xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 2ff63af9b88c7413b7d71715b5532625752a248e)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "block-placement"
79 
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83           "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85           "Potential frequency of taking unconditional branches");
86 
87 static cl::opt<unsigned> AlignAllBlock(
88     "align-all-blocks",
89     cl::desc("Force the alignment of all blocks in the function in log2 format "
90              "(e.g 4 means align on 16B boundaries)."),
91     cl::init(0), cl::Hidden);
92 
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94     "align-all-nofallthru-blocks",
95     cl::desc("Force the alignment of all blocks that have no fall-through "
96              "predecessors (i.e. don't add nops that are executed). In log2 "
97              "format (e.g 4 means align on 16B boundaries)."),
98     cl::init(0), cl::Hidden);
99 
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101     "max-bytes-for-alignment",
102     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103              "alignment"),
104     cl::init(0), cl::Hidden);
105 
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108     "block-placement-exit-block-bias",
109     cl::desc("Block frequency percentage a loop exit block needs "
110              "over the original exit to be considered the new exit."),
111     cl::init(0), cl::Hidden);
112 
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115 
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117     "loop-to-cold-block-ratio",
118     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119              "(frequency of block) is greater than this ratio"),
120     cl::init(5), cl::Hidden);
121 
122 static cl::opt<bool> ForceLoopColdBlock(
123     "force-loop-cold-block",
124     cl::desc("Force outlining cold blocks from loops."),
125     cl::init(false), cl::Hidden);
126 
127 static cl::opt<bool>
128     PreciseRotationCost("precise-rotation-cost",
129                         cl::desc("Model the cost of loop rotation more "
130                                  "precisely by using profile data."),
131                         cl::init(false), cl::Hidden);
132 
133 static cl::opt<bool>
134     ForcePreciseRotationCost("force-precise-rotation-cost",
135                              cl::desc("Force the use of precise cost "
136                                       "loop rotation strategy."),
137                              cl::init(false), cl::Hidden);
138 
139 static cl::opt<unsigned> MisfetchCost(
140     "misfetch-cost",
141     cl::desc("Cost that models the probabilistic risk of an instruction "
142              "misfetch due to a jump comparing to falling through, whose cost "
143              "is zero."),
144     cl::init(1), cl::Hidden);
145 
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147                                       cl::desc("Cost of jump instructions."),
148                                       cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150 TailDupPlacement("tail-dup-placement",
151               cl::desc("Perform tail duplication during placement. "
152                        "Creates more fallthrough opportunites in "
153                        "outline branches."),
154               cl::init(true), cl::Hidden);
155 
156 static cl::opt<bool>
157 BranchFoldPlacement("branch-fold-placement",
158               cl::desc("Perform branch folding during placement. "
159                        "Reduces code size."),
160               cl::init(true), cl::Hidden);
161 
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164     "tail-dup-placement-threshold",
165     cl::desc("Instruction cutoff for tail duplication during layout. "
166              "Tail merging during layout is forced to have a threshold "
167              "that won't conflict."), cl::init(2),
168     cl::Hidden);
169 
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172     "tail-dup-placement-aggressive-threshold",
173     cl::desc("Instruction cutoff for aggressive tail duplication during "
174              "layout. Used at -O3. Tail merging during layout is forced to "
175              "have a threshold that won't conflict."), cl::init(4),
176     cl::Hidden);
177 
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180     "tail-dup-placement-penalty",
181     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182              "Copying can increase fallthrough, but it also increases icache "
183              "pressure. This parameter controls the penalty to account for that. "
184              "Percent as integer."),
185     cl::init(2),
186     cl::Hidden);
187 
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190     "tail-dup-profile-percent-threshold",
191     cl::desc("If profile count information is used in tail duplication cost "
192              "model, the gained fall through number from tail duplication "
193              "should be at least this percent of hot count."),
194     cl::init(50), cl::Hidden);
195 
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198     "triangle-chain-count",
199     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200              "triangle tail duplication heuristic to kick in. 0 to disable."),
201     cl::init(2),
202     cl::Hidden);
203 
204 // Use case: When block layout is visualized after MBP pass, the basic blocks
205 // are labeled in layout order; meanwhile blocks could be numbered in a
206 // different order. It's hard to map between the graph and pass output.
207 // With this option on, the basic blocks are renumbered in function layout
208 // order. For debugging only.
209 static cl::opt<bool> RenumberBlocksBeforeView(
210     "renumber-blocks-before-view",
211     cl::desc(
212         "If true, basic blocks are re-numbered before MBP layout is printed "
213         "into a dot graph. Only used when a function is being printed."),
214     cl::init(false), cl::Hidden);
215 
216 extern cl::opt<bool> EnableExtTspBlockPlacement;
217 extern cl::opt<bool> ApplyExtTspWithoutProfile;
218 
219 namespace llvm {
220 extern cl::opt<unsigned> StaticLikelyProb;
221 extern cl::opt<unsigned> ProfileLikelyProb;
222 
223 // Internal option used to control BFI display only after MBP pass.
224 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
225 // -view-block-layout-with-bfi=
226 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
227 
228 // Command line option to specify the name of the function for CFG dump
229 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
230 extern cl::opt<std::string> ViewBlockFreqFuncName;
231 } // namespace llvm
232 
233 namespace {
234 
235 class BlockChain;
236 
237 /// Type for our function-wide basic block -> block chain mapping.
238 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
239 
240 /// A chain of blocks which will be laid out contiguously.
241 ///
242 /// This is the datastructure representing a chain of consecutive blocks that
243 /// are profitable to layout together in order to maximize fallthrough
244 /// probabilities and code locality. We also can use a block chain to represent
245 /// a sequence of basic blocks which have some external (correctness)
246 /// requirement for sequential layout.
247 ///
248 /// Chains can be built around a single basic block and can be merged to grow
249 /// them. They participate in a block-to-chain mapping, which is updated
250 /// automatically as chains are merged together.
251 class BlockChain {
252   /// The sequence of blocks belonging to this chain.
253   ///
254   /// This is the sequence of blocks for a particular chain. These will be laid
255   /// out in-order within the function.
256   SmallVector<MachineBasicBlock *, 4> Blocks;
257 
258   /// A handle to the function-wide basic block to block chain mapping.
259   ///
260   /// This is retained in each block chain to simplify the computation of child
261   /// block chains for SCC-formation and iteration. We store the edges to child
262   /// basic blocks, and map them back to their associated chains using this
263   /// structure.
264   BlockToChainMapType &BlockToChain;
265 
266 public:
267   /// Construct a new BlockChain.
268   ///
269   /// This builds a new block chain representing a single basic block in the
270   /// function. It also registers itself as the chain that block participates
271   /// in with the BlockToChain mapping.
272   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
273       : Blocks(1, BB), BlockToChain(BlockToChain) {
274     assert(BB && "Cannot create a chain with a null basic block");
275     BlockToChain[BB] = this;
276   }
277 
278   /// Iterator over blocks within the chain.
279   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
280   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
281 
282   /// Beginning of blocks within the chain.
283   iterator begin() { return Blocks.begin(); }
284   const_iterator begin() const { return Blocks.begin(); }
285 
286   /// End of blocks within the chain.
287   iterator end() { return Blocks.end(); }
288   const_iterator end() const { return Blocks.end(); }
289 
290   bool remove(MachineBasicBlock* BB) {
291     for(iterator i = begin(); i != end(); ++i) {
292       if (*i == BB) {
293         Blocks.erase(i);
294         return true;
295       }
296     }
297     return false;
298   }
299 
300   /// Merge a block chain into this one.
301   ///
302   /// This routine merges a block chain into this one. It takes care of forming
303   /// a contiguous sequence of basic blocks, updating the edge list, and
304   /// updating the block -> chain mapping. It does not free or tear down the
305   /// old chain, but the old chain's block list is no longer valid.
306   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
307     assert(BB && "Can't merge a null block.");
308     assert(!Blocks.empty() && "Can't merge into an empty chain.");
309 
310     // Fast path in case we don't have a chain already.
311     if (!Chain) {
312       assert(!BlockToChain[BB] &&
313              "Passed chain is null, but BB has entry in BlockToChain.");
314       Blocks.push_back(BB);
315       BlockToChain[BB] = this;
316       return;
317     }
318 
319     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
320     assert(Chain->begin() != Chain->end());
321 
322     // Update the incoming blocks to point to this chain, and add them to the
323     // chain structure.
324     for (MachineBasicBlock *ChainBB : *Chain) {
325       Blocks.push_back(ChainBB);
326       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
327       BlockToChain[ChainBB] = this;
328     }
329   }
330 
331 #ifndef NDEBUG
332   /// Dump the blocks in this chain.
333   LLVM_DUMP_METHOD void dump() {
334     for (MachineBasicBlock *MBB : *this)
335       MBB->dump();
336   }
337 #endif // NDEBUG
338 
339   /// Count of predecessors of any block within the chain which have not
340   /// yet been scheduled.  In general, we will delay scheduling this chain
341   /// until those predecessors are scheduled (or we find a sufficiently good
342   /// reason to override this heuristic.)  Note that when forming loop chains,
343   /// blocks outside the loop are ignored and treated as if they were already
344   /// scheduled.
345   ///
346   /// Note: This field is reinitialized multiple times - once for each loop,
347   /// and then once for the function as a whole.
348   unsigned UnscheduledPredecessors = 0;
349 };
350 
351 class MachineBlockPlacement : public MachineFunctionPass {
352   /// A type for a block filter set.
353   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
354 
355   /// Pair struct containing basic block and taildup profitability
356   struct BlockAndTailDupResult {
357     MachineBasicBlock *BB;
358     bool ShouldTailDup;
359   };
360 
361   /// Triple struct containing edge weight and the edge.
362   struct WeightedEdge {
363     BlockFrequency Weight;
364     MachineBasicBlock *Src;
365     MachineBasicBlock *Dest;
366   };
367 
368   /// work lists of blocks that are ready to be laid out
369   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
370   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
371 
372   /// Edges that have already been computed as optimal.
373   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
374 
375   /// Machine Function
376   MachineFunction *F;
377 
378   /// A handle to the branch probability pass.
379   const MachineBranchProbabilityInfo *MBPI;
380 
381   /// A handle to the function-wide block frequency pass.
382   std::unique_ptr<MBFIWrapper> MBFI;
383 
384   /// A handle to the loop info.
385   MachineLoopInfo *MLI;
386 
387   /// Preferred loop exit.
388   /// Member variable for convenience. It may be removed by duplication deep
389   /// in the call stack.
390   MachineBasicBlock *PreferredLoopExit;
391 
392   /// A handle to the target's instruction info.
393   const TargetInstrInfo *TII;
394 
395   /// A handle to the target's lowering info.
396   const TargetLoweringBase *TLI;
397 
398   /// A handle to the post dominator tree.
399   MachinePostDominatorTree *MPDT;
400 
401   ProfileSummaryInfo *PSI;
402 
403   /// Duplicator used to duplicate tails during placement.
404   ///
405   /// Placement decisions can open up new tail duplication opportunities, but
406   /// since tail duplication affects placement decisions of later blocks, it
407   /// must be done inline.
408   TailDuplicator TailDup;
409 
410   /// Partial tail duplication threshold.
411   BlockFrequency DupThreshold;
412 
413   /// True:  use block profile count to compute tail duplication cost.
414   /// False: use block frequency to compute tail duplication cost.
415   bool UseProfileCount;
416 
417   /// Allocator and owner of BlockChain structures.
418   ///
419   /// We build BlockChains lazily while processing the loop structure of
420   /// a function. To reduce malloc traffic, we allocate them using this
421   /// slab-like allocator, and destroy them after the pass completes. An
422   /// important guarantee is that this allocator produces stable pointers to
423   /// the chains.
424   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
425 
426   /// Function wide BasicBlock to BlockChain mapping.
427   ///
428   /// This mapping allows efficiently moving from any given basic block to the
429   /// BlockChain it participates in, if any. We use it to, among other things,
430   /// allow implicitly defining edges between chains as the existing edges
431   /// between basic blocks.
432   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
433 
434 #ifndef NDEBUG
435   /// The set of basic blocks that have terminators that cannot be fully
436   /// analyzed.  These basic blocks cannot be re-ordered safely by
437   /// MachineBlockPlacement, and we must preserve physical layout of these
438   /// blocks and their successors through the pass.
439   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
440 #endif
441 
442   /// Get block profile count or frequency according to UseProfileCount.
443   /// The return value is used to model tail duplication cost.
444   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
445     if (UseProfileCount) {
446       auto Count = MBFI->getBlockProfileCount(BB);
447       if (Count)
448         return *Count;
449       else
450         return 0;
451     } else
452       return MBFI->getBlockFreq(BB);
453   }
454 
455   /// Scale the DupThreshold according to basic block size.
456   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
457   void initDupThreshold();
458 
459   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
460   /// if the count goes to 0, add them to the appropriate work list.
461   void markChainSuccessors(
462       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
463       const BlockFilterSet *BlockFilter = nullptr);
464 
465   /// Decrease the UnscheduledPredecessors count for a single block, and
466   /// if the count goes to 0, add them to the appropriate work list.
467   void markBlockSuccessors(
468       const BlockChain &Chain, const MachineBasicBlock *BB,
469       const MachineBasicBlock *LoopHeaderBB,
470       const BlockFilterSet *BlockFilter = nullptr);
471 
472   BranchProbability
473   collectViableSuccessors(
474       const MachineBasicBlock *BB, const BlockChain &Chain,
475       const BlockFilterSet *BlockFilter,
476       SmallVector<MachineBasicBlock *, 4> &Successors);
477   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
478                        BlockFilterSet *BlockFilter);
479   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
480                                MachineBasicBlock *BB,
481                                BlockFilterSet *BlockFilter);
482   bool repeatedlyTailDuplicateBlock(
483       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
484       const MachineBasicBlock *LoopHeaderBB,
485       BlockChain &Chain, BlockFilterSet *BlockFilter,
486       MachineFunction::iterator &PrevUnplacedBlockIt);
487   bool maybeTailDuplicateBlock(
488       MachineBasicBlock *BB, MachineBasicBlock *LPred,
489       BlockChain &Chain, BlockFilterSet *BlockFilter,
490       MachineFunction::iterator &PrevUnplacedBlockIt,
491       bool &DuplicatedToLPred);
492   bool hasBetterLayoutPredecessor(
493       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
494       const BlockChain &SuccChain, BranchProbability SuccProb,
495       BranchProbability RealSuccProb, const BlockChain &Chain,
496       const BlockFilterSet *BlockFilter);
497   BlockAndTailDupResult selectBestSuccessor(
498       const MachineBasicBlock *BB, const BlockChain &Chain,
499       const BlockFilterSet *BlockFilter);
500   MachineBasicBlock *selectBestCandidateBlock(
501       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
502   MachineBasicBlock *getFirstUnplacedBlock(
503       const BlockChain &PlacedChain,
504       MachineFunction::iterator &PrevUnplacedBlockIt,
505       const BlockFilterSet *BlockFilter);
506 
507   /// Add a basic block to the work list if it is appropriate.
508   ///
509   /// If the optional parameter BlockFilter is provided, only MBB
510   /// present in the set will be added to the worklist. If nullptr
511   /// is provided, no filtering occurs.
512   void fillWorkLists(const MachineBasicBlock *MBB,
513                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
514                      const BlockFilterSet *BlockFilter);
515 
516   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
517                   BlockFilterSet *BlockFilter = nullptr);
518   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
519                                const MachineBasicBlock *OldTop);
520   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
521                                const BlockFilterSet &LoopBlockSet);
522   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
523                                     const BlockFilterSet &LoopBlockSet);
524   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
525                                   const MachineBasicBlock *OldTop,
526                                   const MachineBasicBlock *ExitBB,
527                                   const BlockFilterSet &LoopBlockSet);
528   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
529       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
530   MachineBasicBlock *findBestLoopTop(
531       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
532   MachineBasicBlock *findBestLoopExit(
533       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
534       BlockFrequency &ExitFreq);
535   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
536   void buildLoopChains(const MachineLoop &L);
537   void rotateLoop(
538       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
539       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
540   void rotateLoopWithProfile(
541       BlockChain &LoopChain, const MachineLoop &L,
542       const BlockFilterSet &LoopBlockSet);
543   void buildCFGChains();
544   void optimizeBranches();
545   void alignBlocks();
546   /// Returns true if a block should be tail-duplicated to increase fallthrough
547   /// opportunities.
548   bool shouldTailDuplicate(MachineBasicBlock *BB);
549   /// Check the edge frequencies to see if tail duplication will increase
550   /// fallthroughs.
551   bool isProfitableToTailDup(
552     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
553     BranchProbability QProb,
554     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
555 
556   /// Check for a trellis layout.
557   bool isTrellis(const MachineBasicBlock *BB,
558                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
559                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
560 
561   /// Get the best successor given a trellis layout.
562   BlockAndTailDupResult getBestTrellisSuccessor(
563       const MachineBasicBlock *BB,
564       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
565       BranchProbability AdjustedSumProb, const BlockChain &Chain,
566       const BlockFilterSet *BlockFilter);
567 
568   /// Get the best pair of non-conflicting edges.
569   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
570       const MachineBasicBlock *BB,
571       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
572 
573   /// Returns true if a block can tail duplicate into all unplaced
574   /// predecessors. Filters based on loop.
575   bool canTailDuplicateUnplacedPreds(
576       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
577       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
578 
579   /// Find chains of triangles to tail-duplicate where a global analysis works,
580   /// but a local analysis would not find them.
581   void precomputeTriangleChains();
582 
583   /// Apply a post-processing step optimizing block placement.
584   void applyExtTsp();
585 
586   /// Modify the existing block placement in the function and adjust all jumps.
587   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
588 
589   /// Create a single CFG chain from the current block order.
590   void createCFGChainExtTsp();
591 
592 public:
593   static char ID; // Pass identification, replacement for typeid
594 
595   MachineBlockPlacement() : MachineFunctionPass(ID) {
596     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
597   }
598 
599   bool runOnMachineFunction(MachineFunction &F) override;
600 
601   bool allowTailDupPlacement() const {
602     assert(F);
603     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
604   }
605 
606   void getAnalysisUsage(AnalysisUsage &AU) const override {
607     AU.addRequired<MachineBranchProbabilityInfo>();
608     AU.addRequired<MachineBlockFrequencyInfo>();
609     if (TailDupPlacement)
610       AU.addRequired<MachinePostDominatorTree>();
611     AU.addRequired<MachineLoopInfo>();
612     AU.addRequired<ProfileSummaryInfoWrapperPass>();
613     AU.addRequired<TargetPassConfig>();
614     MachineFunctionPass::getAnalysisUsage(AU);
615   }
616 };
617 
618 } // end anonymous namespace
619 
620 char MachineBlockPlacement::ID = 0;
621 
622 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
623 
624 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
625                       "Branch Probability Basic Block Placement", false, false)
626 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
627 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
628 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
629 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
630 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
631 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
632                     "Branch Probability Basic Block Placement", false, false)
633 
634 #ifndef NDEBUG
635 /// Helper to print the name of a MBB.
636 ///
637 /// Only used by debug logging.
638 static std::string getBlockName(const MachineBasicBlock *BB) {
639   std::string Result;
640   raw_string_ostream OS(Result);
641   OS << printMBBReference(*BB);
642   OS << " ('" << BB->getName() << "')";
643   OS.flush();
644   return Result;
645 }
646 #endif
647 
648 /// Mark a chain's successors as having one fewer preds.
649 ///
650 /// When a chain is being merged into the "placed" chain, this routine will
651 /// quickly walk the successors of each block in the chain and mark them as
652 /// having one fewer active predecessor. It also adds any successors of this
653 /// chain which reach the zero-predecessor state to the appropriate worklist.
654 void MachineBlockPlacement::markChainSuccessors(
655     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
656     const BlockFilterSet *BlockFilter) {
657   // Walk all the blocks in this chain, marking their successors as having
658   // a predecessor placed.
659   for (MachineBasicBlock *MBB : Chain) {
660     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
661   }
662 }
663 
664 /// Mark a single block's successors as having one fewer preds.
665 ///
666 /// Under normal circumstances, this is only called by markChainSuccessors,
667 /// but if a block that was to be placed is completely tail-duplicated away,
668 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
669 /// for just that block.
670 void MachineBlockPlacement::markBlockSuccessors(
671     const BlockChain &Chain, const MachineBasicBlock *MBB,
672     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
673   // Add any successors for which this is the only un-placed in-loop
674   // predecessor to the worklist as a viable candidate for CFG-neutral
675   // placement. No subsequent placement of this block will violate the CFG
676   // shape, so we get to use heuristics to choose a favorable placement.
677   for (MachineBasicBlock *Succ : MBB->successors()) {
678     if (BlockFilter && !BlockFilter->count(Succ))
679       continue;
680     BlockChain &SuccChain = *BlockToChain[Succ];
681     // Disregard edges within a fixed chain, or edges to the loop header.
682     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
683       continue;
684 
685     // This is a cross-chain edge that is within the loop, so decrement the
686     // loop predecessor count of the destination chain.
687     if (SuccChain.UnscheduledPredecessors == 0 ||
688         --SuccChain.UnscheduledPredecessors > 0)
689       continue;
690 
691     auto *NewBB = *SuccChain.begin();
692     if (NewBB->isEHPad())
693       EHPadWorkList.push_back(NewBB);
694     else
695       BlockWorkList.push_back(NewBB);
696   }
697 }
698 
699 /// This helper function collects the set of successors of block
700 /// \p BB that are allowed to be its layout successors, and return
701 /// the total branch probability of edges from \p BB to those
702 /// blocks.
703 BranchProbability MachineBlockPlacement::collectViableSuccessors(
704     const MachineBasicBlock *BB, const BlockChain &Chain,
705     const BlockFilterSet *BlockFilter,
706     SmallVector<MachineBasicBlock *, 4> &Successors) {
707   // Adjust edge probabilities by excluding edges pointing to blocks that is
708   // either not in BlockFilter or is already in the current chain. Consider the
709   // following CFG:
710   //
711   //     --->A
712   //     |  / \
713   //     | B   C
714   //     |  \ / \
715   //     ----D   E
716   //
717   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
718   // A->C is chosen as a fall-through, D won't be selected as a successor of C
719   // due to CFG constraint (the probability of C->D is not greater than
720   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
721   // when calculating the probability of C->D, D will be selected and we
722   // will get A C D B as the layout of this loop.
723   auto AdjustedSumProb = BranchProbability::getOne();
724   for (MachineBasicBlock *Succ : BB->successors()) {
725     bool SkipSucc = false;
726     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
727       SkipSucc = true;
728     } else {
729       BlockChain *SuccChain = BlockToChain[Succ];
730       if (SuccChain == &Chain) {
731         SkipSucc = true;
732       } else if (Succ != *SuccChain->begin()) {
733         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
734                           << " -> Mid chain!\n");
735         continue;
736       }
737     }
738     if (SkipSucc)
739       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
740     else
741       Successors.push_back(Succ);
742   }
743 
744   return AdjustedSumProb;
745 }
746 
747 /// The helper function returns the branch probability that is adjusted
748 /// or normalized over the new total \p AdjustedSumProb.
749 static BranchProbability
750 getAdjustedProbability(BranchProbability OrigProb,
751                        BranchProbability AdjustedSumProb) {
752   BranchProbability SuccProb;
753   uint32_t SuccProbN = OrigProb.getNumerator();
754   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
755   if (SuccProbN >= SuccProbD)
756     SuccProb = BranchProbability::getOne();
757   else
758     SuccProb = BranchProbability(SuccProbN, SuccProbD);
759 
760   return SuccProb;
761 }
762 
763 /// Check if \p BB has exactly the successors in \p Successors.
764 static bool
765 hasSameSuccessors(MachineBasicBlock &BB,
766                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
767   if (BB.succ_size() != Successors.size())
768     return false;
769   // We don't want to count self-loops
770   if (Successors.count(&BB))
771     return false;
772   for (MachineBasicBlock *Succ : BB.successors())
773     if (!Successors.count(Succ))
774       return false;
775   return true;
776 }
777 
778 /// Check if a block should be tail duplicated to increase fallthrough
779 /// opportunities.
780 /// \p BB Block to check.
781 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
782   // Blocks with single successors don't create additional fallthrough
783   // opportunities. Don't duplicate them. TODO: When conditional exits are
784   // analyzable, allow them to be duplicated.
785   bool IsSimple = TailDup.isSimpleBB(BB);
786 
787   if (BB->succ_size() == 1)
788     return false;
789   return TailDup.shouldTailDuplicate(IsSimple, *BB);
790 }
791 
792 /// Compare 2 BlockFrequency's with a small penalty for \p A.
793 /// In order to be conservative, we apply a X% penalty to account for
794 /// increased icache pressure and static heuristics. For small frequencies
795 /// we use only the numerators to improve accuracy. For simplicity, we assume the
796 /// penalty is less than 100%
797 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
798 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
799                             uint64_t EntryFreq) {
800   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
801   BlockFrequency Gain = A - B;
802   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
803 }
804 
805 /// Check the edge frequencies to see if tail duplication will increase
806 /// fallthroughs. It only makes sense to call this function when
807 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
808 /// always locally profitable if we would have picked \p Succ without
809 /// considering duplication.
810 bool MachineBlockPlacement::isProfitableToTailDup(
811     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
812     BranchProbability QProb,
813     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
814   // We need to do a probability calculation to make sure this is profitable.
815   // First: does succ have a successor that post-dominates? This affects the
816   // calculation. The 2 relevant cases are:
817   //    BB         BB
818   //    | \Qout    | \Qout
819   //   P|  C       |P C
820   //    =   C'     =   C'
821   //    |  /Qin    |  /Qin
822   //    | /        | /
823   //    Succ       Succ
824   //    / \        | \  V
825   //  U/   =V      |U \
826   //  /     \      =   D
827   //  D      E     |  /
828   //               | /
829   //               |/
830   //               PDom
831   //  '=' : Branch taken for that CFG edge
832   // In the second case, Placing Succ while duplicating it into C prevents the
833   // fallthrough of Succ into either D or PDom, because they now have C as an
834   // unplaced predecessor
835 
836   // Start by figuring out which case we fall into
837   MachineBasicBlock *PDom = nullptr;
838   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
839   // Only scan the relevant successors
840   auto AdjustedSuccSumProb =
841       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
842   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
843   auto BBFreq = MBFI->getBlockFreq(BB);
844   auto SuccFreq = MBFI->getBlockFreq(Succ);
845   BlockFrequency P = BBFreq * PProb;
846   BlockFrequency Qout = BBFreq * QProb;
847   uint64_t EntryFreq = MBFI->getEntryFreq();
848   // If there are no more successors, it is profitable to copy, as it strictly
849   // increases fallthrough.
850   if (SuccSuccs.size() == 0)
851     return greaterWithBias(P, Qout, EntryFreq);
852 
853   auto BestSuccSucc = BranchProbability::getZero();
854   // Find the PDom or the best Succ if no PDom exists.
855   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
856     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
857     if (Prob > BestSuccSucc)
858       BestSuccSucc = Prob;
859     if (PDom == nullptr)
860       if (MPDT->dominates(SuccSucc, Succ)) {
861         PDom = SuccSucc;
862         break;
863       }
864   }
865   // For the comparisons, we need to know Succ's best incoming edge that isn't
866   // from BB.
867   auto SuccBestPred = BlockFrequency(0);
868   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
869     if (SuccPred == Succ || SuccPred == BB
870         || BlockToChain[SuccPred] == &Chain
871         || (BlockFilter && !BlockFilter->count(SuccPred)))
872       continue;
873     auto Freq = MBFI->getBlockFreq(SuccPred)
874         * MBPI->getEdgeProbability(SuccPred, Succ);
875     if (Freq > SuccBestPred)
876       SuccBestPred = Freq;
877   }
878   // Qin is Succ's best unplaced incoming edge that isn't BB
879   BlockFrequency Qin = SuccBestPred;
880   // If it doesn't have a post-dominating successor, here is the calculation:
881   //    BB        BB
882   //    | \Qout   |  \
883   //   P|  C      |   =
884   //    =   C'    |    C
885   //    |  /Qin   |     |
886   //    | /       |     C' (+Succ)
887   //    Succ      Succ /|
888   //    / \       |  \/ |
889   //  U/   =V     |  == |
890   //  /     \     | /  \|
891   //  D      E    D     E
892   //  '=' : Branch taken for that CFG edge
893   //  Cost in the first case is: P + V
894   //  For this calculation, we always assume P > Qout. If Qout > P
895   //  The result of this function will be ignored at the caller.
896   //  Let F = SuccFreq - Qin
897   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
898 
899   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
900     BranchProbability UProb = BestSuccSucc;
901     BranchProbability VProb = AdjustedSuccSumProb - UProb;
902     BlockFrequency F = SuccFreq - Qin;
903     BlockFrequency V = SuccFreq * VProb;
904     BlockFrequency QinU = std::min(Qin, F) * UProb;
905     BlockFrequency BaseCost = P + V;
906     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
907     return greaterWithBias(BaseCost, DupCost, EntryFreq);
908   }
909   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
910   BranchProbability VProb = AdjustedSuccSumProb - UProb;
911   BlockFrequency U = SuccFreq * UProb;
912   BlockFrequency V = SuccFreq * VProb;
913   BlockFrequency F = SuccFreq - Qin;
914   // If there is a post-dominating successor, here is the calculation:
915   // BB         BB                 BB          BB
916   // | \Qout    |   \               | \Qout     |  \
917   // |P C       |    =              |P C        |   =
918   // =   C'     |P    C             =   C'      |P   C
919   // |  /Qin    |      |            |  /Qin     |     |
920   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
921   // Succ       Succ  /|            Succ        Succ /|
922   // | \  V     |   \/ |            | \  V      |  \/ |
923   // |U \       |U  /\ =?           |U =        |U /\ |
924   // =   D      = =  =?|            |   D       | =  =|
925   // |  /       |/     D            |  /        |/    D
926   // | /        |     /             | =         |    /
927   // |/         |    /              |/          |   =
928   // Dom         Dom                Dom         Dom
929   //  '=' : Branch taken for that CFG edge
930   // The cost for taken branches in the first case is P + U
931   // Let F = SuccFreq - Qin
932   // The cost in the second case (assuming independence), given the layout:
933   // BB, Succ, (C+Succ), D, Dom or the layout:
934   // BB, Succ, D, Dom, (C+Succ)
935   // is Qout + max(F, Qin) * U + min(F, Qin)
936   // compare P + U vs Qout + P * U + Qin.
937   //
938   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
939   //
940   // For the 3rd case, the cost is P + 2 * V
941   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
942   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
943   if (UProb > AdjustedSuccSumProb / 2 &&
944       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
945                                   Chain, BlockFilter))
946     // Cases 3 & 4
947     return greaterWithBias(
948         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
949         EntryFreq);
950   // Cases 1 & 2
951   return greaterWithBias((P + U),
952                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
953                           std::max(Qin, F) * UProb),
954                          EntryFreq);
955 }
956 
957 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
958 /// successors form the lower part of a trellis. A successor set S forms the
959 /// lower part of a trellis if all of the predecessors of S are either in S or
960 /// have all of S as successors. We ignore trellises where BB doesn't have 2
961 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
962 /// are very uncommon and complex to compute optimally. Allowing edges within S
963 /// is not strictly a trellis, but the same algorithm works, so we allow it.
964 bool MachineBlockPlacement::isTrellis(
965     const MachineBasicBlock *BB,
966     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
967     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
968   // Technically BB could form a trellis with branching factor higher than 2.
969   // But that's extremely uncommon.
970   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
971     return false;
972 
973   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
974                                                        BB->succ_end());
975   // To avoid reviewing the same predecessors twice.
976   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
977 
978   for (MachineBasicBlock *Succ : ViableSuccs) {
979     int PredCount = 0;
980     for (auto *SuccPred : Succ->predecessors()) {
981       // Allow triangle successors, but don't count them.
982       if (Successors.count(SuccPred)) {
983         // Make sure that it is actually a triangle.
984         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
985           if (!Successors.count(CheckSucc))
986             return false;
987         continue;
988       }
989       const BlockChain *PredChain = BlockToChain[SuccPred];
990       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
991           PredChain == &Chain || PredChain == BlockToChain[Succ])
992         continue;
993       ++PredCount;
994       // Perform the successor check only once.
995       if (!SeenPreds.insert(SuccPred).second)
996         continue;
997       if (!hasSameSuccessors(*SuccPred, Successors))
998         return false;
999     }
1000     // If one of the successors has only BB as a predecessor, it is not a
1001     // trellis.
1002     if (PredCount < 1)
1003       return false;
1004   }
1005   return true;
1006 }
1007 
1008 /// Pick the highest total weight pair of edges that can both be laid out.
1009 /// The edges in \p Edges[0] are assumed to have a different destination than
1010 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1011 /// the individual highest weight edges to the 2 different destinations, or in
1012 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1013 std::pair<MachineBlockPlacement::WeightedEdge,
1014           MachineBlockPlacement::WeightedEdge>
1015 MachineBlockPlacement::getBestNonConflictingEdges(
1016     const MachineBasicBlock *BB,
1017     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1018         Edges) {
1019   // Sort the edges, and then for each successor, find the best incoming
1020   // predecessor. If the best incoming predecessors aren't the same,
1021   // then that is clearly the best layout. If there is a conflict, one of the
1022   // successors will have to fallthrough from the second best predecessor. We
1023   // compare which combination is better overall.
1024 
1025   // Sort for highest frequency.
1026   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1027 
1028   llvm::stable_sort(Edges[0], Cmp);
1029   llvm::stable_sort(Edges[1], Cmp);
1030   auto BestA = Edges[0].begin();
1031   auto BestB = Edges[1].begin();
1032   // Arrange for the correct answer to be in BestA and BestB
1033   // If the 2 best edges don't conflict, the answer is already there.
1034   if (BestA->Src == BestB->Src) {
1035     // Compare the total fallthrough of (Best + Second Best) for both pairs
1036     auto SecondBestA = std::next(BestA);
1037     auto SecondBestB = std::next(BestB);
1038     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1039     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1040     if (BestAScore < BestBScore)
1041       BestA = SecondBestA;
1042     else
1043       BestB = SecondBestB;
1044   }
1045   // Arrange for the BB edge to be in BestA if it exists.
1046   if (BestB->Src == BB)
1047     std::swap(BestA, BestB);
1048   return std::make_pair(*BestA, *BestB);
1049 }
1050 
1051 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1052 /// We only handle trellises with 2 successors, so the algorithm is
1053 /// straightforward: Find the best pair of edges that don't conflict. We find
1054 /// the best incoming edge for each successor in the trellis. If those conflict,
1055 /// we consider which of them should be replaced with the second best.
1056 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1057 /// comes from \p BB, it will be in \p BestEdges[0]
1058 MachineBlockPlacement::BlockAndTailDupResult
1059 MachineBlockPlacement::getBestTrellisSuccessor(
1060     const MachineBasicBlock *BB,
1061     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1062     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1063     const BlockFilterSet *BlockFilter) {
1064 
1065   BlockAndTailDupResult Result = {nullptr, false};
1066   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1067                                                        BB->succ_end());
1068 
1069   // We assume size 2 because it's common. For general n, we would have to do
1070   // the Hungarian algorithm, but it's not worth the complexity because more
1071   // than 2 successors is fairly uncommon, and a trellis even more so.
1072   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1073     return Result;
1074 
1075   // Collect the edge frequencies of all edges that form the trellis.
1076   SmallVector<WeightedEdge, 8> Edges[2];
1077   int SuccIndex = 0;
1078   for (auto *Succ : ViableSuccs) {
1079     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1080       // Skip any placed predecessors that are not BB
1081       if (SuccPred != BB)
1082         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1083             BlockToChain[SuccPred] == &Chain ||
1084             BlockToChain[SuccPred] == BlockToChain[Succ])
1085           continue;
1086       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1087                                 MBPI->getEdgeProbability(SuccPred, Succ);
1088       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1089     }
1090     ++SuccIndex;
1091   }
1092 
1093   // Pick the best combination of 2 edges from all the edges in the trellis.
1094   WeightedEdge BestA, BestB;
1095   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1096 
1097   if (BestA.Src != BB) {
1098     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1099     // we shouldn't choose any successor. We've already looked and there's a
1100     // better fallthrough edge for all the successors.
1101     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1102     return Result;
1103   }
1104 
1105   // Did we pick the triangle edge? If tail-duplication is profitable, do
1106   // that instead. Otherwise merge the triangle edge now while we know it is
1107   // optimal.
1108   if (BestA.Dest == BestB.Src) {
1109     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1110     // would be better.
1111     MachineBasicBlock *Succ1 = BestA.Dest;
1112     MachineBasicBlock *Succ2 = BestB.Dest;
1113     // Check to see if tail-duplication would be profitable.
1114     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1115         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1116         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1117                               Chain, BlockFilter)) {
1118       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1119                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1120                  dbgs() << "    Selected: " << getBlockName(Succ2)
1121                         << ", probability: " << Succ2Prob
1122                         << " (Tail Duplicate)\n");
1123       Result.BB = Succ2;
1124       Result.ShouldTailDup = true;
1125       return Result;
1126     }
1127   }
1128   // We have already computed the optimal edge for the other side of the
1129   // trellis.
1130   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1131 
1132   auto TrellisSucc = BestA.Dest;
1133   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1134                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1135              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1136                     << ", probability: " << SuccProb << " (Trellis)\n");
1137   Result.BB = TrellisSucc;
1138   return Result;
1139 }
1140 
1141 /// When the option allowTailDupPlacement() is on, this method checks if the
1142 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1143 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1144 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1145     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1146     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1147   if (!shouldTailDuplicate(Succ))
1148     return false;
1149 
1150   // The result of canTailDuplicate.
1151   bool Duplicate = true;
1152   // Number of possible duplication.
1153   unsigned int NumDup = 0;
1154 
1155   // For CFG checking.
1156   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1157                                                        BB->succ_end());
1158   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1159     // Make sure all unplaced and unfiltered predecessors can be
1160     // tail-duplicated into.
1161     // Skip any blocks that are already placed or not in this loop.
1162     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1163         || BlockToChain[Pred] == &Chain)
1164       continue;
1165     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1166       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1167         // This will result in a trellis after tail duplication, so we don't
1168         // need to copy Succ into this predecessor. In the presence
1169         // of a trellis tail duplication can continue to be profitable.
1170         // For example:
1171         // A            A
1172         // |\           |\
1173         // | \          | \
1174         // |  C         |  C+BB
1175         // | /          |  |
1176         // |/           |  |
1177         // BB    =>     BB |
1178         // |\           |\/|
1179         // | \          |/\|
1180         // |  D         |  D
1181         // | /          | /
1182         // |/           |/
1183         // Succ         Succ
1184         //
1185         // After BB was duplicated into C, the layout looks like the one on the
1186         // right. BB and C now have the same successors. When considering
1187         // whether Succ can be duplicated into all its unplaced predecessors, we
1188         // ignore C.
1189         // We can do this because C already has a profitable fallthrough, namely
1190         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1191         // duplication and for this test.
1192         //
1193         // This allows trellises to be laid out in 2 separate chains
1194         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1195         // because it allows the creation of 2 fallthrough paths with links
1196         // between them, and we correctly identify the best layout for these
1197         // CFGs. We want to extend trellises that the user created in addition
1198         // to trellises created by tail-duplication, so we just look for the
1199         // CFG.
1200         continue;
1201       Duplicate = false;
1202       continue;
1203     }
1204     NumDup++;
1205   }
1206 
1207   // No possible duplication in current filter set.
1208   if (NumDup == 0)
1209     return false;
1210 
1211   // If profile information is available, findDuplicateCandidates can do more
1212   // precise benefit analysis.
1213   if (F->getFunction().hasProfileData())
1214     return true;
1215 
1216   // This is mainly for function exit BB.
1217   // The integrated tail duplication is really designed for increasing
1218   // fallthrough from predecessors from Succ to its successors. We may need
1219   // other machanism to handle different cases.
1220   if (Succ->succ_empty())
1221     return true;
1222 
1223   // Plus the already placed predecessor.
1224   NumDup++;
1225 
1226   // If the duplication candidate has more unplaced predecessors than
1227   // successors, the extra duplication can't bring more fallthrough.
1228   //
1229   //     Pred1 Pred2 Pred3
1230   //         \   |   /
1231   //          \  |  /
1232   //           \ | /
1233   //            Dup
1234   //            / \
1235   //           /   \
1236   //       Succ1  Succ2
1237   //
1238   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1239   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1240   // but the duplication into Pred3 can't increase fallthrough.
1241   //
1242   // A small number of extra duplication may not hurt too much. We need a better
1243   // heuristic to handle it.
1244   if ((NumDup > Succ->succ_size()) || !Duplicate)
1245     return false;
1246 
1247   return true;
1248 }
1249 
1250 /// Find chains of triangles where we believe it would be profitable to
1251 /// tail-duplicate them all, but a local analysis would not find them.
1252 /// There are 3 ways this can be profitable:
1253 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1254 ///    longer chains)
1255 /// 2) The chains are statically correlated. Branch probabilities have a very
1256 ///    U-shaped distribution.
1257 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1258 ///    If the branches in a chain are likely to be from the same side of the
1259 ///    distribution as their predecessor, but are independent at runtime, this
1260 ///    transformation is profitable. (Because the cost of being wrong is a small
1261 ///    fixed cost, unlike the standard triangle layout where the cost of being
1262 ///    wrong scales with the # of triangles.)
1263 /// 3) The chains are dynamically correlated. If the probability that a previous
1264 ///    branch was taken positively influences whether the next branch will be
1265 ///    taken
1266 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1267 void MachineBlockPlacement::precomputeTriangleChains() {
1268   struct TriangleChain {
1269     std::vector<MachineBasicBlock *> Edges;
1270 
1271     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1272         : Edges({src, dst}) {}
1273 
1274     void append(MachineBasicBlock *dst) {
1275       assert(getKey()->isSuccessor(dst) &&
1276              "Attempting to append a block that is not a successor.");
1277       Edges.push_back(dst);
1278     }
1279 
1280     unsigned count() const { return Edges.size() - 1; }
1281 
1282     MachineBasicBlock *getKey() const {
1283       return Edges.back();
1284     }
1285   };
1286 
1287   if (TriangleChainCount == 0)
1288     return;
1289 
1290   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1291   // Map from last block to the chain that contains it. This allows us to extend
1292   // chains as we find new triangles.
1293   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1294   for (MachineBasicBlock &BB : *F) {
1295     // If BB doesn't have 2 successors, it doesn't start a triangle.
1296     if (BB.succ_size() != 2)
1297       continue;
1298     MachineBasicBlock *PDom = nullptr;
1299     for (MachineBasicBlock *Succ : BB.successors()) {
1300       if (!MPDT->dominates(Succ, &BB))
1301         continue;
1302       PDom = Succ;
1303       break;
1304     }
1305     // If BB doesn't have a post-dominating successor, it doesn't form a
1306     // triangle.
1307     if (PDom == nullptr)
1308       continue;
1309     // If PDom has a hint that it is low probability, skip this triangle.
1310     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1311       continue;
1312     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1313     // we're looking for.
1314     if (!shouldTailDuplicate(PDom))
1315       continue;
1316     bool CanTailDuplicate = true;
1317     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1318     // isn't the kind of triangle we're looking for.
1319     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1320       if (Pred == &BB)
1321         continue;
1322       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1323         CanTailDuplicate = false;
1324         break;
1325       }
1326     }
1327     // If we can't tail-duplicate PDom to its predecessors, then skip this
1328     // triangle.
1329     if (!CanTailDuplicate)
1330       continue;
1331 
1332     // Now we have an interesting triangle. Insert it if it's not part of an
1333     // existing chain.
1334     // Note: This cannot be replaced with a call insert() or emplace() because
1335     // the find key is BB, but the insert/emplace key is PDom.
1336     auto Found = TriangleChainMap.find(&BB);
1337     // If it is, remove the chain from the map, grow it, and put it back in the
1338     // map with the end as the new key.
1339     if (Found != TriangleChainMap.end()) {
1340       TriangleChain Chain = std::move(Found->second);
1341       TriangleChainMap.erase(Found);
1342       Chain.append(PDom);
1343       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1344     } else {
1345       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1346       assert(InsertResult.second && "Block seen twice.");
1347       (void)InsertResult;
1348     }
1349   }
1350 
1351   // Iterating over a DenseMap is safe here, because the only thing in the body
1352   // of the loop is inserting into another DenseMap (ComputedEdges).
1353   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1354   for (auto &ChainPair : TriangleChainMap) {
1355     TriangleChain &Chain = ChainPair.second;
1356     // Benchmarking has shown that due to branch correlation duplicating 2 or
1357     // more triangles is profitable, despite the calculations assuming
1358     // independence.
1359     if (Chain.count() < TriangleChainCount)
1360       continue;
1361     MachineBasicBlock *dst = Chain.Edges.back();
1362     Chain.Edges.pop_back();
1363     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1364       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1365                         << getBlockName(dst)
1366                         << " as pre-computed based on triangles.\n");
1367 
1368       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1369       assert(InsertResult.second && "Block seen twice.");
1370       (void)InsertResult;
1371 
1372       dst = src;
1373     }
1374   }
1375 }
1376 
1377 // When profile is not present, return the StaticLikelyProb.
1378 // When profile is available, we need to handle the triangle-shape CFG.
1379 static BranchProbability getLayoutSuccessorProbThreshold(
1380       const MachineBasicBlock *BB) {
1381   if (!BB->getParent()->getFunction().hasProfileData())
1382     return BranchProbability(StaticLikelyProb, 100);
1383   if (BB->succ_size() == 2) {
1384     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1385     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1386     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1387       /* See case 1 below for the cost analysis. For BB->Succ to
1388        * be taken with smaller cost, the following needs to hold:
1389        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1390        *   So the threshold T in the calculation below
1391        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1392        *   So T / (1 - T) = 2, Yielding T = 2/3
1393        * Also adding user specified branch bias, we have
1394        *   T = (2/3)*(ProfileLikelyProb/50)
1395        *     = (2*ProfileLikelyProb)/150)
1396        */
1397       return BranchProbability(2 * ProfileLikelyProb, 150);
1398     }
1399   }
1400   return BranchProbability(ProfileLikelyProb, 100);
1401 }
1402 
1403 /// Checks to see if the layout candidate block \p Succ has a better layout
1404 /// predecessor than \c BB. If yes, returns true.
1405 /// \p SuccProb: The probability adjusted for only remaining blocks.
1406 ///   Only used for logging
1407 /// \p RealSuccProb: The un-adjusted probability.
1408 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1409 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1410 ///    considered
1411 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1412     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1413     const BlockChain &SuccChain, BranchProbability SuccProb,
1414     BranchProbability RealSuccProb, const BlockChain &Chain,
1415     const BlockFilterSet *BlockFilter) {
1416 
1417   // There isn't a better layout when there are no unscheduled predecessors.
1418   if (SuccChain.UnscheduledPredecessors == 0)
1419     return false;
1420 
1421   // There are two basic scenarios here:
1422   // -------------------------------------
1423   // Case 1: triangular shape CFG (if-then):
1424   //     BB
1425   //     | \
1426   //     |  \
1427   //     |   Pred
1428   //     |   /
1429   //     Succ
1430   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1431   // set Succ as the layout successor of BB. Picking Succ as BB's
1432   // successor breaks the CFG constraints (FIXME: define these constraints).
1433   // With this layout, Pred BB
1434   // is forced to be outlined, so the overall cost will be cost of the
1435   // branch taken from BB to Pred, plus the cost of back taken branch
1436   // from Pred to Succ, as well as the additional cost associated
1437   // with the needed unconditional jump instruction from Pred To Succ.
1438 
1439   // The cost of the topological order layout is the taken branch cost
1440   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1441   // must hold:
1442   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1443   //      < freq(BB->Succ) *  taken_branch_cost.
1444   // Ignoring unconditional jump cost, we get
1445   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1446   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1447   //
1448   // When real profile data is available, we can precisely compute the
1449   // probability threshold that is needed for edge BB->Succ to be considered.
1450   // Without profile data, the heuristic requires the branch bias to be
1451   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1452   // -----------------------------------------------------------------
1453   // Case 2: diamond like CFG (if-then-else):
1454   //     S
1455   //    / \
1456   //   |   \
1457   //  BB    Pred
1458   //   \    /
1459   //    Succ
1460   //    ..
1461   //
1462   // The current block is BB and edge BB->Succ is now being evaluated.
1463   // Note that edge S->BB was previously already selected because
1464   // prob(S->BB) > prob(S->Pred).
1465   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1466   // choose Pred, we will have a topological ordering as shown on the left
1467   // in the picture below. If we choose Succ, we have the solution as shown
1468   // on the right:
1469   //
1470   //   topo-order:
1471   //
1472   //       S-----                             ---S
1473   //       |    |                             |  |
1474   //    ---BB   |                             |  BB
1475   //    |       |                             |  |
1476   //    |  Pred--                             |  Succ--
1477   //    |  |                                  |       |
1478   //    ---Succ                               ---Pred--
1479   //
1480   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1481   //      = freq(S->Pred) + freq(S->BB)
1482   //
1483   // If we have profile data (i.e, branch probabilities can be trusted), the
1484   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1485   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1486   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1487   // means the cost of topological order is greater.
1488   // When profile data is not available, however, we need to be more
1489   // conservative. If the branch prediction is wrong, breaking the topo-order
1490   // will actually yield a layout with large cost. For this reason, we need
1491   // strong biased branch at block S with Prob(S->BB) in order to select
1492   // BB->Succ. This is equivalent to looking the CFG backward with backward
1493   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1494   // profile data).
1495   // --------------------------------------------------------------------------
1496   // Case 3: forked diamond
1497   //       S
1498   //      / \
1499   //     /   \
1500   //   BB    Pred
1501   //   | \   / |
1502   //   |  \ /  |
1503   //   |   X   |
1504   //   |  / \  |
1505   //   | /   \ |
1506   //   S1     S2
1507   //
1508   // The current block is BB and edge BB->S1 is now being evaluated.
1509   // As above S->BB was already selected because
1510   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1511   //
1512   // topo-order:
1513   //
1514   //     S-------|                     ---S
1515   //     |       |                     |  |
1516   //  ---BB      |                     |  BB
1517   //  |          |                     |  |
1518   //  |  Pred----|                     |  S1----
1519   //  |  |                             |       |
1520   //  --(S1 or S2)                     ---Pred--
1521   //                                        |
1522   //                                       S2
1523   //
1524   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1525   //    + min(freq(Pred->S1), freq(Pred->S2))
1526   // Non-topo-order cost:
1527   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1528   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1529   // is 0. Then the non topo layout is better when
1530   // freq(S->Pred) < freq(BB->S1).
1531   // This is exactly what is checked below.
1532   // Note there are other shapes that apply (Pred may not be a single block,
1533   // but they all fit this general pattern.)
1534   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1535 
1536   // Make sure that a hot successor doesn't have a globally more
1537   // important predecessor.
1538   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1539   bool BadCFGConflict = false;
1540 
1541   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1542     BlockChain *PredChain = BlockToChain[Pred];
1543     if (Pred == Succ || PredChain == &SuccChain ||
1544         (BlockFilter && !BlockFilter->count(Pred)) ||
1545         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1546         // This check is redundant except for look ahead. This function is
1547         // called for lookahead by isProfitableToTailDup when BB hasn't been
1548         // placed yet.
1549         (Pred == BB))
1550       continue;
1551     // Do backward checking.
1552     // For all cases above, we need a backward checking to filter out edges that
1553     // are not 'strongly' biased.
1554     // BB  Pred
1555     //  \ /
1556     //  Succ
1557     // We select edge BB->Succ if
1558     //      freq(BB->Succ) > freq(Succ) * HotProb
1559     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1560     //      HotProb
1561     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1562     // Case 1 is covered too, because the first equation reduces to:
1563     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1564     BlockFrequency PredEdgeFreq =
1565         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1566     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1567       BadCFGConflict = true;
1568       break;
1569     }
1570   }
1571 
1572   if (BadCFGConflict) {
1573     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1574                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1575     return true;
1576   }
1577 
1578   return false;
1579 }
1580 
1581 /// Select the best successor for a block.
1582 ///
1583 /// This looks across all successors of a particular block and attempts to
1584 /// select the "best" one to be the layout successor. It only considers direct
1585 /// successors which also pass the block filter. It will attempt to avoid
1586 /// breaking CFG structure, but cave and break such structures in the case of
1587 /// very hot successor edges.
1588 ///
1589 /// \returns The best successor block found, or null if none are viable, along
1590 /// with a boolean indicating if tail duplication is necessary.
1591 MachineBlockPlacement::BlockAndTailDupResult
1592 MachineBlockPlacement::selectBestSuccessor(
1593     const MachineBasicBlock *BB, const BlockChain &Chain,
1594     const BlockFilterSet *BlockFilter) {
1595   const BranchProbability HotProb(StaticLikelyProb, 100);
1596 
1597   BlockAndTailDupResult BestSucc = { nullptr, false };
1598   auto BestProb = BranchProbability::getZero();
1599 
1600   SmallVector<MachineBasicBlock *, 4> Successors;
1601   auto AdjustedSumProb =
1602       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1603 
1604   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1605                     << "\n");
1606 
1607   // if we already precomputed the best successor for BB, return that if still
1608   // applicable.
1609   auto FoundEdge = ComputedEdges.find(BB);
1610   if (FoundEdge != ComputedEdges.end()) {
1611     MachineBasicBlock *Succ = FoundEdge->second.BB;
1612     ComputedEdges.erase(FoundEdge);
1613     BlockChain *SuccChain = BlockToChain[Succ];
1614     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1615         SuccChain != &Chain && Succ == *SuccChain->begin())
1616       return FoundEdge->second;
1617   }
1618 
1619   // if BB is part of a trellis, Use the trellis to determine the optimal
1620   // fallthrough edges
1621   if (isTrellis(BB, Successors, Chain, BlockFilter))
1622     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1623                                    BlockFilter);
1624 
1625   // For blocks with CFG violations, we may be able to lay them out anyway with
1626   // tail-duplication. We keep this vector so we can perform the probability
1627   // calculations the minimum number of times.
1628   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1629       DupCandidates;
1630   for (MachineBasicBlock *Succ : Successors) {
1631     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1632     BranchProbability SuccProb =
1633         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1634 
1635     BlockChain &SuccChain = *BlockToChain[Succ];
1636     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1637     // predecessor that yields lower global cost.
1638     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1639                                    Chain, BlockFilter)) {
1640       // If tail duplication would make Succ profitable, place it.
1641       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1642         DupCandidates.emplace_back(SuccProb, Succ);
1643       continue;
1644     }
1645 
1646     LLVM_DEBUG(
1647         dbgs() << "    Candidate: " << getBlockName(Succ)
1648                << ", probability: " << SuccProb
1649                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1650                << "\n");
1651 
1652     if (BestSucc.BB && BestProb >= SuccProb) {
1653       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1654       continue;
1655     }
1656 
1657     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1658     BestSucc.BB = Succ;
1659     BestProb = SuccProb;
1660   }
1661   // Handle the tail duplication candidates in order of decreasing probability.
1662   // Stop at the first one that is profitable. Also stop if they are less
1663   // profitable than BestSucc. Position is important because we preserve it and
1664   // prefer first best match. Here we aren't comparing in order, so we capture
1665   // the position instead.
1666   llvm::stable_sort(DupCandidates,
1667                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1668                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1669                       return std::get<0>(L) > std::get<0>(R);
1670                     });
1671   for (auto &Tup : DupCandidates) {
1672     BranchProbability DupProb;
1673     MachineBasicBlock *Succ;
1674     std::tie(DupProb, Succ) = Tup;
1675     if (DupProb < BestProb)
1676       break;
1677     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1678         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1679       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1680                         << ", probability: " << DupProb
1681                         << " (Tail Duplicate)\n");
1682       BestSucc.BB = Succ;
1683       BestSucc.ShouldTailDup = true;
1684       break;
1685     }
1686   }
1687 
1688   if (BestSucc.BB)
1689     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1690 
1691   return BestSucc;
1692 }
1693 
1694 /// Select the best block from a worklist.
1695 ///
1696 /// This looks through the provided worklist as a list of candidate basic
1697 /// blocks and select the most profitable one to place. The definition of
1698 /// profitable only really makes sense in the context of a loop. This returns
1699 /// the most frequently visited block in the worklist, which in the case of
1700 /// a loop, is the one most desirable to be physically close to the rest of the
1701 /// loop body in order to improve i-cache behavior.
1702 ///
1703 /// \returns The best block found, or null if none are viable.
1704 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1705     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1706   // Once we need to walk the worklist looking for a candidate, cleanup the
1707   // worklist of already placed entries.
1708   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1709   // some code complexity) into the loop below.
1710   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1711     return BlockToChain.lookup(BB) == &Chain;
1712   });
1713 
1714   if (WorkList.empty())
1715     return nullptr;
1716 
1717   bool IsEHPad = WorkList[0]->isEHPad();
1718 
1719   MachineBasicBlock *BestBlock = nullptr;
1720   BlockFrequency BestFreq;
1721   for (MachineBasicBlock *MBB : WorkList) {
1722     assert(MBB->isEHPad() == IsEHPad &&
1723            "EHPad mismatch between block and work list.");
1724 
1725     BlockChain &SuccChain = *BlockToChain[MBB];
1726     if (&SuccChain == &Chain)
1727       continue;
1728 
1729     assert(SuccChain.UnscheduledPredecessors == 0 &&
1730            "Found CFG-violating block");
1731 
1732     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1733     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1734                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1735 
1736     // For ehpad, we layout the least probable first as to avoid jumping back
1737     // from least probable landingpads to more probable ones.
1738     //
1739     // FIXME: Using probability is probably (!) not the best way to achieve
1740     // this. We should probably have a more principled approach to layout
1741     // cleanup code.
1742     //
1743     // The goal is to get:
1744     //
1745     //                 +--------------------------+
1746     //                 |                          V
1747     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1748     //
1749     // Rather than:
1750     //
1751     //                 +-------------------------------------+
1752     //                 V                                     |
1753     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1754     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1755       continue;
1756 
1757     BestBlock = MBB;
1758     BestFreq = CandidateFreq;
1759   }
1760 
1761   return BestBlock;
1762 }
1763 
1764 /// Retrieve the first unplaced basic block.
1765 ///
1766 /// This routine is called when we are unable to use the CFG to walk through
1767 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1768 /// We walk through the function's blocks in order, starting from the
1769 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1770 /// re-scanning the entire sequence on repeated calls to this routine.
1771 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1772     const BlockChain &PlacedChain,
1773     MachineFunction::iterator &PrevUnplacedBlockIt,
1774     const BlockFilterSet *BlockFilter) {
1775   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1776        ++I) {
1777     if (BlockFilter && !BlockFilter->count(&*I))
1778       continue;
1779     if (BlockToChain[&*I] != &PlacedChain) {
1780       PrevUnplacedBlockIt = I;
1781       // Now select the head of the chain to which the unplaced block belongs
1782       // as the block to place. This will force the entire chain to be placed,
1783       // and satisfies the requirements of merging chains.
1784       return *BlockToChain[&*I]->begin();
1785     }
1786   }
1787   return nullptr;
1788 }
1789 
1790 void MachineBlockPlacement::fillWorkLists(
1791     const MachineBasicBlock *MBB,
1792     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1793     const BlockFilterSet *BlockFilter = nullptr) {
1794   BlockChain &Chain = *BlockToChain[MBB];
1795   if (!UpdatedPreds.insert(&Chain).second)
1796     return;
1797 
1798   assert(
1799       Chain.UnscheduledPredecessors == 0 &&
1800       "Attempting to place block with unscheduled predecessors in worklist.");
1801   for (MachineBasicBlock *ChainBB : Chain) {
1802     assert(BlockToChain[ChainBB] == &Chain &&
1803            "Block in chain doesn't match BlockToChain map.");
1804     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1805       if (BlockFilter && !BlockFilter->count(Pred))
1806         continue;
1807       if (BlockToChain[Pred] == &Chain)
1808         continue;
1809       ++Chain.UnscheduledPredecessors;
1810     }
1811   }
1812 
1813   if (Chain.UnscheduledPredecessors != 0)
1814     return;
1815 
1816   MachineBasicBlock *BB = *Chain.begin();
1817   if (BB->isEHPad())
1818     EHPadWorkList.push_back(BB);
1819   else
1820     BlockWorkList.push_back(BB);
1821 }
1822 
1823 void MachineBlockPlacement::buildChain(
1824     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1825     BlockFilterSet *BlockFilter) {
1826   assert(HeadBB && "BB must not be null.\n");
1827   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1828   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1829 
1830   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1831   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1832   MachineBasicBlock *BB = *std::prev(Chain.end());
1833   while (true) {
1834     assert(BB && "null block found at end of chain in loop.");
1835     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1836     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1837 
1838 
1839     // Look for the best viable successor if there is one to place immediately
1840     // after this block.
1841     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1842     MachineBasicBlock* BestSucc = Result.BB;
1843     bool ShouldTailDup = Result.ShouldTailDup;
1844     if (allowTailDupPlacement())
1845       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1846                                                                   Chain,
1847                                                                   BlockFilter));
1848 
1849     // If an immediate successor isn't available, look for the best viable
1850     // block among those we've identified as not violating the loop's CFG at
1851     // this point. This won't be a fallthrough, but it will increase locality.
1852     if (!BestSucc)
1853       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1854     if (!BestSucc)
1855       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1856 
1857     if (!BestSucc) {
1858       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1859       if (!BestSucc)
1860         break;
1861 
1862       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1863                            "layout successor until the CFG reduces\n");
1864     }
1865 
1866     // Placement may have changed tail duplication opportunities.
1867     // Check for that now.
1868     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1869       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1870                                        BlockFilter, PrevUnplacedBlockIt);
1871       // If the chosen successor was duplicated into BB, don't bother laying
1872       // it out, just go round the loop again with BB as the chain end.
1873       if (!BB->isSuccessor(BestSucc))
1874         continue;
1875     }
1876 
1877     // Place this block, updating the datastructures to reflect its placement.
1878     BlockChain &SuccChain = *BlockToChain[BestSucc];
1879     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1880     // we selected a successor that didn't fit naturally into the CFG.
1881     SuccChain.UnscheduledPredecessors = 0;
1882     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1883                       << getBlockName(BestSucc) << "\n");
1884     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1885     Chain.merge(BestSucc, &SuccChain);
1886     BB = *std::prev(Chain.end());
1887   }
1888 
1889   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1890                     << getBlockName(*Chain.begin()) << "\n");
1891 }
1892 
1893 // If bottom of block BB has only one successor OldTop, in most cases it is
1894 // profitable to move it before OldTop, except the following case:
1895 //
1896 //     -->OldTop<-
1897 //     |    .    |
1898 //     |    .    |
1899 //     |    .    |
1900 //     ---Pred   |
1901 //          |    |
1902 //         BB-----
1903 //
1904 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1905 // layout the other successor below it, so it can't reduce taken branch.
1906 // In this case we keep its original layout.
1907 bool
1908 MachineBlockPlacement::canMoveBottomBlockToTop(
1909     const MachineBasicBlock *BottomBlock,
1910     const MachineBasicBlock *OldTop) {
1911   if (BottomBlock->pred_size() != 1)
1912     return true;
1913   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1914   if (Pred->succ_size() != 2)
1915     return true;
1916 
1917   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1918   if (OtherBB == BottomBlock)
1919     OtherBB = *Pred->succ_rbegin();
1920   if (OtherBB == OldTop)
1921     return false;
1922 
1923   return true;
1924 }
1925 
1926 // Find out the possible fall through frequence to the top of a loop.
1927 BlockFrequency
1928 MachineBlockPlacement::TopFallThroughFreq(
1929     const MachineBasicBlock *Top,
1930     const BlockFilterSet &LoopBlockSet) {
1931   BlockFrequency MaxFreq = 0;
1932   for (MachineBasicBlock *Pred : Top->predecessors()) {
1933     BlockChain *PredChain = BlockToChain[Pred];
1934     if (!LoopBlockSet.count(Pred) &&
1935         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1936       // Found a Pred block can be placed before Top.
1937       // Check if Top is the best successor of Pred.
1938       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1939       bool TopOK = true;
1940       for (MachineBasicBlock *Succ : Pred->successors()) {
1941         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1942         BlockChain *SuccChain = BlockToChain[Succ];
1943         // Check if Succ can be placed after Pred.
1944         // Succ should not be in any chain, or it is the head of some chain.
1945         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1946             (!SuccChain || Succ == *SuccChain->begin())) {
1947           TopOK = false;
1948           break;
1949         }
1950       }
1951       if (TopOK) {
1952         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1953                                   MBPI->getEdgeProbability(Pred, Top);
1954         if (EdgeFreq > MaxFreq)
1955           MaxFreq = EdgeFreq;
1956       }
1957     }
1958   }
1959   return MaxFreq;
1960 }
1961 
1962 // Compute the fall through gains when move NewTop before OldTop.
1963 //
1964 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1965 // marked as "+" are increased fallthrough, this function computes
1966 //
1967 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1968 //
1969 //              |
1970 //              | -
1971 //              V
1972 //        --->OldTop
1973 //        |     .
1974 //        |     .
1975 //       +|     .    +
1976 //        |   Pred --->
1977 //        |     |-
1978 //        |     V
1979 //        --- NewTop <---
1980 //              |-
1981 //              V
1982 //
1983 BlockFrequency
1984 MachineBlockPlacement::FallThroughGains(
1985     const MachineBasicBlock *NewTop,
1986     const MachineBasicBlock *OldTop,
1987     const MachineBasicBlock *ExitBB,
1988     const BlockFilterSet &LoopBlockSet) {
1989   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1990   BlockFrequency FallThrough2Exit = 0;
1991   if (ExitBB)
1992     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1993         MBPI->getEdgeProbability(NewTop, ExitBB);
1994   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1995       MBPI->getEdgeProbability(NewTop, OldTop);
1996 
1997   // Find the best Pred of NewTop.
1998    MachineBasicBlock *BestPred = nullptr;
1999    BlockFrequency FallThroughFromPred = 0;
2000    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2001      if (!LoopBlockSet.count(Pred))
2002        continue;
2003      BlockChain *PredChain = BlockToChain[Pred];
2004      if (!PredChain || Pred == *std::prev(PredChain->end())) {
2005        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
2006            MBPI->getEdgeProbability(Pred, NewTop);
2007        if (EdgeFreq > FallThroughFromPred) {
2008          FallThroughFromPred = EdgeFreq;
2009          BestPred = Pred;
2010        }
2011      }
2012    }
2013 
2014    // If NewTop is not placed after Pred, another successor can be placed
2015    // after Pred.
2016    BlockFrequency NewFreq = 0;
2017    if (BestPred) {
2018      for (MachineBasicBlock *Succ : BestPred->successors()) {
2019        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2020          continue;
2021        if (ComputedEdges.find(Succ) != ComputedEdges.end())
2022          continue;
2023        BlockChain *SuccChain = BlockToChain[Succ];
2024        if ((SuccChain && (Succ != *SuccChain->begin())) ||
2025            (SuccChain == BlockToChain[BestPred]))
2026          continue;
2027        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2028            MBPI->getEdgeProbability(BestPred, Succ);
2029        if (EdgeFreq > NewFreq)
2030          NewFreq = EdgeFreq;
2031      }
2032      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2033          MBPI->getEdgeProbability(BestPred, NewTop);
2034      if (NewFreq > OrigEdgeFreq) {
2035        // If NewTop is not the best successor of Pred, then Pred doesn't
2036        // fallthrough to NewTop. So there is no FallThroughFromPred and
2037        // NewFreq.
2038        NewFreq = 0;
2039        FallThroughFromPred = 0;
2040      }
2041    }
2042 
2043    BlockFrequency Result = 0;
2044    BlockFrequency Gains = BackEdgeFreq + NewFreq;
2045    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2046        FallThroughFromPred;
2047    if (Gains > Lost)
2048      Result = Gains - Lost;
2049    return Result;
2050 }
2051 
2052 /// Helper function of findBestLoopTop. Find the best loop top block
2053 /// from predecessors of old top.
2054 ///
2055 /// Look for a block which is strictly better than the old top for laying
2056 /// out before the old top of the loop. This looks for only two patterns:
2057 ///
2058 ///     1. a block has only one successor, the old loop top
2059 ///
2060 ///        Because such a block will always result in an unconditional jump,
2061 ///        rotating it in front of the old top is always profitable.
2062 ///
2063 ///     2. a block has two successors, one is old top, another is exit
2064 ///        and it has more than one predecessors
2065 ///
2066 ///        If it is below one of its predecessors P, only P can fall through to
2067 ///        it, all other predecessors need a jump to it, and another conditional
2068 ///        jump to loop header. If it is moved before loop header, all its
2069 ///        predecessors jump to it, then fall through to loop header. So all its
2070 ///        predecessors except P can reduce one taken branch.
2071 ///        At the same time, move it before old top increases the taken branch
2072 ///        to loop exit block, so the reduced taken branch will be compared with
2073 ///        the increased taken branch to the loop exit block.
2074 MachineBasicBlock *
2075 MachineBlockPlacement::findBestLoopTopHelper(
2076     MachineBasicBlock *OldTop,
2077     const MachineLoop &L,
2078     const BlockFilterSet &LoopBlockSet) {
2079   // Check that the header hasn't been fused with a preheader block due to
2080   // crazy branches. If it has, we need to start with the header at the top to
2081   // prevent pulling the preheader into the loop body.
2082   BlockChain &HeaderChain = *BlockToChain[OldTop];
2083   if (!LoopBlockSet.count(*HeaderChain.begin()))
2084     return OldTop;
2085   if (OldTop != *HeaderChain.begin())
2086     return OldTop;
2087 
2088   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2089                     << "\n");
2090 
2091   BlockFrequency BestGains = 0;
2092   MachineBasicBlock *BestPred = nullptr;
2093   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2094     if (!LoopBlockSet.count(Pred))
2095       continue;
2096     if (Pred == L.getHeader())
2097       continue;
2098     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2099                       << Pred->succ_size() << " successors, ";
2100                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2101     if (Pred->succ_size() > 2)
2102       continue;
2103 
2104     MachineBasicBlock *OtherBB = nullptr;
2105     if (Pred->succ_size() == 2) {
2106       OtherBB = *Pred->succ_begin();
2107       if (OtherBB == OldTop)
2108         OtherBB = *Pred->succ_rbegin();
2109     }
2110 
2111     if (!canMoveBottomBlockToTop(Pred, OldTop))
2112       continue;
2113 
2114     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2115                                             LoopBlockSet);
2116     if ((Gains > 0) && (Gains > BestGains ||
2117         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2118       BestPred = Pred;
2119       BestGains = Gains;
2120     }
2121   }
2122 
2123   // If no direct predecessor is fine, just use the loop header.
2124   if (!BestPred) {
2125     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2126     return OldTop;
2127   }
2128 
2129   // Walk backwards through any straight line of predecessors.
2130   while (BestPred->pred_size() == 1 &&
2131          (*BestPred->pred_begin())->succ_size() == 1 &&
2132          *BestPred->pred_begin() != L.getHeader())
2133     BestPred = *BestPred->pred_begin();
2134 
2135   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2136   return BestPred;
2137 }
2138 
2139 /// Find the best loop top block for layout.
2140 ///
2141 /// This function iteratively calls findBestLoopTopHelper, until no new better
2142 /// BB can be found.
2143 MachineBasicBlock *
2144 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2145                                        const BlockFilterSet &LoopBlockSet) {
2146   // Placing the latch block before the header may introduce an extra branch
2147   // that skips this block the first time the loop is executed, which we want
2148   // to avoid when optimising for size.
2149   // FIXME: in theory there is a case that does not introduce a new branch,
2150   // i.e. when the layout predecessor does not fallthrough to the loop header.
2151   // In practice this never happens though: there always seems to be a preheader
2152   // that can fallthrough and that is also placed before the header.
2153   bool OptForSize = F->getFunction().hasOptSize() ||
2154                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2155   if (OptForSize)
2156     return L.getHeader();
2157 
2158   MachineBasicBlock *OldTop = nullptr;
2159   MachineBasicBlock *NewTop = L.getHeader();
2160   while (NewTop != OldTop) {
2161     OldTop = NewTop;
2162     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2163     if (NewTop != OldTop)
2164       ComputedEdges[NewTop] = { OldTop, false };
2165   }
2166   return NewTop;
2167 }
2168 
2169 /// Find the best loop exiting block for layout.
2170 ///
2171 /// This routine implements the logic to analyze the loop looking for the best
2172 /// block to layout at the top of the loop. Typically this is done to maximize
2173 /// fallthrough opportunities.
2174 MachineBasicBlock *
2175 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2176                                         const BlockFilterSet &LoopBlockSet,
2177                                         BlockFrequency &ExitFreq) {
2178   // We don't want to layout the loop linearly in all cases. If the loop header
2179   // is just a normal basic block in the loop, we want to look for what block
2180   // within the loop is the best one to layout at the top. However, if the loop
2181   // header has be pre-merged into a chain due to predecessors not having
2182   // analyzable branches, *and* the predecessor it is merged with is *not* part
2183   // of the loop, rotating the header into the middle of the loop will create
2184   // a non-contiguous range of blocks which is Very Bad. So start with the
2185   // header and only rotate if safe.
2186   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2187   if (!LoopBlockSet.count(*HeaderChain.begin()))
2188     return nullptr;
2189 
2190   BlockFrequency BestExitEdgeFreq;
2191   unsigned BestExitLoopDepth = 0;
2192   MachineBasicBlock *ExitingBB = nullptr;
2193   // If there are exits to outer loops, loop rotation can severely limit
2194   // fallthrough opportunities unless it selects such an exit. Keep a set of
2195   // blocks where rotating to exit with that block will reach an outer loop.
2196   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2197 
2198   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2199                     << getBlockName(L.getHeader()) << "\n");
2200   for (MachineBasicBlock *MBB : L.getBlocks()) {
2201     BlockChain &Chain = *BlockToChain[MBB];
2202     // Ensure that this block is at the end of a chain; otherwise it could be
2203     // mid-way through an inner loop or a successor of an unanalyzable branch.
2204     if (MBB != *std::prev(Chain.end()))
2205       continue;
2206 
2207     // Now walk the successors. We need to establish whether this has a viable
2208     // exiting successor and whether it has a viable non-exiting successor.
2209     // We store the old exiting state and restore it if a viable looping
2210     // successor isn't found.
2211     MachineBasicBlock *OldExitingBB = ExitingBB;
2212     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2213     bool HasLoopingSucc = false;
2214     for (MachineBasicBlock *Succ : MBB->successors()) {
2215       if (Succ->isEHPad())
2216         continue;
2217       if (Succ == MBB)
2218         continue;
2219       BlockChain &SuccChain = *BlockToChain[Succ];
2220       // Don't split chains, either this chain or the successor's chain.
2221       if (&Chain == &SuccChain) {
2222         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2223                           << getBlockName(Succ) << " (chain conflict)\n");
2224         continue;
2225       }
2226 
2227       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2228       if (LoopBlockSet.count(Succ)) {
2229         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2230                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2231         HasLoopingSucc = true;
2232         continue;
2233       }
2234 
2235       unsigned SuccLoopDepth = 0;
2236       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2237         SuccLoopDepth = ExitLoop->getLoopDepth();
2238         if (ExitLoop->contains(&L))
2239           BlocksExitingToOuterLoop.insert(MBB);
2240       }
2241 
2242       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2243       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2244                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2245                         << "] (";
2246                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2247       // Note that we bias this toward an existing layout successor to retain
2248       // incoming order in the absence of better information. The exit must have
2249       // a frequency higher than the current exit before we consider breaking
2250       // the layout.
2251       BranchProbability Bias(100 - ExitBlockBias, 100);
2252       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2253           ExitEdgeFreq > BestExitEdgeFreq ||
2254           (MBB->isLayoutSuccessor(Succ) &&
2255            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2256         BestExitEdgeFreq = ExitEdgeFreq;
2257         ExitingBB = MBB;
2258       }
2259     }
2260 
2261     if (!HasLoopingSucc) {
2262       // Restore the old exiting state, no viable looping successor was found.
2263       ExitingBB = OldExitingBB;
2264       BestExitEdgeFreq = OldBestExitEdgeFreq;
2265     }
2266   }
2267   // Without a candidate exiting block or with only a single block in the
2268   // loop, just use the loop header to layout the loop.
2269   if (!ExitingBB) {
2270     LLVM_DEBUG(
2271         dbgs() << "    No other candidate exit blocks, using loop header\n");
2272     return nullptr;
2273   }
2274   if (L.getNumBlocks() == 1) {
2275     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2276     return nullptr;
2277   }
2278 
2279   // Also, if we have exit blocks which lead to outer loops but didn't select
2280   // one of them as the exiting block we are rotating toward, disable loop
2281   // rotation altogether.
2282   if (!BlocksExitingToOuterLoop.empty() &&
2283       !BlocksExitingToOuterLoop.count(ExitingBB))
2284     return nullptr;
2285 
2286   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2287                     << "\n");
2288   ExitFreq = BestExitEdgeFreq;
2289   return ExitingBB;
2290 }
2291 
2292 /// Check if there is a fallthrough to loop header Top.
2293 ///
2294 ///   1. Look for a Pred that can be layout before Top.
2295 ///   2. Check if Top is the most possible successor of Pred.
2296 bool
2297 MachineBlockPlacement::hasViableTopFallthrough(
2298     const MachineBasicBlock *Top,
2299     const BlockFilterSet &LoopBlockSet) {
2300   for (MachineBasicBlock *Pred : Top->predecessors()) {
2301     BlockChain *PredChain = BlockToChain[Pred];
2302     if (!LoopBlockSet.count(Pred) &&
2303         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2304       // Found a Pred block can be placed before Top.
2305       // Check if Top is the best successor of Pred.
2306       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2307       bool TopOK = true;
2308       for (MachineBasicBlock *Succ : Pred->successors()) {
2309         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2310         BlockChain *SuccChain = BlockToChain[Succ];
2311         // Check if Succ can be placed after Pred.
2312         // Succ should not be in any chain, or it is the head of some chain.
2313         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2314           TopOK = false;
2315           break;
2316         }
2317       }
2318       if (TopOK)
2319         return true;
2320     }
2321   }
2322   return false;
2323 }
2324 
2325 /// Attempt to rotate an exiting block to the bottom of the loop.
2326 ///
2327 /// Once we have built a chain, try to rotate it to line up the hot exit block
2328 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2329 /// branches. For example, if the loop has fallthrough into its header and out
2330 /// of its bottom already, don't rotate it.
2331 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2332                                        const MachineBasicBlock *ExitingBB,
2333                                        BlockFrequency ExitFreq,
2334                                        const BlockFilterSet &LoopBlockSet) {
2335   if (!ExitingBB)
2336     return;
2337 
2338   MachineBasicBlock *Top = *LoopChain.begin();
2339   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2340 
2341   // If ExitingBB is already the last one in a chain then nothing to do.
2342   if (Bottom == ExitingBB)
2343     return;
2344 
2345   // The entry block should always be the first BB in a function.
2346   if (Top->isEntryBlock())
2347     return;
2348 
2349   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2350 
2351   // If the header has viable fallthrough, check whether the current loop
2352   // bottom is a viable exiting block. If so, bail out as rotating will
2353   // introduce an unnecessary branch.
2354   if (ViableTopFallthrough) {
2355     for (MachineBasicBlock *Succ : Bottom->successors()) {
2356       BlockChain *SuccChain = BlockToChain[Succ];
2357       if (!LoopBlockSet.count(Succ) &&
2358           (!SuccChain || Succ == *SuccChain->begin()))
2359         return;
2360     }
2361 
2362     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2363     // frequency is larger than top fallthrough.
2364     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2365     if (FallThrough2Top >= ExitFreq)
2366       return;
2367   }
2368 
2369   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2370   if (ExitIt == LoopChain.end())
2371     return;
2372 
2373   // Rotating a loop exit to the bottom when there is a fallthrough to top
2374   // trades the entry fallthrough for an exit fallthrough.
2375   // If there is no bottom->top edge, but the chosen exit block does have
2376   // a fallthrough, we break that fallthrough for nothing in return.
2377 
2378   // Let's consider an example. We have a built chain of basic blocks
2379   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2380   // By doing a rotation we get
2381   // Bk+1, ..., Bn, B1, ..., Bk
2382   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2383   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2384   // It might be compensated by fallthrough Bn -> B1.
2385   // So we have a condition to avoid creation of extra branch by loop rotation.
2386   // All below must be true to avoid loop rotation:
2387   //   If there is a fallthrough to top (B1)
2388   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2389   //   There is no fallthrough from bottom (Bn) to top (B1).
2390   // Please note that there is no exit fallthrough from Bn because we checked it
2391   // above.
2392   if (ViableTopFallthrough) {
2393     assert(std::next(ExitIt) != LoopChain.end() &&
2394            "Exit should not be last BB");
2395     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2396     if (ExitingBB->isSuccessor(NextBlockInChain))
2397       if (!Bottom->isSuccessor(Top))
2398         return;
2399   }
2400 
2401   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2402                     << " at bottom\n");
2403   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2404 }
2405 
2406 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2407 ///
2408 /// With profile data, we can determine the cost in terms of missed fall through
2409 /// opportunities when rotating a loop chain and select the best rotation.
2410 /// Basically, there are three kinds of cost to consider for each rotation:
2411 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2412 ///    the loop to the loop header.
2413 ///    2. The possibly missed fall through edges (if they exist) from the loop
2414 ///    exits to BB out of the loop.
2415 ///    3. The missed fall through edge (if it exists) from the last BB to the
2416 ///    first BB in the loop chain.
2417 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2418 ///  We select the best rotation with the smallest cost.
2419 void MachineBlockPlacement::rotateLoopWithProfile(
2420     BlockChain &LoopChain, const MachineLoop &L,
2421     const BlockFilterSet &LoopBlockSet) {
2422   auto RotationPos = LoopChain.end();
2423   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2424 
2425   // The entry block should always be the first BB in a function.
2426   if (ChainHeaderBB->isEntryBlock())
2427     return;
2428 
2429   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2430 
2431   // A utility lambda that scales up a block frequency by dividing it by a
2432   // branch probability which is the reciprocal of the scale.
2433   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2434                                 unsigned Scale) -> BlockFrequency {
2435     if (Scale == 0)
2436       return 0;
2437     // Use operator / between BlockFrequency and BranchProbability to implement
2438     // saturating multiplication.
2439     return Freq / BranchProbability(1, Scale);
2440   };
2441 
2442   // Compute the cost of the missed fall-through edge to the loop header if the
2443   // chain head is not the loop header. As we only consider natural loops with
2444   // single header, this computation can be done only once.
2445   BlockFrequency HeaderFallThroughCost(0);
2446   for (auto *Pred : ChainHeaderBB->predecessors()) {
2447     BlockChain *PredChain = BlockToChain[Pred];
2448     if (!LoopBlockSet.count(Pred) &&
2449         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2450       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2451           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2452       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2453       // If the predecessor has only an unconditional jump to the header, we
2454       // need to consider the cost of this jump.
2455       if (Pred->succ_size() == 1)
2456         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2457       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2458     }
2459   }
2460 
2461   // Here we collect all exit blocks in the loop, and for each exit we find out
2462   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2463   // as the sum of frequencies of exit edges we collect here, excluding the exit
2464   // edge from the tail of the loop chain.
2465   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2466   for (auto *BB : LoopChain) {
2467     auto LargestExitEdgeProb = BranchProbability::getZero();
2468     for (auto *Succ : BB->successors()) {
2469       BlockChain *SuccChain = BlockToChain[Succ];
2470       if (!LoopBlockSet.count(Succ) &&
2471           (!SuccChain || Succ == *SuccChain->begin())) {
2472         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2473         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2474       }
2475     }
2476     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2477       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2478       ExitsWithFreq.emplace_back(BB, ExitFreq);
2479     }
2480   }
2481 
2482   // In this loop we iterate every block in the loop chain and calculate the
2483   // cost assuming the block is the head of the loop chain. When the loop ends,
2484   // we should have found the best candidate as the loop chain's head.
2485   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2486             EndIter = LoopChain.end();
2487        Iter != EndIter; Iter++, TailIter++) {
2488     // TailIter is used to track the tail of the loop chain if the block we are
2489     // checking (pointed by Iter) is the head of the chain.
2490     if (TailIter == LoopChain.end())
2491       TailIter = LoopChain.begin();
2492 
2493     auto TailBB = *TailIter;
2494 
2495     // Calculate the cost by putting this BB to the top.
2496     BlockFrequency Cost = 0;
2497 
2498     // If the current BB is the loop header, we need to take into account the
2499     // cost of the missed fall through edge from outside of the loop to the
2500     // header.
2501     if (Iter != LoopChain.begin())
2502       Cost += HeaderFallThroughCost;
2503 
2504     // Collect the loop exit cost by summing up frequencies of all exit edges
2505     // except the one from the chain tail.
2506     for (auto &ExitWithFreq : ExitsWithFreq)
2507       if (TailBB != ExitWithFreq.first)
2508         Cost += ExitWithFreq.second;
2509 
2510     // The cost of breaking the once fall-through edge from the tail to the top
2511     // of the loop chain. Here we need to consider three cases:
2512     // 1. If the tail node has only one successor, then we will get an
2513     //    additional jmp instruction. So the cost here is (MisfetchCost +
2514     //    JumpInstCost) * tail node frequency.
2515     // 2. If the tail node has two successors, then we may still get an
2516     //    additional jmp instruction if the layout successor after the loop
2517     //    chain is not its CFG successor. Note that the more frequently executed
2518     //    jmp instruction will be put ahead of the other one. Assume the
2519     //    frequency of those two branches are x and y, where x is the frequency
2520     //    of the edge to the chain head, then the cost will be
2521     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2522     // 3. If the tail node has more than two successors (this rarely happens),
2523     //    we won't consider any additional cost.
2524     if (TailBB->isSuccessor(*Iter)) {
2525       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2526       if (TailBB->succ_size() == 1)
2527         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2528                                     MisfetchCost + JumpInstCost);
2529       else if (TailBB->succ_size() == 2) {
2530         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2531         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2532         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2533                                   ? TailBBFreq * TailToHeadProb.getCompl()
2534                                   : TailToHeadFreq;
2535         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2536                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2537       }
2538     }
2539 
2540     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2541                       << getBlockName(*Iter)
2542                       << " to the top: " << Cost.getFrequency() << "\n");
2543 
2544     if (Cost < SmallestRotationCost) {
2545       SmallestRotationCost = Cost;
2546       RotationPos = Iter;
2547     }
2548   }
2549 
2550   if (RotationPos != LoopChain.end()) {
2551     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2552                       << " to the top\n");
2553     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2554   }
2555 }
2556 
2557 /// Collect blocks in the given loop that are to be placed.
2558 ///
2559 /// When profile data is available, exclude cold blocks from the returned set;
2560 /// otherwise, collect all blocks in the loop.
2561 MachineBlockPlacement::BlockFilterSet
2562 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2563   BlockFilterSet LoopBlockSet;
2564 
2565   // Filter cold blocks off from LoopBlockSet when profile data is available.
2566   // Collect the sum of frequencies of incoming edges to the loop header from
2567   // outside. If we treat the loop as a super block, this is the frequency of
2568   // the loop. Then for each block in the loop, we calculate the ratio between
2569   // its frequency and the frequency of the loop block. When it is too small,
2570   // don't add it to the loop chain. If there are outer loops, then this block
2571   // will be merged into the first outer loop chain for which this block is not
2572   // cold anymore. This needs precise profile data and we only do this when
2573   // profile data is available.
2574   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2575     BlockFrequency LoopFreq(0);
2576     for (auto *LoopPred : L.getHeader()->predecessors())
2577       if (!L.contains(LoopPred))
2578         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2579                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2580 
2581     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2582       if (LoopBlockSet.count(LoopBB))
2583         continue;
2584       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2585       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2586         continue;
2587       BlockChain *Chain = BlockToChain[LoopBB];
2588       for (MachineBasicBlock *ChainBB : *Chain)
2589         LoopBlockSet.insert(ChainBB);
2590     }
2591   } else
2592     LoopBlockSet.insert(L.block_begin(), L.block_end());
2593 
2594   return LoopBlockSet;
2595 }
2596 
2597 /// Forms basic block chains from the natural loop structures.
2598 ///
2599 /// These chains are designed to preserve the existing *structure* of the code
2600 /// as much as possible. We can then stitch the chains together in a way which
2601 /// both preserves the topological structure and minimizes taken conditional
2602 /// branches.
2603 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2604   // First recurse through any nested loops, building chains for those inner
2605   // loops.
2606   for (const MachineLoop *InnerLoop : L)
2607     buildLoopChains(*InnerLoop);
2608 
2609   assert(BlockWorkList.empty() &&
2610          "BlockWorkList not empty when starting to build loop chains.");
2611   assert(EHPadWorkList.empty() &&
2612          "EHPadWorkList not empty when starting to build loop chains.");
2613   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2614 
2615   // Check if we have profile data for this function. If yes, we will rotate
2616   // this loop by modeling costs more precisely which requires the profile data
2617   // for better layout.
2618   bool RotateLoopWithProfile =
2619       ForcePreciseRotationCost ||
2620       (PreciseRotationCost && F->getFunction().hasProfileData());
2621 
2622   // First check to see if there is an obviously preferable top block for the
2623   // loop. This will default to the header, but may end up as one of the
2624   // predecessors to the header if there is one which will result in strictly
2625   // fewer branches in the loop body.
2626   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2627 
2628   // If we selected just the header for the loop top, look for a potentially
2629   // profitable exit block in the event that rotating the loop can eliminate
2630   // branches by placing an exit edge at the bottom.
2631   //
2632   // Loops are processed innermost to uttermost, make sure we clear
2633   // PreferredLoopExit before processing a new loop.
2634   PreferredLoopExit = nullptr;
2635   BlockFrequency ExitFreq;
2636   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2637     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2638 
2639   BlockChain &LoopChain = *BlockToChain[LoopTop];
2640 
2641   // FIXME: This is a really lame way of walking the chains in the loop: we
2642   // walk the blocks, and use a set to prevent visiting a particular chain
2643   // twice.
2644   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2645   assert(LoopChain.UnscheduledPredecessors == 0 &&
2646          "LoopChain should not have unscheduled predecessors.");
2647   UpdatedPreds.insert(&LoopChain);
2648 
2649   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2650     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2651 
2652   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2653 
2654   if (RotateLoopWithProfile)
2655     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2656   else
2657     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2658 
2659   LLVM_DEBUG({
2660     // Crash at the end so we get all of the debugging output first.
2661     bool BadLoop = false;
2662     if (LoopChain.UnscheduledPredecessors) {
2663       BadLoop = true;
2664       dbgs() << "Loop chain contains a block without its preds placed!\n"
2665              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2666              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2667     }
2668     for (MachineBasicBlock *ChainBB : LoopChain) {
2669       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2670       if (!LoopBlockSet.remove(ChainBB)) {
2671         // We don't mark the loop as bad here because there are real situations
2672         // where this can occur. For example, with an unanalyzable fallthrough
2673         // from a loop block to a non-loop block or vice versa.
2674         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2675                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2676                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2677                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2678       }
2679     }
2680 
2681     if (!LoopBlockSet.empty()) {
2682       BadLoop = true;
2683       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2684         dbgs() << "Loop contains blocks never placed into a chain!\n"
2685                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2686                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2687                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2688     }
2689     assert(!BadLoop && "Detected problems with the placement of this loop.");
2690   });
2691 
2692   BlockWorkList.clear();
2693   EHPadWorkList.clear();
2694 }
2695 
2696 void MachineBlockPlacement::buildCFGChains() {
2697   // Ensure that every BB in the function has an associated chain to simplify
2698   // the assumptions of the remaining algorithm.
2699   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2700   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2701        ++FI) {
2702     MachineBasicBlock *BB = &*FI;
2703     BlockChain *Chain =
2704         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2705     // Also, merge any blocks which we cannot reason about and must preserve
2706     // the exact fallthrough behavior for.
2707     while (true) {
2708       Cond.clear();
2709       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2710       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2711         break;
2712 
2713       MachineFunction::iterator NextFI = std::next(FI);
2714       MachineBasicBlock *NextBB = &*NextFI;
2715       // Ensure that the layout successor is a viable block, as we know that
2716       // fallthrough is a possibility.
2717       assert(NextFI != FE && "Can't fallthrough past the last block.");
2718       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2719                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2720                         << "\n");
2721       Chain->merge(NextBB, nullptr);
2722 #ifndef NDEBUG
2723       BlocksWithUnanalyzableExits.insert(&*BB);
2724 #endif
2725       FI = NextFI;
2726       BB = NextBB;
2727     }
2728   }
2729 
2730   // Build any loop-based chains.
2731   PreferredLoopExit = nullptr;
2732   for (MachineLoop *L : *MLI)
2733     buildLoopChains(*L);
2734 
2735   assert(BlockWorkList.empty() &&
2736          "BlockWorkList should be empty before building final chain.");
2737   assert(EHPadWorkList.empty() &&
2738          "EHPadWorkList should be empty before building final chain.");
2739 
2740   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2741   for (MachineBasicBlock &MBB : *F)
2742     fillWorkLists(&MBB, UpdatedPreds);
2743 
2744   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2745   buildChain(&F->front(), FunctionChain);
2746 
2747 #ifndef NDEBUG
2748   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2749 #endif
2750   LLVM_DEBUG({
2751     // Crash at the end so we get all of the debugging output first.
2752     bool BadFunc = false;
2753     FunctionBlockSetType FunctionBlockSet;
2754     for (MachineBasicBlock &MBB : *F)
2755       FunctionBlockSet.insert(&MBB);
2756 
2757     for (MachineBasicBlock *ChainBB : FunctionChain)
2758       if (!FunctionBlockSet.erase(ChainBB)) {
2759         BadFunc = true;
2760         dbgs() << "Function chain contains a block not in the function!\n"
2761                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2762       }
2763 
2764     if (!FunctionBlockSet.empty()) {
2765       BadFunc = true;
2766       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2767         dbgs() << "Function contains blocks never placed into a chain!\n"
2768                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2769     }
2770     assert(!BadFunc && "Detected problems with the block placement.");
2771   });
2772 
2773   // Remember original layout ordering, so we can update terminators after
2774   // reordering to point to the original layout successor.
2775   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2776       F->getNumBlockIDs());
2777   {
2778     MachineBasicBlock *LastMBB = nullptr;
2779     for (auto &MBB : *F) {
2780       if (LastMBB != nullptr)
2781         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2782       LastMBB = &MBB;
2783     }
2784     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2785   }
2786 
2787   // Splice the blocks into place.
2788   MachineFunction::iterator InsertPos = F->begin();
2789   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2790   for (MachineBasicBlock *ChainBB : FunctionChain) {
2791     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2792                                                             : "          ... ")
2793                       << getBlockName(ChainBB) << "\n");
2794     if (InsertPos != MachineFunction::iterator(ChainBB))
2795       F->splice(InsertPos, ChainBB);
2796     else
2797       ++InsertPos;
2798 
2799     // Update the terminator of the previous block.
2800     if (ChainBB == *FunctionChain.begin())
2801       continue;
2802     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2803 
2804     // FIXME: It would be awesome of updateTerminator would just return rather
2805     // than assert when the branch cannot be analyzed in order to remove this
2806     // boiler plate.
2807     Cond.clear();
2808     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2809 
2810 #ifndef NDEBUG
2811     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2812       // Given the exact block placement we chose, we may actually not _need_ to
2813       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2814       // do that at this point is a bug.
2815       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2816               !PrevBB->canFallThrough()) &&
2817              "Unexpected block with un-analyzable fallthrough!");
2818       Cond.clear();
2819       TBB = FBB = nullptr;
2820     }
2821 #endif
2822 
2823     // The "PrevBB" is not yet updated to reflect current code layout, so,
2824     //   o. it may fall-through to a block without explicit "goto" instruction
2825     //      before layout, and no longer fall-through it after layout; or
2826     //   o. just opposite.
2827     //
2828     // analyzeBranch() may return erroneous value for FBB when these two
2829     // situations take place. For the first scenario FBB is mistakenly set NULL;
2830     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2831     // mistakenly pointing to "*BI".
2832     // Thus, if the future change needs to use FBB before the layout is set, it
2833     // has to correct FBB first by using the code similar to the following:
2834     //
2835     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2836     //   PrevBB->updateTerminator();
2837     //   Cond.clear();
2838     //   TBB = FBB = nullptr;
2839     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2840     //     // FIXME: This should never take place.
2841     //     TBB = FBB = nullptr;
2842     //   }
2843     // }
2844     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2845       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2846     }
2847   }
2848 
2849   // Fixup the last block.
2850   Cond.clear();
2851   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2852   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2853     MachineBasicBlock *PrevBB = &F->back();
2854     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2855   }
2856 
2857   BlockWorkList.clear();
2858   EHPadWorkList.clear();
2859 }
2860 
2861 void MachineBlockPlacement::optimizeBranches() {
2862   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2863   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2864 
2865   // Now that all the basic blocks in the chain have the proper layout,
2866   // make a final call to analyzeBranch with AllowModify set.
2867   // Indeed, the target may be able to optimize the branches in a way we
2868   // cannot because all branches may not be analyzable.
2869   // E.g., the target may be able to remove an unconditional branch to
2870   // a fallthrough when it occurs after predicated terminators.
2871   for (MachineBasicBlock *ChainBB : FunctionChain) {
2872     Cond.clear();
2873     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2874     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2875       // If PrevBB has a two-way branch, try to re-order the branches
2876       // such that we branch to the successor with higher probability first.
2877       if (TBB && !Cond.empty() && FBB &&
2878           MBPI->getEdgeProbability(ChainBB, FBB) >
2879               MBPI->getEdgeProbability(ChainBB, TBB) &&
2880           !TII->reverseBranchCondition(Cond)) {
2881         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2882                           << getBlockName(ChainBB) << "\n");
2883         LLVM_DEBUG(dbgs() << "    Edge probability: "
2884                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2885                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2886         DebugLoc dl; // FIXME: this is nowhere
2887         TII->removeBranch(*ChainBB);
2888         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2889       }
2890     }
2891   }
2892 }
2893 
2894 void MachineBlockPlacement::alignBlocks() {
2895   // Walk through the backedges of the function now that we have fully laid out
2896   // the basic blocks and align the destination of each backedge. We don't rely
2897   // exclusively on the loop info here so that we can align backedges in
2898   // unnatural CFGs and backedges that were introduced purely because of the
2899   // loop rotations done during this layout pass.
2900   if (F->getFunction().hasMinSize() ||
2901       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2902     return;
2903   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2904   if (FunctionChain.begin() == FunctionChain.end())
2905     return; // Empty chain.
2906 
2907   const BranchProbability ColdProb(1, 5); // 20%
2908   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2909   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2910   for (MachineBasicBlock *ChainBB : FunctionChain) {
2911     if (ChainBB == *FunctionChain.begin())
2912       continue;
2913 
2914     // Don't align non-looping basic blocks. These are unlikely to execute
2915     // enough times to matter in practice. Note that we'll still handle
2916     // unnatural CFGs inside of a natural outer loop (the common case) and
2917     // rotated loops.
2918     MachineLoop *L = MLI->getLoopFor(ChainBB);
2919     if (!L)
2920       continue;
2921 
2922     const Align Align = TLI->getPrefLoopAlignment(L);
2923     if (Align == 1)
2924       continue; // Don't care about loop alignment.
2925 
2926     // If the block is cold relative to the function entry don't waste space
2927     // aligning it.
2928     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2929     if (Freq < WeightedEntryFreq)
2930       continue;
2931 
2932     // If the block is cold relative to its loop header, don't align it
2933     // regardless of what edges into the block exist.
2934     MachineBasicBlock *LoopHeader = L->getHeader();
2935     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2936     if (Freq < (LoopHeaderFreq * ColdProb))
2937       continue;
2938 
2939     // If the global profiles indicates so, don't align it.
2940     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2941         !TLI->alignLoopsWithOptSize())
2942       continue;
2943 
2944     // Check for the existence of a non-layout predecessor which would benefit
2945     // from aligning this block.
2946     MachineBasicBlock *LayoutPred =
2947         &*std::prev(MachineFunction::iterator(ChainBB));
2948 
2949     auto DetermineMaxAlignmentPadding = [&]() {
2950       // Set the maximum bytes allowed to be emitted for alignment.
2951       unsigned MaxBytes;
2952       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2953         MaxBytes = MaxBytesForAlignmentOverride;
2954       else
2955         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
2956       ChainBB->setMaxBytesForAlignment(MaxBytes);
2957     };
2958 
2959     // Force alignment if all the predecessors are jumps. We already checked
2960     // that the block isn't cold above.
2961     if (!LayoutPred->isSuccessor(ChainBB)) {
2962       ChainBB->setAlignment(Align);
2963       DetermineMaxAlignmentPadding();
2964       continue;
2965     }
2966 
2967     // Align this block if the layout predecessor's edge into this block is
2968     // cold relative to the block. When this is true, other predecessors make up
2969     // all of the hot entries into the block and thus alignment is likely to be
2970     // important.
2971     BranchProbability LayoutProb =
2972         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2973     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2974     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2975       ChainBB->setAlignment(Align);
2976       DetermineMaxAlignmentPadding();
2977     }
2978   }
2979 }
2980 
2981 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2982 /// it was duplicated into its chain predecessor and removed.
2983 /// \p BB    - Basic block that may be duplicated.
2984 ///
2985 /// \p LPred - Chosen layout predecessor of \p BB.
2986 ///            Updated to be the chain end if LPred is removed.
2987 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2988 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2989 ///                  Used to identify which blocks to update predecessor
2990 ///                  counts.
2991 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2992 ///                          chosen in the given order due to unnatural CFG
2993 ///                          only needed if \p BB is removed and
2994 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2995 /// @return true if \p BB was removed.
2996 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2997     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2998     const MachineBasicBlock *LoopHeaderBB,
2999     BlockChain &Chain, BlockFilterSet *BlockFilter,
3000     MachineFunction::iterator &PrevUnplacedBlockIt) {
3001   bool Removed, DuplicatedToLPred;
3002   bool DuplicatedToOriginalLPred;
3003   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
3004                                     PrevUnplacedBlockIt,
3005                                     DuplicatedToLPred);
3006   if (!Removed)
3007     return false;
3008   DuplicatedToOriginalLPred = DuplicatedToLPred;
3009   // Iteratively try to duplicate again. It can happen that a block that is
3010   // duplicated into is still small enough to be duplicated again.
3011   // No need to call markBlockSuccessors in this case, as the blocks being
3012   // duplicated from here on are already scheduled.
3013   while (DuplicatedToLPred && Removed) {
3014     MachineBasicBlock *DupBB, *DupPred;
3015     // The removal callback causes Chain.end() to be updated when a block is
3016     // removed. On the first pass through the loop, the chain end should be the
3017     // same as it was on function entry. On subsequent passes, because we are
3018     // duplicating the block at the end of the chain, if it is removed the
3019     // chain will have shrunk by one block.
3020     BlockChain::iterator ChainEnd = Chain.end();
3021     DupBB = *(--ChainEnd);
3022     // Now try to duplicate again.
3023     if (ChainEnd == Chain.begin())
3024       break;
3025     DupPred = *std::prev(ChainEnd);
3026     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
3027                                       PrevUnplacedBlockIt,
3028                                       DuplicatedToLPred);
3029   }
3030   // If BB was duplicated into LPred, it is now scheduled. But because it was
3031   // removed, markChainSuccessors won't be called for its chain. Instead we
3032   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3033   // at the end because repeating the tail duplication can increase the number
3034   // of unscheduled predecessors.
3035   LPred = *std::prev(Chain.end());
3036   if (DuplicatedToOriginalLPred)
3037     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3038   return true;
3039 }
3040 
3041 /// Tail duplicate \p BB into (some) predecessors if profitable.
3042 /// \p BB    - Basic block that may be duplicated
3043 /// \p LPred - Chosen layout predecessor of \p BB
3044 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3045 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3046 ///                  Used to identify which blocks to update predecessor
3047 ///                  counts.
3048 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3049 ///                          chosen in the given order due to unnatural CFG
3050 ///                          only needed if \p BB is removed and
3051 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3052 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3053 /// \return  - True if the block was duplicated into all preds and removed.
3054 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3055     MachineBasicBlock *BB, MachineBasicBlock *LPred,
3056     BlockChain &Chain, BlockFilterSet *BlockFilter,
3057     MachineFunction::iterator &PrevUnplacedBlockIt,
3058     bool &DuplicatedToLPred) {
3059   DuplicatedToLPred = false;
3060   if (!shouldTailDuplicate(BB))
3061     return false;
3062 
3063   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3064                     << "\n");
3065 
3066   // This has to be a callback because none of it can be done after
3067   // BB is deleted.
3068   bool Removed = false;
3069   auto RemovalCallback =
3070       [&](MachineBasicBlock *RemBB) {
3071         // Signal to outer function
3072         Removed = true;
3073 
3074         // Conservative default.
3075         bool InWorkList = true;
3076         // Remove from the Chain and Chain Map
3077         if (BlockToChain.count(RemBB)) {
3078           BlockChain *Chain = BlockToChain[RemBB];
3079           InWorkList = Chain->UnscheduledPredecessors == 0;
3080           Chain->remove(RemBB);
3081           BlockToChain.erase(RemBB);
3082         }
3083 
3084         // Handle the unplaced block iterator
3085         if (&(*PrevUnplacedBlockIt) == RemBB) {
3086           PrevUnplacedBlockIt++;
3087         }
3088 
3089         // Handle the Work Lists
3090         if (InWorkList) {
3091           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3092           if (RemBB->isEHPad())
3093             RemoveList = EHPadWorkList;
3094           llvm::erase_value(RemoveList, RemBB);
3095         }
3096 
3097         // Handle the filter set
3098         if (BlockFilter) {
3099           BlockFilter->remove(RemBB);
3100         }
3101 
3102         // Remove the block from loop info.
3103         MLI->removeBlock(RemBB);
3104         if (RemBB == PreferredLoopExit)
3105           PreferredLoopExit = nullptr;
3106 
3107         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3108                           << getBlockName(RemBB) << "\n");
3109       };
3110   auto RemovalCallbackRef =
3111       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3112 
3113   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3114   bool IsSimple = TailDup.isSimpleBB(BB);
3115   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3116   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3117   if (F->getFunction().hasProfileData()) {
3118     // We can do partial duplication with precise profile information.
3119     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3120     if (CandidatePreds.size() == 0)
3121       return false;
3122     if (CandidatePreds.size() < BB->pred_size())
3123       CandidatePtr = &CandidatePreds;
3124   }
3125   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3126                                  &RemovalCallbackRef, CandidatePtr);
3127 
3128   // Update UnscheduledPredecessors to reflect tail-duplication.
3129   DuplicatedToLPred = false;
3130   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3131     // We're only looking for unscheduled predecessors that match the filter.
3132     BlockChain* PredChain = BlockToChain[Pred];
3133     if (Pred == LPred)
3134       DuplicatedToLPred = true;
3135     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3136         || PredChain == &Chain)
3137       continue;
3138     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3139       if (BlockFilter && !BlockFilter->count(NewSucc))
3140         continue;
3141       BlockChain *NewChain = BlockToChain[NewSucc];
3142       if (NewChain != &Chain && NewChain != PredChain)
3143         NewChain->UnscheduledPredecessors++;
3144     }
3145   }
3146   return Removed;
3147 }
3148 
3149 // Count the number of actual machine instructions.
3150 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3151   uint64_t InstrCount = 0;
3152   for (MachineInstr &MI : *MBB) {
3153     if (!MI.isPHI() && !MI.isMetaInstruction())
3154       InstrCount += 1;
3155   }
3156   return InstrCount;
3157 }
3158 
3159 // The size cost of duplication is the instruction size of the duplicated block.
3160 // So we should scale the threshold accordingly. But the instruction size is not
3161 // available on all targets, so we use the number of instructions instead.
3162 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3163   return DupThreshold.getFrequency() * countMBBInstruction(BB);
3164 }
3165 
3166 // Returns true if BB is Pred's best successor.
3167 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3168                                             MachineBasicBlock *Pred,
3169                                             BlockFilterSet *BlockFilter) {
3170   if (BB == Pred)
3171     return false;
3172   if (BlockFilter && !BlockFilter->count(Pred))
3173     return false;
3174   BlockChain *PredChain = BlockToChain[Pred];
3175   if (PredChain && (Pred != *std::prev(PredChain->end())))
3176     return false;
3177 
3178   // Find the successor with largest probability excluding BB.
3179   BranchProbability BestProb = BranchProbability::getZero();
3180   for (MachineBasicBlock *Succ : Pred->successors())
3181     if (Succ != BB) {
3182       if (BlockFilter && !BlockFilter->count(Succ))
3183         continue;
3184       BlockChain *SuccChain = BlockToChain[Succ];
3185       if (SuccChain && (Succ != *SuccChain->begin()))
3186         continue;
3187       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3188       if (SuccProb > BestProb)
3189         BestProb = SuccProb;
3190     }
3191 
3192   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3193   if (BBProb <= BestProb)
3194     return false;
3195 
3196   // Compute the number of reduced taken branches if Pred falls through to BB
3197   // instead of another successor. Then compare it with threshold.
3198   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3199   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3200   return Gain > scaleThreshold(BB);
3201 }
3202 
3203 // Find out the predecessors of BB and BB can be beneficially duplicated into
3204 // them.
3205 void MachineBlockPlacement::findDuplicateCandidates(
3206     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3207     MachineBasicBlock *BB,
3208     BlockFilterSet *BlockFilter) {
3209   MachineBasicBlock *Fallthrough = nullptr;
3210   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3211   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3212   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3213   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3214 
3215   // Sort for highest frequency.
3216   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3217     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3218   };
3219   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3220     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3221   };
3222   llvm::stable_sort(Succs, CmpSucc);
3223   llvm::stable_sort(Preds, CmpPred);
3224 
3225   auto SuccIt = Succs.begin();
3226   if (SuccIt != Succs.end()) {
3227     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3228   }
3229 
3230   // For each predecessors of BB, compute the benefit of duplicating BB,
3231   // if it is larger than the threshold, add it into Candidates.
3232   //
3233   // If we have following control flow.
3234   //
3235   //     PB1 PB2 PB3 PB4
3236   //      \   |  /    /\
3237   //       \  | /    /  \
3238   //        \ |/    /    \
3239   //         BB----/     OB
3240   //         /\
3241   //        /  \
3242   //      SB1 SB2
3243   //
3244   // And it can be partially duplicated as
3245   //
3246   //   PB2+BB
3247   //      |  PB1 PB3 PB4
3248   //      |   |  /    /\
3249   //      |   | /    /  \
3250   //      |   |/    /    \
3251   //      |  BB----/     OB
3252   //      |\ /|
3253   //      | X |
3254   //      |/ \|
3255   //     SB2 SB1
3256   //
3257   // The benefit of duplicating into a predecessor is defined as
3258   //         Orig_taken_branch - Duplicated_taken_branch
3259   //
3260   // The Orig_taken_branch is computed with the assumption that predecessor
3261   // jumps to BB and the most possible successor is laid out after BB.
3262   //
3263   // The Duplicated_taken_branch is computed with the assumption that BB is
3264   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3265   // SB2 for PB2 in our case). If there is no available successor, the combined
3266   // block jumps to all BB's successor, like PB3 in this example.
3267   //
3268   // If a predecessor has multiple successors, so BB can't be duplicated into
3269   // it. But it can beneficially fall through to BB, and duplicate BB into other
3270   // predecessors.
3271   for (MachineBasicBlock *Pred : Preds) {
3272     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3273 
3274     if (!TailDup.canTailDuplicate(BB, Pred)) {
3275       // BB can't be duplicated into Pred, but it is possible to be layout
3276       // below Pred.
3277       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3278         Fallthrough = Pred;
3279         if (SuccIt != Succs.end())
3280           SuccIt++;
3281       }
3282       continue;
3283     }
3284 
3285     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3286     BlockFrequency DupCost;
3287     if (SuccIt == Succs.end()) {
3288       // Jump to all successors;
3289       if (Succs.size() > 0)
3290         DupCost += PredFreq;
3291     } else {
3292       // Fallthrough to *SuccIt, jump to all other successors;
3293       DupCost += PredFreq;
3294       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3295     }
3296 
3297     assert(OrigCost >= DupCost);
3298     OrigCost -= DupCost;
3299     if (OrigCost > BBDupThreshold) {
3300       Candidates.push_back(Pred);
3301       if (SuccIt != Succs.end())
3302         SuccIt++;
3303     }
3304   }
3305 
3306   // No predecessors can optimally fallthrough to BB.
3307   // So we can change one duplication into fallthrough.
3308   if (!Fallthrough) {
3309     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3310       Candidates[0] = Candidates.back();
3311       Candidates.pop_back();
3312     }
3313   }
3314 }
3315 
3316 void MachineBlockPlacement::initDupThreshold() {
3317   DupThreshold = 0;
3318   if (!F->getFunction().hasProfileData())
3319     return;
3320 
3321   // We prefer to use prifile count.
3322   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3323   if (HotThreshold != UINT64_MAX) {
3324     UseProfileCount = true;
3325     DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3326     return;
3327   }
3328 
3329   // Profile count is not available, we can use block frequency instead.
3330   BlockFrequency MaxFreq = 0;
3331   for (MachineBasicBlock &MBB : *F) {
3332     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3333     if (Freq > MaxFreq)
3334       MaxFreq = Freq;
3335   }
3336 
3337   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3338   DupThreshold = MaxFreq * ThresholdProb;
3339   UseProfileCount = false;
3340 }
3341 
3342 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3343   if (skipFunction(MF.getFunction()))
3344     return false;
3345 
3346   // Check for single-block functions and skip them.
3347   if (std::next(MF.begin()) == MF.end())
3348     return false;
3349 
3350   F = &MF;
3351   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3352   MBFI = std::make_unique<MBFIWrapper>(
3353       getAnalysis<MachineBlockFrequencyInfo>());
3354   MLI = &getAnalysis<MachineLoopInfo>();
3355   TII = MF.getSubtarget().getInstrInfo();
3356   TLI = MF.getSubtarget().getTargetLowering();
3357   MPDT = nullptr;
3358   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3359 
3360   initDupThreshold();
3361 
3362   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3363   // there are no MachineLoops.
3364   PreferredLoopExit = nullptr;
3365 
3366   assert(BlockToChain.empty() &&
3367          "BlockToChain map should be empty before starting placement.");
3368   assert(ComputedEdges.empty() &&
3369          "Computed Edge map should be empty before starting placement.");
3370 
3371   unsigned TailDupSize = TailDupPlacementThreshold;
3372   // If only the aggressive threshold is explicitly set, use it.
3373   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3374       TailDupPlacementThreshold.getNumOccurrences() == 0)
3375     TailDupSize = TailDupPlacementAggressiveThreshold;
3376 
3377   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3378   // For aggressive optimization, we can adjust some thresholds to be less
3379   // conservative.
3380   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3381     // At O3 we should be more willing to copy blocks for tail duplication. This
3382     // increases size pressure, so we only do it at O3
3383     // Do this unless only the regular threshold is explicitly set.
3384     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3385         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3386       TailDupSize = TailDupPlacementAggressiveThreshold;
3387   }
3388 
3389   // If there's no threshold provided through options, query the target
3390   // information for a threshold instead.
3391   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3392       (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3393        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3394     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3395 
3396   if (allowTailDupPlacement()) {
3397     MPDT = &getAnalysis<MachinePostDominatorTree>();
3398     bool OptForSize = MF.getFunction().hasOptSize() ||
3399                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3400     if (OptForSize)
3401       TailDupSize = 1;
3402     bool PreRegAlloc = false;
3403     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3404                    /* LayoutMode */ true, TailDupSize);
3405     precomputeTriangleChains();
3406   }
3407 
3408   buildCFGChains();
3409 
3410   // Changing the layout can create new tail merging opportunities.
3411   // TailMerge can create jump into if branches that make CFG irreducible for
3412   // HW that requires structured CFG.
3413   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3414                          PassConfig->getEnableTailMerge() &&
3415                          BranchFoldPlacement;
3416   // No tail merging opportunities if the block number is less than four.
3417   if (MF.size() > 3 && EnableTailMerge) {
3418     unsigned TailMergeSize = TailDupSize + 1;
3419     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3420                     *MBFI, *MBPI, PSI, TailMergeSize);
3421 
3422     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3423                             /*AfterPlacement=*/true)) {
3424       // Redo the layout if tail merging creates/removes/moves blocks.
3425       BlockToChain.clear();
3426       ComputedEdges.clear();
3427       // Must redo the post-dominator tree if blocks were changed.
3428       if (MPDT)
3429         MPDT->runOnMachineFunction(MF);
3430       ChainAllocator.DestroyAll();
3431       buildCFGChains();
3432     }
3433   }
3434 
3435   // Apply a post-processing optimizing block placement.
3436   if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3437       (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) {
3438     // Find a new placement and modify the layout of the blocks in the function.
3439     applyExtTsp();
3440 
3441     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3442     createCFGChainExtTsp();
3443   }
3444 
3445   optimizeBranches();
3446   alignBlocks();
3447 
3448   BlockToChain.clear();
3449   ComputedEdges.clear();
3450   ChainAllocator.DestroyAll();
3451 
3452   bool HasMaxBytesOverride =
3453       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3454 
3455   if (AlignAllBlock)
3456     // Align all of the blocks in the function to a specific alignment.
3457     for (MachineBasicBlock &MBB : MF) {
3458       if (HasMaxBytesOverride)
3459         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3460                          MaxBytesForAlignmentOverride);
3461       else
3462         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3463     }
3464   else if (AlignAllNonFallThruBlocks) {
3465     // Align all of the blocks that have no fall-through predecessors to a
3466     // specific alignment.
3467     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3468       auto LayoutPred = std::prev(MBI);
3469       if (!LayoutPred->isSuccessor(&*MBI)) {
3470         if (HasMaxBytesOverride)
3471           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3472                             MaxBytesForAlignmentOverride);
3473         else
3474           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3475       }
3476     }
3477   }
3478   if (ViewBlockLayoutWithBFI != GVDT_None &&
3479       (ViewBlockFreqFuncName.empty() ||
3480        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3481     if (RenumberBlocksBeforeView)
3482       MF.RenumberBlocks();
3483     MBFI->view("MBP." + MF.getName(), false);
3484   }
3485 
3486   // We always return true as we have no way to track whether the final order
3487   // differs from the original order.
3488   return true;
3489 }
3490 
3491 void MachineBlockPlacement::applyExtTsp() {
3492   // Prepare data; blocks are indexed by their index in the current ordering.
3493   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3494   BlockIndex.reserve(F->size());
3495   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3496   CurrentBlockOrder.reserve(F->size());
3497   size_t NumBlocks = 0;
3498   for (const MachineBasicBlock &MBB : *F) {
3499     BlockIndex[&MBB] = NumBlocks++;
3500     CurrentBlockOrder.push_back(&MBB);
3501   }
3502 
3503   auto BlockSizes = std::vector<uint64_t>(F->size());
3504   auto BlockCounts = std::vector<uint64_t>(F->size());
3505   std::vector<EdgeCountT> JumpCounts;
3506   for (MachineBasicBlock &MBB : *F) {
3507     // Getting the block frequency.
3508     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3509     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3510     // Getting the block size:
3511     // - approximate the size of an instruction by 4 bytes, and
3512     // - ignore debug instructions.
3513     // Note: getting the exact size of each block is target-dependent and can be
3514     // done by extending the interface of MCCodeEmitter. Experimentally we do
3515     // not see a perf improvement with the exact block sizes.
3516     auto NonDbgInsts =
3517         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3518     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3519     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3520     // Getting jump frequencies.
3521     for (MachineBasicBlock *Succ : MBB.successors()) {
3522       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3523       BlockFrequency JumpFreq = BlockFreq * EP;
3524       auto Jump = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3525       JumpCounts.push_back(std::make_pair(Jump, JumpFreq.getFrequency()));
3526     }
3527   }
3528 
3529   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3530                     << " with profile = " << F->getFunction().hasProfileData()
3531                     << " (" << F->getName().str() << ")"
3532                     << "\n");
3533   LLVM_DEBUG(
3534       dbgs() << format("  original  layout score: %0.2f\n",
3535                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3536 
3537   // Run the layout algorithm.
3538   auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3539   std::vector<const MachineBasicBlock *> NewBlockOrder;
3540   NewBlockOrder.reserve(F->size());
3541   for (uint64_t Node : NewOrder) {
3542     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3543   }
3544   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3545                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3546                                               JumpCounts)));
3547 
3548   // Assign new block order.
3549   assignBlockOrder(NewBlockOrder);
3550 }
3551 
3552 void MachineBlockPlacement::assignBlockOrder(
3553     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3554   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3555   F->RenumberBlocks();
3556 
3557   bool HasChanges = false;
3558   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3559     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3560       HasChanges = true;
3561       break;
3562     }
3563   }
3564   // Stop early if the new block order is identical to the existing one.
3565   if (!HasChanges)
3566     return;
3567 
3568   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3569   for (auto &MBB : *F) {
3570     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3571   }
3572 
3573   // Sort basic blocks in the function according to the computed order.
3574   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3575   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3576     NewIndex[MBB] = NewIndex.size();
3577   }
3578   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3579     return NewIndex[&L] < NewIndex[&R];
3580   });
3581 
3582   // Update basic block branches by inserting explicit fallthrough branches
3583   // when required and re-optimize branches when possible.
3584   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3585   SmallVector<MachineOperand, 4> Cond;
3586   for (auto &MBB : *F) {
3587     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3588     MachineFunction::iterator EndIt = MBB.getParent()->end();
3589     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3590     // If this block had a fallthrough before we need an explicit unconditional
3591     // branch to that block if the fallthrough block is not adjacent to the
3592     // block in the new order.
3593     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3594       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3595     }
3596 
3597     // It might be possible to optimize branches by flipping the condition.
3598     Cond.clear();
3599     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3600     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3601       continue;
3602     MBB.updateTerminator(FTMBB);
3603   }
3604 
3605 #ifndef NDEBUG
3606   // Make sure we correctly constructed all branches.
3607   F->verify(this, "After optimized block reordering");
3608 #endif
3609 }
3610 
3611 void MachineBlockPlacement::createCFGChainExtTsp() {
3612   BlockToChain.clear();
3613   ComputedEdges.clear();
3614   ChainAllocator.DestroyAll();
3615 
3616   MachineBasicBlock *HeadBB = &F->front();
3617   BlockChain *FunctionChain =
3618       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3619 
3620   for (MachineBasicBlock &MBB : *F) {
3621     if (HeadBB == &MBB)
3622       continue; // Ignore head of the chain
3623     FunctionChain->merge(&MBB, nullptr);
3624   }
3625 }
3626 
3627 namespace {
3628 
3629 /// A pass to compute block placement statistics.
3630 ///
3631 /// A separate pass to compute interesting statistics for evaluating block
3632 /// placement. This is separate from the actual placement pass so that they can
3633 /// be computed in the absence of any placement transformations or when using
3634 /// alternative placement strategies.
3635 class MachineBlockPlacementStats : public MachineFunctionPass {
3636   /// A handle to the branch probability pass.
3637   const MachineBranchProbabilityInfo *MBPI;
3638 
3639   /// A handle to the function-wide block frequency pass.
3640   const MachineBlockFrequencyInfo *MBFI;
3641 
3642 public:
3643   static char ID; // Pass identification, replacement for typeid
3644 
3645   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3646     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3647   }
3648 
3649   bool runOnMachineFunction(MachineFunction &F) override;
3650 
3651   void getAnalysisUsage(AnalysisUsage &AU) const override {
3652     AU.addRequired<MachineBranchProbabilityInfo>();
3653     AU.addRequired<MachineBlockFrequencyInfo>();
3654     AU.setPreservesAll();
3655     MachineFunctionPass::getAnalysisUsage(AU);
3656   }
3657 };
3658 
3659 } // end anonymous namespace
3660 
3661 char MachineBlockPlacementStats::ID = 0;
3662 
3663 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3664 
3665 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3666                       "Basic Block Placement Stats", false, false)
3667 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3668 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3669 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3670                     "Basic Block Placement Stats", false, false)
3671 
3672 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3673   // Check for single-block functions and skip them.
3674   if (std::next(F.begin()) == F.end())
3675     return false;
3676 
3677   if (!isFunctionInPrintList(F.getName()))
3678     return false;
3679 
3680   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3681   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3682 
3683   for (MachineBasicBlock &MBB : F) {
3684     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3685     Statistic &NumBranches =
3686         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3687     Statistic &BranchTakenFreq =
3688         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3689     for (MachineBasicBlock *Succ : MBB.successors()) {
3690       // Skip if this successor is a fallthrough.
3691       if (MBB.isLayoutSuccessor(Succ))
3692         continue;
3693 
3694       BlockFrequency EdgeFreq =
3695           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3696       ++NumBranches;
3697       BranchTakenFreq += EdgeFreq.getFrequency();
3698     }
3699   }
3700 
3701   return false;
3702 }
3703