1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Allocator.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "block-placement" 74 75 STATISTIC(NumCondBranches, "Number of conditional branches"); 76 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 77 STATISTIC(CondBranchTakenFreq, 78 "Potential frequency of taking conditional branches"); 79 STATISTIC(UncondBranchTakenFreq, 80 "Potential frequency of taking unconditional branches"); 81 82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 83 cl::desc("Force the alignment of all " 84 "blocks in the function."), 85 cl::init(0), cl::Hidden); 86 87 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 88 "align-all-nofallthru-blocks", 89 cl::desc("Force the alignment of all " 90 "blocks that have no fall-through predecessors (i.e. don't add " 91 "nops that are executed)."), 92 cl::init(0), cl::Hidden); 93 94 // FIXME: Find a good default for this flag and remove the flag. 95 static cl::opt<unsigned> ExitBlockBias( 96 "block-placement-exit-block-bias", 97 cl::desc("Block frequency percentage a loop exit block needs " 98 "over the original exit to be considered the new exit."), 99 cl::init(0), cl::Hidden); 100 101 // Definition: 102 // - Outlining: placement of a basic block outside the chain or hot path. 103 104 static cl::opt<unsigned> LoopToColdBlockRatio( 105 "loop-to-cold-block-ratio", 106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 107 "(frequency of block) is greater than this ratio"), 108 cl::init(5), cl::Hidden); 109 110 static cl::opt<bool> ForceLoopColdBlock( 111 "force-loop-cold-block", 112 cl::desc("Force outlining cold blocks from loops."), 113 cl::init(false), cl::Hidden); 114 115 static cl::opt<bool> 116 PreciseRotationCost("precise-rotation-cost", 117 cl::desc("Model the cost of loop rotation more " 118 "precisely by using profile data."), 119 cl::init(false), cl::Hidden); 120 121 static cl::opt<bool> 122 ForcePreciseRotationCost("force-precise-rotation-cost", 123 cl::desc("Force the use of precise cost " 124 "loop rotation strategy."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<unsigned> MisfetchCost( 128 "misfetch-cost", 129 cl::desc("Cost that models the probabilistic risk of an instruction " 130 "misfetch due to a jump comparing to falling through, whose cost " 131 "is zero."), 132 cl::init(1), cl::Hidden); 133 134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 135 cl::desc("Cost of jump instructions."), 136 cl::init(1), cl::Hidden); 137 static cl::opt<bool> 138 TailDupPlacement("tail-dup-placement", 139 cl::desc("Perform tail duplication during placement. " 140 "Creates more fallthrough opportunites in " 141 "outline branches."), 142 cl::init(true), cl::Hidden); 143 144 static cl::opt<bool> 145 BranchFoldPlacement("branch-fold-placement", 146 cl::desc("Perform branch folding during placement. " 147 "Reduces code size."), 148 cl::init(true), cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementThreshold( 152 "tail-dup-placement-threshold", 153 cl::desc("Instruction cutoff for tail duplication during layout. " 154 "Tail merging during layout is forced to have a threshold " 155 "that won't conflict."), cl::init(2), 156 cl::Hidden); 157 158 // Heuristic for aggressive tail duplication. 159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 160 "tail-dup-placement-aggressive-threshold", 161 cl::desc("Instruction cutoff for aggressive tail duplication during " 162 "layout. Used at -O3. Tail merging during layout is forced to " 163 "have a threshold that won't conflict."), cl::init(4), 164 cl::Hidden); 165 166 // Heuristic for tail duplication. 167 static cl::opt<unsigned> TailDupPlacementPenalty( 168 "tail-dup-placement-penalty", 169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 170 "Copying can increase fallthrough, but it also increases icache " 171 "pressure. This parameter controls the penalty to account for that. " 172 "Percent as integer."), 173 cl::init(2), 174 cl::Hidden); 175 176 // Heuristic for triangle chains. 177 static cl::opt<unsigned> TriangleChainCount( 178 "triangle-chain-count", 179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 180 "triangle tail duplication heuristic to kick in. 0 to disable."), 181 cl::init(2), 182 cl::Hidden); 183 184 extern cl::opt<unsigned> StaticLikelyProb; 185 extern cl::opt<unsigned> ProfileLikelyProb; 186 187 // Internal option used to control BFI display only after MBP pass. 188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 189 // -view-block-layout-with-bfi= 190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 191 192 // Command line option to specify the name of the function for CFG dump 193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 194 extern cl::opt<std::string> ViewBlockFreqFuncName; 195 196 namespace { 197 198 class BlockChain; 199 200 /// Type for our function-wide basic block -> block chain mapping. 201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 202 203 /// A chain of blocks which will be laid out contiguously. 204 /// 205 /// This is the datastructure representing a chain of consecutive blocks that 206 /// are profitable to layout together in order to maximize fallthrough 207 /// probabilities and code locality. We also can use a block chain to represent 208 /// a sequence of basic blocks which have some external (correctness) 209 /// requirement for sequential layout. 210 /// 211 /// Chains can be built around a single basic block and can be merged to grow 212 /// them. They participate in a block-to-chain mapping, which is updated 213 /// automatically as chains are merged together. 214 class BlockChain { 215 /// The sequence of blocks belonging to this chain. 216 /// 217 /// This is the sequence of blocks for a particular chain. These will be laid 218 /// out in-order within the function. 219 SmallVector<MachineBasicBlock *, 4> Blocks; 220 221 /// A handle to the function-wide basic block to block chain mapping. 222 /// 223 /// This is retained in each block chain to simplify the computation of child 224 /// block chains for SCC-formation and iteration. We store the edges to child 225 /// basic blocks, and map them back to their associated chains using this 226 /// structure. 227 BlockToChainMapType &BlockToChain; 228 229 public: 230 /// Construct a new BlockChain. 231 /// 232 /// This builds a new block chain representing a single basic block in the 233 /// function. It also registers itself as the chain that block participates 234 /// in with the BlockToChain mapping. 235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 236 : Blocks(1, BB), BlockToChain(BlockToChain) { 237 assert(BB && "Cannot create a chain with a null basic block"); 238 BlockToChain[BB] = this; 239 } 240 241 /// Iterator over blocks within the chain. 242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 244 245 /// Beginning of blocks within the chain. 246 iterator begin() { return Blocks.begin(); } 247 const_iterator begin() const { return Blocks.begin(); } 248 249 /// End of blocks within the chain. 250 iterator end() { return Blocks.end(); } 251 const_iterator end() const { return Blocks.end(); } 252 253 bool remove(MachineBasicBlock* BB) { 254 for(iterator i = begin(); i != end(); ++i) { 255 if (*i == BB) { 256 Blocks.erase(i); 257 return true; 258 } 259 } 260 return false; 261 } 262 263 /// Merge a block chain into this one. 264 /// 265 /// This routine merges a block chain into this one. It takes care of forming 266 /// a contiguous sequence of basic blocks, updating the edge list, and 267 /// updating the block -> chain mapping. It does not free or tear down the 268 /// old chain, but the old chain's block list is no longer valid. 269 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 270 assert(BB && "Can't merge a null block."); 271 assert(!Blocks.empty() && "Can't merge into an empty chain."); 272 273 // Fast path in case we don't have a chain already. 274 if (!Chain) { 275 assert(!BlockToChain[BB] && 276 "Passed chain is null, but BB has entry in BlockToChain."); 277 Blocks.push_back(BB); 278 BlockToChain[BB] = this; 279 return; 280 } 281 282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 283 assert(Chain->begin() != Chain->end()); 284 285 // Update the incoming blocks to point to this chain, and add them to the 286 // chain structure. 287 for (MachineBasicBlock *ChainBB : *Chain) { 288 Blocks.push_back(ChainBB); 289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 290 BlockToChain[ChainBB] = this; 291 } 292 } 293 294 #ifndef NDEBUG 295 /// Dump the blocks in this chain. 296 LLVM_DUMP_METHOD void dump() { 297 for (MachineBasicBlock *MBB : *this) 298 MBB->dump(); 299 } 300 #endif // NDEBUG 301 302 /// Count of predecessors of any block within the chain which have not 303 /// yet been scheduled. In general, we will delay scheduling this chain 304 /// until those predecessors are scheduled (or we find a sufficiently good 305 /// reason to override this heuristic.) Note that when forming loop chains, 306 /// blocks outside the loop are ignored and treated as if they were already 307 /// scheduled. 308 /// 309 /// Note: This field is reinitialized multiple times - once for each loop, 310 /// and then once for the function as a whole. 311 unsigned UnscheduledPredecessors = 0; 312 }; 313 314 class MachineBlockPlacement : public MachineFunctionPass { 315 /// A type for a block filter set. 316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 317 318 /// Pair struct containing basic block and taildup profitability 319 struct BlockAndTailDupResult { 320 MachineBasicBlock *BB; 321 bool ShouldTailDup; 322 }; 323 324 /// Triple struct containing edge weight and the edge. 325 struct WeightedEdge { 326 BlockFrequency Weight; 327 MachineBasicBlock *Src; 328 MachineBasicBlock *Dest; 329 }; 330 331 /// work lists of blocks that are ready to be laid out 332 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 334 335 /// Edges that have already been computed as optimal. 336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 337 338 /// Machine Function 339 MachineFunction *F; 340 341 /// A handle to the branch probability pass. 342 const MachineBranchProbabilityInfo *MBPI; 343 344 /// A handle to the function-wide block frequency pass. 345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 346 347 /// A handle to the loop info. 348 MachineLoopInfo *MLI; 349 350 /// Preferred loop exit. 351 /// Member variable for convenience. It may be removed by duplication deep 352 /// in the call stack. 353 MachineBasicBlock *PreferredLoopExit; 354 355 /// A handle to the target's instruction info. 356 const TargetInstrInfo *TII; 357 358 /// A handle to the target's lowering info. 359 const TargetLoweringBase *TLI; 360 361 /// A handle to the post dominator tree. 362 MachinePostDominatorTree *MPDT; 363 364 /// Duplicator used to duplicate tails during placement. 365 /// 366 /// Placement decisions can open up new tail duplication opportunities, but 367 /// since tail duplication affects placement decisions of later blocks, it 368 /// must be done inline. 369 TailDuplicator TailDup; 370 371 /// Allocator and owner of BlockChain structures. 372 /// 373 /// We build BlockChains lazily while processing the loop structure of 374 /// a function. To reduce malloc traffic, we allocate them using this 375 /// slab-like allocator, and destroy them after the pass completes. An 376 /// important guarantee is that this allocator produces stable pointers to 377 /// the chains. 378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 379 380 /// Function wide BasicBlock to BlockChain mapping. 381 /// 382 /// This mapping allows efficiently moving from any given basic block to the 383 /// BlockChain it participates in, if any. We use it to, among other things, 384 /// allow implicitly defining edges between chains as the existing edges 385 /// between basic blocks. 386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 387 388 #ifndef NDEBUG 389 /// The set of basic blocks that have terminators that cannot be fully 390 /// analyzed. These basic blocks cannot be re-ordered safely by 391 /// MachineBlockPlacement, and we must preserve physical layout of these 392 /// blocks and their successors through the pass. 393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 394 #endif 395 396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 397 /// if the count goes to 0, add them to the appropriate work list. 398 void markChainSuccessors( 399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 400 const BlockFilterSet *BlockFilter = nullptr); 401 402 /// Decrease the UnscheduledPredecessors count for a single block, and 403 /// if the count goes to 0, add them to the appropriate work list. 404 void markBlockSuccessors( 405 const BlockChain &Chain, const MachineBasicBlock *BB, 406 const MachineBasicBlock *LoopHeaderBB, 407 const BlockFilterSet *BlockFilter = nullptr); 408 409 BranchProbability 410 collectViableSuccessors( 411 const MachineBasicBlock *BB, const BlockChain &Chain, 412 const BlockFilterSet *BlockFilter, 413 SmallVector<MachineBasicBlock *, 4> &Successors); 414 bool shouldPredBlockBeOutlined( 415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 416 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 417 BranchProbability SuccProb, BranchProbability HotProb); 418 bool repeatedlyTailDuplicateBlock( 419 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 420 const MachineBasicBlock *LoopHeaderBB, 421 BlockChain &Chain, BlockFilterSet *BlockFilter, 422 MachineFunction::iterator &PrevUnplacedBlockIt); 423 bool maybeTailDuplicateBlock( 424 MachineBasicBlock *BB, MachineBasicBlock *LPred, 425 BlockChain &Chain, BlockFilterSet *BlockFilter, 426 MachineFunction::iterator &PrevUnplacedBlockIt, 427 bool &DuplicatedToLPred); 428 bool hasBetterLayoutPredecessor( 429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 430 const BlockChain &SuccChain, BranchProbability SuccProb, 431 BranchProbability RealSuccProb, const BlockChain &Chain, 432 const BlockFilterSet *BlockFilter); 433 BlockAndTailDupResult selectBestSuccessor( 434 const MachineBasicBlock *BB, const BlockChain &Chain, 435 const BlockFilterSet *BlockFilter); 436 MachineBasicBlock *selectBestCandidateBlock( 437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 438 MachineBasicBlock *getFirstUnplacedBlock( 439 const BlockChain &PlacedChain, 440 MachineFunction::iterator &PrevUnplacedBlockIt, 441 const BlockFilterSet *BlockFilter); 442 443 /// Add a basic block to the work list if it is appropriate. 444 /// 445 /// If the optional parameter BlockFilter is provided, only MBB 446 /// present in the set will be added to the worklist. If nullptr 447 /// is provided, no filtering occurs. 448 void fillWorkLists(const MachineBasicBlock *MBB, 449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 450 const BlockFilterSet *BlockFilter); 451 452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 453 BlockFilterSet *BlockFilter = nullptr); 454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 455 const MachineBasicBlock *OldTop); 456 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 457 const BlockFilterSet &LoopBlockSet); 458 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 459 const BlockFilterSet &LoopBlockSet); 460 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 461 const MachineBasicBlock *OldTop, 462 const MachineBasicBlock *ExitBB, 463 const BlockFilterSet &LoopBlockSet); 464 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 465 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 466 MachineBasicBlock *findBestLoopTop( 467 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 468 MachineBasicBlock *findBestLoopExit( 469 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 470 BlockFrequency &ExitFreq); 471 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 472 void buildLoopChains(const MachineLoop &L); 473 void rotateLoop( 474 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 475 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 476 void rotateLoopWithProfile( 477 BlockChain &LoopChain, const MachineLoop &L, 478 const BlockFilterSet &LoopBlockSet); 479 void buildCFGChains(); 480 void optimizeBranches(); 481 void alignBlocks(); 482 /// Returns true if a block should be tail-duplicated to increase fallthrough 483 /// opportunities. 484 bool shouldTailDuplicate(MachineBasicBlock *BB); 485 /// Check the edge frequencies to see if tail duplication will increase 486 /// fallthroughs. 487 bool isProfitableToTailDup( 488 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 489 BranchProbability QProb, 490 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 491 492 /// Check for a trellis layout. 493 bool isTrellis(const MachineBasicBlock *BB, 494 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 495 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 496 497 /// Get the best successor given a trellis layout. 498 BlockAndTailDupResult getBestTrellisSuccessor( 499 const MachineBasicBlock *BB, 500 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 501 BranchProbability AdjustedSumProb, const BlockChain &Chain, 502 const BlockFilterSet *BlockFilter); 503 504 /// Get the best pair of non-conflicting edges. 505 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 506 const MachineBasicBlock *BB, 507 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 508 509 /// Returns true if a block can tail duplicate into all unplaced 510 /// predecessors. Filters based on loop. 511 bool canTailDuplicateUnplacedPreds( 512 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 513 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 514 515 /// Find chains of triangles to tail-duplicate where a global analysis works, 516 /// but a local analysis would not find them. 517 void precomputeTriangleChains(); 518 519 public: 520 static char ID; // Pass identification, replacement for typeid 521 522 MachineBlockPlacement() : MachineFunctionPass(ID) { 523 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 524 } 525 526 bool runOnMachineFunction(MachineFunction &F) override; 527 528 bool allowTailDupPlacement() const { 529 assert(F); 530 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 531 } 532 533 void getAnalysisUsage(AnalysisUsage &AU) const override { 534 AU.addRequired<MachineBranchProbabilityInfo>(); 535 AU.addRequired<MachineBlockFrequencyInfo>(); 536 if (TailDupPlacement) 537 AU.addRequired<MachinePostDominatorTree>(); 538 AU.addRequired<MachineLoopInfo>(); 539 AU.addRequired<TargetPassConfig>(); 540 MachineFunctionPass::getAnalysisUsage(AU); 541 } 542 }; 543 544 } // end anonymous namespace 545 546 char MachineBlockPlacement::ID = 0; 547 548 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 549 550 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 551 "Branch Probability Basic Block Placement", false, false) 552 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 553 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 554 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 555 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 556 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 557 "Branch Probability Basic Block Placement", false, false) 558 559 #ifndef NDEBUG 560 /// Helper to print the name of a MBB. 561 /// 562 /// Only used by debug logging. 563 static std::string getBlockName(const MachineBasicBlock *BB) { 564 std::string Result; 565 raw_string_ostream OS(Result); 566 OS << printMBBReference(*BB); 567 OS << " ('" << BB->getName() << "')"; 568 OS.flush(); 569 return Result; 570 } 571 #endif 572 573 /// Mark a chain's successors as having one fewer preds. 574 /// 575 /// When a chain is being merged into the "placed" chain, this routine will 576 /// quickly walk the successors of each block in the chain and mark them as 577 /// having one fewer active predecessor. It also adds any successors of this 578 /// chain which reach the zero-predecessor state to the appropriate worklist. 579 void MachineBlockPlacement::markChainSuccessors( 580 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 581 const BlockFilterSet *BlockFilter) { 582 // Walk all the blocks in this chain, marking their successors as having 583 // a predecessor placed. 584 for (MachineBasicBlock *MBB : Chain) { 585 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 586 } 587 } 588 589 /// Mark a single block's successors as having one fewer preds. 590 /// 591 /// Under normal circumstances, this is only called by markChainSuccessors, 592 /// but if a block that was to be placed is completely tail-duplicated away, 593 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 594 /// for just that block. 595 void MachineBlockPlacement::markBlockSuccessors( 596 const BlockChain &Chain, const MachineBasicBlock *MBB, 597 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 598 // Add any successors for which this is the only un-placed in-loop 599 // predecessor to the worklist as a viable candidate for CFG-neutral 600 // placement. No subsequent placement of this block will violate the CFG 601 // shape, so we get to use heuristics to choose a favorable placement. 602 for (MachineBasicBlock *Succ : MBB->successors()) { 603 if (BlockFilter && !BlockFilter->count(Succ)) 604 continue; 605 BlockChain &SuccChain = *BlockToChain[Succ]; 606 // Disregard edges within a fixed chain, or edges to the loop header. 607 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 608 continue; 609 610 // This is a cross-chain edge that is within the loop, so decrement the 611 // loop predecessor count of the destination chain. 612 if (SuccChain.UnscheduledPredecessors == 0 || 613 --SuccChain.UnscheduledPredecessors > 0) 614 continue; 615 616 auto *NewBB = *SuccChain.begin(); 617 if (NewBB->isEHPad()) 618 EHPadWorkList.push_back(NewBB); 619 else 620 BlockWorkList.push_back(NewBB); 621 } 622 } 623 624 /// This helper function collects the set of successors of block 625 /// \p BB that are allowed to be its layout successors, and return 626 /// the total branch probability of edges from \p BB to those 627 /// blocks. 628 BranchProbability MachineBlockPlacement::collectViableSuccessors( 629 const MachineBasicBlock *BB, const BlockChain &Chain, 630 const BlockFilterSet *BlockFilter, 631 SmallVector<MachineBasicBlock *, 4> &Successors) { 632 // Adjust edge probabilities by excluding edges pointing to blocks that is 633 // either not in BlockFilter or is already in the current chain. Consider the 634 // following CFG: 635 // 636 // --->A 637 // | / \ 638 // | B C 639 // | \ / \ 640 // ----D E 641 // 642 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 643 // A->C is chosen as a fall-through, D won't be selected as a successor of C 644 // due to CFG constraint (the probability of C->D is not greater than 645 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 646 // when calculating the probability of C->D, D will be selected and we 647 // will get A C D B as the layout of this loop. 648 auto AdjustedSumProb = BranchProbability::getOne(); 649 for (MachineBasicBlock *Succ : BB->successors()) { 650 bool SkipSucc = false; 651 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 652 SkipSucc = true; 653 } else { 654 BlockChain *SuccChain = BlockToChain[Succ]; 655 if (SuccChain == &Chain) { 656 SkipSucc = true; 657 } else if (Succ != *SuccChain->begin()) { 658 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 659 << " -> Mid chain!\n"); 660 continue; 661 } 662 } 663 if (SkipSucc) 664 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 665 else 666 Successors.push_back(Succ); 667 } 668 669 return AdjustedSumProb; 670 } 671 672 /// The helper function returns the branch probability that is adjusted 673 /// or normalized over the new total \p AdjustedSumProb. 674 static BranchProbability 675 getAdjustedProbability(BranchProbability OrigProb, 676 BranchProbability AdjustedSumProb) { 677 BranchProbability SuccProb; 678 uint32_t SuccProbN = OrigProb.getNumerator(); 679 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 680 if (SuccProbN >= SuccProbD) 681 SuccProb = BranchProbability::getOne(); 682 else 683 SuccProb = BranchProbability(SuccProbN, SuccProbD); 684 685 return SuccProb; 686 } 687 688 /// Check if \p BB has exactly the successors in \p Successors. 689 static bool 690 hasSameSuccessors(MachineBasicBlock &BB, 691 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 692 if (BB.succ_size() != Successors.size()) 693 return false; 694 // We don't want to count self-loops 695 if (Successors.count(&BB)) 696 return false; 697 for (MachineBasicBlock *Succ : BB.successors()) 698 if (!Successors.count(Succ)) 699 return false; 700 return true; 701 } 702 703 /// Check if a block should be tail duplicated to increase fallthrough 704 /// opportunities. 705 /// \p BB Block to check. 706 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 707 // Blocks with single successors don't create additional fallthrough 708 // opportunities. Don't duplicate them. TODO: When conditional exits are 709 // analyzable, allow them to be duplicated. 710 bool IsSimple = TailDup.isSimpleBB(BB); 711 712 if (BB->succ_size() == 1) 713 return false; 714 return TailDup.shouldTailDuplicate(IsSimple, *BB); 715 } 716 717 /// Compare 2 BlockFrequency's with a small penalty for \p A. 718 /// In order to be conservative, we apply a X% penalty to account for 719 /// increased icache pressure and static heuristics. For small frequencies 720 /// we use only the numerators to improve accuracy. For simplicity, we assume the 721 /// penalty is less than 100% 722 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 723 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 724 uint64_t EntryFreq) { 725 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 726 BlockFrequency Gain = A - B; 727 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 728 } 729 730 /// Check the edge frequencies to see if tail duplication will increase 731 /// fallthroughs. It only makes sense to call this function when 732 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 733 /// always locally profitable if we would have picked \p Succ without 734 /// considering duplication. 735 bool MachineBlockPlacement::isProfitableToTailDup( 736 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 737 BranchProbability QProb, 738 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 739 // We need to do a probability calculation to make sure this is profitable. 740 // First: does succ have a successor that post-dominates? This affects the 741 // calculation. The 2 relevant cases are: 742 // BB BB 743 // | \Qout | \Qout 744 // P| C |P C 745 // = C' = C' 746 // | /Qin | /Qin 747 // | / | / 748 // Succ Succ 749 // / \ | \ V 750 // U/ =V |U \ 751 // / \ = D 752 // D E | / 753 // | / 754 // |/ 755 // PDom 756 // '=' : Branch taken for that CFG edge 757 // In the second case, Placing Succ while duplicating it into C prevents the 758 // fallthrough of Succ into either D or PDom, because they now have C as an 759 // unplaced predecessor 760 761 // Start by figuring out which case we fall into 762 MachineBasicBlock *PDom = nullptr; 763 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 764 // Only scan the relevant successors 765 auto AdjustedSuccSumProb = 766 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 767 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 768 auto BBFreq = MBFI->getBlockFreq(BB); 769 auto SuccFreq = MBFI->getBlockFreq(Succ); 770 BlockFrequency P = BBFreq * PProb; 771 BlockFrequency Qout = BBFreq * QProb; 772 uint64_t EntryFreq = MBFI->getEntryFreq(); 773 // If there are no more successors, it is profitable to copy, as it strictly 774 // increases fallthrough. 775 if (SuccSuccs.size() == 0) 776 return greaterWithBias(P, Qout, EntryFreq); 777 778 auto BestSuccSucc = BranchProbability::getZero(); 779 // Find the PDom or the best Succ if no PDom exists. 780 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 781 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 782 if (Prob > BestSuccSucc) 783 BestSuccSucc = Prob; 784 if (PDom == nullptr) 785 if (MPDT->dominates(SuccSucc, Succ)) { 786 PDom = SuccSucc; 787 break; 788 } 789 } 790 // For the comparisons, we need to know Succ's best incoming edge that isn't 791 // from BB. 792 auto SuccBestPred = BlockFrequency(0); 793 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 794 if (SuccPred == Succ || SuccPred == BB 795 || BlockToChain[SuccPred] == &Chain 796 || (BlockFilter && !BlockFilter->count(SuccPred))) 797 continue; 798 auto Freq = MBFI->getBlockFreq(SuccPred) 799 * MBPI->getEdgeProbability(SuccPred, Succ); 800 if (Freq > SuccBestPred) 801 SuccBestPred = Freq; 802 } 803 // Qin is Succ's best unplaced incoming edge that isn't BB 804 BlockFrequency Qin = SuccBestPred; 805 // If it doesn't have a post-dominating successor, here is the calculation: 806 // BB BB 807 // | \Qout | \ 808 // P| C | = 809 // = C' | C 810 // | /Qin | | 811 // | / | C' (+Succ) 812 // Succ Succ /| 813 // / \ | \/ | 814 // U/ =V | == | 815 // / \ | / \| 816 // D E D E 817 // '=' : Branch taken for that CFG edge 818 // Cost in the first case is: P + V 819 // For this calculation, we always assume P > Qout. If Qout > P 820 // The result of this function will be ignored at the caller. 821 // Let F = SuccFreq - Qin 822 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 823 824 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 825 BranchProbability UProb = BestSuccSucc; 826 BranchProbability VProb = AdjustedSuccSumProb - UProb; 827 BlockFrequency F = SuccFreq - Qin; 828 BlockFrequency V = SuccFreq * VProb; 829 BlockFrequency QinU = std::min(Qin, F) * UProb; 830 BlockFrequency BaseCost = P + V; 831 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 832 return greaterWithBias(BaseCost, DupCost, EntryFreq); 833 } 834 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 835 BranchProbability VProb = AdjustedSuccSumProb - UProb; 836 BlockFrequency U = SuccFreq * UProb; 837 BlockFrequency V = SuccFreq * VProb; 838 BlockFrequency F = SuccFreq - Qin; 839 // If there is a post-dominating successor, here is the calculation: 840 // BB BB BB BB 841 // | \Qout | \ | \Qout | \ 842 // |P C | = |P C | = 843 // = C' |P C = C' |P C 844 // | /Qin | | | /Qin | | 845 // | / | C' (+Succ) | / | C' (+Succ) 846 // Succ Succ /| Succ Succ /| 847 // | \ V | \/ | | \ V | \/ | 848 // |U \ |U /\ =? |U = |U /\ | 849 // = D = = =?| | D | = =| 850 // | / |/ D | / |/ D 851 // | / | / | = | / 852 // |/ | / |/ | = 853 // Dom Dom Dom Dom 854 // '=' : Branch taken for that CFG edge 855 // The cost for taken branches in the first case is P + U 856 // Let F = SuccFreq - Qin 857 // The cost in the second case (assuming independence), given the layout: 858 // BB, Succ, (C+Succ), D, Dom or the layout: 859 // BB, Succ, D, Dom, (C+Succ) 860 // is Qout + max(F, Qin) * U + min(F, Qin) 861 // compare P + U vs Qout + P * U + Qin. 862 // 863 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 864 // 865 // For the 3rd case, the cost is P + 2 * V 866 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 867 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 868 if (UProb > AdjustedSuccSumProb / 2 && 869 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 870 Chain, BlockFilter)) 871 // Cases 3 & 4 872 return greaterWithBias( 873 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 874 EntryFreq); 875 // Cases 1 & 2 876 return greaterWithBias((P + U), 877 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 878 std::max(Qin, F) * UProb), 879 EntryFreq); 880 } 881 882 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 883 /// successors form the lower part of a trellis. A successor set S forms the 884 /// lower part of a trellis if all of the predecessors of S are either in S or 885 /// have all of S as successors. We ignore trellises where BB doesn't have 2 886 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 887 /// are very uncommon and complex to compute optimally. Allowing edges within S 888 /// is not strictly a trellis, but the same algorithm works, so we allow it. 889 bool MachineBlockPlacement::isTrellis( 890 const MachineBasicBlock *BB, 891 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 892 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 893 // Technically BB could form a trellis with branching factor higher than 2. 894 // But that's extremely uncommon. 895 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 896 return false; 897 898 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 899 BB->succ_end()); 900 // To avoid reviewing the same predecessors twice. 901 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 902 903 for (MachineBasicBlock *Succ : ViableSuccs) { 904 int PredCount = 0; 905 for (auto SuccPred : Succ->predecessors()) { 906 // Allow triangle successors, but don't count them. 907 if (Successors.count(SuccPred)) { 908 // Make sure that it is actually a triangle. 909 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 910 if (!Successors.count(CheckSucc)) 911 return false; 912 continue; 913 } 914 const BlockChain *PredChain = BlockToChain[SuccPred]; 915 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 916 PredChain == &Chain || PredChain == BlockToChain[Succ]) 917 continue; 918 ++PredCount; 919 // Perform the successor check only once. 920 if (!SeenPreds.insert(SuccPred).second) 921 continue; 922 if (!hasSameSuccessors(*SuccPred, Successors)) 923 return false; 924 } 925 // If one of the successors has only BB as a predecessor, it is not a 926 // trellis. 927 if (PredCount < 1) 928 return false; 929 } 930 return true; 931 } 932 933 /// Pick the highest total weight pair of edges that can both be laid out. 934 /// The edges in \p Edges[0] are assumed to have a different destination than 935 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 936 /// the individual highest weight edges to the 2 different destinations, or in 937 /// case of a conflict, one of them should be replaced with a 2nd best edge. 938 std::pair<MachineBlockPlacement::WeightedEdge, 939 MachineBlockPlacement::WeightedEdge> 940 MachineBlockPlacement::getBestNonConflictingEdges( 941 const MachineBasicBlock *BB, 942 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 943 Edges) { 944 // Sort the edges, and then for each successor, find the best incoming 945 // predecessor. If the best incoming predecessors aren't the same, 946 // then that is clearly the best layout. If there is a conflict, one of the 947 // successors will have to fallthrough from the second best predecessor. We 948 // compare which combination is better overall. 949 950 // Sort for highest frequency. 951 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 952 953 llvm::stable_sort(Edges[0], Cmp); 954 llvm::stable_sort(Edges[1], Cmp); 955 auto BestA = Edges[0].begin(); 956 auto BestB = Edges[1].begin(); 957 // Arrange for the correct answer to be in BestA and BestB 958 // If the 2 best edges don't conflict, the answer is already there. 959 if (BestA->Src == BestB->Src) { 960 // Compare the total fallthrough of (Best + Second Best) for both pairs 961 auto SecondBestA = std::next(BestA); 962 auto SecondBestB = std::next(BestB); 963 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 964 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 965 if (BestAScore < BestBScore) 966 BestA = SecondBestA; 967 else 968 BestB = SecondBestB; 969 } 970 // Arrange for the BB edge to be in BestA if it exists. 971 if (BestB->Src == BB) 972 std::swap(BestA, BestB); 973 return std::make_pair(*BestA, *BestB); 974 } 975 976 /// Get the best successor from \p BB based on \p BB being part of a trellis. 977 /// We only handle trellises with 2 successors, so the algorithm is 978 /// straightforward: Find the best pair of edges that don't conflict. We find 979 /// the best incoming edge for each successor in the trellis. If those conflict, 980 /// we consider which of them should be replaced with the second best. 981 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 982 /// comes from \p BB, it will be in \p BestEdges[0] 983 MachineBlockPlacement::BlockAndTailDupResult 984 MachineBlockPlacement::getBestTrellisSuccessor( 985 const MachineBasicBlock *BB, 986 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 987 BranchProbability AdjustedSumProb, const BlockChain &Chain, 988 const BlockFilterSet *BlockFilter) { 989 990 BlockAndTailDupResult Result = {nullptr, false}; 991 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 992 BB->succ_end()); 993 994 // We assume size 2 because it's common. For general n, we would have to do 995 // the Hungarian algorithm, but it's not worth the complexity because more 996 // than 2 successors is fairly uncommon, and a trellis even more so. 997 if (Successors.size() != 2 || ViableSuccs.size() != 2) 998 return Result; 999 1000 // Collect the edge frequencies of all edges that form the trellis. 1001 SmallVector<WeightedEdge, 8> Edges[2]; 1002 int SuccIndex = 0; 1003 for (auto Succ : ViableSuccs) { 1004 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1005 // Skip any placed predecessors that are not BB 1006 if (SuccPred != BB) 1007 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1008 BlockToChain[SuccPred] == &Chain || 1009 BlockToChain[SuccPred] == BlockToChain[Succ]) 1010 continue; 1011 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1012 MBPI->getEdgeProbability(SuccPred, Succ); 1013 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1014 } 1015 ++SuccIndex; 1016 } 1017 1018 // Pick the best combination of 2 edges from all the edges in the trellis. 1019 WeightedEdge BestA, BestB; 1020 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1021 1022 if (BestA.Src != BB) { 1023 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1024 // we shouldn't choose any successor. We've already looked and there's a 1025 // better fallthrough edge for all the successors. 1026 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1027 return Result; 1028 } 1029 1030 // Did we pick the triangle edge? If tail-duplication is profitable, do 1031 // that instead. Otherwise merge the triangle edge now while we know it is 1032 // optimal. 1033 if (BestA.Dest == BestB.Src) { 1034 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1035 // would be better. 1036 MachineBasicBlock *Succ1 = BestA.Dest; 1037 MachineBasicBlock *Succ2 = BestB.Dest; 1038 // Check to see if tail-duplication would be profitable. 1039 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1040 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1041 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1042 Chain, BlockFilter)) { 1043 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1044 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1045 dbgs() << " Selected: " << getBlockName(Succ2) 1046 << ", probability: " << Succ2Prob 1047 << " (Tail Duplicate)\n"); 1048 Result.BB = Succ2; 1049 Result.ShouldTailDup = true; 1050 return Result; 1051 } 1052 } 1053 // We have already computed the optimal edge for the other side of the 1054 // trellis. 1055 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1056 1057 auto TrellisSucc = BestA.Dest; 1058 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1059 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1060 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1061 << ", probability: " << SuccProb << " (Trellis)\n"); 1062 Result.BB = TrellisSucc; 1063 return Result; 1064 } 1065 1066 /// When the option allowTailDupPlacement() is on, this method checks if the 1067 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1068 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1069 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1070 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1071 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1072 if (!shouldTailDuplicate(Succ)) 1073 return false; 1074 1075 // For CFG checking. 1076 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1077 BB->succ_end()); 1078 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1079 // Make sure all unplaced and unfiltered predecessors can be 1080 // tail-duplicated into. 1081 // Skip any blocks that are already placed or not in this loop. 1082 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1083 || BlockToChain[Pred] == &Chain) 1084 continue; 1085 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1086 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1087 // This will result in a trellis after tail duplication, so we don't 1088 // need to copy Succ into this predecessor. In the presence 1089 // of a trellis tail duplication can continue to be profitable. 1090 // For example: 1091 // A A 1092 // |\ |\ 1093 // | \ | \ 1094 // | C | C+BB 1095 // | / | | 1096 // |/ | | 1097 // BB => BB | 1098 // |\ |\/| 1099 // | \ |/\| 1100 // | D | D 1101 // | / | / 1102 // |/ |/ 1103 // Succ Succ 1104 // 1105 // After BB was duplicated into C, the layout looks like the one on the 1106 // right. BB and C now have the same successors. When considering 1107 // whether Succ can be duplicated into all its unplaced predecessors, we 1108 // ignore C. 1109 // We can do this because C already has a profitable fallthrough, namely 1110 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1111 // duplication and for this test. 1112 // 1113 // This allows trellises to be laid out in 2 separate chains 1114 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1115 // because it allows the creation of 2 fallthrough paths with links 1116 // between them, and we correctly identify the best layout for these 1117 // CFGs. We want to extend trellises that the user created in addition 1118 // to trellises created by tail-duplication, so we just look for the 1119 // CFG. 1120 continue; 1121 return false; 1122 } 1123 } 1124 return true; 1125 } 1126 1127 /// Find chains of triangles where we believe it would be profitable to 1128 /// tail-duplicate them all, but a local analysis would not find them. 1129 /// There are 3 ways this can be profitable: 1130 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1131 /// longer chains) 1132 /// 2) The chains are statically correlated. Branch probabilities have a very 1133 /// U-shaped distribution. 1134 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1135 /// If the branches in a chain are likely to be from the same side of the 1136 /// distribution as their predecessor, but are independent at runtime, this 1137 /// transformation is profitable. (Because the cost of being wrong is a small 1138 /// fixed cost, unlike the standard triangle layout where the cost of being 1139 /// wrong scales with the # of triangles.) 1140 /// 3) The chains are dynamically correlated. If the probability that a previous 1141 /// branch was taken positively influences whether the next branch will be 1142 /// taken 1143 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1144 void MachineBlockPlacement::precomputeTriangleChains() { 1145 struct TriangleChain { 1146 std::vector<MachineBasicBlock *> Edges; 1147 1148 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1149 : Edges({src, dst}) {} 1150 1151 void append(MachineBasicBlock *dst) { 1152 assert(getKey()->isSuccessor(dst) && 1153 "Attempting to append a block that is not a successor."); 1154 Edges.push_back(dst); 1155 } 1156 1157 unsigned count() const { return Edges.size() - 1; } 1158 1159 MachineBasicBlock *getKey() const { 1160 return Edges.back(); 1161 } 1162 }; 1163 1164 if (TriangleChainCount == 0) 1165 return; 1166 1167 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1168 // Map from last block to the chain that contains it. This allows us to extend 1169 // chains as we find new triangles. 1170 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1171 for (MachineBasicBlock &BB : *F) { 1172 // If BB doesn't have 2 successors, it doesn't start a triangle. 1173 if (BB.succ_size() != 2) 1174 continue; 1175 MachineBasicBlock *PDom = nullptr; 1176 for (MachineBasicBlock *Succ : BB.successors()) { 1177 if (!MPDT->dominates(Succ, &BB)) 1178 continue; 1179 PDom = Succ; 1180 break; 1181 } 1182 // If BB doesn't have a post-dominating successor, it doesn't form a 1183 // triangle. 1184 if (PDom == nullptr) 1185 continue; 1186 // If PDom has a hint that it is low probability, skip this triangle. 1187 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1188 continue; 1189 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1190 // we're looking for. 1191 if (!shouldTailDuplicate(PDom)) 1192 continue; 1193 bool CanTailDuplicate = true; 1194 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1195 // isn't the kind of triangle we're looking for. 1196 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1197 if (Pred == &BB) 1198 continue; 1199 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1200 CanTailDuplicate = false; 1201 break; 1202 } 1203 } 1204 // If we can't tail-duplicate PDom to its predecessors, then skip this 1205 // triangle. 1206 if (!CanTailDuplicate) 1207 continue; 1208 1209 // Now we have an interesting triangle. Insert it if it's not part of an 1210 // existing chain. 1211 // Note: This cannot be replaced with a call insert() or emplace() because 1212 // the find key is BB, but the insert/emplace key is PDom. 1213 auto Found = TriangleChainMap.find(&BB); 1214 // If it is, remove the chain from the map, grow it, and put it back in the 1215 // map with the end as the new key. 1216 if (Found != TriangleChainMap.end()) { 1217 TriangleChain Chain = std::move(Found->second); 1218 TriangleChainMap.erase(Found); 1219 Chain.append(PDom); 1220 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1221 } else { 1222 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1223 assert(InsertResult.second && "Block seen twice."); 1224 (void)InsertResult; 1225 } 1226 } 1227 1228 // Iterating over a DenseMap is safe here, because the only thing in the body 1229 // of the loop is inserting into another DenseMap (ComputedEdges). 1230 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1231 for (auto &ChainPair : TriangleChainMap) { 1232 TriangleChain &Chain = ChainPair.second; 1233 // Benchmarking has shown that due to branch correlation duplicating 2 or 1234 // more triangles is profitable, despite the calculations assuming 1235 // independence. 1236 if (Chain.count() < TriangleChainCount) 1237 continue; 1238 MachineBasicBlock *dst = Chain.Edges.back(); 1239 Chain.Edges.pop_back(); 1240 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1241 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1242 << getBlockName(dst) 1243 << " as pre-computed based on triangles.\n"); 1244 1245 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1246 assert(InsertResult.second && "Block seen twice."); 1247 (void)InsertResult; 1248 1249 dst = src; 1250 } 1251 } 1252 } 1253 1254 // When profile is not present, return the StaticLikelyProb. 1255 // When profile is available, we need to handle the triangle-shape CFG. 1256 static BranchProbability getLayoutSuccessorProbThreshold( 1257 const MachineBasicBlock *BB) { 1258 if (!BB->getParent()->getFunction().hasProfileData()) 1259 return BranchProbability(StaticLikelyProb, 100); 1260 if (BB->succ_size() == 2) { 1261 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1262 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1263 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1264 /* See case 1 below for the cost analysis. For BB->Succ to 1265 * be taken with smaller cost, the following needs to hold: 1266 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1267 * So the threshold T in the calculation below 1268 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1269 * So T / (1 - T) = 2, Yielding T = 2/3 1270 * Also adding user specified branch bias, we have 1271 * T = (2/3)*(ProfileLikelyProb/50) 1272 * = (2*ProfileLikelyProb)/150) 1273 */ 1274 return BranchProbability(2 * ProfileLikelyProb, 150); 1275 } 1276 } 1277 return BranchProbability(ProfileLikelyProb, 100); 1278 } 1279 1280 /// Checks to see if the layout candidate block \p Succ has a better layout 1281 /// predecessor than \c BB. If yes, returns true. 1282 /// \p SuccProb: The probability adjusted for only remaining blocks. 1283 /// Only used for logging 1284 /// \p RealSuccProb: The un-adjusted probability. 1285 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1286 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1287 /// considered 1288 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1289 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1290 const BlockChain &SuccChain, BranchProbability SuccProb, 1291 BranchProbability RealSuccProb, const BlockChain &Chain, 1292 const BlockFilterSet *BlockFilter) { 1293 1294 // There isn't a better layout when there are no unscheduled predecessors. 1295 if (SuccChain.UnscheduledPredecessors == 0) 1296 return false; 1297 1298 // There are two basic scenarios here: 1299 // ------------------------------------- 1300 // Case 1: triangular shape CFG (if-then): 1301 // BB 1302 // | \ 1303 // | \ 1304 // | Pred 1305 // | / 1306 // Succ 1307 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1308 // set Succ as the layout successor of BB. Picking Succ as BB's 1309 // successor breaks the CFG constraints (FIXME: define these constraints). 1310 // With this layout, Pred BB 1311 // is forced to be outlined, so the overall cost will be cost of the 1312 // branch taken from BB to Pred, plus the cost of back taken branch 1313 // from Pred to Succ, as well as the additional cost associated 1314 // with the needed unconditional jump instruction from Pred To Succ. 1315 1316 // The cost of the topological order layout is the taken branch cost 1317 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1318 // must hold: 1319 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1320 // < freq(BB->Succ) * taken_branch_cost. 1321 // Ignoring unconditional jump cost, we get 1322 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1323 // prob(BB->Succ) > 2 * prob(BB->Pred) 1324 // 1325 // When real profile data is available, we can precisely compute the 1326 // probability threshold that is needed for edge BB->Succ to be considered. 1327 // Without profile data, the heuristic requires the branch bias to be 1328 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1329 // ----------------------------------------------------------------- 1330 // Case 2: diamond like CFG (if-then-else): 1331 // S 1332 // / \ 1333 // | \ 1334 // BB Pred 1335 // \ / 1336 // Succ 1337 // .. 1338 // 1339 // The current block is BB and edge BB->Succ is now being evaluated. 1340 // Note that edge S->BB was previously already selected because 1341 // prob(S->BB) > prob(S->Pred). 1342 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1343 // choose Pred, we will have a topological ordering as shown on the left 1344 // in the picture below. If we choose Succ, we have the solution as shown 1345 // on the right: 1346 // 1347 // topo-order: 1348 // 1349 // S----- ---S 1350 // | | | | 1351 // ---BB | | BB 1352 // | | | | 1353 // | Pred-- | Succ-- 1354 // | | | | 1355 // ---Succ ---Pred-- 1356 // 1357 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1358 // = freq(S->Pred) + freq(S->BB) 1359 // 1360 // If we have profile data (i.e, branch probabilities can be trusted), the 1361 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1362 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1363 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1364 // means the cost of topological order is greater. 1365 // When profile data is not available, however, we need to be more 1366 // conservative. If the branch prediction is wrong, breaking the topo-order 1367 // will actually yield a layout with large cost. For this reason, we need 1368 // strong biased branch at block S with Prob(S->BB) in order to select 1369 // BB->Succ. This is equivalent to looking the CFG backward with backward 1370 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1371 // profile data). 1372 // -------------------------------------------------------------------------- 1373 // Case 3: forked diamond 1374 // S 1375 // / \ 1376 // / \ 1377 // BB Pred 1378 // | \ / | 1379 // | \ / | 1380 // | X | 1381 // | / \ | 1382 // | / \ | 1383 // S1 S2 1384 // 1385 // The current block is BB and edge BB->S1 is now being evaluated. 1386 // As above S->BB was already selected because 1387 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1388 // 1389 // topo-order: 1390 // 1391 // S-------| ---S 1392 // | | | | 1393 // ---BB | | BB 1394 // | | | | 1395 // | Pred----| | S1---- 1396 // | | | | 1397 // --(S1 or S2) ---Pred-- 1398 // | 1399 // S2 1400 // 1401 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1402 // + min(freq(Pred->S1), freq(Pred->S2)) 1403 // Non-topo-order cost: 1404 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1405 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1406 // is 0. Then the non topo layout is better when 1407 // freq(S->Pred) < freq(BB->S1). 1408 // This is exactly what is checked below. 1409 // Note there are other shapes that apply (Pred may not be a single block, 1410 // but they all fit this general pattern.) 1411 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1412 1413 // Make sure that a hot successor doesn't have a globally more 1414 // important predecessor. 1415 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1416 bool BadCFGConflict = false; 1417 1418 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1419 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1420 (BlockFilter && !BlockFilter->count(Pred)) || 1421 BlockToChain[Pred] == &Chain || 1422 // This check is redundant except for look ahead. This function is 1423 // called for lookahead by isProfitableToTailDup when BB hasn't been 1424 // placed yet. 1425 (Pred == BB)) 1426 continue; 1427 // Do backward checking. 1428 // For all cases above, we need a backward checking to filter out edges that 1429 // are not 'strongly' biased. 1430 // BB Pred 1431 // \ / 1432 // Succ 1433 // We select edge BB->Succ if 1434 // freq(BB->Succ) > freq(Succ) * HotProb 1435 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1436 // HotProb 1437 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1438 // Case 1 is covered too, because the first equation reduces to: 1439 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1440 BlockFrequency PredEdgeFreq = 1441 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1442 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1443 BadCFGConflict = true; 1444 break; 1445 } 1446 } 1447 1448 if (BadCFGConflict) { 1449 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1450 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1451 return true; 1452 } 1453 1454 return false; 1455 } 1456 1457 /// Select the best successor for a block. 1458 /// 1459 /// This looks across all successors of a particular block and attempts to 1460 /// select the "best" one to be the layout successor. It only considers direct 1461 /// successors which also pass the block filter. It will attempt to avoid 1462 /// breaking CFG structure, but cave and break such structures in the case of 1463 /// very hot successor edges. 1464 /// 1465 /// \returns The best successor block found, or null if none are viable, along 1466 /// with a boolean indicating if tail duplication is necessary. 1467 MachineBlockPlacement::BlockAndTailDupResult 1468 MachineBlockPlacement::selectBestSuccessor( 1469 const MachineBasicBlock *BB, const BlockChain &Chain, 1470 const BlockFilterSet *BlockFilter) { 1471 const BranchProbability HotProb(StaticLikelyProb, 100); 1472 1473 BlockAndTailDupResult BestSucc = { nullptr, false }; 1474 auto BestProb = BranchProbability::getZero(); 1475 1476 SmallVector<MachineBasicBlock *, 4> Successors; 1477 auto AdjustedSumProb = 1478 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1479 1480 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1481 << "\n"); 1482 1483 // if we already precomputed the best successor for BB, return that if still 1484 // applicable. 1485 auto FoundEdge = ComputedEdges.find(BB); 1486 if (FoundEdge != ComputedEdges.end()) { 1487 MachineBasicBlock *Succ = FoundEdge->second.BB; 1488 ComputedEdges.erase(FoundEdge); 1489 BlockChain *SuccChain = BlockToChain[Succ]; 1490 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1491 SuccChain != &Chain && Succ == *SuccChain->begin()) 1492 return FoundEdge->second; 1493 } 1494 1495 // if BB is part of a trellis, Use the trellis to determine the optimal 1496 // fallthrough edges 1497 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1498 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1499 BlockFilter); 1500 1501 // For blocks with CFG violations, we may be able to lay them out anyway with 1502 // tail-duplication. We keep this vector so we can perform the probability 1503 // calculations the minimum number of times. 1504 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1505 DupCandidates; 1506 for (MachineBasicBlock *Succ : Successors) { 1507 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1508 BranchProbability SuccProb = 1509 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1510 1511 BlockChain &SuccChain = *BlockToChain[Succ]; 1512 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1513 // predecessor that yields lower global cost. 1514 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1515 Chain, BlockFilter)) { 1516 // If tail duplication would make Succ profitable, place it. 1517 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1518 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1519 continue; 1520 } 1521 1522 LLVM_DEBUG( 1523 dbgs() << " Candidate: " << getBlockName(Succ) 1524 << ", probability: " << SuccProb 1525 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1526 << "\n"); 1527 1528 if (BestSucc.BB && BestProb >= SuccProb) { 1529 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1530 continue; 1531 } 1532 1533 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1534 BestSucc.BB = Succ; 1535 BestProb = SuccProb; 1536 } 1537 // Handle the tail duplication candidates in order of decreasing probability. 1538 // Stop at the first one that is profitable. Also stop if they are less 1539 // profitable than BestSucc. Position is important because we preserve it and 1540 // prefer first best match. Here we aren't comparing in order, so we capture 1541 // the position instead. 1542 llvm::stable_sort(DupCandidates, 1543 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1544 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1545 return std::get<0>(L) > std::get<0>(R); 1546 }); 1547 for (auto &Tup : DupCandidates) { 1548 BranchProbability DupProb; 1549 MachineBasicBlock *Succ; 1550 std::tie(DupProb, Succ) = Tup; 1551 if (DupProb < BestProb) 1552 break; 1553 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1554 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1555 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1556 << ", probability: " << DupProb 1557 << " (Tail Duplicate)\n"); 1558 BestSucc.BB = Succ; 1559 BestSucc.ShouldTailDup = true; 1560 break; 1561 } 1562 } 1563 1564 if (BestSucc.BB) 1565 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1566 1567 return BestSucc; 1568 } 1569 1570 /// Select the best block from a worklist. 1571 /// 1572 /// This looks through the provided worklist as a list of candidate basic 1573 /// blocks and select the most profitable one to place. The definition of 1574 /// profitable only really makes sense in the context of a loop. This returns 1575 /// the most frequently visited block in the worklist, which in the case of 1576 /// a loop, is the one most desirable to be physically close to the rest of the 1577 /// loop body in order to improve i-cache behavior. 1578 /// 1579 /// \returns The best block found, or null if none are viable. 1580 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1581 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1582 // Once we need to walk the worklist looking for a candidate, cleanup the 1583 // worklist of already placed entries. 1584 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1585 // some code complexity) into the loop below. 1586 WorkList.erase(llvm::remove_if(WorkList, 1587 [&](MachineBasicBlock *BB) { 1588 return BlockToChain.lookup(BB) == &Chain; 1589 }), 1590 WorkList.end()); 1591 1592 if (WorkList.empty()) 1593 return nullptr; 1594 1595 bool IsEHPad = WorkList[0]->isEHPad(); 1596 1597 MachineBasicBlock *BestBlock = nullptr; 1598 BlockFrequency BestFreq; 1599 for (MachineBasicBlock *MBB : WorkList) { 1600 assert(MBB->isEHPad() == IsEHPad && 1601 "EHPad mismatch between block and work list."); 1602 1603 BlockChain &SuccChain = *BlockToChain[MBB]; 1604 if (&SuccChain == &Chain) 1605 continue; 1606 1607 assert(SuccChain.UnscheduledPredecessors == 0 && 1608 "Found CFG-violating block"); 1609 1610 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1611 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1612 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1613 1614 // For ehpad, we layout the least probable first as to avoid jumping back 1615 // from least probable landingpads to more probable ones. 1616 // 1617 // FIXME: Using probability is probably (!) not the best way to achieve 1618 // this. We should probably have a more principled approach to layout 1619 // cleanup code. 1620 // 1621 // The goal is to get: 1622 // 1623 // +--------------------------+ 1624 // | V 1625 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1626 // 1627 // Rather than: 1628 // 1629 // +-------------------------------------+ 1630 // V | 1631 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1632 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1633 continue; 1634 1635 BestBlock = MBB; 1636 BestFreq = CandidateFreq; 1637 } 1638 1639 return BestBlock; 1640 } 1641 1642 /// Retrieve the first unplaced basic block. 1643 /// 1644 /// This routine is called when we are unable to use the CFG to walk through 1645 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1646 /// We walk through the function's blocks in order, starting from the 1647 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1648 /// re-scanning the entire sequence on repeated calls to this routine. 1649 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1650 const BlockChain &PlacedChain, 1651 MachineFunction::iterator &PrevUnplacedBlockIt, 1652 const BlockFilterSet *BlockFilter) { 1653 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1654 ++I) { 1655 if (BlockFilter && !BlockFilter->count(&*I)) 1656 continue; 1657 if (BlockToChain[&*I] != &PlacedChain) { 1658 PrevUnplacedBlockIt = I; 1659 // Now select the head of the chain to which the unplaced block belongs 1660 // as the block to place. This will force the entire chain to be placed, 1661 // and satisfies the requirements of merging chains. 1662 return *BlockToChain[&*I]->begin(); 1663 } 1664 } 1665 return nullptr; 1666 } 1667 1668 void MachineBlockPlacement::fillWorkLists( 1669 const MachineBasicBlock *MBB, 1670 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1671 const BlockFilterSet *BlockFilter = nullptr) { 1672 BlockChain &Chain = *BlockToChain[MBB]; 1673 if (!UpdatedPreds.insert(&Chain).second) 1674 return; 1675 1676 assert( 1677 Chain.UnscheduledPredecessors == 0 && 1678 "Attempting to place block with unscheduled predecessors in worklist."); 1679 for (MachineBasicBlock *ChainBB : Chain) { 1680 assert(BlockToChain[ChainBB] == &Chain && 1681 "Block in chain doesn't match BlockToChain map."); 1682 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1683 if (BlockFilter && !BlockFilter->count(Pred)) 1684 continue; 1685 if (BlockToChain[Pred] == &Chain) 1686 continue; 1687 ++Chain.UnscheduledPredecessors; 1688 } 1689 } 1690 1691 if (Chain.UnscheduledPredecessors != 0) 1692 return; 1693 1694 MachineBasicBlock *BB = *Chain.begin(); 1695 if (BB->isEHPad()) 1696 EHPadWorkList.push_back(BB); 1697 else 1698 BlockWorkList.push_back(BB); 1699 } 1700 1701 void MachineBlockPlacement::buildChain( 1702 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1703 BlockFilterSet *BlockFilter) { 1704 assert(HeadBB && "BB must not be null.\n"); 1705 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1706 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1707 1708 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1709 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1710 MachineBasicBlock *BB = *std::prev(Chain.end()); 1711 while (true) { 1712 assert(BB && "null block found at end of chain in loop."); 1713 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1714 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1715 1716 1717 // Look for the best viable successor if there is one to place immediately 1718 // after this block. 1719 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1720 MachineBasicBlock* BestSucc = Result.BB; 1721 bool ShouldTailDup = Result.ShouldTailDup; 1722 if (allowTailDupPlacement()) 1723 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1724 1725 // If an immediate successor isn't available, look for the best viable 1726 // block among those we've identified as not violating the loop's CFG at 1727 // this point. This won't be a fallthrough, but it will increase locality. 1728 if (!BestSucc) 1729 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1730 if (!BestSucc) 1731 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1732 1733 if (!BestSucc) { 1734 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1735 if (!BestSucc) 1736 break; 1737 1738 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1739 "layout successor until the CFG reduces\n"); 1740 } 1741 1742 // Placement may have changed tail duplication opportunities. 1743 // Check for that now. 1744 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1745 // If the chosen successor was duplicated into all its predecessors, 1746 // don't bother laying it out, just go round the loop again with BB as 1747 // the chain end. 1748 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1749 BlockFilter, PrevUnplacedBlockIt)) 1750 continue; 1751 } 1752 1753 // Place this block, updating the datastructures to reflect its placement. 1754 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1755 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1756 // we selected a successor that didn't fit naturally into the CFG. 1757 SuccChain.UnscheduledPredecessors = 0; 1758 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1759 << getBlockName(BestSucc) << "\n"); 1760 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1761 Chain.merge(BestSucc, &SuccChain); 1762 BB = *std::prev(Chain.end()); 1763 } 1764 1765 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1766 << getBlockName(*Chain.begin()) << "\n"); 1767 } 1768 1769 // If bottom of block BB has only one successor OldTop, in most cases it is 1770 // profitable to move it before OldTop, except the following case: 1771 // 1772 // -->OldTop<- 1773 // | . | 1774 // | . | 1775 // | . | 1776 // ---Pred | 1777 // | | 1778 // BB----- 1779 // 1780 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1781 // layout the other successor below it, so it can't reduce taken branch. 1782 // In this case we keep its original layout. 1783 bool 1784 MachineBlockPlacement::canMoveBottomBlockToTop( 1785 const MachineBasicBlock *BottomBlock, 1786 const MachineBasicBlock *OldTop) { 1787 if (BottomBlock->pred_size() != 1) 1788 return true; 1789 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1790 if (Pred->succ_size() != 2) 1791 return true; 1792 1793 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1794 if (OtherBB == BottomBlock) 1795 OtherBB = *Pred->succ_rbegin(); 1796 if (OtherBB == OldTop) 1797 return false; 1798 1799 return true; 1800 } 1801 1802 // Find out the possible fall through frequence to the top of a loop. 1803 BlockFrequency 1804 MachineBlockPlacement::TopFallThroughFreq( 1805 const MachineBasicBlock *Top, 1806 const BlockFilterSet &LoopBlockSet) { 1807 BlockFrequency MaxFreq = 0; 1808 for (MachineBasicBlock *Pred : Top->predecessors()) { 1809 BlockChain *PredChain = BlockToChain[Pred]; 1810 if (!LoopBlockSet.count(Pred) && 1811 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1812 // Found a Pred block can be placed before Top. 1813 // Check if Top is the best successor of Pred. 1814 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1815 bool TopOK = true; 1816 for (MachineBasicBlock *Succ : Pred->successors()) { 1817 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1818 BlockChain *SuccChain = BlockToChain[Succ]; 1819 // Check if Succ can be placed after Pred. 1820 // Succ should not be in any chain, or it is the head of some chain. 1821 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1822 (!SuccChain || Succ == *SuccChain->begin())) { 1823 TopOK = false; 1824 break; 1825 } 1826 } 1827 if (TopOK) { 1828 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1829 MBPI->getEdgeProbability(Pred, Top); 1830 if (EdgeFreq > MaxFreq) 1831 MaxFreq = EdgeFreq; 1832 } 1833 } 1834 } 1835 return MaxFreq; 1836 } 1837 1838 // Compute the fall through gains when move NewTop before OldTop. 1839 // 1840 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1841 // marked as "+" are increased fallthrough, this function computes 1842 // 1843 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1844 // 1845 // | 1846 // | - 1847 // V 1848 // --->OldTop 1849 // | . 1850 // | . 1851 // +| . + 1852 // | Pred ---> 1853 // | |- 1854 // | V 1855 // --- NewTop <--- 1856 // |- 1857 // V 1858 // 1859 BlockFrequency 1860 MachineBlockPlacement::FallThroughGains( 1861 const MachineBasicBlock *NewTop, 1862 const MachineBasicBlock *OldTop, 1863 const MachineBasicBlock *ExitBB, 1864 const BlockFilterSet &LoopBlockSet) { 1865 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1866 BlockFrequency FallThrough2Exit = 0; 1867 if (ExitBB) 1868 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1869 MBPI->getEdgeProbability(NewTop, ExitBB); 1870 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1871 MBPI->getEdgeProbability(NewTop, OldTop); 1872 1873 // Find the best Pred of NewTop. 1874 MachineBasicBlock *BestPred = nullptr; 1875 BlockFrequency FallThroughFromPred = 0; 1876 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1877 if (!LoopBlockSet.count(Pred)) 1878 continue; 1879 BlockChain *PredChain = BlockToChain[Pred]; 1880 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1881 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1882 MBPI->getEdgeProbability(Pred, NewTop); 1883 if (EdgeFreq > FallThroughFromPred) { 1884 FallThroughFromPred = EdgeFreq; 1885 BestPred = Pred; 1886 } 1887 } 1888 } 1889 1890 // If NewTop is not placed after Pred, another successor can be placed 1891 // after Pred. 1892 BlockFrequency NewFreq = 0; 1893 if (BestPred) { 1894 for (MachineBasicBlock *Succ : BestPred->successors()) { 1895 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1896 continue; 1897 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1898 continue; 1899 BlockChain *SuccChain = BlockToChain[Succ]; 1900 if ((SuccChain && (Succ != *SuccChain->begin())) || 1901 (SuccChain == BlockToChain[BestPred])) 1902 continue; 1903 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1904 MBPI->getEdgeProbability(BestPred, Succ); 1905 if (EdgeFreq > NewFreq) 1906 NewFreq = EdgeFreq; 1907 } 1908 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 1909 MBPI->getEdgeProbability(BestPred, NewTop); 1910 if (NewFreq > OrigEdgeFreq) { 1911 // If NewTop is not the best successor of Pred, then Pred doesn't 1912 // fallthrough to NewTop. So there is no FallThroughFromPred and 1913 // NewFreq. 1914 NewFreq = 0; 1915 FallThroughFromPred = 0; 1916 } 1917 } 1918 1919 BlockFrequency Result = 0; 1920 BlockFrequency Gains = BackEdgeFreq + NewFreq; 1921 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 1922 FallThroughFromPred; 1923 if (Gains > Lost) 1924 Result = Gains - Lost; 1925 return Result; 1926 } 1927 1928 /// Helper function of findBestLoopTop. Find the best loop top block 1929 /// from predecessors of old top. 1930 /// 1931 /// Look for a block which is strictly better than the old top for laying 1932 /// out before the old top of the loop. This looks for only two patterns: 1933 /// 1934 /// 1. a block has only one successor, the old loop top 1935 /// 1936 /// Because such a block will always result in an unconditional jump, 1937 /// rotating it in front of the old top is always profitable. 1938 /// 1939 /// 2. a block has two successors, one is old top, another is exit 1940 /// and it has more than one predecessors 1941 /// 1942 /// If it is below one of its predecessors P, only P can fall through to 1943 /// it, all other predecessors need a jump to it, and another conditional 1944 /// jump to loop header. If it is moved before loop header, all its 1945 /// predecessors jump to it, then fall through to loop header. So all its 1946 /// predecessors except P can reduce one taken branch. 1947 /// At the same time, move it before old top increases the taken branch 1948 /// to loop exit block, so the reduced taken branch will be compared with 1949 /// the increased taken branch to the loop exit block. 1950 MachineBasicBlock * 1951 MachineBlockPlacement::findBestLoopTopHelper( 1952 MachineBasicBlock *OldTop, 1953 const MachineLoop &L, 1954 const BlockFilterSet &LoopBlockSet) { 1955 // Check that the header hasn't been fused with a preheader block due to 1956 // crazy branches. If it has, we need to start with the header at the top to 1957 // prevent pulling the preheader into the loop body. 1958 BlockChain &HeaderChain = *BlockToChain[OldTop]; 1959 if (!LoopBlockSet.count(*HeaderChain.begin())) 1960 return OldTop; 1961 1962 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 1963 << "\n"); 1964 1965 BlockFrequency BestGains = 0; 1966 MachineBasicBlock *BestPred = nullptr; 1967 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 1968 if (!LoopBlockSet.count(Pred)) 1969 continue; 1970 if (Pred == L.getHeader()) 1971 continue; 1972 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 1973 << Pred->succ_size() << " successors, "; 1974 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1975 if (Pred->succ_size() > 2) 1976 continue; 1977 1978 MachineBasicBlock *OtherBB = nullptr; 1979 if (Pred->succ_size() == 2) { 1980 OtherBB = *Pred->succ_begin(); 1981 if (OtherBB == OldTop) 1982 OtherBB = *Pred->succ_rbegin(); 1983 } 1984 1985 if (!canMoveBottomBlockToTop(Pred, OldTop)) 1986 continue; 1987 1988 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 1989 LoopBlockSet); 1990 if ((Gains > 0) && (Gains > BestGains || 1991 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 1992 BestPred = Pred; 1993 BestGains = Gains; 1994 } 1995 } 1996 1997 // If no direct predecessor is fine, just use the loop header. 1998 if (!BestPred) { 1999 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2000 return OldTop; 2001 } 2002 2003 // Walk backwards through any straight line of predecessors. 2004 while (BestPred->pred_size() == 1 && 2005 (*BestPred->pred_begin())->succ_size() == 1 && 2006 *BestPred->pred_begin() != L.getHeader()) 2007 BestPred = *BestPred->pred_begin(); 2008 2009 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2010 return BestPred; 2011 } 2012 2013 /// Find the best loop top block for layout. 2014 /// 2015 /// This function iteratively calls findBestLoopTopHelper, until no new better 2016 /// BB can be found. 2017 MachineBasicBlock * 2018 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2019 const BlockFilterSet &LoopBlockSet) { 2020 // Placing the latch block before the header may introduce an extra branch 2021 // that skips this block the first time the loop is executed, which we want 2022 // to avoid when optimising for size. 2023 // FIXME: in theory there is a case that does not introduce a new branch, 2024 // i.e. when the layout predecessor does not fallthrough to the loop header. 2025 // In practice this never happens though: there always seems to be a preheader 2026 // that can fallthrough and that is also placed before the header. 2027 if (F->getFunction().hasOptSize()) 2028 return L.getHeader(); 2029 2030 MachineBasicBlock *OldTop = nullptr; 2031 MachineBasicBlock *NewTop = L.getHeader(); 2032 while (NewTop != OldTop) { 2033 OldTop = NewTop; 2034 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2035 if (NewTop != OldTop) 2036 ComputedEdges[NewTop] = { OldTop, false }; 2037 } 2038 return NewTop; 2039 } 2040 2041 /// Find the best loop exiting block for layout. 2042 /// 2043 /// This routine implements the logic to analyze the loop looking for the best 2044 /// block to layout at the top of the loop. Typically this is done to maximize 2045 /// fallthrough opportunities. 2046 MachineBasicBlock * 2047 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2048 const BlockFilterSet &LoopBlockSet, 2049 BlockFrequency &ExitFreq) { 2050 // We don't want to layout the loop linearly in all cases. If the loop header 2051 // is just a normal basic block in the loop, we want to look for what block 2052 // within the loop is the best one to layout at the top. However, if the loop 2053 // header has be pre-merged into a chain due to predecessors not having 2054 // analyzable branches, *and* the predecessor it is merged with is *not* part 2055 // of the loop, rotating the header into the middle of the loop will create 2056 // a non-contiguous range of blocks which is Very Bad. So start with the 2057 // header and only rotate if safe. 2058 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2059 if (!LoopBlockSet.count(*HeaderChain.begin())) 2060 return nullptr; 2061 2062 BlockFrequency BestExitEdgeFreq; 2063 unsigned BestExitLoopDepth = 0; 2064 MachineBasicBlock *ExitingBB = nullptr; 2065 // If there are exits to outer loops, loop rotation can severely limit 2066 // fallthrough opportunities unless it selects such an exit. Keep a set of 2067 // blocks where rotating to exit with that block will reach an outer loop. 2068 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2069 2070 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2071 << getBlockName(L.getHeader()) << "\n"); 2072 for (MachineBasicBlock *MBB : L.getBlocks()) { 2073 BlockChain &Chain = *BlockToChain[MBB]; 2074 // Ensure that this block is at the end of a chain; otherwise it could be 2075 // mid-way through an inner loop or a successor of an unanalyzable branch. 2076 if (MBB != *std::prev(Chain.end())) 2077 continue; 2078 2079 // Now walk the successors. We need to establish whether this has a viable 2080 // exiting successor and whether it has a viable non-exiting successor. 2081 // We store the old exiting state and restore it if a viable looping 2082 // successor isn't found. 2083 MachineBasicBlock *OldExitingBB = ExitingBB; 2084 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2085 bool HasLoopingSucc = false; 2086 for (MachineBasicBlock *Succ : MBB->successors()) { 2087 if (Succ->isEHPad()) 2088 continue; 2089 if (Succ == MBB) 2090 continue; 2091 BlockChain &SuccChain = *BlockToChain[Succ]; 2092 // Don't split chains, either this chain or the successor's chain. 2093 if (&Chain == &SuccChain) { 2094 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2095 << getBlockName(Succ) << " (chain conflict)\n"); 2096 continue; 2097 } 2098 2099 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2100 if (LoopBlockSet.count(Succ)) { 2101 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2102 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2103 HasLoopingSucc = true; 2104 continue; 2105 } 2106 2107 unsigned SuccLoopDepth = 0; 2108 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2109 SuccLoopDepth = ExitLoop->getLoopDepth(); 2110 if (ExitLoop->contains(&L)) 2111 BlocksExitingToOuterLoop.insert(MBB); 2112 } 2113 2114 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2115 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2116 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2117 << "] ("; 2118 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2119 // Note that we bias this toward an existing layout successor to retain 2120 // incoming order in the absence of better information. The exit must have 2121 // a frequency higher than the current exit before we consider breaking 2122 // the layout. 2123 BranchProbability Bias(100 - ExitBlockBias, 100); 2124 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2125 ExitEdgeFreq > BestExitEdgeFreq || 2126 (MBB->isLayoutSuccessor(Succ) && 2127 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2128 BestExitEdgeFreq = ExitEdgeFreq; 2129 ExitingBB = MBB; 2130 } 2131 } 2132 2133 if (!HasLoopingSucc) { 2134 // Restore the old exiting state, no viable looping successor was found. 2135 ExitingBB = OldExitingBB; 2136 BestExitEdgeFreq = OldBestExitEdgeFreq; 2137 } 2138 } 2139 // Without a candidate exiting block or with only a single block in the 2140 // loop, just use the loop header to layout the loop. 2141 if (!ExitingBB) { 2142 LLVM_DEBUG( 2143 dbgs() << " No other candidate exit blocks, using loop header\n"); 2144 return nullptr; 2145 } 2146 if (L.getNumBlocks() == 1) { 2147 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2148 return nullptr; 2149 } 2150 2151 // Also, if we have exit blocks which lead to outer loops but didn't select 2152 // one of them as the exiting block we are rotating toward, disable loop 2153 // rotation altogether. 2154 if (!BlocksExitingToOuterLoop.empty() && 2155 !BlocksExitingToOuterLoop.count(ExitingBB)) 2156 return nullptr; 2157 2158 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2159 << "\n"); 2160 ExitFreq = BestExitEdgeFreq; 2161 return ExitingBB; 2162 } 2163 2164 /// Check if there is a fallthrough to loop header Top. 2165 /// 2166 /// 1. Look for a Pred that can be layout before Top. 2167 /// 2. Check if Top is the most possible successor of Pred. 2168 bool 2169 MachineBlockPlacement::hasViableTopFallthrough( 2170 const MachineBasicBlock *Top, 2171 const BlockFilterSet &LoopBlockSet) { 2172 for (MachineBasicBlock *Pred : Top->predecessors()) { 2173 BlockChain *PredChain = BlockToChain[Pred]; 2174 if (!LoopBlockSet.count(Pred) && 2175 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2176 // Found a Pred block can be placed before Top. 2177 // Check if Top is the best successor of Pred. 2178 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2179 bool TopOK = true; 2180 for (MachineBasicBlock *Succ : Pred->successors()) { 2181 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2182 BlockChain *SuccChain = BlockToChain[Succ]; 2183 // Check if Succ can be placed after Pred. 2184 // Succ should not be in any chain, or it is the head of some chain. 2185 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2186 TopOK = false; 2187 break; 2188 } 2189 } 2190 if (TopOK) 2191 return true; 2192 } 2193 } 2194 return false; 2195 } 2196 2197 /// Attempt to rotate an exiting block to the bottom of the loop. 2198 /// 2199 /// Once we have built a chain, try to rotate it to line up the hot exit block 2200 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2201 /// branches. For example, if the loop has fallthrough into its header and out 2202 /// of its bottom already, don't rotate it. 2203 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2204 const MachineBasicBlock *ExitingBB, 2205 BlockFrequency ExitFreq, 2206 const BlockFilterSet &LoopBlockSet) { 2207 if (!ExitingBB) 2208 return; 2209 2210 MachineBasicBlock *Top = *LoopChain.begin(); 2211 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2212 2213 // If ExitingBB is already the last one in a chain then nothing to do. 2214 if (Bottom == ExitingBB) 2215 return; 2216 2217 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2218 2219 // If the header has viable fallthrough, check whether the current loop 2220 // bottom is a viable exiting block. If so, bail out as rotating will 2221 // introduce an unnecessary branch. 2222 if (ViableTopFallthrough) { 2223 for (MachineBasicBlock *Succ : Bottom->successors()) { 2224 BlockChain *SuccChain = BlockToChain[Succ]; 2225 if (!LoopBlockSet.count(Succ) && 2226 (!SuccChain || Succ == *SuccChain->begin())) 2227 return; 2228 } 2229 2230 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2231 // frequency is larger than top fallthrough. 2232 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2233 if (FallThrough2Top >= ExitFreq) 2234 return; 2235 } 2236 2237 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2238 if (ExitIt == LoopChain.end()) 2239 return; 2240 2241 // Rotating a loop exit to the bottom when there is a fallthrough to top 2242 // trades the entry fallthrough for an exit fallthrough. 2243 // If there is no bottom->top edge, but the chosen exit block does have 2244 // a fallthrough, we break that fallthrough for nothing in return. 2245 2246 // Let's consider an example. We have a built chain of basic blocks 2247 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2248 // By doing a rotation we get 2249 // Bk+1, ..., Bn, B1, ..., Bk 2250 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2251 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2252 // It might be compensated by fallthrough Bn -> B1. 2253 // So we have a condition to avoid creation of extra branch by loop rotation. 2254 // All below must be true to avoid loop rotation: 2255 // If there is a fallthrough to top (B1) 2256 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2257 // There is no fallthrough from bottom (Bn) to top (B1). 2258 // Please note that there is no exit fallthrough from Bn because we checked it 2259 // above. 2260 if (ViableTopFallthrough) { 2261 assert(std::next(ExitIt) != LoopChain.end() && 2262 "Exit should not be last BB"); 2263 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2264 if (ExitingBB->isSuccessor(NextBlockInChain)) 2265 if (!Bottom->isSuccessor(Top)) 2266 return; 2267 } 2268 2269 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2270 << " at bottom\n"); 2271 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2272 } 2273 2274 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2275 /// 2276 /// With profile data, we can determine the cost in terms of missed fall through 2277 /// opportunities when rotating a loop chain and select the best rotation. 2278 /// Basically, there are three kinds of cost to consider for each rotation: 2279 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2280 /// the loop to the loop header. 2281 /// 2. The possibly missed fall through edges (if they exist) from the loop 2282 /// exits to BB out of the loop. 2283 /// 3. The missed fall through edge (if it exists) from the last BB to the 2284 /// first BB in the loop chain. 2285 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2286 /// We select the best rotation with the smallest cost. 2287 void MachineBlockPlacement::rotateLoopWithProfile( 2288 BlockChain &LoopChain, const MachineLoop &L, 2289 const BlockFilterSet &LoopBlockSet) { 2290 auto RotationPos = LoopChain.end(); 2291 2292 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2293 2294 // A utility lambda that scales up a block frequency by dividing it by a 2295 // branch probability which is the reciprocal of the scale. 2296 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2297 unsigned Scale) -> BlockFrequency { 2298 if (Scale == 0) 2299 return 0; 2300 // Use operator / between BlockFrequency and BranchProbability to implement 2301 // saturating multiplication. 2302 return Freq / BranchProbability(1, Scale); 2303 }; 2304 2305 // Compute the cost of the missed fall-through edge to the loop header if the 2306 // chain head is not the loop header. As we only consider natural loops with 2307 // single header, this computation can be done only once. 2308 BlockFrequency HeaderFallThroughCost(0); 2309 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2310 for (auto *Pred : ChainHeaderBB->predecessors()) { 2311 BlockChain *PredChain = BlockToChain[Pred]; 2312 if (!LoopBlockSet.count(Pred) && 2313 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2314 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2315 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2316 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2317 // If the predecessor has only an unconditional jump to the header, we 2318 // need to consider the cost of this jump. 2319 if (Pred->succ_size() == 1) 2320 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2321 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2322 } 2323 } 2324 2325 // Here we collect all exit blocks in the loop, and for each exit we find out 2326 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2327 // as the sum of frequencies of exit edges we collect here, excluding the exit 2328 // edge from the tail of the loop chain. 2329 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2330 for (auto BB : LoopChain) { 2331 auto LargestExitEdgeProb = BranchProbability::getZero(); 2332 for (auto *Succ : BB->successors()) { 2333 BlockChain *SuccChain = BlockToChain[Succ]; 2334 if (!LoopBlockSet.count(Succ) && 2335 (!SuccChain || Succ == *SuccChain->begin())) { 2336 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2337 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2338 } 2339 } 2340 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2341 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2342 ExitsWithFreq.emplace_back(BB, ExitFreq); 2343 } 2344 } 2345 2346 // In this loop we iterate every block in the loop chain and calculate the 2347 // cost assuming the block is the head of the loop chain. When the loop ends, 2348 // we should have found the best candidate as the loop chain's head. 2349 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2350 EndIter = LoopChain.end(); 2351 Iter != EndIter; Iter++, TailIter++) { 2352 // TailIter is used to track the tail of the loop chain if the block we are 2353 // checking (pointed by Iter) is the head of the chain. 2354 if (TailIter == LoopChain.end()) 2355 TailIter = LoopChain.begin(); 2356 2357 auto TailBB = *TailIter; 2358 2359 // Calculate the cost by putting this BB to the top. 2360 BlockFrequency Cost = 0; 2361 2362 // If the current BB is the loop header, we need to take into account the 2363 // cost of the missed fall through edge from outside of the loop to the 2364 // header. 2365 if (Iter != LoopChain.begin()) 2366 Cost += HeaderFallThroughCost; 2367 2368 // Collect the loop exit cost by summing up frequencies of all exit edges 2369 // except the one from the chain tail. 2370 for (auto &ExitWithFreq : ExitsWithFreq) 2371 if (TailBB != ExitWithFreq.first) 2372 Cost += ExitWithFreq.second; 2373 2374 // The cost of breaking the once fall-through edge from the tail to the top 2375 // of the loop chain. Here we need to consider three cases: 2376 // 1. If the tail node has only one successor, then we will get an 2377 // additional jmp instruction. So the cost here is (MisfetchCost + 2378 // JumpInstCost) * tail node frequency. 2379 // 2. If the tail node has two successors, then we may still get an 2380 // additional jmp instruction if the layout successor after the loop 2381 // chain is not its CFG successor. Note that the more frequently executed 2382 // jmp instruction will be put ahead of the other one. Assume the 2383 // frequency of those two branches are x and y, where x is the frequency 2384 // of the edge to the chain head, then the cost will be 2385 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2386 // 3. If the tail node has more than two successors (this rarely happens), 2387 // we won't consider any additional cost. 2388 if (TailBB->isSuccessor(*Iter)) { 2389 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2390 if (TailBB->succ_size() == 1) 2391 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2392 MisfetchCost + JumpInstCost); 2393 else if (TailBB->succ_size() == 2) { 2394 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2395 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2396 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2397 ? TailBBFreq * TailToHeadProb.getCompl() 2398 : TailToHeadFreq; 2399 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2400 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2401 } 2402 } 2403 2404 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2405 << getBlockName(*Iter) 2406 << " to the top: " << Cost.getFrequency() << "\n"); 2407 2408 if (Cost < SmallestRotationCost) { 2409 SmallestRotationCost = Cost; 2410 RotationPos = Iter; 2411 } 2412 } 2413 2414 if (RotationPos != LoopChain.end()) { 2415 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2416 << " to the top\n"); 2417 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2418 } 2419 } 2420 2421 /// Collect blocks in the given loop that are to be placed. 2422 /// 2423 /// When profile data is available, exclude cold blocks from the returned set; 2424 /// otherwise, collect all blocks in the loop. 2425 MachineBlockPlacement::BlockFilterSet 2426 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2427 BlockFilterSet LoopBlockSet; 2428 2429 // Filter cold blocks off from LoopBlockSet when profile data is available. 2430 // Collect the sum of frequencies of incoming edges to the loop header from 2431 // outside. If we treat the loop as a super block, this is the frequency of 2432 // the loop. Then for each block in the loop, we calculate the ratio between 2433 // its frequency and the frequency of the loop block. When it is too small, 2434 // don't add it to the loop chain. If there are outer loops, then this block 2435 // will be merged into the first outer loop chain for which this block is not 2436 // cold anymore. This needs precise profile data and we only do this when 2437 // profile data is available. 2438 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2439 BlockFrequency LoopFreq(0); 2440 for (auto LoopPred : L.getHeader()->predecessors()) 2441 if (!L.contains(LoopPred)) 2442 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2443 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2444 2445 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2446 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2447 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2448 continue; 2449 LoopBlockSet.insert(LoopBB); 2450 } 2451 } else 2452 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2453 2454 return LoopBlockSet; 2455 } 2456 2457 /// Forms basic block chains from the natural loop structures. 2458 /// 2459 /// These chains are designed to preserve the existing *structure* of the code 2460 /// as much as possible. We can then stitch the chains together in a way which 2461 /// both preserves the topological structure and minimizes taken conditional 2462 /// branches. 2463 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2464 // First recurse through any nested loops, building chains for those inner 2465 // loops. 2466 for (const MachineLoop *InnerLoop : L) 2467 buildLoopChains(*InnerLoop); 2468 2469 assert(BlockWorkList.empty() && 2470 "BlockWorkList not empty when starting to build loop chains."); 2471 assert(EHPadWorkList.empty() && 2472 "EHPadWorkList not empty when starting to build loop chains."); 2473 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2474 2475 // Check if we have profile data for this function. If yes, we will rotate 2476 // this loop by modeling costs more precisely which requires the profile data 2477 // for better layout. 2478 bool RotateLoopWithProfile = 2479 ForcePreciseRotationCost || 2480 (PreciseRotationCost && F->getFunction().hasProfileData()); 2481 2482 // First check to see if there is an obviously preferable top block for the 2483 // loop. This will default to the header, but may end up as one of the 2484 // predecessors to the header if there is one which will result in strictly 2485 // fewer branches in the loop body. 2486 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2487 2488 // If we selected just the header for the loop top, look for a potentially 2489 // profitable exit block in the event that rotating the loop can eliminate 2490 // branches by placing an exit edge at the bottom. 2491 // 2492 // Loops are processed innermost to uttermost, make sure we clear 2493 // PreferredLoopExit before processing a new loop. 2494 PreferredLoopExit = nullptr; 2495 BlockFrequency ExitFreq; 2496 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2497 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2498 2499 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2500 2501 // FIXME: This is a really lame way of walking the chains in the loop: we 2502 // walk the blocks, and use a set to prevent visiting a particular chain 2503 // twice. 2504 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2505 assert(LoopChain.UnscheduledPredecessors == 0 && 2506 "LoopChain should not have unscheduled predecessors."); 2507 UpdatedPreds.insert(&LoopChain); 2508 2509 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2510 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2511 2512 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2513 2514 if (RotateLoopWithProfile) 2515 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2516 else 2517 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2518 2519 LLVM_DEBUG({ 2520 // Crash at the end so we get all of the debugging output first. 2521 bool BadLoop = false; 2522 if (LoopChain.UnscheduledPredecessors) { 2523 BadLoop = true; 2524 dbgs() << "Loop chain contains a block without its preds placed!\n" 2525 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2526 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2527 } 2528 for (MachineBasicBlock *ChainBB : LoopChain) { 2529 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2530 if (!LoopBlockSet.remove(ChainBB)) { 2531 // We don't mark the loop as bad here because there are real situations 2532 // where this can occur. For example, with an unanalyzable fallthrough 2533 // from a loop block to a non-loop block or vice versa. 2534 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2535 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2536 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2537 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2538 } 2539 } 2540 2541 if (!LoopBlockSet.empty()) { 2542 BadLoop = true; 2543 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2544 dbgs() << "Loop contains blocks never placed into a chain!\n" 2545 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2546 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2547 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2548 } 2549 assert(!BadLoop && "Detected problems with the placement of this loop."); 2550 }); 2551 2552 BlockWorkList.clear(); 2553 EHPadWorkList.clear(); 2554 } 2555 2556 void MachineBlockPlacement::buildCFGChains() { 2557 // Ensure that every BB in the function has an associated chain to simplify 2558 // the assumptions of the remaining algorithm. 2559 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2560 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2561 ++FI) { 2562 MachineBasicBlock *BB = &*FI; 2563 BlockChain *Chain = 2564 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2565 // Also, merge any blocks which we cannot reason about and must preserve 2566 // the exact fallthrough behavior for. 2567 while (true) { 2568 Cond.clear(); 2569 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2570 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2571 break; 2572 2573 MachineFunction::iterator NextFI = std::next(FI); 2574 MachineBasicBlock *NextBB = &*NextFI; 2575 // Ensure that the layout successor is a viable block, as we know that 2576 // fallthrough is a possibility. 2577 assert(NextFI != FE && "Can't fallthrough past the last block."); 2578 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2579 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2580 << "\n"); 2581 Chain->merge(NextBB, nullptr); 2582 #ifndef NDEBUG 2583 BlocksWithUnanalyzableExits.insert(&*BB); 2584 #endif 2585 FI = NextFI; 2586 BB = NextBB; 2587 } 2588 } 2589 2590 // Build any loop-based chains. 2591 PreferredLoopExit = nullptr; 2592 for (MachineLoop *L : *MLI) 2593 buildLoopChains(*L); 2594 2595 assert(BlockWorkList.empty() && 2596 "BlockWorkList should be empty before building final chain."); 2597 assert(EHPadWorkList.empty() && 2598 "EHPadWorkList should be empty before building final chain."); 2599 2600 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2601 for (MachineBasicBlock &MBB : *F) 2602 fillWorkLists(&MBB, UpdatedPreds); 2603 2604 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2605 buildChain(&F->front(), FunctionChain); 2606 2607 #ifndef NDEBUG 2608 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2609 #endif 2610 LLVM_DEBUG({ 2611 // Crash at the end so we get all of the debugging output first. 2612 bool BadFunc = false; 2613 FunctionBlockSetType FunctionBlockSet; 2614 for (MachineBasicBlock &MBB : *F) 2615 FunctionBlockSet.insert(&MBB); 2616 2617 for (MachineBasicBlock *ChainBB : FunctionChain) 2618 if (!FunctionBlockSet.erase(ChainBB)) { 2619 BadFunc = true; 2620 dbgs() << "Function chain contains a block not in the function!\n" 2621 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2622 } 2623 2624 if (!FunctionBlockSet.empty()) { 2625 BadFunc = true; 2626 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2627 dbgs() << "Function contains blocks never placed into a chain!\n" 2628 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2629 } 2630 assert(!BadFunc && "Detected problems with the block placement."); 2631 }); 2632 2633 // Splice the blocks into place. 2634 MachineFunction::iterator InsertPos = F->begin(); 2635 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2636 for (MachineBasicBlock *ChainBB : FunctionChain) { 2637 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2638 : " ... ") 2639 << getBlockName(ChainBB) << "\n"); 2640 if (InsertPos != MachineFunction::iterator(ChainBB)) 2641 F->splice(InsertPos, ChainBB); 2642 else 2643 ++InsertPos; 2644 2645 // Update the terminator of the previous block. 2646 if (ChainBB == *FunctionChain.begin()) 2647 continue; 2648 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2649 2650 // FIXME: It would be awesome of updateTerminator would just return rather 2651 // than assert when the branch cannot be analyzed in order to remove this 2652 // boiler plate. 2653 Cond.clear(); 2654 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2655 2656 #ifndef NDEBUG 2657 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2658 // Given the exact block placement we chose, we may actually not _need_ to 2659 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2660 // do that at this point is a bug. 2661 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2662 !PrevBB->canFallThrough()) && 2663 "Unexpected block with un-analyzable fallthrough!"); 2664 Cond.clear(); 2665 TBB = FBB = nullptr; 2666 } 2667 #endif 2668 2669 // The "PrevBB" is not yet updated to reflect current code layout, so, 2670 // o. it may fall-through to a block without explicit "goto" instruction 2671 // before layout, and no longer fall-through it after layout; or 2672 // o. just opposite. 2673 // 2674 // analyzeBranch() may return erroneous value for FBB when these two 2675 // situations take place. For the first scenario FBB is mistakenly set NULL; 2676 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2677 // mistakenly pointing to "*BI". 2678 // Thus, if the future change needs to use FBB before the layout is set, it 2679 // has to correct FBB first by using the code similar to the following: 2680 // 2681 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2682 // PrevBB->updateTerminator(); 2683 // Cond.clear(); 2684 // TBB = FBB = nullptr; 2685 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2686 // // FIXME: This should never take place. 2687 // TBB = FBB = nullptr; 2688 // } 2689 // } 2690 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2691 PrevBB->updateTerminator(); 2692 } 2693 2694 // Fixup the last block. 2695 Cond.clear(); 2696 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2697 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2698 F->back().updateTerminator(); 2699 2700 BlockWorkList.clear(); 2701 EHPadWorkList.clear(); 2702 } 2703 2704 void MachineBlockPlacement::optimizeBranches() { 2705 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2706 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2707 2708 // Now that all the basic blocks in the chain have the proper layout, 2709 // make a final call to AnalyzeBranch with AllowModify set. 2710 // Indeed, the target may be able to optimize the branches in a way we 2711 // cannot because all branches may not be analyzable. 2712 // E.g., the target may be able to remove an unconditional branch to 2713 // a fallthrough when it occurs after predicated terminators. 2714 for (MachineBasicBlock *ChainBB : FunctionChain) { 2715 Cond.clear(); 2716 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2717 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2718 // If PrevBB has a two-way branch, try to re-order the branches 2719 // such that we branch to the successor with higher probability first. 2720 if (TBB && !Cond.empty() && FBB && 2721 MBPI->getEdgeProbability(ChainBB, FBB) > 2722 MBPI->getEdgeProbability(ChainBB, TBB) && 2723 !TII->reverseBranchCondition(Cond)) { 2724 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2725 << getBlockName(ChainBB) << "\n"); 2726 LLVM_DEBUG(dbgs() << " Edge probability: " 2727 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2728 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2729 DebugLoc dl; // FIXME: this is nowhere 2730 TII->removeBranch(*ChainBB); 2731 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2732 ChainBB->updateTerminator(); 2733 } 2734 } 2735 } 2736 } 2737 2738 void MachineBlockPlacement::alignBlocks() { 2739 // Walk through the backedges of the function now that we have fully laid out 2740 // the basic blocks and align the destination of each backedge. We don't rely 2741 // exclusively on the loop info here so that we can align backedges in 2742 // unnatural CFGs and backedges that were introduced purely because of the 2743 // loop rotations done during this layout pass. 2744 if (F->getFunction().hasMinSize() || 2745 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2746 return; 2747 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2748 if (FunctionChain.begin() == FunctionChain.end()) 2749 return; // Empty chain. 2750 2751 const BranchProbability ColdProb(1, 5); // 20% 2752 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2753 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2754 for (MachineBasicBlock *ChainBB : FunctionChain) { 2755 if (ChainBB == *FunctionChain.begin()) 2756 continue; 2757 2758 // Don't align non-looping basic blocks. These are unlikely to execute 2759 // enough times to matter in practice. Note that we'll still handle 2760 // unnatural CFGs inside of a natural outer loop (the common case) and 2761 // rotated loops. 2762 MachineLoop *L = MLI->getLoopFor(ChainBB); 2763 if (!L) 2764 continue; 2765 2766 unsigned Align = TLI->getPrefLoopAlignment(L); 2767 if (!Align) 2768 continue; // Don't care about loop alignment. 2769 2770 // If the block is cold relative to the function entry don't waste space 2771 // aligning it. 2772 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2773 if (Freq < WeightedEntryFreq) 2774 continue; 2775 2776 // If the block is cold relative to its loop header, don't align it 2777 // regardless of what edges into the block exist. 2778 MachineBasicBlock *LoopHeader = L->getHeader(); 2779 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2780 if (Freq < (LoopHeaderFreq * ColdProb)) 2781 continue; 2782 2783 // Check for the existence of a non-layout predecessor which would benefit 2784 // from aligning this block. 2785 MachineBasicBlock *LayoutPred = 2786 &*std::prev(MachineFunction::iterator(ChainBB)); 2787 2788 // Force alignment if all the predecessors are jumps. We already checked 2789 // that the block isn't cold above. 2790 if (!LayoutPred->isSuccessor(ChainBB)) { 2791 ChainBB->setAlignment(Align); 2792 continue; 2793 } 2794 2795 // Align this block if the layout predecessor's edge into this block is 2796 // cold relative to the block. When this is true, other predecessors make up 2797 // all of the hot entries into the block and thus alignment is likely to be 2798 // important. 2799 BranchProbability LayoutProb = 2800 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2801 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2802 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2803 ChainBB->setAlignment(Align); 2804 } 2805 } 2806 2807 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2808 /// it was duplicated into its chain predecessor and removed. 2809 /// \p BB - Basic block that may be duplicated. 2810 /// 2811 /// \p LPred - Chosen layout predecessor of \p BB. 2812 /// Updated to be the chain end if LPred is removed. 2813 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2814 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2815 /// Used to identify which blocks to update predecessor 2816 /// counts. 2817 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2818 /// chosen in the given order due to unnatural CFG 2819 /// only needed if \p BB is removed and 2820 /// \p PrevUnplacedBlockIt pointed to \p BB. 2821 /// @return true if \p BB was removed. 2822 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2823 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2824 const MachineBasicBlock *LoopHeaderBB, 2825 BlockChain &Chain, BlockFilterSet *BlockFilter, 2826 MachineFunction::iterator &PrevUnplacedBlockIt) { 2827 bool Removed, DuplicatedToLPred; 2828 bool DuplicatedToOriginalLPred; 2829 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2830 PrevUnplacedBlockIt, 2831 DuplicatedToLPred); 2832 if (!Removed) 2833 return false; 2834 DuplicatedToOriginalLPred = DuplicatedToLPred; 2835 // Iteratively try to duplicate again. It can happen that a block that is 2836 // duplicated into is still small enough to be duplicated again. 2837 // No need to call markBlockSuccessors in this case, as the blocks being 2838 // duplicated from here on are already scheduled. 2839 // Note that DuplicatedToLPred always implies Removed. 2840 while (DuplicatedToLPred) { 2841 assert(Removed && "Block must have been removed to be duplicated into its " 2842 "layout predecessor."); 2843 MachineBasicBlock *DupBB, *DupPred; 2844 // The removal callback causes Chain.end() to be updated when a block is 2845 // removed. On the first pass through the loop, the chain end should be the 2846 // same as it was on function entry. On subsequent passes, because we are 2847 // duplicating the block at the end of the chain, if it is removed the 2848 // chain will have shrunk by one block. 2849 BlockChain::iterator ChainEnd = Chain.end(); 2850 DupBB = *(--ChainEnd); 2851 // Now try to duplicate again. 2852 if (ChainEnd == Chain.begin()) 2853 break; 2854 DupPred = *std::prev(ChainEnd); 2855 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2856 PrevUnplacedBlockIt, 2857 DuplicatedToLPred); 2858 } 2859 // If BB was duplicated into LPred, it is now scheduled. But because it was 2860 // removed, markChainSuccessors won't be called for its chain. Instead we 2861 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2862 // at the end because repeating the tail duplication can increase the number 2863 // of unscheduled predecessors. 2864 LPred = *std::prev(Chain.end()); 2865 if (DuplicatedToOriginalLPred) 2866 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2867 return true; 2868 } 2869 2870 /// Tail duplicate \p BB into (some) predecessors if profitable. 2871 /// \p BB - Basic block that may be duplicated 2872 /// \p LPred - Chosen layout predecessor of \p BB 2873 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2874 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2875 /// Used to identify which blocks to update predecessor 2876 /// counts. 2877 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2878 /// chosen in the given order due to unnatural CFG 2879 /// only needed if \p BB is removed and 2880 /// \p PrevUnplacedBlockIt pointed to \p BB. 2881 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2882 /// only be true if the block was removed. 2883 /// \return - True if the block was duplicated into all preds and removed. 2884 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2885 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2886 BlockChain &Chain, BlockFilterSet *BlockFilter, 2887 MachineFunction::iterator &PrevUnplacedBlockIt, 2888 bool &DuplicatedToLPred) { 2889 DuplicatedToLPred = false; 2890 if (!shouldTailDuplicate(BB)) 2891 return false; 2892 2893 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2894 << "\n"); 2895 2896 // This has to be a callback because none of it can be done after 2897 // BB is deleted. 2898 bool Removed = false; 2899 auto RemovalCallback = 2900 [&](MachineBasicBlock *RemBB) { 2901 // Signal to outer function 2902 Removed = true; 2903 2904 // Conservative default. 2905 bool InWorkList = true; 2906 // Remove from the Chain and Chain Map 2907 if (BlockToChain.count(RemBB)) { 2908 BlockChain *Chain = BlockToChain[RemBB]; 2909 InWorkList = Chain->UnscheduledPredecessors == 0; 2910 Chain->remove(RemBB); 2911 BlockToChain.erase(RemBB); 2912 } 2913 2914 // Handle the unplaced block iterator 2915 if (&(*PrevUnplacedBlockIt) == RemBB) { 2916 PrevUnplacedBlockIt++; 2917 } 2918 2919 // Handle the Work Lists 2920 if (InWorkList) { 2921 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2922 if (RemBB->isEHPad()) 2923 RemoveList = EHPadWorkList; 2924 RemoveList.erase( 2925 llvm::remove_if(RemoveList, 2926 [RemBB](MachineBasicBlock *BB) { 2927 return BB == RemBB; 2928 }), 2929 RemoveList.end()); 2930 } 2931 2932 // Handle the filter set 2933 if (BlockFilter) { 2934 BlockFilter->remove(RemBB); 2935 } 2936 2937 // Remove the block from loop info. 2938 MLI->removeBlock(RemBB); 2939 if (RemBB == PreferredLoopExit) 2940 PreferredLoopExit = nullptr; 2941 2942 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2943 << getBlockName(RemBB) << "\n"); 2944 }; 2945 auto RemovalCallbackRef = 2946 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2947 2948 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2949 bool IsSimple = TailDup.isSimpleBB(BB); 2950 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2951 &DuplicatedPreds, &RemovalCallbackRef); 2952 2953 // Update UnscheduledPredecessors to reflect tail-duplication. 2954 DuplicatedToLPred = false; 2955 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2956 // We're only looking for unscheduled predecessors that match the filter. 2957 BlockChain* PredChain = BlockToChain[Pred]; 2958 if (Pred == LPred) 2959 DuplicatedToLPred = true; 2960 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2961 || PredChain == &Chain) 2962 continue; 2963 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2964 if (BlockFilter && !BlockFilter->count(NewSucc)) 2965 continue; 2966 BlockChain *NewChain = BlockToChain[NewSucc]; 2967 if (NewChain != &Chain && NewChain != PredChain) 2968 NewChain->UnscheduledPredecessors++; 2969 } 2970 } 2971 return Removed; 2972 } 2973 2974 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2975 if (skipFunction(MF.getFunction())) 2976 return false; 2977 2978 // Check for single-block functions and skip them. 2979 if (std::next(MF.begin()) == MF.end()) 2980 return false; 2981 2982 F = &MF; 2983 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2984 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2985 getAnalysis<MachineBlockFrequencyInfo>()); 2986 MLI = &getAnalysis<MachineLoopInfo>(); 2987 TII = MF.getSubtarget().getInstrInfo(); 2988 TLI = MF.getSubtarget().getTargetLowering(); 2989 MPDT = nullptr; 2990 2991 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2992 // there are no MachineLoops. 2993 PreferredLoopExit = nullptr; 2994 2995 assert(BlockToChain.empty() && 2996 "BlockToChain map should be empty before starting placement."); 2997 assert(ComputedEdges.empty() && 2998 "Computed Edge map should be empty before starting placement."); 2999 3000 unsigned TailDupSize = TailDupPlacementThreshold; 3001 // If only the aggressive threshold is explicitly set, use it. 3002 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3003 TailDupPlacementThreshold.getNumOccurrences() == 0) 3004 TailDupSize = TailDupPlacementAggressiveThreshold; 3005 3006 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3007 // For aggressive optimization, we can adjust some thresholds to be less 3008 // conservative. 3009 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3010 // At O3 we should be more willing to copy blocks for tail duplication. This 3011 // increases size pressure, so we only do it at O3 3012 // Do this unless only the regular threshold is explicitly set. 3013 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3014 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3015 TailDupSize = TailDupPlacementAggressiveThreshold; 3016 } 3017 3018 if (allowTailDupPlacement()) { 3019 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3020 if (MF.getFunction().hasOptSize()) 3021 TailDupSize = 1; 3022 bool PreRegAlloc = false; 3023 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 3024 precomputeTriangleChains(); 3025 } 3026 3027 buildCFGChains(); 3028 3029 // Changing the layout can create new tail merging opportunities. 3030 // TailMerge can create jump into if branches that make CFG irreducible for 3031 // HW that requires structured CFG. 3032 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3033 PassConfig->getEnableTailMerge() && 3034 BranchFoldPlacement; 3035 // No tail merging opportunities if the block number is less than four. 3036 if (MF.size() > 3 && EnableTailMerge) { 3037 unsigned TailMergeSize = TailDupSize + 1; 3038 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 3039 *MBPI, TailMergeSize); 3040 3041 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 3042 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 3043 /*AfterPlacement=*/true)) { 3044 // Redo the layout if tail merging creates/removes/moves blocks. 3045 BlockToChain.clear(); 3046 ComputedEdges.clear(); 3047 // Must redo the post-dominator tree if blocks were changed. 3048 if (MPDT) 3049 MPDT->runOnMachineFunction(MF); 3050 ChainAllocator.DestroyAll(); 3051 buildCFGChains(); 3052 } 3053 } 3054 3055 optimizeBranches(); 3056 alignBlocks(); 3057 3058 BlockToChain.clear(); 3059 ComputedEdges.clear(); 3060 ChainAllocator.DestroyAll(); 3061 3062 if (AlignAllBlock) 3063 // Align all of the blocks in the function to a specific alignment. 3064 for (MachineBasicBlock &MBB : MF) 3065 MBB.setAlignment(AlignAllBlock); 3066 else if (AlignAllNonFallThruBlocks) { 3067 // Align all of the blocks that have no fall-through predecessors to a 3068 // specific alignment. 3069 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3070 auto LayoutPred = std::prev(MBI); 3071 if (!LayoutPred->isSuccessor(&*MBI)) 3072 MBI->setAlignment(AlignAllNonFallThruBlocks); 3073 } 3074 } 3075 if (ViewBlockLayoutWithBFI != GVDT_None && 3076 (ViewBlockFreqFuncName.empty() || 3077 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3078 MBFI->view("MBP." + MF.getName(), false); 3079 } 3080 3081 3082 // We always return true as we have no way to track whether the final order 3083 // differs from the original order. 3084 return true; 3085 } 3086 3087 namespace { 3088 3089 /// A pass to compute block placement statistics. 3090 /// 3091 /// A separate pass to compute interesting statistics for evaluating block 3092 /// placement. This is separate from the actual placement pass so that they can 3093 /// be computed in the absence of any placement transformations or when using 3094 /// alternative placement strategies. 3095 class MachineBlockPlacementStats : public MachineFunctionPass { 3096 /// A handle to the branch probability pass. 3097 const MachineBranchProbabilityInfo *MBPI; 3098 3099 /// A handle to the function-wide block frequency pass. 3100 const MachineBlockFrequencyInfo *MBFI; 3101 3102 public: 3103 static char ID; // Pass identification, replacement for typeid 3104 3105 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3106 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3107 } 3108 3109 bool runOnMachineFunction(MachineFunction &F) override; 3110 3111 void getAnalysisUsage(AnalysisUsage &AU) const override { 3112 AU.addRequired<MachineBranchProbabilityInfo>(); 3113 AU.addRequired<MachineBlockFrequencyInfo>(); 3114 AU.setPreservesAll(); 3115 MachineFunctionPass::getAnalysisUsage(AU); 3116 } 3117 }; 3118 3119 } // end anonymous namespace 3120 3121 char MachineBlockPlacementStats::ID = 0; 3122 3123 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3124 3125 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3126 "Basic Block Placement Stats", false, false) 3127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3128 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3129 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3130 "Basic Block Placement Stats", false, false) 3131 3132 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3133 // Check for single-block functions and skip them. 3134 if (std::next(F.begin()) == F.end()) 3135 return false; 3136 3137 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3138 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3139 3140 for (MachineBasicBlock &MBB : F) { 3141 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3142 Statistic &NumBranches = 3143 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3144 Statistic &BranchTakenFreq = 3145 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3146 for (MachineBasicBlock *Succ : MBB.successors()) { 3147 // Skip if this successor is a fallthrough. 3148 if (MBB.isLayoutSuccessor(Succ)) 3149 continue; 3150 3151 BlockFrequency EdgeFreq = 3152 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3153 ++NumBranches; 3154 BranchTakenFreq += EdgeFreq.getFrequency(); 3155 } 3156 } 3157 3158 return false; 3159 } 3160