1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "block-placement" 77 78 STATISTIC(NumCondBranches, "Number of conditional branches"); 79 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 80 STATISTIC(CondBranchTakenFreq, 81 "Potential frequency of taking conditional branches"); 82 STATISTIC(UncondBranchTakenFreq, 83 "Potential frequency of taking unconditional branches"); 84 85 static cl::opt<unsigned> AlignAllBlock( 86 "align-all-blocks", 87 cl::desc("Force the alignment of all blocks in the function in log2 format " 88 "(e.g 4 means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 92 "align-all-nofallthru-blocks", 93 cl::desc("Force the alignment of all blocks that have no fall-through " 94 "predecessors (i.e. don't add nops that are executed). In log2 " 95 "format (e.g 4 means align on 16B boundaries)."), 96 cl::init(0), cl::Hidden); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> ExitBlockBias( 100 "block-placement-exit-block-bias", 101 cl::desc("Block frequency percentage a loop exit block needs " 102 "over the original exit to be considered the new exit."), 103 cl::init(0), cl::Hidden); 104 105 // Definition: 106 // - Outlining: placement of a basic block outside the chain or hot path. 107 108 static cl::opt<unsigned> LoopToColdBlockRatio( 109 "loop-to-cold-block-ratio", 110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 111 "(frequency of block) is greater than this ratio"), 112 cl::init(5), cl::Hidden); 113 114 static cl::opt<bool> ForceLoopColdBlock( 115 "force-loop-cold-block", 116 cl::desc("Force outlining cold blocks from loops."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<bool> 120 PreciseRotationCost("precise-rotation-cost", 121 cl::desc("Model the cost of loop rotation more " 122 "precisely by using profile data."), 123 cl::init(false), cl::Hidden); 124 125 static cl::opt<bool> 126 ForcePreciseRotationCost("force-precise-rotation-cost", 127 cl::desc("Force the use of precise cost " 128 "loop rotation strategy."), 129 cl::init(false), cl::Hidden); 130 131 static cl::opt<unsigned> MisfetchCost( 132 "misfetch-cost", 133 cl::desc("Cost that models the probabilistic risk of an instruction " 134 "misfetch due to a jump comparing to falling through, whose cost " 135 "is zero."), 136 cl::init(1), cl::Hidden); 137 138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 139 cl::desc("Cost of jump instructions."), 140 cl::init(1), cl::Hidden); 141 static cl::opt<bool> 142 TailDupPlacement("tail-dup-placement", 143 cl::desc("Perform tail duplication during placement. " 144 "Creates more fallthrough opportunites in " 145 "outline branches."), 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 BranchFoldPlacement("branch-fold-placement", 150 cl::desc("Perform branch folding during placement. " 151 "Reduces code size."), 152 cl::init(true), cl::Hidden); 153 154 // Heuristic for tail duplication. 155 static cl::opt<unsigned> TailDupPlacementThreshold( 156 "tail-dup-placement-threshold", 157 cl::desc("Instruction cutoff for tail duplication during layout. " 158 "Tail merging during layout is forced to have a threshold " 159 "that won't conflict."), cl::init(2), 160 cl::Hidden); 161 162 // Heuristic for aggressive tail duplication. 163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 164 "tail-dup-placement-aggressive-threshold", 165 cl::desc("Instruction cutoff for aggressive tail duplication during " 166 "layout. Used at -O3. Tail merging during layout is forced to " 167 "have a threshold that won't conflict."), cl::init(4), 168 cl::Hidden); 169 170 // Heuristic for tail duplication. 171 static cl::opt<unsigned> TailDupPlacementPenalty( 172 "tail-dup-placement-penalty", 173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 174 "Copying can increase fallthrough, but it also increases icache " 175 "pressure. This parameter controls the penalty to account for that. " 176 "Percent as integer."), 177 cl::init(2), 178 cl::Hidden); 179 180 // Heuristic for tail duplication if profile count is used in cost model. 181 static cl::opt<unsigned> TailDupProfilePercentThreshold( 182 "tail-dup-profile-percent-threshold", 183 cl::desc("If profile count information is used in tail duplication cost " 184 "model, the gained fall through number from tail duplication " 185 "should be at least this percent of hot count."), 186 cl::init(50), cl::Hidden); 187 188 // Heuristic for triangle chains. 189 static cl::opt<unsigned> TriangleChainCount( 190 "triangle-chain-count", 191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 192 "triangle tail duplication heuristic to kick in. 0 to disable."), 193 cl::init(2), 194 cl::Hidden); 195 196 namespace llvm { 197 extern cl::opt<unsigned> StaticLikelyProb; 198 extern cl::opt<unsigned> ProfileLikelyProb; 199 200 // Internal option used to control BFI display only after MBP pass. 201 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 202 // -view-block-layout-with-bfi= 203 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 204 205 // Command line option to specify the name of the function for CFG dump 206 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 207 extern cl::opt<std::string> ViewBlockFreqFuncName; 208 } // namespace llvm 209 210 namespace { 211 212 class BlockChain; 213 214 /// Type for our function-wide basic block -> block chain mapping. 215 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 216 217 /// A chain of blocks which will be laid out contiguously. 218 /// 219 /// This is the datastructure representing a chain of consecutive blocks that 220 /// are profitable to layout together in order to maximize fallthrough 221 /// probabilities and code locality. We also can use a block chain to represent 222 /// a sequence of basic blocks which have some external (correctness) 223 /// requirement for sequential layout. 224 /// 225 /// Chains can be built around a single basic block and can be merged to grow 226 /// them. They participate in a block-to-chain mapping, which is updated 227 /// automatically as chains are merged together. 228 class BlockChain { 229 /// The sequence of blocks belonging to this chain. 230 /// 231 /// This is the sequence of blocks for a particular chain. These will be laid 232 /// out in-order within the function. 233 SmallVector<MachineBasicBlock *, 4> Blocks; 234 235 /// A handle to the function-wide basic block to block chain mapping. 236 /// 237 /// This is retained in each block chain to simplify the computation of child 238 /// block chains for SCC-formation and iteration. We store the edges to child 239 /// basic blocks, and map them back to their associated chains using this 240 /// structure. 241 BlockToChainMapType &BlockToChain; 242 243 public: 244 /// Construct a new BlockChain. 245 /// 246 /// This builds a new block chain representing a single basic block in the 247 /// function. It also registers itself as the chain that block participates 248 /// in with the BlockToChain mapping. 249 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 250 : Blocks(1, BB), BlockToChain(BlockToChain) { 251 assert(BB && "Cannot create a chain with a null basic block"); 252 BlockToChain[BB] = this; 253 } 254 255 /// Iterator over blocks within the chain. 256 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 257 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 258 259 /// Beginning of blocks within the chain. 260 iterator begin() { return Blocks.begin(); } 261 const_iterator begin() const { return Blocks.begin(); } 262 263 /// End of blocks within the chain. 264 iterator end() { return Blocks.end(); } 265 const_iterator end() const { return Blocks.end(); } 266 267 bool remove(MachineBasicBlock* BB) { 268 for(iterator i = begin(); i != end(); ++i) { 269 if (*i == BB) { 270 Blocks.erase(i); 271 return true; 272 } 273 } 274 return false; 275 } 276 277 /// Merge a block chain into this one. 278 /// 279 /// This routine merges a block chain into this one. It takes care of forming 280 /// a contiguous sequence of basic blocks, updating the edge list, and 281 /// updating the block -> chain mapping. It does not free or tear down the 282 /// old chain, but the old chain's block list is no longer valid. 283 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 284 assert(BB && "Can't merge a null block."); 285 assert(!Blocks.empty() && "Can't merge into an empty chain."); 286 287 // Fast path in case we don't have a chain already. 288 if (!Chain) { 289 assert(!BlockToChain[BB] && 290 "Passed chain is null, but BB has entry in BlockToChain."); 291 Blocks.push_back(BB); 292 BlockToChain[BB] = this; 293 return; 294 } 295 296 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 297 assert(Chain->begin() != Chain->end()); 298 299 // Update the incoming blocks to point to this chain, and add them to the 300 // chain structure. 301 for (MachineBasicBlock *ChainBB : *Chain) { 302 Blocks.push_back(ChainBB); 303 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 304 BlockToChain[ChainBB] = this; 305 } 306 } 307 308 #ifndef NDEBUG 309 /// Dump the blocks in this chain. 310 LLVM_DUMP_METHOD void dump() { 311 for (MachineBasicBlock *MBB : *this) 312 MBB->dump(); 313 } 314 #endif // NDEBUG 315 316 /// Count of predecessors of any block within the chain which have not 317 /// yet been scheduled. In general, we will delay scheduling this chain 318 /// until those predecessors are scheduled (or we find a sufficiently good 319 /// reason to override this heuristic.) Note that when forming loop chains, 320 /// blocks outside the loop are ignored and treated as if they were already 321 /// scheduled. 322 /// 323 /// Note: This field is reinitialized multiple times - once for each loop, 324 /// and then once for the function as a whole. 325 unsigned UnscheduledPredecessors = 0; 326 }; 327 328 class MachineBlockPlacement : public MachineFunctionPass { 329 /// A type for a block filter set. 330 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 331 332 /// Pair struct containing basic block and taildup profitability 333 struct BlockAndTailDupResult { 334 MachineBasicBlock *BB; 335 bool ShouldTailDup; 336 }; 337 338 /// Triple struct containing edge weight and the edge. 339 struct WeightedEdge { 340 BlockFrequency Weight; 341 MachineBasicBlock *Src; 342 MachineBasicBlock *Dest; 343 }; 344 345 /// work lists of blocks that are ready to be laid out 346 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 347 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 348 349 /// Edges that have already been computed as optimal. 350 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 351 352 /// Machine Function 353 MachineFunction *F; 354 355 /// A handle to the branch probability pass. 356 const MachineBranchProbabilityInfo *MBPI; 357 358 /// A handle to the function-wide block frequency pass. 359 std::unique_ptr<MBFIWrapper> MBFI; 360 361 /// A handle to the loop info. 362 MachineLoopInfo *MLI; 363 364 /// Preferred loop exit. 365 /// Member variable for convenience. It may be removed by duplication deep 366 /// in the call stack. 367 MachineBasicBlock *PreferredLoopExit; 368 369 /// A handle to the target's instruction info. 370 const TargetInstrInfo *TII; 371 372 /// A handle to the target's lowering info. 373 const TargetLoweringBase *TLI; 374 375 /// A handle to the post dominator tree. 376 MachinePostDominatorTree *MPDT; 377 378 ProfileSummaryInfo *PSI; 379 380 /// Duplicator used to duplicate tails during placement. 381 /// 382 /// Placement decisions can open up new tail duplication opportunities, but 383 /// since tail duplication affects placement decisions of later blocks, it 384 /// must be done inline. 385 TailDuplicator TailDup; 386 387 /// Partial tail duplication threshold. 388 BlockFrequency DupThreshold; 389 390 /// True: use block profile count to compute tail duplication cost. 391 /// False: use block frequency to compute tail duplication cost. 392 bool UseProfileCount; 393 394 /// Allocator and owner of BlockChain structures. 395 /// 396 /// We build BlockChains lazily while processing the loop structure of 397 /// a function. To reduce malloc traffic, we allocate them using this 398 /// slab-like allocator, and destroy them after the pass completes. An 399 /// important guarantee is that this allocator produces stable pointers to 400 /// the chains. 401 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 402 403 /// Function wide BasicBlock to BlockChain mapping. 404 /// 405 /// This mapping allows efficiently moving from any given basic block to the 406 /// BlockChain it participates in, if any. We use it to, among other things, 407 /// allow implicitly defining edges between chains as the existing edges 408 /// between basic blocks. 409 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 410 411 #ifndef NDEBUG 412 /// The set of basic blocks that have terminators that cannot be fully 413 /// analyzed. These basic blocks cannot be re-ordered safely by 414 /// MachineBlockPlacement, and we must preserve physical layout of these 415 /// blocks and their successors through the pass. 416 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 417 #endif 418 419 /// Get block profile count or frequency according to UseProfileCount. 420 /// The return value is used to model tail duplication cost. 421 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 422 if (UseProfileCount) { 423 auto Count = MBFI->getBlockProfileCount(BB); 424 if (Count) 425 return *Count; 426 else 427 return 0; 428 } else 429 return MBFI->getBlockFreq(BB); 430 } 431 432 /// Scale the DupThreshold according to basic block size. 433 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 434 void initDupThreshold(); 435 436 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 437 /// if the count goes to 0, add them to the appropriate work list. 438 void markChainSuccessors( 439 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 440 const BlockFilterSet *BlockFilter = nullptr); 441 442 /// Decrease the UnscheduledPredecessors count for a single block, and 443 /// if the count goes to 0, add them to the appropriate work list. 444 void markBlockSuccessors( 445 const BlockChain &Chain, const MachineBasicBlock *BB, 446 const MachineBasicBlock *LoopHeaderBB, 447 const BlockFilterSet *BlockFilter = nullptr); 448 449 BranchProbability 450 collectViableSuccessors( 451 const MachineBasicBlock *BB, const BlockChain &Chain, 452 const BlockFilterSet *BlockFilter, 453 SmallVector<MachineBasicBlock *, 4> &Successors); 454 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 455 BlockFilterSet *BlockFilter); 456 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 457 MachineBasicBlock *BB, 458 BlockFilterSet *BlockFilter); 459 bool repeatedlyTailDuplicateBlock( 460 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 461 const MachineBasicBlock *LoopHeaderBB, 462 BlockChain &Chain, BlockFilterSet *BlockFilter, 463 MachineFunction::iterator &PrevUnplacedBlockIt); 464 bool maybeTailDuplicateBlock( 465 MachineBasicBlock *BB, MachineBasicBlock *LPred, 466 BlockChain &Chain, BlockFilterSet *BlockFilter, 467 MachineFunction::iterator &PrevUnplacedBlockIt, 468 bool &DuplicatedToLPred); 469 bool hasBetterLayoutPredecessor( 470 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 471 const BlockChain &SuccChain, BranchProbability SuccProb, 472 BranchProbability RealSuccProb, const BlockChain &Chain, 473 const BlockFilterSet *BlockFilter); 474 BlockAndTailDupResult selectBestSuccessor( 475 const MachineBasicBlock *BB, const BlockChain &Chain, 476 const BlockFilterSet *BlockFilter); 477 MachineBasicBlock *selectBestCandidateBlock( 478 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 479 MachineBasicBlock *getFirstUnplacedBlock( 480 const BlockChain &PlacedChain, 481 MachineFunction::iterator &PrevUnplacedBlockIt, 482 const BlockFilterSet *BlockFilter); 483 484 /// Add a basic block to the work list if it is appropriate. 485 /// 486 /// If the optional parameter BlockFilter is provided, only MBB 487 /// present in the set will be added to the worklist. If nullptr 488 /// is provided, no filtering occurs. 489 void fillWorkLists(const MachineBasicBlock *MBB, 490 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 491 const BlockFilterSet *BlockFilter); 492 493 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 494 BlockFilterSet *BlockFilter = nullptr); 495 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 496 const MachineBasicBlock *OldTop); 497 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 498 const BlockFilterSet &LoopBlockSet); 499 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 500 const BlockFilterSet &LoopBlockSet); 501 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 502 const MachineBasicBlock *OldTop, 503 const MachineBasicBlock *ExitBB, 504 const BlockFilterSet &LoopBlockSet); 505 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 507 MachineBasicBlock *findBestLoopTop( 508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 509 MachineBasicBlock *findBestLoopExit( 510 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 511 BlockFrequency &ExitFreq); 512 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 513 void buildLoopChains(const MachineLoop &L); 514 void rotateLoop( 515 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 516 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 517 void rotateLoopWithProfile( 518 BlockChain &LoopChain, const MachineLoop &L, 519 const BlockFilterSet &LoopBlockSet); 520 void buildCFGChains(); 521 void optimizeBranches(); 522 void alignBlocks(); 523 /// Returns true if a block should be tail-duplicated to increase fallthrough 524 /// opportunities. 525 bool shouldTailDuplicate(MachineBasicBlock *BB); 526 /// Check the edge frequencies to see if tail duplication will increase 527 /// fallthroughs. 528 bool isProfitableToTailDup( 529 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 530 BranchProbability QProb, 531 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 532 533 /// Check for a trellis layout. 534 bool isTrellis(const MachineBasicBlock *BB, 535 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 536 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 537 538 /// Get the best successor given a trellis layout. 539 BlockAndTailDupResult getBestTrellisSuccessor( 540 const MachineBasicBlock *BB, 541 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 542 BranchProbability AdjustedSumProb, const BlockChain &Chain, 543 const BlockFilterSet *BlockFilter); 544 545 /// Get the best pair of non-conflicting edges. 546 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 547 const MachineBasicBlock *BB, 548 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 549 550 /// Returns true if a block can tail duplicate into all unplaced 551 /// predecessors. Filters based on loop. 552 bool canTailDuplicateUnplacedPreds( 553 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 554 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 555 556 /// Find chains of triangles to tail-duplicate where a global analysis works, 557 /// but a local analysis would not find them. 558 void precomputeTriangleChains(); 559 560 public: 561 static char ID; // Pass identification, replacement for typeid 562 563 MachineBlockPlacement() : MachineFunctionPass(ID) { 564 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 565 } 566 567 bool runOnMachineFunction(MachineFunction &F) override; 568 569 bool allowTailDupPlacement() const { 570 assert(F); 571 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 572 } 573 574 void getAnalysisUsage(AnalysisUsage &AU) const override { 575 AU.addRequired<MachineBranchProbabilityInfo>(); 576 AU.addRequired<MachineBlockFrequencyInfo>(); 577 if (TailDupPlacement) 578 AU.addRequired<MachinePostDominatorTree>(); 579 AU.addRequired<MachineLoopInfo>(); 580 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 581 AU.addRequired<TargetPassConfig>(); 582 MachineFunctionPass::getAnalysisUsage(AU); 583 } 584 }; 585 586 } // end anonymous namespace 587 588 char MachineBlockPlacement::ID = 0; 589 590 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 591 592 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 593 "Branch Probability Basic Block Placement", false, false) 594 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 595 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 596 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 597 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 598 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 599 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 600 "Branch Probability Basic Block Placement", false, false) 601 602 #ifndef NDEBUG 603 /// Helper to print the name of a MBB. 604 /// 605 /// Only used by debug logging. 606 static std::string getBlockName(const MachineBasicBlock *BB) { 607 std::string Result; 608 raw_string_ostream OS(Result); 609 OS << printMBBReference(*BB); 610 OS << " ('" << BB->getName() << "')"; 611 OS.flush(); 612 return Result; 613 } 614 #endif 615 616 /// Mark a chain's successors as having one fewer preds. 617 /// 618 /// When a chain is being merged into the "placed" chain, this routine will 619 /// quickly walk the successors of each block in the chain and mark them as 620 /// having one fewer active predecessor. It also adds any successors of this 621 /// chain which reach the zero-predecessor state to the appropriate worklist. 622 void MachineBlockPlacement::markChainSuccessors( 623 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 624 const BlockFilterSet *BlockFilter) { 625 // Walk all the blocks in this chain, marking their successors as having 626 // a predecessor placed. 627 for (MachineBasicBlock *MBB : Chain) { 628 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 629 } 630 } 631 632 /// Mark a single block's successors as having one fewer preds. 633 /// 634 /// Under normal circumstances, this is only called by markChainSuccessors, 635 /// but if a block that was to be placed is completely tail-duplicated away, 636 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 637 /// for just that block. 638 void MachineBlockPlacement::markBlockSuccessors( 639 const BlockChain &Chain, const MachineBasicBlock *MBB, 640 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 641 // Add any successors for which this is the only un-placed in-loop 642 // predecessor to the worklist as a viable candidate for CFG-neutral 643 // placement. No subsequent placement of this block will violate the CFG 644 // shape, so we get to use heuristics to choose a favorable placement. 645 for (MachineBasicBlock *Succ : MBB->successors()) { 646 if (BlockFilter && !BlockFilter->count(Succ)) 647 continue; 648 BlockChain &SuccChain = *BlockToChain[Succ]; 649 // Disregard edges within a fixed chain, or edges to the loop header. 650 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 651 continue; 652 653 // This is a cross-chain edge that is within the loop, so decrement the 654 // loop predecessor count of the destination chain. 655 if (SuccChain.UnscheduledPredecessors == 0 || 656 --SuccChain.UnscheduledPredecessors > 0) 657 continue; 658 659 auto *NewBB = *SuccChain.begin(); 660 if (NewBB->isEHPad()) 661 EHPadWorkList.push_back(NewBB); 662 else 663 BlockWorkList.push_back(NewBB); 664 } 665 } 666 667 /// This helper function collects the set of successors of block 668 /// \p BB that are allowed to be its layout successors, and return 669 /// the total branch probability of edges from \p BB to those 670 /// blocks. 671 BranchProbability MachineBlockPlacement::collectViableSuccessors( 672 const MachineBasicBlock *BB, const BlockChain &Chain, 673 const BlockFilterSet *BlockFilter, 674 SmallVector<MachineBasicBlock *, 4> &Successors) { 675 // Adjust edge probabilities by excluding edges pointing to blocks that is 676 // either not in BlockFilter or is already in the current chain. Consider the 677 // following CFG: 678 // 679 // --->A 680 // | / \ 681 // | B C 682 // | \ / \ 683 // ----D E 684 // 685 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 686 // A->C is chosen as a fall-through, D won't be selected as a successor of C 687 // due to CFG constraint (the probability of C->D is not greater than 688 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 689 // when calculating the probability of C->D, D will be selected and we 690 // will get A C D B as the layout of this loop. 691 auto AdjustedSumProb = BranchProbability::getOne(); 692 for (MachineBasicBlock *Succ : BB->successors()) { 693 bool SkipSucc = false; 694 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 695 SkipSucc = true; 696 } else { 697 BlockChain *SuccChain = BlockToChain[Succ]; 698 if (SuccChain == &Chain) { 699 SkipSucc = true; 700 } else if (Succ != *SuccChain->begin()) { 701 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 702 << " -> Mid chain!\n"); 703 continue; 704 } 705 } 706 if (SkipSucc) 707 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 708 else 709 Successors.push_back(Succ); 710 } 711 712 return AdjustedSumProb; 713 } 714 715 /// The helper function returns the branch probability that is adjusted 716 /// or normalized over the new total \p AdjustedSumProb. 717 static BranchProbability 718 getAdjustedProbability(BranchProbability OrigProb, 719 BranchProbability AdjustedSumProb) { 720 BranchProbability SuccProb; 721 uint32_t SuccProbN = OrigProb.getNumerator(); 722 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 723 if (SuccProbN >= SuccProbD) 724 SuccProb = BranchProbability::getOne(); 725 else 726 SuccProb = BranchProbability(SuccProbN, SuccProbD); 727 728 return SuccProb; 729 } 730 731 /// Check if \p BB has exactly the successors in \p Successors. 732 static bool 733 hasSameSuccessors(MachineBasicBlock &BB, 734 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 735 if (BB.succ_size() != Successors.size()) 736 return false; 737 // We don't want to count self-loops 738 if (Successors.count(&BB)) 739 return false; 740 for (MachineBasicBlock *Succ : BB.successors()) 741 if (!Successors.count(Succ)) 742 return false; 743 return true; 744 } 745 746 /// Check if a block should be tail duplicated to increase fallthrough 747 /// opportunities. 748 /// \p BB Block to check. 749 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 750 // Blocks with single successors don't create additional fallthrough 751 // opportunities. Don't duplicate them. TODO: When conditional exits are 752 // analyzable, allow them to be duplicated. 753 bool IsSimple = TailDup.isSimpleBB(BB); 754 755 if (BB->succ_size() == 1) 756 return false; 757 return TailDup.shouldTailDuplicate(IsSimple, *BB); 758 } 759 760 /// Compare 2 BlockFrequency's with a small penalty for \p A. 761 /// In order to be conservative, we apply a X% penalty to account for 762 /// increased icache pressure and static heuristics. For small frequencies 763 /// we use only the numerators to improve accuracy. For simplicity, we assume the 764 /// penalty is less than 100% 765 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 766 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 767 uint64_t EntryFreq) { 768 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 769 BlockFrequency Gain = A - B; 770 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 771 } 772 773 /// Check the edge frequencies to see if tail duplication will increase 774 /// fallthroughs. It only makes sense to call this function when 775 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 776 /// always locally profitable if we would have picked \p Succ without 777 /// considering duplication. 778 bool MachineBlockPlacement::isProfitableToTailDup( 779 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 780 BranchProbability QProb, 781 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 782 // We need to do a probability calculation to make sure this is profitable. 783 // First: does succ have a successor that post-dominates? This affects the 784 // calculation. The 2 relevant cases are: 785 // BB BB 786 // | \Qout | \Qout 787 // P| C |P C 788 // = C' = C' 789 // | /Qin | /Qin 790 // | / | / 791 // Succ Succ 792 // / \ | \ V 793 // U/ =V |U \ 794 // / \ = D 795 // D E | / 796 // | / 797 // |/ 798 // PDom 799 // '=' : Branch taken for that CFG edge 800 // In the second case, Placing Succ while duplicating it into C prevents the 801 // fallthrough of Succ into either D or PDom, because they now have C as an 802 // unplaced predecessor 803 804 // Start by figuring out which case we fall into 805 MachineBasicBlock *PDom = nullptr; 806 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 807 // Only scan the relevant successors 808 auto AdjustedSuccSumProb = 809 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 810 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 811 auto BBFreq = MBFI->getBlockFreq(BB); 812 auto SuccFreq = MBFI->getBlockFreq(Succ); 813 BlockFrequency P = BBFreq * PProb; 814 BlockFrequency Qout = BBFreq * QProb; 815 uint64_t EntryFreq = MBFI->getEntryFreq(); 816 // If there are no more successors, it is profitable to copy, as it strictly 817 // increases fallthrough. 818 if (SuccSuccs.size() == 0) 819 return greaterWithBias(P, Qout, EntryFreq); 820 821 auto BestSuccSucc = BranchProbability::getZero(); 822 // Find the PDom or the best Succ if no PDom exists. 823 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 824 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 825 if (Prob > BestSuccSucc) 826 BestSuccSucc = Prob; 827 if (PDom == nullptr) 828 if (MPDT->dominates(SuccSucc, Succ)) { 829 PDom = SuccSucc; 830 break; 831 } 832 } 833 // For the comparisons, we need to know Succ's best incoming edge that isn't 834 // from BB. 835 auto SuccBestPred = BlockFrequency(0); 836 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 837 if (SuccPred == Succ || SuccPred == BB 838 || BlockToChain[SuccPred] == &Chain 839 || (BlockFilter && !BlockFilter->count(SuccPred))) 840 continue; 841 auto Freq = MBFI->getBlockFreq(SuccPred) 842 * MBPI->getEdgeProbability(SuccPred, Succ); 843 if (Freq > SuccBestPred) 844 SuccBestPred = Freq; 845 } 846 // Qin is Succ's best unplaced incoming edge that isn't BB 847 BlockFrequency Qin = SuccBestPred; 848 // If it doesn't have a post-dominating successor, here is the calculation: 849 // BB BB 850 // | \Qout | \ 851 // P| C | = 852 // = C' | C 853 // | /Qin | | 854 // | / | C' (+Succ) 855 // Succ Succ /| 856 // / \ | \/ | 857 // U/ =V | == | 858 // / \ | / \| 859 // D E D E 860 // '=' : Branch taken for that CFG edge 861 // Cost in the first case is: P + V 862 // For this calculation, we always assume P > Qout. If Qout > P 863 // The result of this function will be ignored at the caller. 864 // Let F = SuccFreq - Qin 865 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 866 867 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 868 BranchProbability UProb = BestSuccSucc; 869 BranchProbability VProb = AdjustedSuccSumProb - UProb; 870 BlockFrequency F = SuccFreq - Qin; 871 BlockFrequency V = SuccFreq * VProb; 872 BlockFrequency QinU = std::min(Qin, F) * UProb; 873 BlockFrequency BaseCost = P + V; 874 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 875 return greaterWithBias(BaseCost, DupCost, EntryFreq); 876 } 877 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 878 BranchProbability VProb = AdjustedSuccSumProb - UProb; 879 BlockFrequency U = SuccFreq * UProb; 880 BlockFrequency V = SuccFreq * VProb; 881 BlockFrequency F = SuccFreq - Qin; 882 // If there is a post-dominating successor, here is the calculation: 883 // BB BB BB BB 884 // | \Qout | \ | \Qout | \ 885 // |P C | = |P C | = 886 // = C' |P C = C' |P C 887 // | /Qin | | | /Qin | | 888 // | / | C' (+Succ) | / | C' (+Succ) 889 // Succ Succ /| Succ Succ /| 890 // | \ V | \/ | | \ V | \/ | 891 // |U \ |U /\ =? |U = |U /\ | 892 // = D = = =?| | D | = =| 893 // | / |/ D | / |/ D 894 // | / | / | = | / 895 // |/ | / |/ | = 896 // Dom Dom Dom Dom 897 // '=' : Branch taken for that CFG edge 898 // The cost for taken branches in the first case is P + U 899 // Let F = SuccFreq - Qin 900 // The cost in the second case (assuming independence), given the layout: 901 // BB, Succ, (C+Succ), D, Dom or the layout: 902 // BB, Succ, D, Dom, (C+Succ) 903 // is Qout + max(F, Qin) * U + min(F, Qin) 904 // compare P + U vs Qout + P * U + Qin. 905 // 906 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 907 // 908 // For the 3rd case, the cost is P + 2 * V 909 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 910 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 911 if (UProb > AdjustedSuccSumProb / 2 && 912 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 913 Chain, BlockFilter)) 914 // Cases 3 & 4 915 return greaterWithBias( 916 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 917 EntryFreq); 918 // Cases 1 & 2 919 return greaterWithBias((P + U), 920 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 921 std::max(Qin, F) * UProb), 922 EntryFreq); 923 } 924 925 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 926 /// successors form the lower part of a trellis. A successor set S forms the 927 /// lower part of a trellis if all of the predecessors of S are either in S or 928 /// have all of S as successors. We ignore trellises where BB doesn't have 2 929 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 930 /// are very uncommon and complex to compute optimally. Allowing edges within S 931 /// is not strictly a trellis, but the same algorithm works, so we allow it. 932 bool MachineBlockPlacement::isTrellis( 933 const MachineBasicBlock *BB, 934 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 935 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 936 // Technically BB could form a trellis with branching factor higher than 2. 937 // But that's extremely uncommon. 938 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 939 return false; 940 941 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 942 BB->succ_end()); 943 // To avoid reviewing the same predecessors twice. 944 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 945 946 for (MachineBasicBlock *Succ : ViableSuccs) { 947 int PredCount = 0; 948 for (auto SuccPred : Succ->predecessors()) { 949 // Allow triangle successors, but don't count them. 950 if (Successors.count(SuccPred)) { 951 // Make sure that it is actually a triangle. 952 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 953 if (!Successors.count(CheckSucc)) 954 return false; 955 continue; 956 } 957 const BlockChain *PredChain = BlockToChain[SuccPred]; 958 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 959 PredChain == &Chain || PredChain == BlockToChain[Succ]) 960 continue; 961 ++PredCount; 962 // Perform the successor check only once. 963 if (!SeenPreds.insert(SuccPred).second) 964 continue; 965 if (!hasSameSuccessors(*SuccPred, Successors)) 966 return false; 967 } 968 // If one of the successors has only BB as a predecessor, it is not a 969 // trellis. 970 if (PredCount < 1) 971 return false; 972 } 973 return true; 974 } 975 976 /// Pick the highest total weight pair of edges that can both be laid out. 977 /// The edges in \p Edges[0] are assumed to have a different destination than 978 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 979 /// the individual highest weight edges to the 2 different destinations, or in 980 /// case of a conflict, one of them should be replaced with a 2nd best edge. 981 std::pair<MachineBlockPlacement::WeightedEdge, 982 MachineBlockPlacement::WeightedEdge> 983 MachineBlockPlacement::getBestNonConflictingEdges( 984 const MachineBasicBlock *BB, 985 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 986 Edges) { 987 // Sort the edges, and then for each successor, find the best incoming 988 // predecessor. If the best incoming predecessors aren't the same, 989 // then that is clearly the best layout. If there is a conflict, one of the 990 // successors will have to fallthrough from the second best predecessor. We 991 // compare which combination is better overall. 992 993 // Sort for highest frequency. 994 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 995 996 llvm::stable_sort(Edges[0], Cmp); 997 llvm::stable_sort(Edges[1], Cmp); 998 auto BestA = Edges[0].begin(); 999 auto BestB = Edges[1].begin(); 1000 // Arrange for the correct answer to be in BestA and BestB 1001 // If the 2 best edges don't conflict, the answer is already there. 1002 if (BestA->Src == BestB->Src) { 1003 // Compare the total fallthrough of (Best + Second Best) for both pairs 1004 auto SecondBestA = std::next(BestA); 1005 auto SecondBestB = std::next(BestB); 1006 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1007 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1008 if (BestAScore < BestBScore) 1009 BestA = SecondBestA; 1010 else 1011 BestB = SecondBestB; 1012 } 1013 // Arrange for the BB edge to be in BestA if it exists. 1014 if (BestB->Src == BB) 1015 std::swap(BestA, BestB); 1016 return std::make_pair(*BestA, *BestB); 1017 } 1018 1019 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1020 /// We only handle trellises with 2 successors, so the algorithm is 1021 /// straightforward: Find the best pair of edges that don't conflict. We find 1022 /// the best incoming edge for each successor in the trellis. If those conflict, 1023 /// we consider which of them should be replaced with the second best. 1024 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1025 /// comes from \p BB, it will be in \p BestEdges[0] 1026 MachineBlockPlacement::BlockAndTailDupResult 1027 MachineBlockPlacement::getBestTrellisSuccessor( 1028 const MachineBasicBlock *BB, 1029 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1030 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1031 const BlockFilterSet *BlockFilter) { 1032 1033 BlockAndTailDupResult Result = {nullptr, false}; 1034 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1035 BB->succ_end()); 1036 1037 // We assume size 2 because it's common. For general n, we would have to do 1038 // the Hungarian algorithm, but it's not worth the complexity because more 1039 // than 2 successors is fairly uncommon, and a trellis even more so. 1040 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1041 return Result; 1042 1043 // Collect the edge frequencies of all edges that form the trellis. 1044 SmallVector<WeightedEdge, 8> Edges[2]; 1045 int SuccIndex = 0; 1046 for (auto Succ : ViableSuccs) { 1047 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1048 // Skip any placed predecessors that are not BB 1049 if (SuccPred != BB) 1050 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1051 BlockToChain[SuccPred] == &Chain || 1052 BlockToChain[SuccPred] == BlockToChain[Succ]) 1053 continue; 1054 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1055 MBPI->getEdgeProbability(SuccPred, Succ); 1056 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1057 } 1058 ++SuccIndex; 1059 } 1060 1061 // Pick the best combination of 2 edges from all the edges in the trellis. 1062 WeightedEdge BestA, BestB; 1063 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1064 1065 if (BestA.Src != BB) { 1066 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1067 // we shouldn't choose any successor. We've already looked and there's a 1068 // better fallthrough edge for all the successors. 1069 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1070 return Result; 1071 } 1072 1073 // Did we pick the triangle edge? If tail-duplication is profitable, do 1074 // that instead. Otherwise merge the triangle edge now while we know it is 1075 // optimal. 1076 if (BestA.Dest == BestB.Src) { 1077 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1078 // would be better. 1079 MachineBasicBlock *Succ1 = BestA.Dest; 1080 MachineBasicBlock *Succ2 = BestB.Dest; 1081 // Check to see if tail-duplication would be profitable. 1082 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1083 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1084 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1085 Chain, BlockFilter)) { 1086 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1087 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1088 dbgs() << " Selected: " << getBlockName(Succ2) 1089 << ", probability: " << Succ2Prob 1090 << " (Tail Duplicate)\n"); 1091 Result.BB = Succ2; 1092 Result.ShouldTailDup = true; 1093 return Result; 1094 } 1095 } 1096 // We have already computed the optimal edge for the other side of the 1097 // trellis. 1098 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1099 1100 auto TrellisSucc = BestA.Dest; 1101 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1102 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1103 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1104 << ", probability: " << SuccProb << " (Trellis)\n"); 1105 Result.BB = TrellisSucc; 1106 return Result; 1107 } 1108 1109 /// When the option allowTailDupPlacement() is on, this method checks if the 1110 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1111 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1112 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1113 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1114 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1115 if (!shouldTailDuplicate(Succ)) 1116 return false; 1117 1118 // The result of canTailDuplicate. 1119 bool Duplicate = true; 1120 // Number of possible duplication. 1121 unsigned int NumDup = 0; 1122 1123 // For CFG checking. 1124 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1125 BB->succ_end()); 1126 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1127 // Make sure all unplaced and unfiltered predecessors can be 1128 // tail-duplicated into. 1129 // Skip any blocks that are already placed or not in this loop. 1130 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1131 || BlockToChain[Pred] == &Chain) 1132 continue; 1133 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1134 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1135 // This will result in a trellis after tail duplication, so we don't 1136 // need to copy Succ into this predecessor. In the presence 1137 // of a trellis tail duplication can continue to be profitable. 1138 // For example: 1139 // A A 1140 // |\ |\ 1141 // | \ | \ 1142 // | C | C+BB 1143 // | / | | 1144 // |/ | | 1145 // BB => BB | 1146 // |\ |\/| 1147 // | \ |/\| 1148 // | D | D 1149 // | / | / 1150 // |/ |/ 1151 // Succ Succ 1152 // 1153 // After BB was duplicated into C, the layout looks like the one on the 1154 // right. BB and C now have the same successors. When considering 1155 // whether Succ can be duplicated into all its unplaced predecessors, we 1156 // ignore C. 1157 // We can do this because C already has a profitable fallthrough, namely 1158 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1159 // duplication and for this test. 1160 // 1161 // This allows trellises to be laid out in 2 separate chains 1162 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1163 // because it allows the creation of 2 fallthrough paths with links 1164 // between them, and we correctly identify the best layout for these 1165 // CFGs. We want to extend trellises that the user created in addition 1166 // to trellises created by tail-duplication, so we just look for the 1167 // CFG. 1168 continue; 1169 Duplicate = false; 1170 continue; 1171 } 1172 NumDup++; 1173 } 1174 1175 // No possible duplication in current filter set. 1176 if (NumDup == 0) 1177 return false; 1178 1179 // If profile information is available, findDuplicateCandidates can do more 1180 // precise benefit analysis. 1181 if (F->getFunction().hasProfileData()) 1182 return true; 1183 1184 // This is mainly for function exit BB. 1185 // The integrated tail duplication is really designed for increasing 1186 // fallthrough from predecessors from Succ to its successors. We may need 1187 // other machanism to handle different cases. 1188 if (Succ->succ_empty()) 1189 return true; 1190 1191 // Plus the already placed predecessor. 1192 NumDup++; 1193 1194 // If the duplication candidate has more unplaced predecessors than 1195 // successors, the extra duplication can't bring more fallthrough. 1196 // 1197 // Pred1 Pred2 Pred3 1198 // \ | / 1199 // \ | / 1200 // \ | / 1201 // Dup 1202 // / \ 1203 // / \ 1204 // Succ1 Succ2 1205 // 1206 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1207 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1208 // but the duplication into Pred3 can't increase fallthrough. 1209 // 1210 // A small number of extra duplication may not hurt too much. We need a better 1211 // heuristic to handle it. 1212 if ((NumDup > Succ->succ_size()) || !Duplicate) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 /// Find chains of triangles where we believe it would be profitable to 1219 /// tail-duplicate them all, but a local analysis would not find them. 1220 /// There are 3 ways this can be profitable: 1221 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1222 /// longer chains) 1223 /// 2) The chains are statically correlated. Branch probabilities have a very 1224 /// U-shaped distribution. 1225 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1226 /// If the branches in a chain are likely to be from the same side of the 1227 /// distribution as their predecessor, but are independent at runtime, this 1228 /// transformation is profitable. (Because the cost of being wrong is a small 1229 /// fixed cost, unlike the standard triangle layout where the cost of being 1230 /// wrong scales with the # of triangles.) 1231 /// 3) The chains are dynamically correlated. If the probability that a previous 1232 /// branch was taken positively influences whether the next branch will be 1233 /// taken 1234 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1235 void MachineBlockPlacement::precomputeTriangleChains() { 1236 struct TriangleChain { 1237 std::vector<MachineBasicBlock *> Edges; 1238 1239 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1240 : Edges({src, dst}) {} 1241 1242 void append(MachineBasicBlock *dst) { 1243 assert(getKey()->isSuccessor(dst) && 1244 "Attempting to append a block that is not a successor."); 1245 Edges.push_back(dst); 1246 } 1247 1248 unsigned count() const { return Edges.size() - 1; } 1249 1250 MachineBasicBlock *getKey() const { 1251 return Edges.back(); 1252 } 1253 }; 1254 1255 if (TriangleChainCount == 0) 1256 return; 1257 1258 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1259 // Map from last block to the chain that contains it. This allows us to extend 1260 // chains as we find new triangles. 1261 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1262 for (MachineBasicBlock &BB : *F) { 1263 // If BB doesn't have 2 successors, it doesn't start a triangle. 1264 if (BB.succ_size() != 2) 1265 continue; 1266 MachineBasicBlock *PDom = nullptr; 1267 for (MachineBasicBlock *Succ : BB.successors()) { 1268 if (!MPDT->dominates(Succ, &BB)) 1269 continue; 1270 PDom = Succ; 1271 break; 1272 } 1273 // If BB doesn't have a post-dominating successor, it doesn't form a 1274 // triangle. 1275 if (PDom == nullptr) 1276 continue; 1277 // If PDom has a hint that it is low probability, skip this triangle. 1278 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1279 continue; 1280 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1281 // we're looking for. 1282 if (!shouldTailDuplicate(PDom)) 1283 continue; 1284 bool CanTailDuplicate = true; 1285 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1286 // isn't the kind of triangle we're looking for. 1287 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1288 if (Pred == &BB) 1289 continue; 1290 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1291 CanTailDuplicate = false; 1292 break; 1293 } 1294 } 1295 // If we can't tail-duplicate PDom to its predecessors, then skip this 1296 // triangle. 1297 if (!CanTailDuplicate) 1298 continue; 1299 1300 // Now we have an interesting triangle. Insert it if it's not part of an 1301 // existing chain. 1302 // Note: This cannot be replaced with a call insert() or emplace() because 1303 // the find key is BB, but the insert/emplace key is PDom. 1304 auto Found = TriangleChainMap.find(&BB); 1305 // If it is, remove the chain from the map, grow it, and put it back in the 1306 // map with the end as the new key. 1307 if (Found != TriangleChainMap.end()) { 1308 TriangleChain Chain = std::move(Found->second); 1309 TriangleChainMap.erase(Found); 1310 Chain.append(PDom); 1311 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1312 } else { 1313 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1314 assert(InsertResult.second && "Block seen twice."); 1315 (void)InsertResult; 1316 } 1317 } 1318 1319 // Iterating over a DenseMap is safe here, because the only thing in the body 1320 // of the loop is inserting into another DenseMap (ComputedEdges). 1321 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1322 for (auto &ChainPair : TriangleChainMap) { 1323 TriangleChain &Chain = ChainPair.second; 1324 // Benchmarking has shown that due to branch correlation duplicating 2 or 1325 // more triangles is profitable, despite the calculations assuming 1326 // independence. 1327 if (Chain.count() < TriangleChainCount) 1328 continue; 1329 MachineBasicBlock *dst = Chain.Edges.back(); 1330 Chain.Edges.pop_back(); 1331 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1332 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1333 << getBlockName(dst) 1334 << " as pre-computed based on triangles.\n"); 1335 1336 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1337 assert(InsertResult.second && "Block seen twice."); 1338 (void)InsertResult; 1339 1340 dst = src; 1341 } 1342 } 1343 } 1344 1345 // When profile is not present, return the StaticLikelyProb. 1346 // When profile is available, we need to handle the triangle-shape CFG. 1347 static BranchProbability getLayoutSuccessorProbThreshold( 1348 const MachineBasicBlock *BB) { 1349 if (!BB->getParent()->getFunction().hasProfileData()) 1350 return BranchProbability(StaticLikelyProb, 100); 1351 if (BB->succ_size() == 2) { 1352 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1353 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1354 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1355 /* See case 1 below for the cost analysis. For BB->Succ to 1356 * be taken with smaller cost, the following needs to hold: 1357 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1358 * So the threshold T in the calculation below 1359 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1360 * So T / (1 - T) = 2, Yielding T = 2/3 1361 * Also adding user specified branch bias, we have 1362 * T = (2/3)*(ProfileLikelyProb/50) 1363 * = (2*ProfileLikelyProb)/150) 1364 */ 1365 return BranchProbability(2 * ProfileLikelyProb, 150); 1366 } 1367 } 1368 return BranchProbability(ProfileLikelyProb, 100); 1369 } 1370 1371 /// Checks to see if the layout candidate block \p Succ has a better layout 1372 /// predecessor than \c BB. If yes, returns true. 1373 /// \p SuccProb: The probability adjusted for only remaining blocks. 1374 /// Only used for logging 1375 /// \p RealSuccProb: The un-adjusted probability. 1376 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1377 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1378 /// considered 1379 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1380 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1381 const BlockChain &SuccChain, BranchProbability SuccProb, 1382 BranchProbability RealSuccProb, const BlockChain &Chain, 1383 const BlockFilterSet *BlockFilter) { 1384 1385 // There isn't a better layout when there are no unscheduled predecessors. 1386 if (SuccChain.UnscheduledPredecessors == 0) 1387 return false; 1388 1389 // There are two basic scenarios here: 1390 // ------------------------------------- 1391 // Case 1: triangular shape CFG (if-then): 1392 // BB 1393 // | \ 1394 // | \ 1395 // | Pred 1396 // | / 1397 // Succ 1398 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1399 // set Succ as the layout successor of BB. Picking Succ as BB's 1400 // successor breaks the CFG constraints (FIXME: define these constraints). 1401 // With this layout, Pred BB 1402 // is forced to be outlined, so the overall cost will be cost of the 1403 // branch taken from BB to Pred, plus the cost of back taken branch 1404 // from Pred to Succ, as well as the additional cost associated 1405 // with the needed unconditional jump instruction from Pred To Succ. 1406 1407 // The cost of the topological order layout is the taken branch cost 1408 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1409 // must hold: 1410 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1411 // < freq(BB->Succ) * taken_branch_cost. 1412 // Ignoring unconditional jump cost, we get 1413 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1414 // prob(BB->Succ) > 2 * prob(BB->Pred) 1415 // 1416 // When real profile data is available, we can precisely compute the 1417 // probability threshold that is needed for edge BB->Succ to be considered. 1418 // Without profile data, the heuristic requires the branch bias to be 1419 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1420 // ----------------------------------------------------------------- 1421 // Case 2: diamond like CFG (if-then-else): 1422 // S 1423 // / \ 1424 // | \ 1425 // BB Pred 1426 // \ / 1427 // Succ 1428 // .. 1429 // 1430 // The current block is BB and edge BB->Succ is now being evaluated. 1431 // Note that edge S->BB was previously already selected because 1432 // prob(S->BB) > prob(S->Pred). 1433 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1434 // choose Pred, we will have a topological ordering as shown on the left 1435 // in the picture below. If we choose Succ, we have the solution as shown 1436 // on the right: 1437 // 1438 // topo-order: 1439 // 1440 // S----- ---S 1441 // | | | | 1442 // ---BB | | BB 1443 // | | | | 1444 // | Pred-- | Succ-- 1445 // | | | | 1446 // ---Succ ---Pred-- 1447 // 1448 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1449 // = freq(S->Pred) + freq(S->BB) 1450 // 1451 // If we have profile data (i.e, branch probabilities can be trusted), the 1452 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1453 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1454 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1455 // means the cost of topological order is greater. 1456 // When profile data is not available, however, we need to be more 1457 // conservative. If the branch prediction is wrong, breaking the topo-order 1458 // will actually yield a layout with large cost. For this reason, we need 1459 // strong biased branch at block S with Prob(S->BB) in order to select 1460 // BB->Succ. This is equivalent to looking the CFG backward with backward 1461 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1462 // profile data). 1463 // -------------------------------------------------------------------------- 1464 // Case 3: forked diamond 1465 // S 1466 // / \ 1467 // / \ 1468 // BB Pred 1469 // | \ / | 1470 // | \ / | 1471 // | X | 1472 // | / \ | 1473 // | / \ | 1474 // S1 S2 1475 // 1476 // The current block is BB and edge BB->S1 is now being evaluated. 1477 // As above S->BB was already selected because 1478 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1479 // 1480 // topo-order: 1481 // 1482 // S-------| ---S 1483 // | | | | 1484 // ---BB | | BB 1485 // | | | | 1486 // | Pred----| | S1---- 1487 // | | | | 1488 // --(S1 or S2) ---Pred-- 1489 // | 1490 // S2 1491 // 1492 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1493 // + min(freq(Pred->S1), freq(Pred->S2)) 1494 // Non-topo-order cost: 1495 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1496 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1497 // is 0. Then the non topo layout is better when 1498 // freq(S->Pred) < freq(BB->S1). 1499 // This is exactly what is checked below. 1500 // Note there are other shapes that apply (Pred may not be a single block, 1501 // but they all fit this general pattern.) 1502 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1503 1504 // Make sure that a hot successor doesn't have a globally more 1505 // important predecessor. 1506 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1507 bool BadCFGConflict = false; 1508 1509 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1510 BlockChain *PredChain = BlockToChain[Pred]; 1511 if (Pred == Succ || PredChain == &SuccChain || 1512 (BlockFilter && !BlockFilter->count(Pred)) || 1513 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1514 // This check is redundant except for look ahead. This function is 1515 // called for lookahead by isProfitableToTailDup when BB hasn't been 1516 // placed yet. 1517 (Pred == BB)) 1518 continue; 1519 // Do backward checking. 1520 // For all cases above, we need a backward checking to filter out edges that 1521 // are not 'strongly' biased. 1522 // BB Pred 1523 // \ / 1524 // Succ 1525 // We select edge BB->Succ if 1526 // freq(BB->Succ) > freq(Succ) * HotProb 1527 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1528 // HotProb 1529 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1530 // Case 1 is covered too, because the first equation reduces to: 1531 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1532 BlockFrequency PredEdgeFreq = 1533 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1534 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1535 BadCFGConflict = true; 1536 break; 1537 } 1538 } 1539 1540 if (BadCFGConflict) { 1541 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1542 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1543 return true; 1544 } 1545 1546 return false; 1547 } 1548 1549 /// Select the best successor for a block. 1550 /// 1551 /// This looks across all successors of a particular block and attempts to 1552 /// select the "best" one to be the layout successor. It only considers direct 1553 /// successors which also pass the block filter. It will attempt to avoid 1554 /// breaking CFG structure, but cave and break such structures in the case of 1555 /// very hot successor edges. 1556 /// 1557 /// \returns The best successor block found, or null if none are viable, along 1558 /// with a boolean indicating if tail duplication is necessary. 1559 MachineBlockPlacement::BlockAndTailDupResult 1560 MachineBlockPlacement::selectBestSuccessor( 1561 const MachineBasicBlock *BB, const BlockChain &Chain, 1562 const BlockFilterSet *BlockFilter) { 1563 const BranchProbability HotProb(StaticLikelyProb, 100); 1564 1565 BlockAndTailDupResult BestSucc = { nullptr, false }; 1566 auto BestProb = BranchProbability::getZero(); 1567 1568 SmallVector<MachineBasicBlock *, 4> Successors; 1569 auto AdjustedSumProb = 1570 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1571 1572 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1573 << "\n"); 1574 1575 // if we already precomputed the best successor for BB, return that if still 1576 // applicable. 1577 auto FoundEdge = ComputedEdges.find(BB); 1578 if (FoundEdge != ComputedEdges.end()) { 1579 MachineBasicBlock *Succ = FoundEdge->second.BB; 1580 ComputedEdges.erase(FoundEdge); 1581 BlockChain *SuccChain = BlockToChain[Succ]; 1582 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1583 SuccChain != &Chain && Succ == *SuccChain->begin()) 1584 return FoundEdge->second; 1585 } 1586 1587 // if BB is part of a trellis, Use the trellis to determine the optimal 1588 // fallthrough edges 1589 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1590 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1591 BlockFilter); 1592 1593 // For blocks with CFG violations, we may be able to lay them out anyway with 1594 // tail-duplication. We keep this vector so we can perform the probability 1595 // calculations the minimum number of times. 1596 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1597 DupCandidates; 1598 for (MachineBasicBlock *Succ : Successors) { 1599 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1600 BranchProbability SuccProb = 1601 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1602 1603 BlockChain &SuccChain = *BlockToChain[Succ]; 1604 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1605 // predecessor that yields lower global cost. 1606 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1607 Chain, BlockFilter)) { 1608 // If tail duplication would make Succ profitable, place it. 1609 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1610 DupCandidates.emplace_back(SuccProb, Succ); 1611 continue; 1612 } 1613 1614 LLVM_DEBUG( 1615 dbgs() << " Candidate: " << getBlockName(Succ) 1616 << ", probability: " << SuccProb 1617 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1618 << "\n"); 1619 1620 if (BestSucc.BB && BestProb >= SuccProb) { 1621 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1622 continue; 1623 } 1624 1625 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1626 BestSucc.BB = Succ; 1627 BestProb = SuccProb; 1628 } 1629 // Handle the tail duplication candidates in order of decreasing probability. 1630 // Stop at the first one that is profitable. Also stop if they are less 1631 // profitable than BestSucc. Position is important because we preserve it and 1632 // prefer first best match. Here we aren't comparing in order, so we capture 1633 // the position instead. 1634 llvm::stable_sort(DupCandidates, 1635 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1636 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1637 return std::get<0>(L) > std::get<0>(R); 1638 }); 1639 for (auto &Tup : DupCandidates) { 1640 BranchProbability DupProb; 1641 MachineBasicBlock *Succ; 1642 std::tie(DupProb, Succ) = Tup; 1643 if (DupProb < BestProb) 1644 break; 1645 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1646 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1647 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1648 << ", probability: " << DupProb 1649 << " (Tail Duplicate)\n"); 1650 BestSucc.BB = Succ; 1651 BestSucc.ShouldTailDup = true; 1652 break; 1653 } 1654 } 1655 1656 if (BestSucc.BB) 1657 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1658 1659 return BestSucc; 1660 } 1661 1662 /// Select the best block from a worklist. 1663 /// 1664 /// This looks through the provided worklist as a list of candidate basic 1665 /// blocks and select the most profitable one to place. The definition of 1666 /// profitable only really makes sense in the context of a loop. This returns 1667 /// the most frequently visited block in the worklist, which in the case of 1668 /// a loop, is the one most desirable to be physically close to the rest of the 1669 /// loop body in order to improve i-cache behavior. 1670 /// 1671 /// \returns The best block found, or null if none are viable. 1672 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1673 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1674 // Once we need to walk the worklist looking for a candidate, cleanup the 1675 // worklist of already placed entries. 1676 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1677 // some code complexity) into the loop below. 1678 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1679 return BlockToChain.lookup(BB) == &Chain; 1680 }); 1681 1682 if (WorkList.empty()) 1683 return nullptr; 1684 1685 bool IsEHPad = WorkList[0]->isEHPad(); 1686 1687 MachineBasicBlock *BestBlock = nullptr; 1688 BlockFrequency BestFreq; 1689 for (MachineBasicBlock *MBB : WorkList) { 1690 assert(MBB->isEHPad() == IsEHPad && 1691 "EHPad mismatch between block and work list."); 1692 1693 BlockChain &SuccChain = *BlockToChain[MBB]; 1694 if (&SuccChain == &Chain) 1695 continue; 1696 1697 assert(SuccChain.UnscheduledPredecessors == 0 && 1698 "Found CFG-violating block"); 1699 1700 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1701 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1702 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1703 1704 // For ehpad, we layout the least probable first as to avoid jumping back 1705 // from least probable landingpads to more probable ones. 1706 // 1707 // FIXME: Using probability is probably (!) not the best way to achieve 1708 // this. We should probably have a more principled approach to layout 1709 // cleanup code. 1710 // 1711 // The goal is to get: 1712 // 1713 // +--------------------------+ 1714 // | V 1715 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1716 // 1717 // Rather than: 1718 // 1719 // +-------------------------------------+ 1720 // V | 1721 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1722 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1723 continue; 1724 1725 BestBlock = MBB; 1726 BestFreq = CandidateFreq; 1727 } 1728 1729 return BestBlock; 1730 } 1731 1732 /// Retrieve the first unplaced basic block. 1733 /// 1734 /// This routine is called when we are unable to use the CFG to walk through 1735 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1736 /// We walk through the function's blocks in order, starting from the 1737 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1738 /// re-scanning the entire sequence on repeated calls to this routine. 1739 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1740 const BlockChain &PlacedChain, 1741 MachineFunction::iterator &PrevUnplacedBlockIt, 1742 const BlockFilterSet *BlockFilter) { 1743 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1744 ++I) { 1745 if (BlockFilter && !BlockFilter->count(&*I)) 1746 continue; 1747 if (BlockToChain[&*I] != &PlacedChain) { 1748 PrevUnplacedBlockIt = I; 1749 // Now select the head of the chain to which the unplaced block belongs 1750 // as the block to place. This will force the entire chain to be placed, 1751 // and satisfies the requirements of merging chains. 1752 return *BlockToChain[&*I]->begin(); 1753 } 1754 } 1755 return nullptr; 1756 } 1757 1758 void MachineBlockPlacement::fillWorkLists( 1759 const MachineBasicBlock *MBB, 1760 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1761 const BlockFilterSet *BlockFilter = nullptr) { 1762 BlockChain &Chain = *BlockToChain[MBB]; 1763 if (!UpdatedPreds.insert(&Chain).second) 1764 return; 1765 1766 assert( 1767 Chain.UnscheduledPredecessors == 0 && 1768 "Attempting to place block with unscheduled predecessors in worklist."); 1769 for (MachineBasicBlock *ChainBB : Chain) { 1770 assert(BlockToChain[ChainBB] == &Chain && 1771 "Block in chain doesn't match BlockToChain map."); 1772 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1773 if (BlockFilter && !BlockFilter->count(Pred)) 1774 continue; 1775 if (BlockToChain[Pred] == &Chain) 1776 continue; 1777 ++Chain.UnscheduledPredecessors; 1778 } 1779 } 1780 1781 if (Chain.UnscheduledPredecessors != 0) 1782 return; 1783 1784 MachineBasicBlock *BB = *Chain.begin(); 1785 if (BB->isEHPad()) 1786 EHPadWorkList.push_back(BB); 1787 else 1788 BlockWorkList.push_back(BB); 1789 } 1790 1791 void MachineBlockPlacement::buildChain( 1792 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1793 BlockFilterSet *BlockFilter) { 1794 assert(HeadBB && "BB must not be null.\n"); 1795 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1796 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1797 1798 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1799 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1800 MachineBasicBlock *BB = *std::prev(Chain.end()); 1801 while (true) { 1802 assert(BB && "null block found at end of chain in loop."); 1803 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1804 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1805 1806 1807 // Look for the best viable successor if there is one to place immediately 1808 // after this block. 1809 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1810 MachineBasicBlock* BestSucc = Result.BB; 1811 bool ShouldTailDup = Result.ShouldTailDup; 1812 if (allowTailDupPlacement()) 1813 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1814 Chain, 1815 BlockFilter)); 1816 1817 // If an immediate successor isn't available, look for the best viable 1818 // block among those we've identified as not violating the loop's CFG at 1819 // this point. This won't be a fallthrough, but it will increase locality. 1820 if (!BestSucc) 1821 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1822 if (!BestSucc) 1823 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1824 1825 if (!BestSucc) { 1826 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1827 if (!BestSucc) 1828 break; 1829 1830 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1831 "layout successor until the CFG reduces\n"); 1832 } 1833 1834 // Placement may have changed tail duplication opportunities. 1835 // Check for that now. 1836 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1837 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1838 BlockFilter, PrevUnplacedBlockIt); 1839 // If the chosen successor was duplicated into BB, don't bother laying 1840 // it out, just go round the loop again with BB as the chain end. 1841 if (!BB->isSuccessor(BestSucc)) 1842 continue; 1843 } 1844 1845 // Place this block, updating the datastructures to reflect its placement. 1846 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1847 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1848 // we selected a successor that didn't fit naturally into the CFG. 1849 SuccChain.UnscheduledPredecessors = 0; 1850 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1851 << getBlockName(BestSucc) << "\n"); 1852 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1853 Chain.merge(BestSucc, &SuccChain); 1854 BB = *std::prev(Chain.end()); 1855 } 1856 1857 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1858 << getBlockName(*Chain.begin()) << "\n"); 1859 } 1860 1861 // If bottom of block BB has only one successor OldTop, in most cases it is 1862 // profitable to move it before OldTop, except the following case: 1863 // 1864 // -->OldTop<- 1865 // | . | 1866 // | . | 1867 // | . | 1868 // ---Pred | 1869 // | | 1870 // BB----- 1871 // 1872 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1873 // layout the other successor below it, so it can't reduce taken branch. 1874 // In this case we keep its original layout. 1875 bool 1876 MachineBlockPlacement::canMoveBottomBlockToTop( 1877 const MachineBasicBlock *BottomBlock, 1878 const MachineBasicBlock *OldTop) { 1879 if (BottomBlock->pred_size() != 1) 1880 return true; 1881 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1882 if (Pred->succ_size() != 2) 1883 return true; 1884 1885 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1886 if (OtherBB == BottomBlock) 1887 OtherBB = *Pred->succ_rbegin(); 1888 if (OtherBB == OldTop) 1889 return false; 1890 1891 return true; 1892 } 1893 1894 // Find out the possible fall through frequence to the top of a loop. 1895 BlockFrequency 1896 MachineBlockPlacement::TopFallThroughFreq( 1897 const MachineBasicBlock *Top, 1898 const BlockFilterSet &LoopBlockSet) { 1899 BlockFrequency MaxFreq = 0; 1900 for (MachineBasicBlock *Pred : Top->predecessors()) { 1901 BlockChain *PredChain = BlockToChain[Pred]; 1902 if (!LoopBlockSet.count(Pred) && 1903 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1904 // Found a Pred block can be placed before Top. 1905 // Check if Top is the best successor of Pred. 1906 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1907 bool TopOK = true; 1908 for (MachineBasicBlock *Succ : Pred->successors()) { 1909 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1910 BlockChain *SuccChain = BlockToChain[Succ]; 1911 // Check if Succ can be placed after Pred. 1912 // Succ should not be in any chain, or it is the head of some chain. 1913 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1914 (!SuccChain || Succ == *SuccChain->begin())) { 1915 TopOK = false; 1916 break; 1917 } 1918 } 1919 if (TopOK) { 1920 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1921 MBPI->getEdgeProbability(Pred, Top); 1922 if (EdgeFreq > MaxFreq) 1923 MaxFreq = EdgeFreq; 1924 } 1925 } 1926 } 1927 return MaxFreq; 1928 } 1929 1930 // Compute the fall through gains when move NewTop before OldTop. 1931 // 1932 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1933 // marked as "+" are increased fallthrough, this function computes 1934 // 1935 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1936 // 1937 // | 1938 // | - 1939 // V 1940 // --->OldTop 1941 // | . 1942 // | . 1943 // +| . + 1944 // | Pred ---> 1945 // | |- 1946 // | V 1947 // --- NewTop <--- 1948 // |- 1949 // V 1950 // 1951 BlockFrequency 1952 MachineBlockPlacement::FallThroughGains( 1953 const MachineBasicBlock *NewTop, 1954 const MachineBasicBlock *OldTop, 1955 const MachineBasicBlock *ExitBB, 1956 const BlockFilterSet &LoopBlockSet) { 1957 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1958 BlockFrequency FallThrough2Exit = 0; 1959 if (ExitBB) 1960 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1961 MBPI->getEdgeProbability(NewTop, ExitBB); 1962 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1963 MBPI->getEdgeProbability(NewTop, OldTop); 1964 1965 // Find the best Pred of NewTop. 1966 MachineBasicBlock *BestPred = nullptr; 1967 BlockFrequency FallThroughFromPred = 0; 1968 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1969 if (!LoopBlockSet.count(Pred)) 1970 continue; 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1973 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1974 MBPI->getEdgeProbability(Pred, NewTop); 1975 if (EdgeFreq > FallThroughFromPred) { 1976 FallThroughFromPred = EdgeFreq; 1977 BestPred = Pred; 1978 } 1979 } 1980 } 1981 1982 // If NewTop is not placed after Pred, another successor can be placed 1983 // after Pred. 1984 BlockFrequency NewFreq = 0; 1985 if (BestPred) { 1986 for (MachineBasicBlock *Succ : BestPred->successors()) { 1987 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1988 continue; 1989 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1990 continue; 1991 BlockChain *SuccChain = BlockToChain[Succ]; 1992 if ((SuccChain && (Succ != *SuccChain->begin())) || 1993 (SuccChain == BlockToChain[BestPred])) 1994 continue; 1995 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1996 MBPI->getEdgeProbability(BestPred, Succ); 1997 if (EdgeFreq > NewFreq) 1998 NewFreq = EdgeFreq; 1999 } 2000 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2001 MBPI->getEdgeProbability(BestPred, NewTop); 2002 if (NewFreq > OrigEdgeFreq) { 2003 // If NewTop is not the best successor of Pred, then Pred doesn't 2004 // fallthrough to NewTop. So there is no FallThroughFromPred and 2005 // NewFreq. 2006 NewFreq = 0; 2007 FallThroughFromPred = 0; 2008 } 2009 } 2010 2011 BlockFrequency Result = 0; 2012 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2013 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 2014 FallThroughFromPred; 2015 if (Gains > Lost) 2016 Result = Gains - Lost; 2017 return Result; 2018 } 2019 2020 /// Helper function of findBestLoopTop. Find the best loop top block 2021 /// from predecessors of old top. 2022 /// 2023 /// Look for a block which is strictly better than the old top for laying 2024 /// out before the old top of the loop. This looks for only two patterns: 2025 /// 2026 /// 1. a block has only one successor, the old loop top 2027 /// 2028 /// Because such a block will always result in an unconditional jump, 2029 /// rotating it in front of the old top is always profitable. 2030 /// 2031 /// 2. a block has two successors, one is old top, another is exit 2032 /// and it has more than one predecessors 2033 /// 2034 /// If it is below one of its predecessors P, only P can fall through to 2035 /// it, all other predecessors need a jump to it, and another conditional 2036 /// jump to loop header. If it is moved before loop header, all its 2037 /// predecessors jump to it, then fall through to loop header. So all its 2038 /// predecessors except P can reduce one taken branch. 2039 /// At the same time, move it before old top increases the taken branch 2040 /// to loop exit block, so the reduced taken branch will be compared with 2041 /// the increased taken branch to the loop exit block. 2042 MachineBasicBlock * 2043 MachineBlockPlacement::findBestLoopTopHelper( 2044 MachineBasicBlock *OldTop, 2045 const MachineLoop &L, 2046 const BlockFilterSet &LoopBlockSet) { 2047 // Check that the header hasn't been fused with a preheader block due to 2048 // crazy branches. If it has, we need to start with the header at the top to 2049 // prevent pulling the preheader into the loop body. 2050 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2051 if (!LoopBlockSet.count(*HeaderChain.begin())) 2052 return OldTop; 2053 if (OldTop != *HeaderChain.begin()) 2054 return OldTop; 2055 2056 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2057 << "\n"); 2058 2059 BlockFrequency BestGains = 0; 2060 MachineBasicBlock *BestPred = nullptr; 2061 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2062 if (!LoopBlockSet.count(Pred)) 2063 continue; 2064 if (Pred == L.getHeader()) 2065 continue; 2066 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2067 << Pred->succ_size() << " successors, "; 2068 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2069 if (Pred->succ_size() > 2) 2070 continue; 2071 2072 MachineBasicBlock *OtherBB = nullptr; 2073 if (Pred->succ_size() == 2) { 2074 OtherBB = *Pred->succ_begin(); 2075 if (OtherBB == OldTop) 2076 OtherBB = *Pred->succ_rbegin(); 2077 } 2078 2079 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2080 continue; 2081 2082 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2083 LoopBlockSet); 2084 if ((Gains > 0) && (Gains > BestGains || 2085 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2086 BestPred = Pred; 2087 BestGains = Gains; 2088 } 2089 } 2090 2091 // If no direct predecessor is fine, just use the loop header. 2092 if (!BestPred) { 2093 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2094 return OldTop; 2095 } 2096 2097 // Walk backwards through any straight line of predecessors. 2098 while (BestPred->pred_size() == 1 && 2099 (*BestPred->pred_begin())->succ_size() == 1 && 2100 *BestPred->pred_begin() != L.getHeader()) 2101 BestPred = *BestPred->pred_begin(); 2102 2103 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2104 return BestPred; 2105 } 2106 2107 /// Find the best loop top block for layout. 2108 /// 2109 /// This function iteratively calls findBestLoopTopHelper, until no new better 2110 /// BB can be found. 2111 MachineBasicBlock * 2112 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2113 const BlockFilterSet &LoopBlockSet) { 2114 // Placing the latch block before the header may introduce an extra branch 2115 // that skips this block the first time the loop is executed, which we want 2116 // to avoid when optimising for size. 2117 // FIXME: in theory there is a case that does not introduce a new branch, 2118 // i.e. when the layout predecessor does not fallthrough to the loop header. 2119 // In practice this never happens though: there always seems to be a preheader 2120 // that can fallthrough and that is also placed before the header. 2121 bool OptForSize = F->getFunction().hasOptSize() || 2122 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2123 if (OptForSize) 2124 return L.getHeader(); 2125 2126 MachineBasicBlock *OldTop = nullptr; 2127 MachineBasicBlock *NewTop = L.getHeader(); 2128 while (NewTop != OldTop) { 2129 OldTop = NewTop; 2130 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2131 if (NewTop != OldTop) 2132 ComputedEdges[NewTop] = { OldTop, false }; 2133 } 2134 return NewTop; 2135 } 2136 2137 /// Find the best loop exiting block for layout. 2138 /// 2139 /// This routine implements the logic to analyze the loop looking for the best 2140 /// block to layout at the top of the loop. Typically this is done to maximize 2141 /// fallthrough opportunities. 2142 MachineBasicBlock * 2143 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2144 const BlockFilterSet &LoopBlockSet, 2145 BlockFrequency &ExitFreq) { 2146 // We don't want to layout the loop linearly in all cases. If the loop header 2147 // is just a normal basic block in the loop, we want to look for what block 2148 // within the loop is the best one to layout at the top. However, if the loop 2149 // header has be pre-merged into a chain due to predecessors not having 2150 // analyzable branches, *and* the predecessor it is merged with is *not* part 2151 // of the loop, rotating the header into the middle of the loop will create 2152 // a non-contiguous range of blocks which is Very Bad. So start with the 2153 // header and only rotate if safe. 2154 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2155 if (!LoopBlockSet.count(*HeaderChain.begin())) 2156 return nullptr; 2157 2158 BlockFrequency BestExitEdgeFreq; 2159 unsigned BestExitLoopDepth = 0; 2160 MachineBasicBlock *ExitingBB = nullptr; 2161 // If there are exits to outer loops, loop rotation can severely limit 2162 // fallthrough opportunities unless it selects such an exit. Keep a set of 2163 // blocks where rotating to exit with that block will reach an outer loop. 2164 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2165 2166 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2167 << getBlockName(L.getHeader()) << "\n"); 2168 for (MachineBasicBlock *MBB : L.getBlocks()) { 2169 BlockChain &Chain = *BlockToChain[MBB]; 2170 // Ensure that this block is at the end of a chain; otherwise it could be 2171 // mid-way through an inner loop or a successor of an unanalyzable branch. 2172 if (MBB != *std::prev(Chain.end())) 2173 continue; 2174 2175 // Now walk the successors. We need to establish whether this has a viable 2176 // exiting successor and whether it has a viable non-exiting successor. 2177 // We store the old exiting state and restore it if a viable looping 2178 // successor isn't found. 2179 MachineBasicBlock *OldExitingBB = ExitingBB; 2180 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2181 bool HasLoopingSucc = false; 2182 for (MachineBasicBlock *Succ : MBB->successors()) { 2183 if (Succ->isEHPad()) 2184 continue; 2185 if (Succ == MBB) 2186 continue; 2187 BlockChain &SuccChain = *BlockToChain[Succ]; 2188 // Don't split chains, either this chain or the successor's chain. 2189 if (&Chain == &SuccChain) { 2190 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2191 << getBlockName(Succ) << " (chain conflict)\n"); 2192 continue; 2193 } 2194 2195 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2196 if (LoopBlockSet.count(Succ)) { 2197 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2198 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2199 HasLoopingSucc = true; 2200 continue; 2201 } 2202 2203 unsigned SuccLoopDepth = 0; 2204 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2205 SuccLoopDepth = ExitLoop->getLoopDepth(); 2206 if (ExitLoop->contains(&L)) 2207 BlocksExitingToOuterLoop.insert(MBB); 2208 } 2209 2210 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2211 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2212 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2213 << "] ("; 2214 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2215 // Note that we bias this toward an existing layout successor to retain 2216 // incoming order in the absence of better information. The exit must have 2217 // a frequency higher than the current exit before we consider breaking 2218 // the layout. 2219 BranchProbability Bias(100 - ExitBlockBias, 100); 2220 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2221 ExitEdgeFreq > BestExitEdgeFreq || 2222 (MBB->isLayoutSuccessor(Succ) && 2223 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2224 BestExitEdgeFreq = ExitEdgeFreq; 2225 ExitingBB = MBB; 2226 } 2227 } 2228 2229 if (!HasLoopingSucc) { 2230 // Restore the old exiting state, no viable looping successor was found. 2231 ExitingBB = OldExitingBB; 2232 BestExitEdgeFreq = OldBestExitEdgeFreq; 2233 } 2234 } 2235 // Without a candidate exiting block or with only a single block in the 2236 // loop, just use the loop header to layout the loop. 2237 if (!ExitingBB) { 2238 LLVM_DEBUG( 2239 dbgs() << " No other candidate exit blocks, using loop header\n"); 2240 return nullptr; 2241 } 2242 if (L.getNumBlocks() == 1) { 2243 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2244 return nullptr; 2245 } 2246 2247 // Also, if we have exit blocks which lead to outer loops but didn't select 2248 // one of them as the exiting block we are rotating toward, disable loop 2249 // rotation altogether. 2250 if (!BlocksExitingToOuterLoop.empty() && 2251 !BlocksExitingToOuterLoop.count(ExitingBB)) 2252 return nullptr; 2253 2254 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2255 << "\n"); 2256 ExitFreq = BestExitEdgeFreq; 2257 return ExitingBB; 2258 } 2259 2260 /// Check if there is a fallthrough to loop header Top. 2261 /// 2262 /// 1. Look for a Pred that can be layout before Top. 2263 /// 2. Check if Top is the most possible successor of Pred. 2264 bool 2265 MachineBlockPlacement::hasViableTopFallthrough( 2266 const MachineBasicBlock *Top, 2267 const BlockFilterSet &LoopBlockSet) { 2268 for (MachineBasicBlock *Pred : Top->predecessors()) { 2269 BlockChain *PredChain = BlockToChain[Pred]; 2270 if (!LoopBlockSet.count(Pred) && 2271 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2272 // Found a Pred block can be placed before Top. 2273 // Check if Top is the best successor of Pred. 2274 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2275 bool TopOK = true; 2276 for (MachineBasicBlock *Succ : Pred->successors()) { 2277 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2278 BlockChain *SuccChain = BlockToChain[Succ]; 2279 // Check if Succ can be placed after Pred. 2280 // Succ should not be in any chain, or it is the head of some chain. 2281 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2282 TopOK = false; 2283 break; 2284 } 2285 } 2286 if (TopOK) 2287 return true; 2288 } 2289 } 2290 return false; 2291 } 2292 2293 /// Attempt to rotate an exiting block to the bottom of the loop. 2294 /// 2295 /// Once we have built a chain, try to rotate it to line up the hot exit block 2296 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2297 /// branches. For example, if the loop has fallthrough into its header and out 2298 /// of its bottom already, don't rotate it. 2299 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2300 const MachineBasicBlock *ExitingBB, 2301 BlockFrequency ExitFreq, 2302 const BlockFilterSet &LoopBlockSet) { 2303 if (!ExitingBB) 2304 return; 2305 2306 MachineBasicBlock *Top = *LoopChain.begin(); 2307 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2308 2309 // If ExitingBB is already the last one in a chain then nothing to do. 2310 if (Bottom == ExitingBB) 2311 return; 2312 2313 // The entry block should always be the first BB in a function. 2314 if (Top->isEntryBlock()) 2315 return; 2316 2317 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2318 2319 // If the header has viable fallthrough, check whether the current loop 2320 // bottom is a viable exiting block. If so, bail out as rotating will 2321 // introduce an unnecessary branch. 2322 if (ViableTopFallthrough) { 2323 for (MachineBasicBlock *Succ : Bottom->successors()) { 2324 BlockChain *SuccChain = BlockToChain[Succ]; 2325 if (!LoopBlockSet.count(Succ) && 2326 (!SuccChain || Succ == *SuccChain->begin())) 2327 return; 2328 } 2329 2330 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2331 // frequency is larger than top fallthrough. 2332 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2333 if (FallThrough2Top >= ExitFreq) 2334 return; 2335 } 2336 2337 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2338 if (ExitIt == LoopChain.end()) 2339 return; 2340 2341 // Rotating a loop exit to the bottom when there is a fallthrough to top 2342 // trades the entry fallthrough for an exit fallthrough. 2343 // If there is no bottom->top edge, but the chosen exit block does have 2344 // a fallthrough, we break that fallthrough for nothing in return. 2345 2346 // Let's consider an example. We have a built chain of basic blocks 2347 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2348 // By doing a rotation we get 2349 // Bk+1, ..., Bn, B1, ..., Bk 2350 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2351 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2352 // It might be compensated by fallthrough Bn -> B1. 2353 // So we have a condition to avoid creation of extra branch by loop rotation. 2354 // All below must be true to avoid loop rotation: 2355 // If there is a fallthrough to top (B1) 2356 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2357 // There is no fallthrough from bottom (Bn) to top (B1). 2358 // Please note that there is no exit fallthrough from Bn because we checked it 2359 // above. 2360 if (ViableTopFallthrough) { 2361 assert(std::next(ExitIt) != LoopChain.end() && 2362 "Exit should not be last BB"); 2363 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2364 if (ExitingBB->isSuccessor(NextBlockInChain)) 2365 if (!Bottom->isSuccessor(Top)) 2366 return; 2367 } 2368 2369 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2370 << " at bottom\n"); 2371 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2372 } 2373 2374 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2375 /// 2376 /// With profile data, we can determine the cost in terms of missed fall through 2377 /// opportunities when rotating a loop chain and select the best rotation. 2378 /// Basically, there are three kinds of cost to consider for each rotation: 2379 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2380 /// the loop to the loop header. 2381 /// 2. The possibly missed fall through edges (if they exist) from the loop 2382 /// exits to BB out of the loop. 2383 /// 3. The missed fall through edge (if it exists) from the last BB to the 2384 /// first BB in the loop chain. 2385 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2386 /// We select the best rotation with the smallest cost. 2387 void MachineBlockPlacement::rotateLoopWithProfile( 2388 BlockChain &LoopChain, const MachineLoop &L, 2389 const BlockFilterSet &LoopBlockSet) { 2390 auto RotationPos = LoopChain.end(); 2391 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2392 2393 // The entry block should always be the first BB in a function. 2394 if (ChainHeaderBB->isEntryBlock()) 2395 return; 2396 2397 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2398 2399 // A utility lambda that scales up a block frequency by dividing it by a 2400 // branch probability which is the reciprocal of the scale. 2401 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2402 unsigned Scale) -> BlockFrequency { 2403 if (Scale == 0) 2404 return 0; 2405 // Use operator / between BlockFrequency and BranchProbability to implement 2406 // saturating multiplication. 2407 return Freq / BranchProbability(1, Scale); 2408 }; 2409 2410 // Compute the cost of the missed fall-through edge to the loop header if the 2411 // chain head is not the loop header. As we only consider natural loops with 2412 // single header, this computation can be done only once. 2413 BlockFrequency HeaderFallThroughCost(0); 2414 for (auto *Pred : ChainHeaderBB->predecessors()) { 2415 BlockChain *PredChain = BlockToChain[Pred]; 2416 if (!LoopBlockSet.count(Pred) && 2417 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2418 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2419 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2420 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2421 // If the predecessor has only an unconditional jump to the header, we 2422 // need to consider the cost of this jump. 2423 if (Pred->succ_size() == 1) 2424 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2425 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2426 } 2427 } 2428 2429 // Here we collect all exit blocks in the loop, and for each exit we find out 2430 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2431 // as the sum of frequencies of exit edges we collect here, excluding the exit 2432 // edge from the tail of the loop chain. 2433 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2434 for (auto BB : LoopChain) { 2435 auto LargestExitEdgeProb = BranchProbability::getZero(); 2436 for (auto *Succ : BB->successors()) { 2437 BlockChain *SuccChain = BlockToChain[Succ]; 2438 if (!LoopBlockSet.count(Succ) && 2439 (!SuccChain || Succ == *SuccChain->begin())) { 2440 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2441 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2442 } 2443 } 2444 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2445 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2446 ExitsWithFreq.emplace_back(BB, ExitFreq); 2447 } 2448 } 2449 2450 // In this loop we iterate every block in the loop chain and calculate the 2451 // cost assuming the block is the head of the loop chain. When the loop ends, 2452 // we should have found the best candidate as the loop chain's head. 2453 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2454 EndIter = LoopChain.end(); 2455 Iter != EndIter; Iter++, TailIter++) { 2456 // TailIter is used to track the tail of the loop chain if the block we are 2457 // checking (pointed by Iter) is the head of the chain. 2458 if (TailIter == LoopChain.end()) 2459 TailIter = LoopChain.begin(); 2460 2461 auto TailBB = *TailIter; 2462 2463 // Calculate the cost by putting this BB to the top. 2464 BlockFrequency Cost = 0; 2465 2466 // If the current BB is the loop header, we need to take into account the 2467 // cost of the missed fall through edge from outside of the loop to the 2468 // header. 2469 if (Iter != LoopChain.begin()) 2470 Cost += HeaderFallThroughCost; 2471 2472 // Collect the loop exit cost by summing up frequencies of all exit edges 2473 // except the one from the chain tail. 2474 for (auto &ExitWithFreq : ExitsWithFreq) 2475 if (TailBB != ExitWithFreq.first) 2476 Cost += ExitWithFreq.second; 2477 2478 // The cost of breaking the once fall-through edge from the tail to the top 2479 // of the loop chain. Here we need to consider three cases: 2480 // 1. If the tail node has only one successor, then we will get an 2481 // additional jmp instruction. So the cost here is (MisfetchCost + 2482 // JumpInstCost) * tail node frequency. 2483 // 2. If the tail node has two successors, then we may still get an 2484 // additional jmp instruction if the layout successor after the loop 2485 // chain is not its CFG successor. Note that the more frequently executed 2486 // jmp instruction will be put ahead of the other one. Assume the 2487 // frequency of those two branches are x and y, where x is the frequency 2488 // of the edge to the chain head, then the cost will be 2489 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2490 // 3. If the tail node has more than two successors (this rarely happens), 2491 // we won't consider any additional cost. 2492 if (TailBB->isSuccessor(*Iter)) { 2493 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2494 if (TailBB->succ_size() == 1) 2495 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2496 MisfetchCost + JumpInstCost); 2497 else if (TailBB->succ_size() == 2) { 2498 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2499 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2500 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2501 ? TailBBFreq * TailToHeadProb.getCompl() 2502 : TailToHeadFreq; 2503 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2504 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2505 } 2506 } 2507 2508 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2509 << getBlockName(*Iter) 2510 << " to the top: " << Cost.getFrequency() << "\n"); 2511 2512 if (Cost < SmallestRotationCost) { 2513 SmallestRotationCost = Cost; 2514 RotationPos = Iter; 2515 } 2516 } 2517 2518 if (RotationPos != LoopChain.end()) { 2519 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2520 << " to the top\n"); 2521 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2522 } 2523 } 2524 2525 /// Collect blocks in the given loop that are to be placed. 2526 /// 2527 /// When profile data is available, exclude cold blocks from the returned set; 2528 /// otherwise, collect all blocks in the loop. 2529 MachineBlockPlacement::BlockFilterSet 2530 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2531 BlockFilterSet LoopBlockSet; 2532 2533 // Filter cold blocks off from LoopBlockSet when profile data is available. 2534 // Collect the sum of frequencies of incoming edges to the loop header from 2535 // outside. If we treat the loop as a super block, this is the frequency of 2536 // the loop. Then for each block in the loop, we calculate the ratio between 2537 // its frequency and the frequency of the loop block. When it is too small, 2538 // don't add it to the loop chain. If there are outer loops, then this block 2539 // will be merged into the first outer loop chain for which this block is not 2540 // cold anymore. This needs precise profile data and we only do this when 2541 // profile data is available. 2542 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2543 BlockFrequency LoopFreq(0); 2544 for (auto LoopPred : L.getHeader()->predecessors()) 2545 if (!L.contains(LoopPred)) 2546 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2547 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2548 2549 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2550 if (LoopBlockSet.count(LoopBB)) 2551 continue; 2552 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2553 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2554 continue; 2555 BlockChain *Chain = BlockToChain[LoopBB]; 2556 for (MachineBasicBlock *ChainBB : *Chain) 2557 LoopBlockSet.insert(ChainBB); 2558 } 2559 } else 2560 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2561 2562 return LoopBlockSet; 2563 } 2564 2565 /// Forms basic block chains from the natural loop structures. 2566 /// 2567 /// These chains are designed to preserve the existing *structure* of the code 2568 /// as much as possible. We can then stitch the chains together in a way which 2569 /// both preserves the topological structure and minimizes taken conditional 2570 /// branches. 2571 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2572 // First recurse through any nested loops, building chains for those inner 2573 // loops. 2574 for (const MachineLoop *InnerLoop : L) 2575 buildLoopChains(*InnerLoop); 2576 2577 assert(BlockWorkList.empty() && 2578 "BlockWorkList not empty when starting to build loop chains."); 2579 assert(EHPadWorkList.empty() && 2580 "EHPadWorkList not empty when starting to build loop chains."); 2581 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2582 2583 // Check if we have profile data for this function. If yes, we will rotate 2584 // this loop by modeling costs more precisely which requires the profile data 2585 // for better layout. 2586 bool RotateLoopWithProfile = 2587 ForcePreciseRotationCost || 2588 (PreciseRotationCost && F->getFunction().hasProfileData()); 2589 2590 // First check to see if there is an obviously preferable top block for the 2591 // loop. This will default to the header, but may end up as one of the 2592 // predecessors to the header if there is one which will result in strictly 2593 // fewer branches in the loop body. 2594 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2595 2596 // If we selected just the header for the loop top, look for a potentially 2597 // profitable exit block in the event that rotating the loop can eliminate 2598 // branches by placing an exit edge at the bottom. 2599 // 2600 // Loops are processed innermost to uttermost, make sure we clear 2601 // PreferredLoopExit before processing a new loop. 2602 PreferredLoopExit = nullptr; 2603 BlockFrequency ExitFreq; 2604 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2605 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2606 2607 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2608 2609 // FIXME: This is a really lame way of walking the chains in the loop: we 2610 // walk the blocks, and use a set to prevent visiting a particular chain 2611 // twice. 2612 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2613 assert(LoopChain.UnscheduledPredecessors == 0 && 2614 "LoopChain should not have unscheduled predecessors."); 2615 UpdatedPreds.insert(&LoopChain); 2616 2617 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2618 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2619 2620 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2621 2622 if (RotateLoopWithProfile) 2623 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2624 else 2625 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2626 2627 LLVM_DEBUG({ 2628 // Crash at the end so we get all of the debugging output first. 2629 bool BadLoop = false; 2630 if (LoopChain.UnscheduledPredecessors) { 2631 BadLoop = true; 2632 dbgs() << "Loop chain contains a block without its preds placed!\n" 2633 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2634 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2635 } 2636 for (MachineBasicBlock *ChainBB : LoopChain) { 2637 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2638 if (!LoopBlockSet.remove(ChainBB)) { 2639 // We don't mark the loop as bad here because there are real situations 2640 // where this can occur. For example, with an unanalyzable fallthrough 2641 // from a loop block to a non-loop block or vice versa. 2642 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2643 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2644 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2645 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2646 } 2647 } 2648 2649 if (!LoopBlockSet.empty()) { 2650 BadLoop = true; 2651 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2652 dbgs() << "Loop contains blocks never placed into a chain!\n" 2653 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2654 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2655 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2656 } 2657 assert(!BadLoop && "Detected problems with the placement of this loop."); 2658 }); 2659 2660 BlockWorkList.clear(); 2661 EHPadWorkList.clear(); 2662 } 2663 2664 void MachineBlockPlacement::buildCFGChains() { 2665 // Ensure that every BB in the function has an associated chain to simplify 2666 // the assumptions of the remaining algorithm. 2667 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2668 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2669 ++FI) { 2670 MachineBasicBlock *BB = &*FI; 2671 BlockChain *Chain = 2672 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2673 // Also, merge any blocks which we cannot reason about and must preserve 2674 // the exact fallthrough behavior for. 2675 while (true) { 2676 Cond.clear(); 2677 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2678 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2679 break; 2680 2681 MachineFunction::iterator NextFI = std::next(FI); 2682 MachineBasicBlock *NextBB = &*NextFI; 2683 // Ensure that the layout successor is a viable block, as we know that 2684 // fallthrough is a possibility. 2685 assert(NextFI != FE && "Can't fallthrough past the last block."); 2686 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2687 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2688 << "\n"); 2689 Chain->merge(NextBB, nullptr); 2690 #ifndef NDEBUG 2691 BlocksWithUnanalyzableExits.insert(&*BB); 2692 #endif 2693 FI = NextFI; 2694 BB = NextBB; 2695 } 2696 } 2697 2698 // Build any loop-based chains. 2699 PreferredLoopExit = nullptr; 2700 for (MachineLoop *L : *MLI) 2701 buildLoopChains(*L); 2702 2703 assert(BlockWorkList.empty() && 2704 "BlockWorkList should be empty before building final chain."); 2705 assert(EHPadWorkList.empty() && 2706 "EHPadWorkList should be empty before building final chain."); 2707 2708 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2709 for (MachineBasicBlock &MBB : *F) 2710 fillWorkLists(&MBB, UpdatedPreds); 2711 2712 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2713 buildChain(&F->front(), FunctionChain); 2714 2715 #ifndef NDEBUG 2716 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2717 #endif 2718 LLVM_DEBUG({ 2719 // Crash at the end so we get all of the debugging output first. 2720 bool BadFunc = false; 2721 FunctionBlockSetType FunctionBlockSet; 2722 for (MachineBasicBlock &MBB : *F) 2723 FunctionBlockSet.insert(&MBB); 2724 2725 for (MachineBasicBlock *ChainBB : FunctionChain) 2726 if (!FunctionBlockSet.erase(ChainBB)) { 2727 BadFunc = true; 2728 dbgs() << "Function chain contains a block not in the function!\n" 2729 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2730 } 2731 2732 if (!FunctionBlockSet.empty()) { 2733 BadFunc = true; 2734 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2735 dbgs() << "Function contains blocks never placed into a chain!\n" 2736 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2737 } 2738 assert(!BadFunc && "Detected problems with the block placement."); 2739 }); 2740 2741 // Remember original layout ordering, so we can update terminators after 2742 // reordering to point to the original layout successor. 2743 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2744 F->getNumBlockIDs()); 2745 { 2746 MachineBasicBlock *LastMBB = nullptr; 2747 for (auto &MBB : *F) { 2748 if (LastMBB != nullptr) 2749 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2750 LastMBB = &MBB; 2751 } 2752 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2753 } 2754 2755 // Splice the blocks into place. 2756 MachineFunction::iterator InsertPos = F->begin(); 2757 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2758 for (MachineBasicBlock *ChainBB : FunctionChain) { 2759 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2760 : " ... ") 2761 << getBlockName(ChainBB) << "\n"); 2762 if (InsertPos != MachineFunction::iterator(ChainBB)) 2763 F->splice(InsertPos, ChainBB); 2764 else 2765 ++InsertPos; 2766 2767 // Update the terminator of the previous block. 2768 if (ChainBB == *FunctionChain.begin()) 2769 continue; 2770 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2771 2772 // FIXME: It would be awesome of updateTerminator would just return rather 2773 // than assert when the branch cannot be analyzed in order to remove this 2774 // boiler plate. 2775 Cond.clear(); 2776 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2777 2778 #ifndef NDEBUG 2779 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2780 // Given the exact block placement we chose, we may actually not _need_ to 2781 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2782 // do that at this point is a bug. 2783 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2784 !PrevBB->canFallThrough()) && 2785 "Unexpected block with un-analyzable fallthrough!"); 2786 Cond.clear(); 2787 TBB = FBB = nullptr; 2788 } 2789 #endif 2790 2791 // The "PrevBB" is not yet updated to reflect current code layout, so, 2792 // o. it may fall-through to a block without explicit "goto" instruction 2793 // before layout, and no longer fall-through it after layout; or 2794 // o. just opposite. 2795 // 2796 // analyzeBranch() may return erroneous value for FBB when these two 2797 // situations take place. For the first scenario FBB is mistakenly set NULL; 2798 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2799 // mistakenly pointing to "*BI". 2800 // Thus, if the future change needs to use FBB before the layout is set, it 2801 // has to correct FBB first by using the code similar to the following: 2802 // 2803 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2804 // PrevBB->updateTerminator(); 2805 // Cond.clear(); 2806 // TBB = FBB = nullptr; 2807 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2808 // // FIXME: This should never take place. 2809 // TBB = FBB = nullptr; 2810 // } 2811 // } 2812 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2813 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2814 } 2815 } 2816 2817 // Fixup the last block. 2818 Cond.clear(); 2819 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2820 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2821 MachineBasicBlock *PrevBB = &F->back(); 2822 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2823 } 2824 2825 BlockWorkList.clear(); 2826 EHPadWorkList.clear(); 2827 } 2828 2829 void MachineBlockPlacement::optimizeBranches() { 2830 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2831 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2832 2833 // Now that all the basic blocks in the chain have the proper layout, 2834 // make a final call to analyzeBranch with AllowModify set. 2835 // Indeed, the target may be able to optimize the branches in a way we 2836 // cannot because all branches may not be analyzable. 2837 // E.g., the target may be able to remove an unconditional branch to 2838 // a fallthrough when it occurs after predicated terminators. 2839 for (MachineBasicBlock *ChainBB : FunctionChain) { 2840 Cond.clear(); 2841 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2842 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2843 // If PrevBB has a two-way branch, try to re-order the branches 2844 // such that we branch to the successor with higher probability first. 2845 if (TBB && !Cond.empty() && FBB && 2846 MBPI->getEdgeProbability(ChainBB, FBB) > 2847 MBPI->getEdgeProbability(ChainBB, TBB) && 2848 !TII->reverseBranchCondition(Cond)) { 2849 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2850 << getBlockName(ChainBB) << "\n"); 2851 LLVM_DEBUG(dbgs() << " Edge probability: " 2852 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2853 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2854 DebugLoc dl; // FIXME: this is nowhere 2855 TII->removeBranch(*ChainBB); 2856 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2857 } 2858 } 2859 } 2860 } 2861 2862 void MachineBlockPlacement::alignBlocks() { 2863 // Walk through the backedges of the function now that we have fully laid out 2864 // the basic blocks and align the destination of each backedge. We don't rely 2865 // exclusively on the loop info here so that we can align backedges in 2866 // unnatural CFGs and backedges that were introduced purely because of the 2867 // loop rotations done during this layout pass. 2868 if (F->getFunction().hasMinSize() || 2869 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2870 return; 2871 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2872 if (FunctionChain.begin() == FunctionChain.end()) 2873 return; // Empty chain. 2874 2875 const BranchProbability ColdProb(1, 5); // 20% 2876 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2877 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2878 for (MachineBasicBlock *ChainBB : FunctionChain) { 2879 if (ChainBB == *FunctionChain.begin()) 2880 continue; 2881 2882 // Don't align non-looping basic blocks. These are unlikely to execute 2883 // enough times to matter in practice. Note that we'll still handle 2884 // unnatural CFGs inside of a natural outer loop (the common case) and 2885 // rotated loops. 2886 MachineLoop *L = MLI->getLoopFor(ChainBB); 2887 if (!L) 2888 continue; 2889 2890 const Align Align = TLI->getPrefLoopAlignment(L); 2891 if (Align == 1) 2892 continue; // Don't care about loop alignment. 2893 2894 // If the block is cold relative to the function entry don't waste space 2895 // aligning it. 2896 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2897 if (Freq < WeightedEntryFreq) 2898 continue; 2899 2900 // If the block is cold relative to its loop header, don't align it 2901 // regardless of what edges into the block exist. 2902 MachineBasicBlock *LoopHeader = L->getHeader(); 2903 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2904 if (Freq < (LoopHeaderFreq * ColdProb)) 2905 continue; 2906 2907 // If the global profiles indicates so, don't align it. 2908 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2909 !TLI->alignLoopsWithOptSize()) 2910 continue; 2911 2912 // Check for the existence of a non-layout predecessor which would benefit 2913 // from aligning this block. 2914 MachineBasicBlock *LayoutPred = 2915 &*std::prev(MachineFunction::iterator(ChainBB)); 2916 2917 // Force alignment if all the predecessors are jumps. We already checked 2918 // that the block isn't cold above. 2919 if (!LayoutPred->isSuccessor(ChainBB)) { 2920 ChainBB->setAlignment(Align); 2921 continue; 2922 } 2923 2924 // Align this block if the layout predecessor's edge into this block is 2925 // cold relative to the block. When this is true, other predecessors make up 2926 // all of the hot entries into the block and thus alignment is likely to be 2927 // important. 2928 BranchProbability LayoutProb = 2929 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2930 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2931 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2932 ChainBB->setAlignment(Align); 2933 } 2934 } 2935 2936 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2937 /// it was duplicated into its chain predecessor and removed. 2938 /// \p BB - Basic block that may be duplicated. 2939 /// 2940 /// \p LPred - Chosen layout predecessor of \p BB. 2941 /// Updated to be the chain end if LPred is removed. 2942 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2943 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2944 /// Used to identify which blocks to update predecessor 2945 /// counts. 2946 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2947 /// chosen in the given order due to unnatural CFG 2948 /// only needed if \p BB is removed and 2949 /// \p PrevUnplacedBlockIt pointed to \p BB. 2950 /// @return true if \p BB was removed. 2951 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2952 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2953 const MachineBasicBlock *LoopHeaderBB, 2954 BlockChain &Chain, BlockFilterSet *BlockFilter, 2955 MachineFunction::iterator &PrevUnplacedBlockIt) { 2956 bool Removed, DuplicatedToLPred; 2957 bool DuplicatedToOriginalLPred; 2958 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2959 PrevUnplacedBlockIt, 2960 DuplicatedToLPred); 2961 if (!Removed) 2962 return false; 2963 DuplicatedToOriginalLPred = DuplicatedToLPred; 2964 // Iteratively try to duplicate again. It can happen that a block that is 2965 // duplicated into is still small enough to be duplicated again. 2966 // No need to call markBlockSuccessors in this case, as the blocks being 2967 // duplicated from here on are already scheduled. 2968 while (DuplicatedToLPred && Removed) { 2969 MachineBasicBlock *DupBB, *DupPred; 2970 // The removal callback causes Chain.end() to be updated when a block is 2971 // removed. On the first pass through the loop, the chain end should be the 2972 // same as it was on function entry. On subsequent passes, because we are 2973 // duplicating the block at the end of the chain, if it is removed the 2974 // chain will have shrunk by one block. 2975 BlockChain::iterator ChainEnd = Chain.end(); 2976 DupBB = *(--ChainEnd); 2977 // Now try to duplicate again. 2978 if (ChainEnd == Chain.begin()) 2979 break; 2980 DupPred = *std::prev(ChainEnd); 2981 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2982 PrevUnplacedBlockIt, 2983 DuplicatedToLPred); 2984 } 2985 // If BB was duplicated into LPred, it is now scheduled. But because it was 2986 // removed, markChainSuccessors won't be called for its chain. Instead we 2987 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2988 // at the end because repeating the tail duplication can increase the number 2989 // of unscheduled predecessors. 2990 LPred = *std::prev(Chain.end()); 2991 if (DuplicatedToOriginalLPred) 2992 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2993 return true; 2994 } 2995 2996 /// Tail duplicate \p BB into (some) predecessors if profitable. 2997 /// \p BB - Basic block that may be duplicated 2998 /// \p LPred - Chosen layout predecessor of \p BB 2999 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3000 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3001 /// Used to identify which blocks to update predecessor 3002 /// counts. 3003 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3004 /// chosen in the given order due to unnatural CFG 3005 /// only needed if \p BB is removed and 3006 /// \p PrevUnplacedBlockIt pointed to \p BB. 3007 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3008 /// \return - True if the block was duplicated into all preds and removed. 3009 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3010 MachineBasicBlock *BB, MachineBasicBlock *LPred, 3011 BlockChain &Chain, BlockFilterSet *BlockFilter, 3012 MachineFunction::iterator &PrevUnplacedBlockIt, 3013 bool &DuplicatedToLPred) { 3014 DuplicatedToLPred = false; 3015 if (!shouldTailDuplicate(BB)) 3016 return false; 3017 3018 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3019 << "\n"); 3020 3021 // This has to be a callback because none of it can be done after 3022 // BB is deleted. 3023 bool Removed = false; 3024 auto RemovalCallback = 3025 [&](MachineBasicBlock *RemBB) { 3026 // Signal to outer function 3027 Removed = true; 3028 3029 // Conservative default. 3030 bool InWorkList = true; 3031 // Remove from the Chain and Chain Map 3032 if (BlockToChain.count(RemBB)) { 3033 BlockChain *Chain = BlockToChain[RemBB]; 3034 InWorkList = Chain->UnscheduledPredecessors == 0; 3035 Chain->remove(RemBB); 3036 BlockToChain.erase(RemBB); 3037 } 3038 3039 // Handle the unplaced block iterator 3040 if (&(*PrevUnplacedBlockIt) == RemBB) { 3041 PrevUnplacedBlockIt++; 3042 } 3043 3044 // Handle the Work Lists 3045 if (InWorkList) { 3046 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3047 if (RemBB->isEHPad()) 3048 RemoveList = EHPadWorkList; 3049 llvm::erase_value(RemoveList, RemBB); 3050 } 3051 3052 // Handle the filter set 3053 if (BlockFilter) { 3054 BlockFilter->remove(RemBB); 3055 } 3056 3057 // Remove the block from loop info. 3058 MLI->removeBlock(RemBB); 3059 if (RemBB == PreferredLoopExit) 3060 PreferredLoopExit = nullptr; 3061 3062 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3063 << getBlockName(RemBB) << "\n"); 3064 }; 3065 auto RemovalCallbackRef = 3066 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3067 3068 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3069 bool IsSimple = TailDup.isSimpleBB(BB); 3070 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3071 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3072 if (F->getFunction().hasProfileData()) { 3073 // We can do partial duplication with precise profile information. 3074 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3075 if (CandidatePreds.size() == 0) 3076 return false; 3077 if (CandidatePreds.size() < BB->pred_size()) 3078 CandidatePtr = &CandidatePreds; 3079 } 3080 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3081 &RemovalCallbackRef, CandidatePtr); 3082 3083 // Update UnscheduledPredecessors to reflect tail-duplication. 3084 DuplicatedToLPred = false; 3085 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3086 // We're only looking for unscheduled predecessors that match the filter. 3087 BlockChain* PredChain = BlockToChain[Pred]; 3088 if (Pred == LPred) 3089 DuplicatedToLPred = true; 3090 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3091 || PredChain == &Chain) 3092 continue; 3093 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3094 if (BlockFilter && !BlockFilter->count(NewSucc)) 3095 continue; 3096 BlockChain *NewChain = BlockToChain[NewSucc]; 3097 if (NewChain != &Chain && NewChain != PredChain) 3098 NewChain->UnscheduledPredecessors++; 3099 } 3100 } 3101 return Removed; 3102 } 3103 3104 // Count the number of actual machine instructions. 3105 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3106 uint64_t InstrCount = 0; 3107 for (MachineInstr &MI : *MBB) { 3108 if (!MI.isPHI() && !MI.isMetaInstruction()) 3109 InstrCount += 1; 3110 } 3111 return InstrCount; 3112 } 3113 3114 // The size cost of duplication is the instruction size of the duplicated block. 3115 // So we should scale the threshold accordingly. But the instruction size is not 3116 // available on all targets, so we use the number of instructions instead. 3117 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3118 return DupThreshold.getFrequency() * countMBBInstruction(BB); 3119 } 3120 3121 // Returns true if BB is Pred's best successor. 3122 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3123 MachineBasicBlock *Pred, 3124 BlockFilterSet *BlockFilter) { 3125 if (BB == Pred) 3126 return false; 3127 if (BlockFilter && !BlockFilter->count(Pred)) 3128 return false; 3129 BlockChain *PredChain = BlockToChain[Pred]; 3130 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3131 return false; 3132 3133 // Find the successor with largest probability excluding BB. 3134 BranchProbability BestProb = BranchProbability::getZero(); 3135 for (MachineBasicBlock *Succ : Pred->successors()) 3136 if (Succ != BB) { 3137 if (BlockFilter && !BlockFilter->count(Succ)) 3138 continue; 3139 BlockChain *SuccChain = BlockToChain[Succ]; 3140 if (SuccChain && (Succ != *SuccChain->begin())) 3141 continue; 3142 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3143 if (SuccProb > BestProb) 3144 BestProb = SuccProb; 3145 } 3146 3147 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3148 if (BBProb <= BestProb) 3149 return false; 3150 3151 // Compute the number of reduced taken branches if Pred falls through to BB 3152 // instead of another successor. Then compare it with threshold. 3153 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3154 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3155 return Gain > scaleThreshold(BB); 3156 } 3157 3158 // Find out the predecessors of BB and BB can be beneficially duplicated into 3159 // them. 3160 void MachineBlockPlacement::findDuplicateCandidates( 3161 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3162 MachineBasicBlock *BB, 3163 BlockFilterSet *BlockFilter) { 3164 MachineBasicBlock *Fallthrough = nullptr; 3165 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3166 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3167 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3168 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3169 3170 // Sort for highest frequency. 3171 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3172 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3173 }; 3174 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3175 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3176 }; 3177 llvm::stable_sort(Succs, CmpSucc); 3178 llvm::stable_sort(Preds, CmpPred); 3179 3180 auto SuccIt = Succs.begin(); 3181 if (SuccIt != Succs.end()) { 3182 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3183 } 3184 3185 // For each predecessors of BB, compute the benefit of duplicating BB, 3186 // if it is larger than the threshold, add it into Candidates. 3187 // 3188 // If we have following control flow. 3189 // 3190 // PB1 PB2 PB3 PB4 3191 // \ | / /\ 3192 // \ | / / \ 3193 // \ |/ / \ 3194 // BB----/ OB 3195 // /\ 3196 // / \ 3197 // SB1 SB2 3198 // 3199 // And it can be partially duplicated as 3200 // 3201 // PB2+BB 3202 // | PB1 PB3 PB4 3203 // | | / /\ 3204 // | | / / \ 3205 // | |/ / \ 3206 // | BB----/ OB 3207 // |\ /| 3208 // | X | 3209 // |/ \| 3210 // SB2 SB1 3211 // 3212 // The benefit of duplicating into a predecessor is defined as 3213 // Orig_taken_branch - Duplicated_taken_branch 3214 // 3215 // The Orig_taken_branch is computed with the assumption that predecessor 3216 // jumps to BB and the most possible successor is laid out after BB. 3217 // 3218 // The Duplicated_taken_branch is computed with the assumption that BB is 3219 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3220 // SB2 for PB2 in our case). If there is no available successor, the combined 3221 // block jumps to all BB's successor, like PB3 in this example. 3222 // 3223 // If a predecessor has multiple successors, so BB can't be duplicated into 3224 // it. But it can beneficially fall through to BB, and duplicate BB into other 3225 // predecessors. 3226 for (MachineBasicBlock *Pred : Preds) { 3227 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3228 3229 if (!TailDup.canTailDuplicate(BB, Pred)) { 3230 // BB can't be duplicated into Pred, but it is possible to be layout 3231 // below Pred. 3232 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3233 Fallthrough = Pred; 3234 if (SuccIt != Succs.end()) 3235 SuccIt++; 3236 } 3237 continue; 3238 } 3239 3240 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3241 BlockFrequency DupCost; 3242 if (SuccIt == Succs.end()) { 3243 // Jump to all successors; 3244 if (Succs.size() > 0) 3245 DupCost += PredFreq; 3246 } else { 3247 // Fallthrough to *SuccIt, jump to all other successors; 3248 DupCost += PredFreq; 3249 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3250 } 3251 3252 assert(OrigCost >= DupCost); 3253 OrigCost -= DupCost; 3254 if (OrigCost > BBDupThreshold) { 3255 Candidates.push_back(Pred); 3256 if (SuccIt != Succs.end()) 3257 SuccIt++; 3258 } 3259 } 3260 3261 // No predecessors can optimally fallthrough to BB. 3262 // So we can change one duplication into fallthrough. 3263 if (!Fallthrough) { 3264 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3265 Candidates[0] = Candidates.back(); 3266 Candidates.pop_back(); 3267 } 3268 } 3269 } 3270 3271 void MachineBlockPlacement::initDupThreshold() { 3272 DupThreshold = 0; 3273 if (!F->getFunction().hasProfileData()) 3274 return; 3275 3276 // We prefer to use prifile count. 3277 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3278 if (HotThreshold != UINT64_MAX) { 3279 UseProfileCount = true; 3280 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100; 3281 return; 3282 } 3283 3284 // Profile count is not available, we can use block frequency instead. 3285 BlockFrequency MaxFreq = 0; 3286 for (MachineBasicBlock &MBB : *F) { 3287 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3288 if (Freq > MaxFreq) 3289 MaxFreq = Freq; 3290 } 3291 3292 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3293 DupThreshold = MaxFreq * ThresholdProb; 3294 UseProfileCount = false; 3295 } 3296 3297 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3298 if (skipFunction(MF.getFunction())) 3299 return false; 3300 3301 // Check for single-block functions and skip them. 3302 if (std::next(MF.begin()) == MF.end()) 3303 return false; 3304 3305 F = &MF; 3306 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3307 MBFI = std::make_unique<MBFIWrapper>( 3308 getAnalysis<MachineBlockFrequencyInfo>()); 3309 MLI = &getAnalysis<MachineLoopInfo>(); 3310 TII = MF.getSubtarget().getInstrInfo(); 3311 TLI = MF.getSubtarget().getTargetLowering(); 3312 MPDT = nullptr; 3313 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3314 3315 initDupThreshold(); 3316 3317 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3318 // there are no MachineLoops. 3319 PreferredLoopExit = nullptr; 3320 3321 assert(BlockToChain.empty() && 3322 "BlockToChain map should be empty before starting placement."); 3323 assert(ComputedEdges.empty() && 3324 "Computed Edge map should be empty before starting placement."); 3325 3326 unsigned TailDupSize = TailDupPlacementThreshold; 3327 // If only the aggressive threshold is explicitly set, use it. 3328 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3329 TailDupPlacementThreshold.getNumOccurrences() == 0) 3330 TailDupSize = TailDupPlacementAggressiveThreshold; 3331 3332 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3333 // For aggressive optimization, we can adjust some thresholds to be less 3334 // conservative. 3335 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3336 // At O3 we should be more willing to copy blocks for tail duplication. This 3337 // increases size pressure, so we only do it at O3 3338 // Do this unless only the regular threshold is explicitly set. 3339 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3340 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3341 TailDupSize = TailDupPlacementAggressiveThreshold; 3342 } 3343 3344 // If there's no threshold provided through options, query the target 3345 // information for a threshold instead. 3346 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3347 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive || 3348 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3349 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3350 3351 if (allowTailDupPlacement()) { 3352 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3353 bool OptForSize = MF.getFunction().hasOptSize() || 3354 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3355 if (OptForSize) 3356 TailDupSize = 1; 3357 bool PreRegAlloc = false; 3358 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3359 /* LayoutMode */ true, TailDupSize); 3360 precomputeTriangleChains(); 3361 } 3362 3363 buildCFGChains(); 3364 3365 // Changing the layout can create new tail merging opportunities. 3366 // TailMerge can create jump into if branches that make CFG irreducible for 3367 // HW that requires structured CFG. 3368 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3369 PassConfig->getEnableTailMerge() && 3370 BranchFoldPlacement; 3371 // No tail merging opportunities if the block number is less than four. 3372 if (MF.size() > 3 && EnableTailMerge) { 3373 unsigned TailMergeSize = TailDupSize + 1; 3374 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3375 *MBFI, *MBPI, PSI, TailMergeSize); 3376 3377 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3378 /*AfterPlacement=*/true)) { 3379 // Redo the layout if tail merging creates/removes/moves blocks. 3380 BlockToChain.clear(); 3381 ComputedEdges.clear(); 3382 // Must redo the post-dominator tree if blocks were changed. 3383 if (MPDT) 3384 MPDT->runOnMachineFunction(MF); 3385 ChainAllocator.DestroyAll(); 3386 buildCFGChains(); 3387 } 3388 } 3389 3390 optimizeBranches(); 3391 alignBlocks(); 3392 3393 BlockToChain.clear(); 3394 ComputedEdges.clear(); 3395 ChainAllocator.DestroyAll(); 3396 3397 if (AlignAllBlock) 3398 // Align all of the blocks in the function to a specific alignment. 3399 for (MachineBasicBlock &MBB : MF) 3400 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3401 else if (AlignAllNonFallThruBlocks) { 3402 // Align all of the blocks that have no fall-through predecessors to a 3403 // specific alignment. 3404 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3405 auto LayoutPred = std::prev(MBI); 3406 if (!LayoutPred->isSuccessor(&*MBI)) 3407 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3408 } 3409 } 3410 if (ViewBlockLayoutWithBFI != GVDT_None && 3411 (ViewBlockFreqFuncName.empty() || 3412 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3413 MBFI->view("MBP." + MF.getName(), false); 3414 } 3415 3416 3417 // We always return true as we have no way to track whether the final order 3418 // differs from the original order. 3419 return true; 3420 } 3421 3422 namespace { 3423 3424 /// A pass to compute block placement statistics. 3425 /// 3426 /// A separate pass to compute interesting statistics for evaluating block 3427 /// placement. This is separate from the actual placement pass so that they can 3428 /// be computed in the absence of any placement transformations or when using 3429 /// alternative placement strategies. 3430 class MachineBlockPlacementStats : public MachineFunctionPass { 3431 /// A handle to the branch probability pass. 3432 const MachineBranchProbabilityInfo *MBPI; 3433 3434 /// A handle to the function-wide block frequency pass. 3435 const MachineBlockFrequencyInfo *MBFI; 3436 3437 public: 3438 static char ID; // Pass identification, replacement for typeid 3439 3440 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3441 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3442 } 3443 3444 bool runOnMachineFunction(MachineFunction &F) override; 3445 3446 void getAnalysisUsage(AnalysisUsage &AU) const override { 3447 AU.addRequired<MachineBranchProbabilityInfo>(); 3448 AU.addRequired<MachineBlockFrequencyInfo>(); 3449 AU.setPreservesAll(); 3450 MachineFunctionPass::getAnalysisUsage(AU); 3451 } 3452 }; 3453 3454 } // end anonymous namespace 3455 3456 char MachineBlockPlacementStats::ID = 0; 3457 3458 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3459 3460 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3461 "Basic Block Placement Stats", false, false) 3462 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3463 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3464 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3465 "Basic Block Placement Stats", false, false) 3466 3467 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3468 // Check for single-block functions and skip them. 3469 if (std::next(F.begin()) == F.end()) 3470 return false; 3471 3472 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3473 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3474 3475 for (MachineBasicBlock &MBB : F) { 3476 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3477 Statistic &NumBranches = 3478 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3479 Statistic &BranchTakenFreq = 3480 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3481 for (MachineBasicBlock *Succ : MBB.successors()) { 3482 // Skip if this successor is a fallthrough. 3483 if (MBB.isLayoutSuccessor(Succ)) 3484 continue; 3485 3486 BlockFrequency EdgeFreq = 3487 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3488 ++NumBranches; 3489 BranchTakenFreq += EdgeFreq.getFrequency(); 3490 } 3491 } 3492 3493 return false; 3494 } 3495