter)); 1781 1782 // If an immediate successor isn't available, look for the best viable 1783 // block among those we've identified as not violating the loop's CFG at 1784 // this point. This won't be a fallthrough, but it will increase locality. 1785 if (!BestSucc) 1786 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1787 if (!BestSucc) 1788 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1789 1790 if (!BestSucc) { 1791 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1792 if (!BestSucc) 1793 break; 1794 1795 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1796 "layout successor until the CFG reduces\n"); 1797 } 1798 1799 // Placement may have changed tail duplication opportunities. 1800 // Check for that now. 1801 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1802 // If the chosen successor was duplicated into all its predecessors, 1803 // don't bother laying it out, just go round the loop again with BB as 1804 // the chain end. 1805 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1806 BlockFilter, PrevUnplacedBlockIt)) 1807 continue; 1808 } 1809 1810 // Place this block, updating the datastructures to reflect its placement. 1811 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1812 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1813 // we selected a successor that didn't fit naturally into the CFG. 1814 SuccChain.UnscheduledPredecessors = 0; 1815 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1816 << getBlockName(BestSucc) << "\n"); 1817 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1818 Chain.merge(BestSucc, &SuccChain); 1819 BB = *std::prev(Chain.end()); 1820 } 1821 1822 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1823 << getBlockName(*Chain.begin()) << "\n"); 1824 } 1825 1826 // If bottom of block BB has only one successor OldTop, in most cases it is 1827 // profitable to move it before OldTop, except the following case: 1828 // 1829 // -->OldTop<- 1830 // | . | 1831 // | . | 1832 // | . | 1833 // ---Pred | 1834 // | | 1835 // BB----- 1836 // 1837 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1838 // layout the other successor below it, so it can't reduce taken branch. 1839 // In this case we keep its original layout. 1840 bool 1841 MachineBlockPlacement::canMoveBottomBlockToTop( 1842 const MachineBasicBlock *BottomBlock, 1843 const MachineBasicBlock *OldTop) { 1844 if (BottomBlock->pred_size() != 1) 1845 return true; 1846 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1847 if (Pred->succ_size() != 2) 1848 return true; 1849 1850 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1851 if (OtherBB == BottomBlock) 1852 OtherBB = *Pred->succ_rbegin(); 1853 if (OtherBB == OldTop) 1854 return false; 1855 1856 return true; 1857 } 1858 1859 // Find out the possible fall through frequence to the top of a loop. 1860 BlockFrequency 1861 MachineBlockPlacement::TopFallThroughFreq( 1862 const MachineBasicBlock *Top, 1863 const BlockFilterSet &LoopBlockSet) { 1864 BlockFrequency MaxFreq = 0; 1865 for (MachineBasicBlock *Pred : Top->predecessors()) { 1866 BlockChain *PredChain = BlockToChain[Pred]; 1867 if (!LoopBlockSet.count(Pred) && 1868 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1869 // Found a Pred block can be placed before Top. 1870 // Check if Top is the best successor of Pred. 1871 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1872 bool TopOK = true; 1873 for (MachineBasicBlock *Succ : Pred->successors()) { 1874 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1875 BlockChain *SuccChain = BlockToChain[Succ]; 1876 // Check if Succ can be placed after Pred. 1877 // Succ should not be in any chain, or it is the head of some chain. 1878 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1879 (!SuccChain || Succ == *SuccChain->begin())) { 1880 TopOK = false; 1881 break; 1882 } 1883 } 1884 if (TopOK) { 1885 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1886 MBPI->getEdgeProbability(Pred, Top); 1887 if (EdgeFreq > MaxFreq) 1888 MaxFreq = EdgeFreq; 1889 } 1890 } 1891 } 1892 return MaxFreq; 1893 } 1894 1895 // Compute the fall through gains when move NewTop before OldTop. 1896 // 1897 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1898 // marked as "+" are increased fallthrough, this function computes 1899 // 1900 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1901 // 1902 // | 1903 // | - 1904 // V 1905 // --->OldTop 1906 // | . 1907 // | . 1908 // +| . + 1909 // | Pred ---> 1910 // | |- 1911 // | V 1912 // --- NewTop <--- 1913 // |- 1914 // V 1915 // 1916 BlockFrequency 1917 MachineBlockPlacement::FallThroughGains( 1918 const MachineBasicBlock *NewTop, 1919 const MachineBasicBlock *OldTop, 1920 const MachineBasicBlock *ExitBB, 1921 const BlockFilterSet &LoopBlockSet) { 1922 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1923 BlockFrequency FallThrough2Exit = 0; 1924 if (ExitBB) 1925 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1926 MBPI->getEdgeProbability(NewTop, ExitBB); 1927 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1928 MBPI->getEdgeProbability(NewTop, OldTop); 1929 1930 // Find the best Pred of NewTop. 1931 MachineBasicBlock *BestPred = nullptr; 1932 BlockFrequency FallThroughFromPred = 0; 1933 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1934 if (!LoopBlockSet.count(Pred)) 1935 continue; 1936 BlockChain *PredChain = BlockToChain[Pred]; 1937 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1938 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1939 MBPI->getEdgeProbability(Pred, NewTop); 1940 if (EdgeFreq > FallThroughFromPred) { 1941 FallThroughFromPred = EdgeFreq; 1942 BestPred = Pred; 1943 } 1944 } 1945 } 1946 1947 // If NewTop is not placed after Pred, another successor can be placed 1948 // after Pred. 1949 BlockFrequency NewFreq = 0; 1950 if (BestPred) { 1951 for (MachineBasicBlock *Succ : BestPred->successors()) { 1952 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1953 continue; 1954 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1955 continue; 1956 BlockChain *SuccChain = BlockToChain[Succ]; 1957 if ((SuccChain && (Succ != *SuccChain->begin())) || 1958 (SuccChain == BlockToChain[BestPred])) 1959 continue; 1960 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1961 MBPI->getEdgeProbability(BestPred, Succ); 1962 if (EdgeFreq > NewFreq) 1963 NewFreq = EdgeFreq; 1964 } 1965 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 1966 MBPI->getEdgeProbability(BestPred, NewTop); 1967 if (NewFreq > OrigEdgeFreq) { 1968 // If NewTop is not the best successor of Pred, then Pred doesn't 1969 // fallthrough to NewTop. So there is no FallThroughFromPred and 1970 // NewFreq. 1971 NewFreq = 0; 1972 FallThroughFromPred = 0; 1973 } 1974 } 1975 1976 BlockFrequency Result = 0; 1977 BlockFrequency Gains = BackEdgeFreq + NewFreq; 1978 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 1979 FallThroughFromPred; 1980 if (Gains > Lost) 1981 Result = Gains - Lost; 1982 return Result; 1983 } 1984 1985 /// Helper function of findBestLoopTop. Find the best loop top block 1986 /// from predecessors of old top. 1987 /// 1988 /// Look for a block which is strictly better than the old top for laying 1989 /// out before the old top of the loop. This looks for only two patterns: 1990 /// 1991 /// 1. a block has only one successor, the old loop top 1992 /// 1993 /// Because such a block will always result in an unconditional jump, 1994 /// rotating it in front of the old top is always profitable. 1995 /// 1996 /// 2. a block has two successors, one is old top, another is exit 1997 /// and it has more than one predecessors 1998 /// 1999 /// If it is below one of its predecessors P, only P can fall through to 2000 /// it, all other predecessors need a jump to it, and another conditional 2001 /// jump to loop header. If it is moved before loop header, all its 2002 /// predecessors jump to it, then fall through to loop header. So all its 2003 /// predecessors except P can reduce one taken branch. 2004 /// At the same time, move it before old top increases the taken branch 2005 /// to loop exit block, so the reduced taken branch will be compared with 2006 /// the increased taken branch to the loop exit block. 2007 MachineBasicBlock * 2008 MachineBlockPlacement::findBestLoopTopHelper( 2009 MachineBasicBlock *OldTop, 2010 const MachineLoop &L, 2011 const BlockFilterSet &LoopBlockSet) { 2012 // Check that the header hasn't been fused with a preheader block due to 2013 // crazy branches. If it has, we need to start with the header at the top to 2014 // prevent pulling the preheader into the loop body. 2015 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2016 if (!LoopBlockSet.count(*HeaderChain.begin())) 2017 return OldTop; 2018 2019 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2020 << "\n"); 2021 2022 BlockFrequency BestGains = 0; 2023 MachineBasicBlock *BestPred = nullptr; 2024 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2025 if (!LoopBlockSet.count(Pred)) 2026 continue; 2027 if (Pred == L.getHeader()) 2028 continue; 2029 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2030 << Pred->succ_size() << " successors, "; 2031 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2032 if (Pred->succ_size() > 2) 2033 continue; 2034 2035 MachineBasicBlock *OtherBB = nullptr; 2036 if (Pred->succ_size() == 2) { 2037 OtherBB = *Pred->succ_begin(); 2038 if (OtherBB == OldTop) 2039 OtherBB = *Pred->succ_rbegin(); 2040 } 2041 2042 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2043 continue; 2044 2045 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2046 LoopBlockSet); 2047 if ((Gains > 0) && (Gains > BestGains || 2048 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2049 BestPred = Pred; 2050 BestGains = Gains; 2051 } 2052 } 2053 2054 // If no direct predecessor is fine, just use the loop header. 2055 if (!BestPred) { 2056 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2057 return OldTop; 2058 } 2059 2060 // Walk backwards through any straight line of predecessors. 2061 while (BestPred->pred_size() == 1 && 2062 (*BestPred->pred_begin())->succ_size() == 1 && 2063 *BestPred->pred_begin() != L.getHeader()) 2064 BestPred = *BestPred->pred_begin(); 2065 2066 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2067 return BestPred; 2068 } 2069 2070 /// Find the best loop top block for layout. 2071 /// 2072 /// This function iteratively calls findBestLoopTopHelper, until no new better 2073 /// BB can be found. 2074 MachineBasicBlock * 2075 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2076 const BlockFilterSet &LoopBlockSet) { 2077 // Placing the latch block before the header may introduce an extra branch 2078 // that skips this block the first time the loop is executed, which we want 2079 // to avoid when optimising for size. 2080 // FIXME: in theory there is a case that does not introduce a new branch, 2081 // i.e. when the layout predecessor does not fallthrough to the loop header. 2082 // In practice this never happens though: there always seems to be a preheader 2083 // that can fallthrough and that is also placed before the header. 2084 bool OptForSize = F->getFunction().hasOptSize() || 2085 llvm::shouldOptimizeForSize(L.getHeader(), PSI, 2086 &MBFI->getMBFI()); 2087 if (OptForSize) 2088 return L.getHeader(); 2089 2090 MachineBasicBlock *OldTop = nullptr; 2091 MachineBasicBlock *NewTop = L.getHeader(); 2092 while (NewTop != OldTop) { 2093 OldTop = NewTop; 2094 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2095 if (NewTop != OldTop) 2096 ComputedEdges[NewTop] = { OldTop, false }; 2097 } 2098 return NewTop; 2099 } 2100 2101 /// Find the best loop exiting block for layout. 2102 /// 2103 /// This routine implements the logic to analyze the loop looking for the best 2104 /// block to layout at the top of the loop. Typically this is done to maximize 2105 /// fallthrough opportunities. 2106 MachineBasicBlock * 2107 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2108 const BlockFilterSet &LoopBlockSet, 2109 BlockFrequency &ExitFreq) { 2110 // We don't want to layout the loop linearly in all cases. If the loop header 2111 // is just a normal basic block in the loop, we want to look for what block 2112 // within the loop is the best one to layout at the top. However, if the loop 2113 // header has be pre-merged into a chain due to predecessors not having 2114 // analyzable branches, *and* the predecessor it is merged with is *not* part 2115 // of the loop, rotating the header into the middle of the loop will create 2116 // a non-contiguous range of blocks which is Very Bad. So start with the 2117 // header and only rotate if safe. 2118 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2119 if (!LoopBlockSet.count(*HeaderChain.begin())) 2120 return nullptr; 2121 2122 BlockFrequency BestExitEdgeFreq; 2123 unsigned BestExitLoopDepth = 0; 2124 MachineBasicBlock *ExitingBB = nullptr; 2125 // If there are exits to outer loops, loop rotation can severely limit 2126 // fallthrough opportunities unless it selects such an exit. Keep a set of 2127 // blocks where rotating to exit with that block will reach an outer loop. 2128 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2129 2130 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2131 << getBlockName(L.getHeader()) << "\n"); 2132 for (MachineBasicBlock *MBB : L.getBlocks()) { 2133 BlockChain &Chain = *BlockToChain[MBB]; 2134 // Ensure that this block is at the end of a chain; otherwise it could be 2135 // mid-way through an inner loop or a successor of an unanalyzable branch. 2136 if (MBB != *std::prev(Chain.end())) 2137 continue; 2138 2139 // Now walk the successors. We need to establish whether this has a viable 2140 // exiting successor and whether it has a viable non-exiting successor. 2141 // We store the old exiting state and restore it if a viable looping 2142 // successor isn't found. 2143 MachineBasicBlock *OldExitingBB = ExitingBB; 2144 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2145 bool HasLoopingSucc = false; 2146 for (MachineBasicBlock *Succ : MBB->successors()) { 2147 if (Succ->isEHPad()) 2148 continue; 2149 if (Succ == MBB) 2150 continue; 2151 BlockChain &SuccChain = *BlockToChain[Succ]; 2152 // Don't split chains, either this chain or the successor's chain. 2153 if (&Chain == &SuccChain) { 2154 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2155 << getBlockName(Succ) << " (chain conflict)\n"); 2156 continue; 2157 } 2158 2159 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2160 if (LoopBlockSet.count(Succ)) { 2161 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2162 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2163 HasLoopingSucc = true; 2164 continue; 2165 } 2166 2167 unsigned SuccLoopDepth = 0; 2168 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2169 SuccLoopDepth = ExitLoop->getLoopDepth(); 2170 if (ExitLoop->contains(&L)) 2171 BlocksExitingToOuterLoop.insert(MBB); 2172 } 2173 2174 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2175 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2176 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2177 << "] ("; 2178 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2179 // Note that we bias this toward an existing layout successor to retain 2180 // incoming order in the absence of better information. The exit must have 2181 // a frequency higher than the current exit before we consider breaking 2182 // the layout. 2183 BranchProbability Bias(100 - ExitBlockBias, 100); 2184 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2185 ExitEdgeFreq > BestExitEdgeFreq || 2186 (MBB->isLayoutSuccessor(Succ) && 2187 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2188 BestExitEdgeFreq = ExitEdgeFreq; 2189 ExitingBB = MBB; 2190 } 2191 } 2192 2193 if (!HasLoopingSucc) { 2194 // Restore the old exiting state, no viable looping successor was found. 2195 ExitingBB = OldExitingBB; 2196 BestExitEdgeFreq = OldBestExitEdgeFreq; 2197 } 2198 } 2199 // Without a candidate exiting block or with only a single block in the 2200 // loop, just use the loop header to layout the loop. 2201 if (!ExitingBB) { 2202 LLVM_DEBUG( 2203 dbgs() << " No other candidate exit blocks, using loop header\n"); 2204 return nullptr; 2205 } 2206 if (L.getNumBlocks() == 1) { 2207 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2208 return nullptr; 2209 } 2210 2211 // Also, if we have exit blocks which lead to outer loops but didn't select 2212 // one of them as the exiting block we are rotating toward, disable loop 2213 // rotation altogether. 2214 if (!BlocksExitingToOuterLoop.empty() && 2215 !BlocksExitingToOuterLoop.count(ExitingBB)) 2216 return nullptr; 2217 2218 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2219 << "\n"); 2220 ExitFreq = BestExitEdgeFreq; 2221 return ExitingBB; 2222 } 2223 2224 /// Check if there is a fallthrough to loop header Top. 2225 /// 2226 /// 1. Look for a Pred that can be layout before Top. 2227 /// 2. Check if Top is the most possible successor of Pred. 2228 bool 2229 MachineBlockPlacement::hasViableTopFallthrough( 2230 const MachineBasicBlock *Top, 2231 const BlockFilterSet &LoopBlockSet) { 2232 for (MachineBasicBlock *Pred : Top->predecessors()) { 2233 BlockChain *PredChain = BlockToChain[Pred]; 2234 if (!LoopBlockSet.count(Pred) && 2235 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2236 // Found a Pred block can be placed before Top. 2237 // Check if Top is the best successor of Pred. 2238 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2239 bool TopOK = true; 2240 for (MachineBasicBlock *Succ : Pred->successors()) { 2241 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2242 BlockChain *SuccChain = BlockToChain[Succ]; 2243 // Check if Succ can be placed after Pred. 2244 // Succ should not be in any chain, or it is the head of some chain. 2245 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2246 TopOK = false; 2247 break; 2248 } 2249 } 2250 if (TopOK) 2251 return true; 2252 } 2253 } 2254 return false; 2255 } 2256 2257 /// Attempt to rotate an exiting block to the bottom of the loop. 2258 /// 2259 /// Once we have built a chain, try to rotate it to line up the hot exit block 2260 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2261 /// branches. For example, if the loop has fallthrough into its header and out 2262 /// of its bottom already, don't rotate it. 2263 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2264 const MachineBasicBlock *ExitingBB, 2265 BlockFrequency ExitFreq, 2266 const BlockFilterSet &LoopBlockSet) { 2267 if (!ExitingBB) 2268 return; 2269 2270 MachineBasicBlock *Top = *LoopChain.begin(); 2271 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2272 2273 // If ExitingBB is already the last one in a chain then nothing to do. 2274 if (Bottom == ExitingBB) 2275 return; 2276 2277 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2278 2279 // If the header has viable fallthrough, check whether the current loop 2280 // bottom is a viable exiting block. If so, bail out as rotating will 2281 // introduce an unnecessary branch. 2282 if (ViableTopFallthrough) { 2283 for (MachineBasicBlock *Succ : Bottom->successors()) { 2284 BlockChain *SuccChain = BlockToChain[Succ]; 2285 if (!LoopBlockSet.count(Succ) && 2286 (!SuccChain || Succ == *SuccChain->begin())) 2287 return; 2288 } 2289 2290 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2291 // frequency is larger than top fallthrough. 2292 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2293 if (FallThrough2Top >= ExitFreq) 2294 return; 2295 } 2296 2297 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2298 if (ExitIt == LoopChain.end()) 2299 return; 2300 2301 // Rotating a loop exit to the bottom when there is a fallthrough to top 2302 // trades the entry fallthrough for an exit fallthrough. 2303 // If there is no bottom->top edge, but the chosen exit block does have 2304 // a fallthrough, we break that fallthrough for nothing in return. 2305 2306 // Let's consider an example. We have a built chain of basic blocks 2307 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2308 // By doing a rotation we get 2309 // Bk+1, ..., Bn, B1, ..., Bk 2310 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2311 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2312 // It might be compensated by fallthrough Bn -> B1. 2313 // So we have a condition to avoid creation of extra branch by loop rotation. 2314 // All below must be true to avoid loop rotation: 2315 // If there is a fallthrough to top (B1) 2316 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2317 // There is no fallthrough from bottom (Bn) to top (B1). 2318 // Please note that there is no exit fallthrough from Bn because we checked it 2319 // above. 2320 if (ViableTopFallthrough) { 2321 assert(std::next(ExitIt) != LoopChain.end() && 2322 "Exit should not be last BB"); 2323 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2324 if (ExitingBB->isSuccessor(NextBlockInChain)) 2325 if (!Bottom->isSuccessor(Top)) 2326 return; 2327 } 2328 2329 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2330 << " at bottom\n"); 2331 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2332 } 2333 2334 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2335 /// 2336 /// With profile data, we can determine the cost in terms of missed fall through 2337 /// opportunities when rotating a loop chain and select the best rotation. 2338 /// Basically, there are three kinds of cost to consider for each rotation: 2339 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2340 /// the loop to the loop header. 2341 /// 2. The possibly missed fall through edges (if they exist) from the loop 2342 /// exits to BB out of the loop. 2343 /// 3. The missed fall through edge (if it exists) from the last BB to the 2344 /// first BB in the loop chain. 2345 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2346 /// We select the best rotation with the smallest cost. 2347 void MachineBlockPlacement::rotateLoopWithProfile( 2348 BlockChain &LoopChain, const MachineLoop &L, 2349 const BlockFilterSet &LoopBlockSet) { 2350 auto RotationPos = LoopChain.end(); 2351 2352 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2353 2354 // A utility lambda that scales up a block frequency by dividing it by a 2355 // branch probability which is the reciprocal of the scale. 2356 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2357 unsigned Scale) -> BlockFrequency { 2358 if (Scale == 0) 2359 return 0; 2360 // Use operator / between BlockFrequency and BranchProbability to implement 2361 // saturating multiplication. 2362 return Freq / BranchProbability(1, Scale); 2363 }; 2364 2365 // Compute the cost of the missed fall-through edge to the loop header if the 2366 // chain head is not the loop header. As we only consider natural loops with 2367 // single header, this computation can be done only once. 2368 BlockFrequency HeaderFallThroughCost(0); 2369 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2370 for (auto *Pred : ChainHeaderBB->predecessors()) { 2371 BlockChain *PredChain = BlockToChain[Pred]; 2372 if (!LoopBlockSet.count(Pred) && 2373 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2374 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2375 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2376 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2377 // If the predecessor has only an unconditional jump to the header, we 2378 // need to consider the cost of this jump. 2379 if (Pred->succ_size() == 1) 2380 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2381 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2382 } 2383 } 2384 2385 // Here we collect all exit blocks in the loop, and for each exit we find out 2386 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2387 // as the sum of frequencies of exit edges we collect here, excluding the exit 2388 // edge from the tail of the loop chain. 2389 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2390 for (auto BB : LoopChain) { 2391 auto LargestExitEdgeProb = BranchProbability::getZero(); 2392 for (auto *Succ : BB->successors()) { 2393 BlockChain *SuccChain = BlockToChain[Succ]; 2394 if (!LoopBlockSet.count(Succ) && 2395 (!SuccChain || Succ == *SuccChain->begin())) { 2396 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2397 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2398 } 2399 } 2400 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2401 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2402 ExitsWithFreq.emplace_back(BB, ExitFreq); 2403 } 2404 } 2405 2406 // In this loop we iterate every block in the loop chain and calculate the 2407 // cost assuming the block is the head of the loop chain. When the loop ends, 2408 // we should have found the best candidate as the loop chain's head. 2409 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2410 EndIter = LoopChain.end(); 2411 Iter != EndIter; Iter++, TailIter++) { 2412 // TailIter is used to track the tail of the loop chain if the block we are 2413 // checking (pointed by Iter) is the head of the chain. 2414 if (TailIter == LoopChain.end()) 2415 TailIter = LoopChain.begin(); 2416 2417 auto TailBB = *TailIter; 2418 2419 // Calculate the cost by putting this BB to the top. 2420 BlockFrequency Cost = 0; 2421 2422 // If the current BB is the loop header, we need to take into account the 2423 // cost of the missed fall through edge from outside of the loop to the 2424 // header. 2425 if (Iter != LoopChain.begin()) 2426 Cost += HeaderFallThroughCost; 2427 2428 // Collect the loop exit cost by summing up frequencies of all exit edges 2429 // except the one from the chain tail. 2430 for (auto &ExitWithFreq : ExitsWithFreq) 2431 if (TailBB != ExitWithFreq.first) 2432 Cost += ExitWithFreq.second; 2433 2434 // The cost of breaking the once fall-through edge from the tail to the top 2435 // of the loop chain. Here we need to consider three cases: 2436 // 1. If the tail node has only one successor, then we will get an 2437 // additional jmp instruction. So the cost here is (MisfetchCost + 2438 // JumpInstCost) * tail node frequency. 2439 // 2. If the tail node has two successors, then we may still get an 2440 // additional jmp instruction if the layout successor after the loop 2441 // chain is not its CFG successor. Note that the more frequently executed 2442 // jmp instruction will be put ahead of the other one. Assume the 2443 // frequency of those two branches are x and y, where x is the frequency 2444 // of the edge to the chain head, then the cost will be 2445 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2446 // 3. If the tail node has more than two successors (this rarely happens), 2447 // we won't consider any additional cost. 2448 if (TailBB->isSuccessor(*Iter)) { 2449 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2450 if (TailBB->succ_size() == 1) 2451 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2452 MisfetchCost + JumpInstCost); 2453 else if (TailBB->succ_size() == 2) { 2454 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2455 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2456 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2457 ? TailBBFreq * TailToHeadProb.getCompl() 2458 : TailToHeadFreq; 2459 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2460 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2461 } 2462 } 2463 2464 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2465 << getBlockName(*Iter) 2466 << " to the top: " << Cost.getFrequency() << "\n"); 2467 2468 if (Cost < SmallestRotationCost) { 2469 SmallestRotationCost = Cost; 2470 RotationPos = Iter; 2471 } 2472 } 2473 2474 if (RotationPos != LoopChain.end()) { 2475 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2476 << " to the top\n"); 2477 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2478 } 2479 } 2480 2481 /// Collect blocks in the given loop that are to be placed. 2482 /// 2483 /// When profile data is available, exclude cold blocks from the returned set; 2484 /// otherwise, collect all blocks in the loop. 2485 MachineBlockPlacement::BlockFilterSet 2486 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2487 BlockFilterSet LoopBlockSet; 2488 2489 // Filter cold blocks off from LoopBlockSet when profile data is available. 2490 // Collect the sum of frequencies of incoming edges to the loop header from 2491 // outside. If we treat the loop as a super block, this is the frequency of 2492 // the loop. Then for each block in the loop, we calculate the ratio between 2493 // its frequency and the frequency of the loop block. When it is too small, 2494 // don't add it to the loop chain. If there are outer loops, then this block 2495 // will be merged into the first outer loop chain for which this block is not 2496 // cold anymore. This needs precise profile data and we only do this when 2497 // profile data is available. 2498 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2499 BlockFrequency LoopFreq(0); 2500 for (auto LoopPred : L.getHeader()->predecessors()) 2501 if (!L.contains(LoopPred)) 2502 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2503 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2504 2505 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2506 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2507 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2508 continue; 2509 LoopBlockSet.insert(LoopBB); 2510 } 2511 } else 2512 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2513 2514 return LoopBlockSet; 2515 } 2516 2517 /// Forms basic block chains from the natural loop structures. 2518 /// 2519 /// These chains are designed to preserve the existing *structure* of the code 2520 /// as much as possible. We can then stitch the chains together in a way which 2521 /// both preserves the topological structure and minimizes taken conditional 2522 /// branches. 2523 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2524 // First recurse through any nested loops, building chains for those inner 2525 // loops. 2526 for (const MachineLoop *InnerLoop : L) 2527 buildLoopChains(*InnerLoop); 2528 2529 assert(BlockWorkList.empty() && 2530 "BlockWorkList not empty when starting to build loop chains."); 2531 assert(EHPadWorkList.empty() && 2532 "EHPadWorkList not empty when starting to build loop chains."); 2533 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2534 2535 // Check if we have profile data for this function. If yes, we will rotate 2536 // this loop by modeling costs more precisely which requires the profile data 2537 // for better layout. 2538 bool RotateLoopWithProfile = 2539 ForcePreciseRotationCost || 2540 (PreciseRotationCost && F->getFunction().hasProfileData()); 2541 2542 // First check to see if there is an obviously preferable top block for the 2543 // loop. This will default to the header, but may end up as one of the 2544 // predecessors to the header if there is one which will result in strictly 2545 // fewer branches in the loop body. 2546 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2547 2548 // If we selected just the header for the loop top, look for a potentially 2549 // profitable exit block in the event that rotating the loop can eliminate 2550 // branches by placing an exit edge at the bottom. 2551 // 2552 // Loops are processed innermost to uttermost, make sure we clear 2553 // PreferredLoopExit before processing a new loop. 2554 PreferredLoopExit = nullptr; 2555 BlockFrequency ExitFreq; 2556 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2557 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2558 2559 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2560 2561 // FIXME: This is a really lame way of walking the chains in the loop: we 2562 // walk the blocks, and use a set to prevent visiting a particular chain 2563 // twice. 2564 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2565 assert(LoopChain.UnscheduledPredecessors == 0 && 2566 "LoopChain should not have unscheduled predecessors."); 2567 UpdatedPreds.insert(&LoopChain); 2568 2569 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2570 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2571 2572 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2573 2574 if (RotateLoopWithProfile) 2575 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2576 else 2577 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2578 2579 LLVM_DEBUG({ 2580 // Crash at the end so we get all of the debugging output first. 2581 bool BadLoop = false; 2582 if (LoopChain.UnscheduledPredecessors) { 2583 BadLoop = true; 2584 dbgs() << "Loop chain contains a block without its preds placed!\n" 2585 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2586 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2587 } 2588 for (MachineBasicBlock *ChainBB : LoopChain) { 2589 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2590 if (!LoopBlockSet.remove(ChainBB)) { 2591 // We don't mark the loop as bad here because there are real situations 2592 // where this can occur. For example, with an unanalyzable fallthrough 2593 // from a loop block to a non-loop block or vice versa. 2594 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2595 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2596 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2597 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2598 } 2599 } 2600 2601 if (!LoopBlockSet.empty()) { 2602 BadLoop = true; 2603 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2604 dbgs() << "Loop contains blocks never placed into a chain!\n" 2605 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2606 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2607 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2608 } 2609 assert(!BadLoop && "Detected problems with the placement of this loop."); 2610 }); 2611 2612 BlockWorkList.clear(); 2613 EHPadWorkList.clear(); 2614 } 2615 2616 void MachineBlockPlacement::buildCFGChains() { 2617 // Ensure that every BB in the function has an associated chain to simplify 2618 // the assumptions of the remaining algorithm. 2619 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2620 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2621 ++FI) { 2622 MachineBasicBlock *BB = &*FI; 2623 BlockChain *Chain = 2624 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2625 // Also, merge any blocks which we cannot reason about and must preserve 2626 // the exact fallthrough behavior for. 2627 while (true) { 2628 Cond.clear(); 2629 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2630 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2631 break; 2632 2633 MachineFunction::iterator NextFI = std::next(FI); 2634 MachineBasicBlock *NextBB = &*NextFI; 2635 // Ensure that the layout successor is a viable block, as we know that 2636 // fallthrough is a possibility. 2637 assert(NextFI != FE && "Can't fallthrough past the last block."); 2638 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2639 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2640 << "\n"); 2641 Chain->merge(NextBB, nullptr); 2642 #ifndef NDEBUG 2643 BlocksWithUnanalyzableExits.insert(&*BB); 2644 #endif 2645 FI = NextFI; 2646 BB = NextBB; 2647 } 2648 } 2649 2650 // Build any loop-based chains. 2651 PreferredLoopExit = nullptr; 2652 for (MachineLoop *L : *MLI) 2653 buildLoopChains(*L); 2654 2655 assert(BlockWorkList.empty() && 2656 "BlockWorkList should be empty before building final chain."); 2657 assert(EHPadWorkList.empty() && 2658 "EHPadWorkList should be empty before building final chain."); 2659 2660 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2661 for (MachineBasicBlock &MBB : *F) 2662 fillWorkLists(&MBB, UpdatedPreds); 2663 2664 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2665 buildChain(&F->front(), FunctionChain); 2666 2667 #ifndef NDEBUG 2668 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2669 #endif 2670 LLVM_DEBUG({ 2671 // Crash at the end so we get all of the debugging output first. 2672 bool BadFunc = false; 2673 FunctionBlockSetType FunctionBlockSet; 2674 for (MachineBasicBlock &MBB : *F) 2675 FunctionBlockSet.insert(&MBB); 2676 2677 for (MachineBasicBlock *ChainBB : FunctionChain) 2678 if (!FunctionBlockSet.erase(ChainBB)) { 2679 BadFunc = true; 2680 dbgs() << "Function chain contains a block not in the function!\n" 2681 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2682 } 2683 2684 if (!FunctionBlockSet.empty()) { 2685 BadFunc = true; 2686 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2687 dbgs() << "Function contains blocks never placed into a chain!\n" 2688 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2689 } 2690 assert(!BadFunc && "Detected problems with the block placement."); 2691 }); 2692 2693 // Splice the blocks into place. 2694 MachineFunction::iterator InsertPos = F->begin(); 2695 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2696 for (MachineBasicBlock *ChainBB : FunctionChain) { 2697 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2698 : " ... ") 2699 << getBlockName(ChainBB) << "\n"); 2700 if (InsertPos != MachineFunction::iterator(ChainBB)) 2701 F->splice(InsertPos, ChainBB); 2702 else 2703 ++InsertPos; 2704 2705 // Update the terminator of the previous block. 2706 if (ChainBB == *FunctionChain.begin()) 2707 continue; 2708 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2709 2710 // FIXME: It would be awesome of updateTerminator would just return rather 2711 // than assert when the branch cannot be analyzed in order to remove this 2712 // boiler plate. 2713 Cond.clear(); 2714 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2715 2716 #ifndef NDEBUG 2717 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2718 // Given the exact block placement we chose, we may actually not _need_ to 2719 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2720 // do that at this point is a bug. 2721 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2722 !PrevBB->canFallThrough()) && 2723 "Unexpected block with un-analyzable fallthrough!"); 2724 Cond.clear(); 2725 TBB = FBB = nullptr; 2726 } 2727 #endif 2728 2729 // The "PrevBB" is not yet updated to reflect current code layout, so, 2730 // o. it may fall-through to a block without explicit "goto" instruction 2731 // before layout, and no longer fall-through it after layout; or 2732 // o. just opposite. 2733 // 2734 // analyzeBranch() may return erroneous value for FBB when these two 2735 // situations take place. For the first scenario FBB is mistakenly set NULL; 2736 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2737 // mistakenly pointing to "*BI". 2738 // Thus, if the future change needs to use FBB before the layout is set, it 2739 // has to correct FBB first by using the code similar to the following: 2740 // 2741 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2742 // PrevBB->updateTerminator(); 2743 // Cond.clear(); 2744 // TBB = FBB = nullptr; 2745 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2746 // // FIXME: This should never take place. 2747 // TBB = FBB = nullptr; 2748 // } 2749 // } 2750 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2751 PrevBB->updateTerminator(); 2752 } 2753 2754 // Fixup the last block. 2755 Cond.clear(); 2756 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2757 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2758 F->back().updateTerminator(); 2759 2760 BlockWorkList.clear(); 2761 EHPadWorkList.clear(); 2762 } 2763 2764 void MachineBlockPlacement::optimizeBranches() { 2765 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2766 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2767 2768 // Now that all the basic blocks in the chain have the proper layout, 2769 // make a final call to AnalyzeBranch with AllowModify set. 2770 // Indeed, the target may be able to optimize the branches in a way we 2771 // cannot because all branches may not be analyzable. 2772 // E.g., the target may be able to remove an unconditional branch to 2773 // a fallthrough when it occurs after predicated terminators. 2774 for (MachineBasicBlock *ChainBB : FunctionChain) { 2775 Cond.clear(); 2776 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2777 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2778 // If PrevBB has a two-way branch, try to re-order the branches 2779 // such that we branch to the successor with higher probability first. 2780 if (TBB && !Cond.empty() && FBB && 2781 MBPI->getEdgeProbability(ChainBB, FBB) > 2782 MBPI->getEdgeProbability(ChainBB, TBB) && 2783 !TII->reverseBranchCondition(Cond)) { 2784 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2785 << getBlockName(ChainBB) << "\n"); 2786 LLVM_DEBUG(dbgs() << " Edge probability: " 2787 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2788 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2789 DebugLoc dl; // FIXME: this is nowhere 2790 TII->removeBranch(*ChainBB); 2791 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2792 ChainBB->updateTerminator(); 2793 } 2794 } 2795 } 2796 } 2797 2798 void MachineBlockPlacement::alignBlocks() { 2799 // Walk through the backedges of the function now that we have fully laid out 2800 // the basic blocks and align the destination of each backedge. We don't rely 2801 // exclusively on the loop info here so that we can align backedges in 2802 // unnatural CFGs and backedges that were introduced purely because of the 2803 // loop rotations done during this layout pass. 2804 if (F->getFunction().hasMinSize() || 2805 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2806 return; 2807 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2808 if (FunctionChain.begin() == FunctionChain.end()) 2809 return; // Empty chain. 2810 2811 const BranchProbability ColdProb(1, 5); // 20% 2812 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2813 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2814 for (MachineBasicBlock *ChainBB : FunctionChain) { 2815 if (ChainBB == *FunctionChain.begin()) 2816 continue; 2817 2818 // Don't align non-looping basic blocks. These are unlikely to execute 2819 // enough times to matter in practice. Note that we'll still handle 2820 // unnatural CFGs inside of a natural outer loop (the common case) and 2821 // rotated loops. 2822 MachineLoop *L = MLI->getLoopFor(ChainBB); 2823 if (!L) 2824 continue; 2825 2826 const Align Align = TLI->getPrefLoopAlignment(L); 2827 if (Align == 1) 2828 continue; // Don't care about loop alignment. 2829 2830 // If the block is cold relative to the function entry don't waste space 2831 // aligning it. 2832 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2833 if (Freq < WeightedEntryFreq) 2834 continue; 2835 2836 // If the block is cold relative to its loop header, don't align it 2837 // regardless of what edges into the block exist. 2838 MachineBasicBlock *LoopHeader = L->getHeader(); 2839 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2840 if (Freq < (LoopHeaderFreq * ColdProb)) 2841 continue; 2842 2843 // If the global profiles indicates so, don't align it. 2844 if (llvm::shouldOptimizeForSize(ChainBB, PSI, &MBFI->getMBFI()) && 2845 !TLI->alignLoopsWithOptSize()) 2846 continue; 2847 2848 // Check for the existence of a non-layout predecessor which would benefit 2849 // from aligning this block. 2850 MachineBasicBlock *LayoutPred = 2851 &*std::prev(MachineFunction::iterator(ChainBB)); 2852 2853 // Force alignment if all the predecessors are jumps. We already checked 2854 // that the block isn't cold above. 2855 if (!LayoutPred->isSuccessor(ChainBB)) { 2856 ChainBB->setAlignment(Align); 2857 continue; 2858 } 2859 2860 // Align this block if the layout predecessor's edge into this block is 2861 // cold relative to the block. When this is true, other predecessors make up 2862 // all of the hot entries into the block and thus alignment is likely to be 2863 // important. 2864 BranchProbability LayoutProb = 2865 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2866 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2867 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2868 ChainBB->setAlignment(Align); 2869 } 2870 } 2871 2872 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2873 /// it was duplicated into its chain predecessor and removed. 2874 /// \p BB - Basic block that may be duplicated. 2875 /// 2876 /// \p LPred - Chosen layout predecessor of \p BB. 2877 /// Updated to be the chain end if LPred is removed. 2878 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2879 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2880 /// Used to identify which blocks to update predecessor 2881 /// counts. 2882 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2883 /// chosen in the given order due to unnatural CFG 2884 /// only needed if \p BB is removed and 2885 /// \p PrevUnplacedBlockIt pointed to \p BB. 2886 /// @return true if \p BB was removed. 2887 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2888 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2889 const MachineBasicBlock *LoopHeaderBB, 2890 BlockChain &Chain, BlockFilterSet *BlockFilter, 2891 MachineFunction::iterator &PrevUnplacedBlockIt) { 2892 bool Removed, DuplicatedToLPred; 2893 bool DuplicatedToOriginalLPred; 2894 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2895 PrevUnplacedBlockIt, 2896 DuplicatedToLPred); 2897 if (!Removed) 2898 return false; 2899 DuplicatedToOriginalLPred = DuplicatedToLPred; 2900 // Iteratively try to duplicate again. It can happen that a block that is 2901 // duplicated into is still small enough to be duplicated again. 2902 // No need to call markBlockSuccessors in this case, as the blocks being 2903 // duplicated from here on are already scheduled. 2904 // Note that DuplicatedToLPred always implies Removed. 2905 while (DuplicatedToLPred) { 2906 assert(Removed && "Block must have been removed to be duplicated into its " 2907 "layout predecessor."); 2908 MachineBasicBlock *DupBB, *DupPred; 2909 // The removal callback causes Chain.end() to be updated when a block is 2910 // removed. On the first pass through the loop, the chain end should be the 2911 // same as it was on function entry. On subsequent passes, because we are 2912 // duplicating the block at the end of the chain, if it is removed the 2913 // chain will have shrunk by one block. 2914 BlockChain::iterator ChainEnd = Chain.end(); 2915 DupBB = *(--ChainEnd); 2916 // Now try to duplicate again. 2917 if (ChainEnd == Chain.begin()) 2918 break; 2919 DupPred = *std::prev(ChainEnd); 2920 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2921 PrevUnplacedBlockIt, 2922 DuplicatedToLPred); 2923 } 2924 // If BB was duplicated into LPred, it is now scheduled. But because it was 2925 // removed, markChainSuccessors won't be called for its chain. Instead we 2926 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2927 // at the end because repeating the tail duplication can increase the number 2928 // of unscheduled predecessors. 2929 LPred = *std::prev(Chain.end()); 2930 if (DuplicatedToOriginalLPred) 2931 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2932 return true; 2933 } 2934 2935 /// Tail duplicate \p BB into (some) predecessors if profitable. 2936 /// \p BB - Basic block that may be duplicated 2937 /// \p LPred - Chosen layout predecessor of \p BB 2938 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2939 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2940 /// Used to identify which blocks to update predecessor 2941 /// counts. 2942 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2943 /// chosen in the given order due to unnatural CFG 2944 /// only needed if \p BB is removed and 2945 /// \p PrevUnplacedBlockIt pointed to \p BB. 2946 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2947 /// only be true if the block was removed. 2948 /// \return - True if the block was duplicated into all preds and removed. 2949 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2950 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2951 BlockChain &Chain, BlockFilterSet *BlockFilter, 2952 MachineFunction::iterator &PrevUnplacedBlockIt, 2953 bool &DuplicatedToLPred) { 2954 DuplicatedToLPred = false; 2955 if (!shouldTailDuplicate(BB)) 2956 return false; 2957 2958 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2959 << "\n"); 2960 2961 // This has to be a callback because none of it can be done after 2962 // BB is deleted. 2963 bool Removed = false; 2964 auto RemovalCallback = 2965 [&](MachineBasicBlock *RemBB) { 2966 // Signal to outer function 2967 Removed = true; 2968 2969 // Conservative default. 2970 bool InWorkList = true; 2971 // Remove from the Chain and Chain Map 2972 if (BlockToChain.count(RemBB)) { 2973 BlockChain *Chain = BlockToChain[RemBB]; 2974 InWorkList = Chain->UnscheduledPredecessors == 0; 2975 Chain->remove(RemBB); 2976 BlockToChain.erase(RemBB); 2977 } 2978 2979 // Handle the unplaced block iterator 2980 if (&(*PrevUnplacedBlockIt) == RemBB) { 2981 PrevUnplacedBlockIt++; 2982 } 2983 2984 // Handle the Work Lists 2985 if (InWorkList) { 2986 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2987 if (RemBB->isEHPad()) 2988 RemoveList = EHPadWorkList; 2989 RemoveList.erase( 2990 llvm::remove_if(RemoveList, 2991 [RemBB](MachineBasicBlock *BB) { 2992 return BB == RemBB; 2993 }), 2994 RemoveList.end()); 2995 } 2996 2997 // Handle the filter set 2998 if (BlockFilter) { 2999 BlockFilter->remove(RemBB); 3000 } 3001 3002 // Remove the block from loop info. 3003 MLI->removeBlock(RemBB); 3004 if (RemBB == PreferredLoopExit) 3005 PreferredLoopExit = nullptr; 3006 3007 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3008 << getBlockName(RemBB) << "\n"); 3009 }; 3010 auto RemovalCallbackRef = 3011 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3012 3013 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3014 bool IsSimple = TailDup.isSimpleBB(BB); 3015 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 3016 &DuplicatedPreds, &RemovalCallbackRef); 3017 3018 // Update UnscheduledPredecessors to reflect tail-duplication. 3019 DuplicatedToLPred = false; 3020 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3021 // We're only looking for unscheduled predecessors that match the filter. 3022 BlockChain* PredChain = BlockToChain[Pred]; 3023 if (Pred == LPred) 3024 DuplicatedToLPred = true; 3025 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3026 || PredChain == &Chain) 3027 continue; 3028 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3029 if (BlockFilter && !BlockFilter->count(NewSucc)) 3030 continue; 3031 BlockChain *NewChain = BlockToChain[NewSucc]; 3032 if (NewChain != &Chain && NewChain != PredChain) 3033 NewChain->UnscheduledPredecessors++; 3034 } 3035 } 3036 return Removed; 3037 } 3038 3039 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3040 if (skipFunction(MF.getFunction())) 3041 return false; 3042 3043 // Check for single-block functions and skip them. 3044 if (std::next(MF.begin()) == MF.end()) 3045 return false; 3046 3047 F = &MF; 3048 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3049 MBFI = std::make_unique<BranchFolder::MBFIWrapper>( 3050 getAnalysis<MachineBlockFrequencyInfo>()); 3051 MLI = &getAnalysis<MachineLoopInfo>(); 3052 TII = MF.getSubtarget().getInstrInfo(); 3053 TLI = MF.getSubtarget().getTargetLowering(); 3054 MPDT = nullptr; 3055 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3056 3057 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3058 // there are no MachineLoops. 3059 PreferredLoopExit = nullptr; 3060 3061 assert(BlockToChain.empty() && 3062 "BlockToChain map should be empty before starting placement."); 3063 assert(ComputedEdges.empty() && 3064 "Computed Edge map should be empty before starting placement."); 3065 3066 unsigned TailDupSize = TailDupPlacementThreshold; 3067 // If only the aggressive threshold is explicitly set, use it. 3068 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3069 TailDupPlacementThreshold.getNumOccurrences() == 0) 3070 TailDupSize = TailDupPlacementAggressiveThreshold; 3071 3072 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3073 // For aggressive optimization, we can adjust some thresholds to be less 3074 // conservative. 3075 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3076 // At O3 we should be more willing to copy blocks for tail duplication. This 3077 // increases size pressure, so we only do it at O3 3078 // Do this unless only the regular threshold is explicitly set. 3079 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3080 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3081 TailDupSize = TailDupPlacementAggressiveThreshold; 3082 } 3083 3084 if (allowTailDupPlacement()) { 3085 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3086 bool OptForSize = MF.getFunction().hasOptSize() || 3087 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3088 if (OptForSize) 3089 TailDupSize = 1; 3090 bool PreRegAlloc = false; 3091 TailDup.initMF(MF, PreRegAlloc, MBPI, &MBFI->getMBFI(), PSI, 3092 /* LayoutMode */ true, TailDupSize); 3093 precomputeTriangleChains(); 3094 } 3095 3096 buildCFGChains(); 3097 3098 // Changing the layout can create new tail merging opportunities. 3099 // TailMerge can create jump into if branches that make CFG irreducible for 3100 // HW that requires structured CFG. 3101 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3102 PassConfig->getEnableTailMerge() && 3103 BranchFoldPlacement; 3104 // No tail merging opportunities if the block number is less than four. 3105 if (MF.size() > 3 && EnableTailMerge) { 3106 unsigned TailMergeSize = TailDupSize + 1; 3107 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 3108 *MBPI, PSI, TailMergeSize); 3109 3110 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 3111 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 3112 MMIWP ? &MMIWP->getMMI() : nullptr, MLI, 3113 /*AfterPlacement=*/true)) { 3114 // Redo the layout if tail merging creates/removes/moves blocks. 3115 BlockToChain.clear(); 3116 ComputedEdges.clear(); 3117 // Must redo the post-dominator tree if blocks were changed. 3118 if (MPDT) 3119 MPDT->runOnMachineFunction(MF); 3120 ChainAllocator.DestroyAll(); 3121 buildCFGChains(); 3122 } 3123 } 3124 3125 optimizeBranches(); 3126 alignBlocks(); 3127 3128 BlockToChain.clear(); 3129 ComputedEdges.clear(); 3130 ChainAllocator.DestroyAll(); 3131 3132 if (AlignAllBlock) 3133 // Align all of the blocks in the function to a specific alignment. 3134 for (MachineBasicBlock &MBB : MF) 3135 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3136 else if (AlignAllNonFallThruBlocks) { 3137 // Align all of the blocks that have no fall-through predecessors to a 3138 // specific alignment. 3139 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3140 auto LayoutPred = std::prev(MBI); 3141 if (!LayoutPred->isSuccessor(&*MBI)) 3142 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3143 } 3144 } 3145 if (ViewBlockLayoutWithBFI != GVDT_None && 3146 (ViewBlockFreqFuncName.empty() || 3147 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3148 MBFI->view("MBP." + MF.getName(), false); 3149 } 3150 3151 3152 // We always return true as we have no way to track whether the final order 3153 // differs from the original order. 3154 return true; 3155 } 3156 3157 namespace { 3158 3159 /// A pass to compute block placement statistics. 3160 /// 3161 /// A separate pass to compute interesting statistics for evaluating block 3162 /// placement. This is separate from the actual placement pass so that they can 3163 /// be computed in the absence of any placement transformations or when using 3164 /// alternative placement strategies. 3165 class MachineBlockPlacementStats : public MachineFunctionPass { 3166 /// A handle to the branch probability pass. 3167 const MachineBranchProbabilityInfo *MBPI; 3168 3169 /// A handle to the function-wide block frequency pass. 3170 const MachineBlockFrequencyInfo *MBFI; 3171 3172 public: 3173 static char ID; // Pass identification, replacement for typeid 3174 3175 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3176 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3177 } 3178 3179 bool runOnMachineFunction(MachineFunction &F) override; 3180 3181 void getAnalysisUsage(AnalysisUsage &AU) const override { 3182 AU.addRequired<MachineBranchProbabilityInfo>(); 3183 AU.addRequired<MachineBlockFrequencyInfo>(); 3184 AU.setPreservesAll(); 3185 MachineFunctionPass::getAnalysisUsage(AU); 3186 } 3187 }; 3188 3189 } // end anonymous namespace 3190 3191 char MachineBlockPlacementStats::ID = 0; 3192 3193 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3194 3195 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3196 "Basic Block Placement Stats", false, false) 3197 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3198 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3199 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3200 "Basic Block Placement Stats", false, false) 3201 3202 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3203 // Check for single-block functions and skip them. 3204 if (std::next(F.begin()) == F.end()) 3205 return false; 3206 3207 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3208 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3209 3210 for (MachineBasicBlock &MBB : F) { 3211 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3212 Statistic &NumBranches = 3213 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3214 Statistic &BranchTakenFreq = 3215 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3216 for (MachineBasicBlock *Succ : MBB.successors()) { 3217 // Skip if this successor is a fallthrough. 3218 if (MBB.isLayoutSuccessor(Succ)) 3219 continue; 3220 3221 BlockFrequency EdgeFreq = 3222 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3223 ++NumBranches; 3224 BranchTakenFreq += EdgeFreq.getFrequency(); 3225 } 3226 } 3227 3228 return false; 3229 } 3230