xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "block-placement"
74 
75 STATISTIC(NumCondBranches, "Number of conditional branches");
76 STATISTIC(NumUncondBranches, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq,
78           "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq,
80           "Potential frequency of taking unconditional branches");
81 
82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
83                                        cl::desc("Force the alignment of all "
84                                                 "blocks in the function."),
85                                        cl::init(0), cl::Hidden);
86 
87 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
88     "align-all-nofallthru-blocks",
89     cl::desc("Force the alignment of all "
90              "blocks that have no fall-through predecessors (i.e. don't add "
91              "nops that are executed)."),
92     cl::init(0), cl::Hidden);
93 
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt<unsigned> ExitBlockBias(
96     "block-placement-exit-block-bias",
97     cl::desc("Block frequency percentage a loop exit block needs "
98              "over the original exit to be considered the new exit."),
99     cl::init(0), cl::Hidden);
100 
101 // Definition:
102 // - Outlining: placement of a basic block outside the chain or hot path.
103 
104 static cl::opt<unsigned> LoopToColdBlockRatio(
105     "loop-to-cold-block-ratio",
106     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107              "(frequency of block) is greater than this ratio"),
108     cl::init(5), cl::Hidden);
109 
110 static cl::opt<bool> ForceLoopColdBlock(
111     "force-loop-cold-block",
112     cl::desc("Force outlining cold blocks from loops."),
113     cl::init(false), cl::Hidden);
114 
115 static cl::opt<bool>
116     PreciseRotationCost("precise-rotation-cost",
117                         cl::desc("Model the cost of loop rotation more "
118                                  "precisely by using profile data."),
119                         cl::init(false), cl::Hidden);
120 
121 static cl::opt<bool>
122     ForcePreciseRotationCost("force-precise-rotation-cost",
123                              cl::desc("Force the use of precise cost "
124                                       "loop rotation strategy."),
125                              cl::init(false), cl::Hidden);
126 
127 static cl::opt<unsigned> MisfetchCost(
128     "misfetch-cost",
129     cl::desc("Cost that models the probabilistic risk of an instruction "
130              "misfetch due to a jump comparing to falling through, whose cost "
131              "is zero."),
132     cl::init(1), cl::Hidden);
133 
134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
135                                       cl::desc("Cost of jump instructions."),
136                                       cl::init(1), cl::Hidden);
137 static cl::opt<bool>
138 TailDupPlacement("tail-dup-placement",
139               cl::desc("Perform tail duplication during placement. "
140                        "Creates more fallthrough opportunites in "
141                        "outline branches."),
142               cl::init(true), cl::Hidden);
143 
144 static cl::opt<bool>
145 BranchFoldPlacement("branch-fold-placement",
146               cl::desc("Perform branch folding during placement. "
147                        "Reduces code size."),
148               cl::init(true), cl::Hidden);
149 
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementThreshold(
152     "tail-dup-placement-threshold",
153     cl::desc("Instruction cutoff for tail duplication during layout. "
154              "Tail merging during layout is forced to have a threshold "
155              "that won't conflict."), cl::init(2),
156     cl::Hidden);
157 
158 // Heuristic for aggressive tail duplication.
159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
160     "tail-dup-placement-aggressive-threshold",
161     cl::desc("Instruction cutoff for aggressive tail duplication during "
162              "layout. Used at -O3. Tail merging during layout is forced to "
163              "have a threshold that won't conflict."), cl::init(4),
164     cl::Hidden);
165 
166 // Heuristic for tail duplication.
167 static cl::opt<unsigned> TailDupPlacementPenalty(
168     "tail-dup-placement-penalty",
169     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170              "Copying can increase fallthrough, but it also increases icache "
171              "pressure. This parameter controls the penalty to account for that. "
172              "Percent as integer."),
173     cl::init(2),
174     cl::Hidden);
175 
176 // Heuristic for triangle chains.
177 static cl::opt<unsigned> TriangleChainCount(
178     "triangle-chain-count",
179     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180              "triangle tail duplication heuristic to kick in. 0 to disable."),
181     cl::init(2),
182     cl::Hidden);
183 
184 extern cl::opt<unsigned> StaticLikelyProb;
185 extern cl::opt<unsigned> ProfileLikelyProb;
186 
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
191 
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
194 extern cl::opt<std::string> ViewBlockFreqFuncName;
195 
196 namespace {
197 
198 class BlockChain;
199 
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
202 
203 /// A chain of blocks which will be laid out contiguously.
204 ///
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
210 ///
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
214 class BlockChain {
215   /// The sequence of blocks belonging to this chain.
216   ///
217   /// This is the sequence of blocks for a particular chain. These will be laid
218   /// out in-order within the function.
219   SmallVector<MachineBasicBlock *, 4> Blocks;
220 
221   /// A handle to the function-wide basic block to block chain mapping.
222   ///
223   /// This is retained in each block chain to simplify the computation of child
224   /// block chains for SCC-formation and iteration. We store the edges to child
225   /// basic blocks, and map them back to their associated chains using this
226   /// structure.
227   BlockToChainMapType &BlockToChain;
228 
229 public:
230   /// Construct a new BlockChain.
231   ///
232   /// This builds a new block chain representing a single basic block in the
233   /// function. It also registers itself as the chain that block participates
234   /// in with the BlockToChain mapping.
235   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
236       : Blocks(1, BB), BlockToChain(BlockToChain) {
237     assert(BB && "Cannot create a chain with a null basic block");
238     BlockToChain[BB] = this;
239   }
240 
241   /// Iterator over blocks within the chain.
242   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
243   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
244 
245   /// Beginning of blocks within the chain.
246   iterator begin() { return Blocks.begin(); }
247   const_iterator begin() const { return Blocks.begin(); }
248 
249   /// End of blocks within the chain.
250   iterator end() { return Blocks.end(); }
251   const_iterator end() const { return Blocks.end(); }
252 
253   bool remove(MachineBasicBlock* BB) {
254     for(iterator i = begin(); i != end(); ++i) {
255       if (*i == BB) {
256         Blocks.erase(i);
257         return true;
258       }
259     }
260     return false;
261   }
262 
263   /// Merge a block chain into this one.
264   ///
265   /// This routine merges a block chain into this one. It takes care of forming
266   /// a contiguous sequence of basic blocks, updating the edge list, and
267   /// updating the block -> chain mapping. It does not free or tear down the
268   /// old chain, but the old chain's block list is no longer valid.
269   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
270     assert(BB && "Can't merge a null block.");
271     assert(!Blocks.empty() && "Can't merge into an empty chain.");
272 
273     // Fast path in case we don't have a chain already.
274     if (!Chain) {
275       assert(!BlockToChain[BB] &&
276              "Passed chain is null, but BB has entry in BlockToChain.");
277       Blocks.push_back(BB);
278       BlockToChain[BB] = this;
279       return;
280     }
281 
282     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
283     assert(Chain->begin() != Chain->end());
284 
285     // Update the incoming blocks to point to this chain, and add them to the
286     // chain structure.
287     for (MachineBasicBlock *ChainBB : *Chain) {
288       Blocks.push_back(ChainBB);
289       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
290       BlockToChain[ChainBB] = this;
291     }
292   }
293 
294 #ifndef NDEBUG
295   /// Dump the blocks in this chain.
296   LLVM_DUMP_METHOD void dump() {
297     for (MachineBasicBlock *MBB : *this)
298       MBB->dump();
299   }
300 #endif // NDEBUG
301 
302   /// Count of predecessors of any block within the chain which have not
303   /// yet been scheduled.  In general, we will delay scheduling this chain
304   /// until those predecessors are scheduled (or we find a sufficiently good
305   /// reason to override this heuristic.)  Note that when forming loop chains,
306   /// blocks outside the loop are ignored and treated as if they were already
307   /// scheduled.
308   ///
309   /// Note: This field is reinitialized multiple times - once for each loop,
310   /// and then once for the function as a whole.
311   unsigned UnscheduledPredecessors = 0;
312 };
313 
314 class MachineBlockPlacement : public MachineFunctionPass {
315   /// A type for a block filter set.
316   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
317 
318   /// Pair struct containing basic block and taildup profitability
319   struct BlockAndTailDupResult {
320     MachineBasicBlock *BB;
321     bool ShouldTailDup;
322   };
323 
324   /// Triple struct containing edge weight and the edge.
325   struct WeightedEdge {
326     BlockFrequency Weight;
327     MachineBasicBlock *Src;
328     MachineBasicBlock *Dest;
329   };
330 
331   /// work lists of blocks that are ready to be laid out
332   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
333   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
334 
335   /// Edges that have already been computed as optimal.
336   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
337 
338   /// Machine Function
339   MachineFunction *F;
340 
341   /// A handle to the branch probability pass.
342   const MachineBranchProbabilityInfo *MBPI;
343 
344   /// A handle to the function-wide block frequency pass.
345   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
346 
347   /// A handle to the loop info.
348   MachineLoopInfo *MLI;
349 
350   /// Preferred loop exit.
351   /// Member variable for convenience. It may be removed by duplication deep
352   /// in the call stack.
353   MachineBasicBlock *PreferredLoopExit;
354 
355   /// A handle to the target's instruction info.
356   const TargetInstrInfo *TII;
357 
358   /// A handle to the target's lowering info.
359   const TargetLoweringBase *TLI;
360 
361   /// A handle to the post dominator tree.
362   MachinePostDominatorTree *MPDT;
363 
364   /// Duplicator used to duplicate tails during placement.
365   ///
366   /// Placement decisions can open up new tail duplication opportunities, but
367   /// since tail duplication affects placement decisions of later blocks, it
368   /// must be done inline.
369   TailDuplicator TailDup;
370 
371   /// Allocator and owner of BlockChain structures.
372   ///
373   /// We build BlockChains lazily while processing the loop structure of
374   /// a function. To reduce malloc traffic, we allocate them using this
375   /// slab-like allocator, and destroy them after the pass completes. An
376   /// important guarantee is that this allocator produces stable pointers to
377   /// the chains.
378   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
379 
380   /// Function wide BasicBlock to BlockChain mapping.
381   ///
382   /// This mapping allows efficiently moving from any given basic block to the
383   /// BlockChain it participates in, if any. We use it to, among other things,
384   /// allow implicitly defining edges between chains as the existing edges
385   /// between basic blocks.
386   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
387 
388 #ifndef NDEBUG
389   /// The set of basic blocks that have terminators that cannot be fully
390   /// analyzed.  These basic blocks cannot be re-ordered safely by
391   /// MachineBlockPlacement, and we must preserve physical layout of these
392   /// blocks and their successors through the pass.
393   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
394 #endif
395 
396   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397   /// if the count goes to 0, add them to the appropriate work list.
398   void markChainSuccessors(
399       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
400       const BlockFilterSet *BlockFilter = nullptr);
401 
402   /// Decrease the UnscheduledPredecessors count for a single block, and
403   /// if the count goes to 0, add them to the appropriate work list.
404   void markBlockSuccessors(
405       const BlockChain &Chain, const MachineBasicBlock *BB,
406       const MachineBasicBlock *LoopHeaderBB,
407       const BlockFilterSet *BlockFilter = nullptr);
408 
409   BranchProbability
410   collectViableSuccessors(
411       const MachineBasicBlock *BB, const BlockChain &Chain,
412       const BlockFilterSet *BlockFilter,
413       SmallVector<MachineBasicBlock *, 4> &Successors);
414   bool shouldPredBlockBeOutlined(
415       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
416       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
417       BranchProbability SuccProb, BranchProbability HotProb);
418   bool repeatedlyTailDuplicateBlock(
419       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
420       const MachineBasicBlock *LoopHeaderBB,
421       BlockChain &Chain, BlockFilterSet *BlockFilter,
422       MachineFunction::iterator &PrevUnplacedBlockIt);
423   bool maybeTailDuplicateBlock(
424       MachineBasicBlock *BB, MachineBasicBlock *LPred,
425       BlockChain &Chain, BlockFilterSet *BlockFilter,
426       MachineFunction::iterator &PrevUnplacedBlockIt,
427       bool &DuplicatedToLPred);
428   bool hasBetterLayoutPredecessor(
429       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
430       const BlockChain &SuccChain, BranchProbability SuccProb,
431       BranchProbability RealSuccProb, const BlockChain &Chain,
432       const BlockFilterSet *BlockFilter);
433   BlockAndTailDupResult selectBestSuccessor(
434       const MachineBasicBlock *BB, const BlockChain &Chain,
435       const BlockFilterSet *BlockFilter);
436   MachineBasicBlock *selectBestCandidateBlock(
437       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
438   MachineBasicBlock *getFirstUnplacedBlock(
439       const BlockChain &PlacedChain,
440       MachineFunction::iterator &PrevUnplacedBlockIt,
441       const BlockFilterSet *BlockFilter);
442 
443   /// Add a basic block to the work list if it is appropriate.
444   ///
445   /// If the optional parameter BlockFilter is provided, only MBB
446   /// present in the set will be added to the worklist. If nullptr
447   /// is provided, no filtering occurs.
448   void fillWorkLists(const MachineBasicBlock *MBB,
449                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
450                      const BlockFilterSet *BlockFilter);
451 
452   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
453                   BlockFilterSet *BlockFilter = nullptr);
454   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
455                                const MachineBasicBlock *OldTop);
456   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
457                                const BlockFilterSet &LoopBlockSet);
458   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
459                                     const BlockFilterSet &LoopBlockSet);
460   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
461                                   const MachineBasicBlock *OldTop,
462                                   const MachineBasicBlock *ExitBB,
463                                   const BlockFilterSet &LoopBlockSet);
464   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
465       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
466   MachineBasicBlock *findBestLoopTop(
467       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
468   MachineBasicBlock *findBestLoopExit(
469       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
470       BlockFrequency &ExitFreq);
471   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
472   void buildLoopChains(const MachineLoop &L);
473   void rotateLoop(
474       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
475       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
476   void rotateLoopWithProfile(
477       BlockChain &LoopChain, const MachineLoop &L,
478       const BlockFilterSet &LoopBlockSet);
479   void buildCFGChains();
480   void optimizeBranches();
481   void alignBlocks();
482   /// Returns true if a block should be tail-duplicated to increase fallthrough
483   /// opportunities.
484   bool shouldTailDuplicate(MachineBasicBlock *BB);
485   /// Check the edge frequencies to see if tail duplication will increase
486   /// fallthroughs.
487   bool isProfitableToTailDup(
488     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
489     BranchProbability QProb,
490     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
491 
492   /// Check for a trellis layout.
493   bool isTrellis(const MachineBasicBlock *BB,
494                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
495                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
496 
497   /// Get the best successor given a trellis layout.
498   BlockAndTailDupResult getBestTrellisSuccessor(
499       const MachineBasicBlock *BB,
500       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
501       BranchProbability AdjustedSumProb, const BlockChain &Chain,
502       const BlockFilterSet *BlockFilter);
503 
504   /// Get the best pair of non-conflicting edges.
505   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
506       const MachineBasicBlock *BB,
507       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
508 
509   /// Returns true if a block can tail duplicate into all unplaced
510   /// predecessors. Filters based on loop.
511   bool canTailDuplicateUnplacedPreds(
512       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
513       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
514 
515   /// Find chains of triangles to tail-duplicate where a global analysis works,
516   /// but a local analysis would not find them.
517   void precomputeTriangleChains();
518 
519 public:
520   static char ID; // Pass identification, replacement for typeid
521 
522   MachineBlockPlacement() : MachineFunctionPass(ID) {
523     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
524   }
525 
526   bool runOnMachineFunction(MachineFunction &F) override;
527 
528   bool allowTailDupPlacement() const {
529     assert(F);
530     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
531   }
532 
533   void getAnalysisUsage(AnalysisUsage &AU) const override {
534     AU.addRequired<MachineBranchProbabilityInfo>();
535     AU.addRequired<MachineBlockFrequencyInfo>();
536     if (TailDupPlacement)
537       AU.addRequired<MachinePostDominatorTree>();
538     AU.addRequired<MachineLoopInfo>();
539     AU.addRequired<TargetPassConfig>();
540     MachineFunctionPass::getAnalysisUsage(AU);
541   }
542 };
543 
544 } // end anonymous namespace
545 
546 char MachineBlockPlacement::ID = 0;
547 
548 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
549 
550 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
551                       "Branch Probability Basic Block Placement", false, false)
552 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
553 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
554 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
555 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
556 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
557                     "Branch Probability Basic Block Placement", false, false)
558 
559 #ifndef NDEBUG
560 /// Helper to print the name of a MBB.
561 ///
562 /// Only used by debug logging.
563 static std::string getBlockName(const MachineBasicBlock *BB) {
564   std::string Result;
565   raw_string_ostream OS(Result);
566   OS << printMBBReference(*BB);
567   OS << " ('" << BB->getName() << "')";
568   OS.flush();
569   return Result;
570 }
571 #endif
572 
573 /// Mark a chain's successors as having one fewer preds.
574 ///
575 /// When a chain is being merged into the "placed" chain, this routine will
576 /// quickly walk the successors of each block in the chain and mark them as
577 /// having one fewer active predecessor. It also adds any successors of this
578 /// chain which reach the zero-predecessor state to the appropriate worklist.
579 void MachineBlockPlacement::markChainSuccessors(
580     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
581     const BlockFilterSet *BlockFilter) {
582   // Walk all the blocks in this chain, marking their successors as having
583   // a predecessor placed.
584   for (MachineBasicBlock *MBB : Chain) {
585     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
586   }
587 }
588 
589 /// Mark a single block's successors as having one fewer preds.
590 ///
591 /// Under normal circumstances, this is only called by markChainSuccessors,
592 /// but if a block that was to be placed is completely tail-duplicated away,
593 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
594 /// for just that block.
595 void MachineBlockPlacement::markBlockSuccessors(
596     const BlockChain &Chain, const MachineBasicBlock *MBB,
597     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
598   // Add any successors for which this is the only un-placed in-loop
599   // predecessor to the worklist as a viable candidate for CFG-neutral
600   // placement. No subsequent placement of this block will violate the CFG
601   // shape, so we get to use heuristics to choose a favorable placement.
602   for (MachineBasicBlock *Succ : MBB->successors()) {
603     if (BlockFilter && !BlockFilter->count(Succ))
604       continue;
605     BlockChain &SuccChain = *BlockToChain[Succ];
606     // Disregard edges within a fixed chain, or edges to the loop header.
607     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
608       continue;
609 
610     // This is a cross-chain edge that is within the loop, so decrement the
611     // loop predecessor count of the destination chain.
612     if (SuccChain.UnscheduledPredecessors == 0 ||
613         --SuccChain.UnscheduledPredecessors > 0)
614       continue;
615 
616     auto *NewBB = *SuccChain.begin();
617     if (NewBB->isEHPad())
618       EHPadWorkList.push_back(NewBB);
619     else
620       BlockWorkList.push_back(NewBB);
621   }
622 }
623 
624 /// This helper function collects the set of successors of block
625 /// \p BB that are allowed to be its layout successors, and return
626 /// the total branch probability of edges from \p BB to those
627 /// blocks.
628 BranchProbability MachineBlockPlacement::collectViableSuccessors(
629     const MachineBasicBlock *BB, const BlockChain &Chain,
630     const BlockFilterSet *BlockFilter,
631     SmallVector<MachineBasicBlock *, 4> &Successors) {
632   // Adjust edge probabilities by excluding edges pointing to blocks that is
633   // either not in BlockFilter or is already in the current chain. Consider the
634   // following CFG:
635   //
636   //     --->A
637   //     |  / \
638   //     | B   C
639   //     |  \ / \
640   //     ----D   E
641   //
642   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
643   // A->C is chosen as a fall-through, D won't be selected as a successor of C
644   // due to CFG constraint (the probability of C->D is not greater than
645   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
646   // when calculating the probability of C->D, D will be selected and we
647   // will get A C D B as the layout of this loop.
648   auto AdjustedSumProb = BranchProbability::getOne();
649   for (MachineBasicBlock *Succ : BB->successors()) {
650     bool SkipSucc = false;
651     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
652       SkipSucc = true;
653     } else {
654       BlockChain *SuccChain = BlockToChain[Succ];
655       if (SuccChain == &Chain) {
656         SkipSucc = true;
657       } else if (Succ != *SuccChain->begin()) {
658         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
659                           << " -> Mid chain!\n");
660         continue;
661       }
662     }
663     if (SkipSucc)
664       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
665     else
666       Successors.push_back(Succ);
667   }
668 
669   return AdjustedSumProb;
670 }
671 
672 /// The helper function returns the branch probability that is adjusted
673 /// or normalized over the new total \p AdjustedSumProb.
674 static BranchProbability
675 getAdjustedProbability(BranchProbability OrigProb,
676                        BranchProbability AdjustedSumProb) {
677   BranchProbability SuccProb;
678   uint32_t SuccProbN = OrigProb.getNumerator();
679   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
680   if (SuccProbN >= SuccProbD)
681     SuccProb = BranchProbability::getOne();
682   else
683     SuccProb = BranchProbability(SuccProbN, SuccProbD);
684 
685   return SuccProb;
686 }
687 
688 /// Check if \p BB has exactly the successors in \p Successors.
689 static bool
690 hasSameSuccessors(MachineBasicBlock &BB,
691                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
692   if (BB.succ_size() != Successors.size())
693     return false;
694   // We don't want to count self-loops
695   if (Successors.count(&BB))
696     return false;
697   for (MachineBasicBlock *Succ : BB.successors())
698     if (!Successors.count(Succ))
699       return false;
700   return true;
701 }
702 
703 /// Check if a block should be tail duplicated to increase fallthrough
704 /// opportunities.
705 /// \p BB Block to check.
706 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
707   // Blocks with single successors don't create additional fallthrough
708   // opportunities. Don't duplicate them. TODO: When conditional exits are
709   // analyzable, allow them to be duplicated.
710   bool IsSimple = TailDup.isSimpleBB(BB);
711 
712   if (BB->succ_size() == 1)
713     return false;
714   return TailDup.shouldTailDuplicate(IsSimple, *BB);
715 }
716 
717 /// Compare 2 BlockFrequency's with a small penalty for \p A.
718 /// In order to be conservative, we apply a X% penalty to account for
719 /// increased icache pressure and static heuristics. For small frequencies
720 /// we use only the numerators to improve accuracy. For simplicity, we assume the
721 /// penalty is less than 100%
722 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
723 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
724                             uint64_t EntryFreq) {
725   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
726   BlockFrequency Gain = A - B;
727   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
728 }
729 
730 /// Check the edge frequencies to see if tail duplication will increase
731 /// fallthroughs. It only makes sense to call this function when
732 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
733 /// always locally profitable if we would have picked \p Succ without
734 /// considering duplication.
735 bool MachineBlockPlacement::isProfitableToTailDup(
736     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
737     BranchProbability QProb,
738     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
739   // We need to do a probability calculation to make sure this is profitable.
740   // First: does succ have a successor that post-dominates? This affects the
741   // calculation. The 2 relevant cases are:
742   //    BB         BB
743   //    | \Qout    | \Qout
744   //   P|  C       |P C
745   //    =   C'     =   C'
746   //    |  /Qin    |  /Qin
747   //    | /        | /
748   //    Succ       Succ
749   //    / \        | \  V
750   //  U/   =V      |U \
751   //  /     \      =   D
752   //  D      E     |  /
753   //               | /
754   //               |/
755   //               PDom
756   //  '=' : Branch taken for that CFG edge
757   // In the second case, Placing Succ while duplicating it into C prevents the
758   // fallthrough of Succ into either D or PDom, because they now have C as an
759   // unplaced predecessor
760 
761   // Start by figuring out which case we fall into
762   MachineBasicBlock *PDom = nullptr;
763   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
764   // Only scan the relevant successors
765   auto AdjustedSuccSumProb =
766       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
767   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
768   auto BBFreq = MBFI->getBlockFreq(BB);
769   auto SuccFreq = MBFI->getBlockFreq(Succ);
770   BlockFrequency P = BBFreq * PProb;
771   BlockFrequency Qout = BBFreq * QProb;
772   uint64_t EntryFreq = MBFI->getEntryFreq();
773   // If there are no more successors, it is profitable to copy, as it strictly
774   // increases fallthrough.
775   if (SuccSuccs.size() == 0)
776     return greaterWithBias(P, Qout, EntryFreq);
777 
778   auto BestSuccSucc = BranchProbability::getZero();
779   // Find the PDom or the best Succ if no PDom exists.
780   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
781     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
782     if (Prob > BestSuccSucc)
783       BestSuccSucc = Prob;
784     if (PDom == nullptr)
785       if (MPDT->dominates(SuccSucc, Succ)) {
786         PDom = SuccSucc;
787         break;
788       }
789   }
790   // For the comparisons, we need to know Succ's best incoming edge that isn't
791   // from BB.
792   auto SuccBestPred = BlockFrequency(0);
793   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
794     if (SuccPred == Succ || SuccPred == BB
795         || BlockToChain[SuccPred] == &Chain
796         || (BlockFilter && !BlockFilter->count(SuccPred)))
797       continue;
798     auto Freq = MBFI->getBlockFreq(SuccPred)
799         * MBPI->getEdgeProbability(SuccPred, Succ);
800     if (Freq > SuccBestPred)
801       SuccBestPred = Freq;
802   }
803   // Qin is Succ's best unplaced incoming edge that isn't BB
804   BlockFrequency Qin = SuccBestPred;
805   // If it doesn't have a post-dominating successor, here is the calculation:
806   //    BB        BB
807   //    | \Qout   |  \
808   //   P|  C      |   =
809   //    =   C'    |    C
810   //    |  /Qin   |     |
811   //    | /       |     C' (+Succ)
812   //    Succ      Succ /|
813   //    / \       |  \/ |
814   //  U/   =V     |  == |
815   //  /     \     | /  \|
816   //  D      E    D     E
817   //  '=' : Branch taken for that CFG edge
818   //  Cost in the first case is: P + V
819   //  For this calculation, we always assume P > Qout. If Qout > P
820   //  The result of this function will be ignored at the caller.
821   //  Let F = SuccFreq - Qin
822   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
823 
824   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
825     BranchProbability UProb = BestSuccSucc;
826     BranchProbability VProb = AdjustedSuccSumProb - UProb;
827     BlockFrequency F = SuccFreq - Qin;
828     BlockFrequency V = SuccFreq * VProb;
829     BlockFrequency QinU = std::min(Qin, F) * UProb;
830     BlockFrequency BaseCost = P + V;
831     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
832     return greaterWithBias(BaseCost, DupCost, EntryFreq);
833   }
834   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
835   BranchProbability VProb = AdjustedSuccSumProb - UProb;
836   BlockFrequency U = SuccFreq * UProb;
837   BlockFrequency V = SuccFreq * VProb;
838   BlockFrequency F = SuccFreq - Qin;
839   // If there is a post-dominating successor, here is the calculation:
840   // BB         BB                 BB          BB
841   // | \Qout    |   \               | \Qout     |  \
842   // |P C       |    =              |P C        |   =
843   // =   C'     |P    C             =   C'      |P   C
844   // |  /Qin    |      |            |  /Qin     |     |
845   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
846   // Succ       Succ  /|            Succ        Succ /|
847   // | \  V     |   \/ |            | \  V      |  \/ |
848   // |U \       |U  /\ =?           |U =        |U /\ |
849   // =   D      = =  =?|            |   D       | =  =|
850   // |  /       |/     D            |  /        |/    D
851   // | /        |     /             | =         |    /
852   // |/         |    /              |/          |   =
853   // Dom         Dom                Dom         Dom
854   //  '=' : Branch taken for that CFG edge
855   // The cost for taken branches in the first case is P + U
856   // Let F = SuccFreq - Qin
857   // The cost in the second case (assuming independence), given the layout:
858   // BB, Succ, (C+Succ), D, Dom or the layout:
859   // BB, Succ, D, Dom, (C+Succ)
860   // is Qout + max(F, Qin) * U + min(F, Qin)
861   // compare P + U vs Qout + P * U + Qin.
862   //
863   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
864   //
865   // For the 3rd case, the cost is P + 2 * V
866   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
867   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
868   if (UProb > AdjustedSuccSumProb / 2 &&
869       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
870                                   Chain, BlockFilter))
871     // Cases 3 & 4
872     return greaterWithBias(
873         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
874         EntryFreq);
875   // Cases 1 & 2
876   return greaterWithBias((P + U),
877                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
878                           std::max(Qin, F) * UProb),
879                          EntryFreq);
880 }
881 
882 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
883 /// successors form the lower part of a trellis. A successor set S forms the
884 /// lower part of a trellis if all of the predecessors of S are either in S or
885 /// have all of S as successors. We ignore trellises where BB doesn't have 2
886 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
887 /// are very uncommon and complex to compute optimally. Allowing edges within S
888 /// is not strictly a trellis, but the same algorithm works, so we allow it.
889 bool MachineBlockPlacement::isTrellis(
890     const MachineBasicBlock *BB,
891     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
892     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
893   // Technically BB could form a trellis with branching factor higher than 2.
894   // But that's extremely uncommon.
895   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
896     return false;
897 
898   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
899                                                        BB->succ_end());
900   // To avoid reviewing the same predecessors twice.
901   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
902 
903   for (MachineBasicBlock *Succ : ViableSuccs) {
904     int PredCount = 0;
905     for (auto SuccPred : Succ->predecessors()) {
906       // Allow triangle successors, but don't count them.
907       if (Successors.count(SuccPred)) {
908         // Make sure that it is actually a triangle.
909         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
910           if (!Successors.count(CheckSucc))
911             return false;
912         continue;
913       }
914       const BlockChain *PredChain = BlockToChain[SuccPred];
915       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
916           PredChain == &Chain || PredChain == BlockToChain[Succ])
917         continue;
918       ++PredCount;
919       // Perform the successor check only once.
920       if (!SeenPreds.insert(SuccPred).second)
921         continue;
922       if (!hasSameSuccessors(*SuccPred, Successors))
923         return false;
924     }
925     // If one of the successors has only BB as a predecessor, it is not a
926     // trellis.
927     if (PredCount < 1)
928       return false;
929   }
930   return true;
931 }
932 
933 /// Pick the highest total weight pair of edges that can both be laid out.
934 /// The edges in \p Edges[0] are assumed to have a different destination than
935 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
936 /// the individual highest weight edges to the 2 different destinations, or in
937 /// case of a conflict, one of them should be replaced with a 2nd best edge.
938 std::pair<MachineBlockPlacement::WeightedEdge,
939           MachineBlockPlacement::WeightedEdge>
940 MachineBlockPlacement::getBestNonConflictingEdges(
941     const MachineBasicBlock *BB,
942     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
943         Edges) {
944   // Sort the edges, and then for each successor, find the best incoming
945   // predecessor. If the best incoming predecessors aren't the same,
946   // then that is clearly the best layout. If there is a conflict, one of the
947   // successors will have to fallthrough from the second best predecessor. We
948   // compare which combination is better overall.
949 
950   // Sort for highest frequency.
951   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
952 
953   llvm::stable_sort(Edges[0], Cmp);
954   llvm::stable_sort(Edges[1], Cmp);
955   auto BestA = Edges[0].begin();
956   auto BestB = Edges[1].begin();
957   // Arrange for the correct answer to be in BestA and BestB
958   // If the 2 best edges don't conflict, the answer is already there.
959   if (BestA->Src == BestB->Src) {
960     // Compare the total fallthrough of (Best + Second Best) for both pairs
961     auto SecondBestA = std::next(BestA);
962     auto SecondBestB = std::next(BestB);
963     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
964     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
965     if (BestAScore < BestBScore)
966       BestA = SecondBestA;
967     else
968       BestB = SecondBestB;
969   }
970   // Arrange for the BB edge to be in BestA if it exists.
971   if (BestB->Src == BB)
972     std::swap(BestA, BestB);
973   return std::make_pair(*BestA, *BestB);
974 }
975 
976 /// Get the best successor from \p BB based on \p BB being part of a trellis.
977 /// We only handle trellises with 2 successors, so the algorithm is
978 /// straightforward: Find the best pair of edges that don't conflict. We find
979 /// the best incoming edge for each successor in the trellis. If those conflict,
980 /// we consider which of them should be replaced with the second best.
981 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
982 /// comes from \p BB, it will be in \p BestEdges[0]
983 MachineBlockPlacement::BlockAndTailDupResult
984 MachineBlockPlacement::getBestTrellisSuccessor(
985     const MachineBasicBlock *BB,
986     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
987     BranchProbability AdjustedSumProb, const BlockChain &Chain,
988     const BlockFilterSet *BlockFilter) {
989 
990   BlockAndTailDupResult Result = {nullptr, false};
991   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
992                                                        BB->succ_end());
993 
994   // We assume size 2 because it's common. For general n, we would have to do
995   // the Hungarian algorithm, but it's not worth the complexity because more
996   // than 2 successors is fairly uncommon, and a trellis even more so.
997   if (Successors.size() != 2 || ViableSuccs.size() != 2)
998     return Result;
999 
1000   // Collect the edge frequencies of all edges that form the trellis.
1001   SmallVector<WeightedEdge, 8> Edges[2];
1002   int SuccIndex = 0;
1003   for (auto Succ : ViableSuccs) {
1004     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1005       // Skip any placed predecessors that are not BB
1006       if (SuccPred != BB)
1007         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1008             BlockToChain[SuccPred] == &Chain ||
1009             BlockToChain[SuccPred] == BlockToChain[Succ])
1010           continue;
1011       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1012                                 MBPI->getEdgeProbability(SuccPred, Succ);
1013       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1014     }
1015     ++SuccIndex;
1016   }
1017 
1018   // Pick the best combination of 2 edges from all the edges in the trellis.
1019   WeightedEdge BestA, BestB;
1020   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1021 
1022   if (BestA.Src != BB) {
1023     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1024     // we shouldn't choose any successor. We've already looked and there's a
1025     // better fallthrough edge for all the successors.
1026     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1027     return Result;
1028   }
1029 
1030   // Did we pick the triangle edge? If tail-duplication is profitable, do
1031   // that instead. Otherwise merge the triangle edge now while we know it is
1032   // optimal.
1033   if (BestA.Dest == BestB.Src) {
1034     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1035     // would be better.
1036     MachineBasicBlock *Succ1 = BestA.Dest;
1037     MachineBasicBlock *Succ2 = BestB.Dest;
1038     // Check to see if tail-duplication would be profitable.
1039     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1040         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1041         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1042                               Chain, BlockFilter)) {
1043       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1044                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1045                  dbgs() << "    Selected: " << getBlockName(Succ2)
1046                         << ", probability: " << Succ2Prob
1047                         << " (Tail Duplicate)\n");
1048       Result.BB = Succ2;
1049       Result.ShouldTailDup = true;
1050       return Result;
1051     }
1052   }
1053   // We have already computed the optimal edge for the other side of the
1054   // trellis.
1055   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1056 
1057   auto TrellisSucc = BestA.Dest;
1058   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1059                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1060              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1061                     << ", probability: " << SuccProb << " (Trellis)\n");
1062   Result.BB = TrellisSucc;
1063   return Result;
1064 }
1065 
1066 /// When the option allowTailDupPlacement() is on, this method checks if the
1067 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1068 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1069 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1070     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1071     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1072   if (!shouldTailDuplicate(Succ))
1073     return false;
1074 
1075   // For CFG checking.
1076   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1077                                                        BB->succ_end());
1078   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1079     // Make sure all unplaced and unfiltered predecessors can be
1080     // tail-duplicated into.
1081     // Skip any blocks that are already placed or not in this loop.
1082     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1083         || BlockToChain[Pred] == &Chain)
1084       continue;
1085     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1086       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1087         // This will result in a trellis after tail duplication, so we don't
1088         // need to copy Succ into this predecessor. In the presence
1089         // of a trellis tail duplication can continue to be profitable.
1090         // For example:
1091         // A            A
1092         // |\           |\
1093         // | \          | \
1094         // |  C         |  C+BB
1095         // | /          |  |
1096         // |/           |  |
1097         // BB    =>     BB |
1098         // |\           |\/|
1099         // | \          |/\|
1100         // |  D         |  D
1101         // | /          | /
1102         // |/           |/
1103         // Succ         Succ
1104         //
1105         // After BB was duplicated into C, the layout looks like the one on the
1106         // right. BB and C now have the same successors. When considering
1107         // whether Succ can be duplicated into all its unplaced predecessors, we
1108         // ignore C.
1109         // We can do this because C already has a profitable fallthrough, namely
1110         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1111         // duplication and for this test.
1112         //
1113         // This allows trellises to be laid out in 2 separate chains
1114         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1115         // because it allows the creation of 2 fallthrough paths with links
1116         // between them, and we correctly identify the best layout for these
1117         // CFGs. We want to extend trellises that the user created in addition
1118         // to trellises created by tail-duplication, so we just look for the
1119         // CFG.
1120         continue;
1121       return false;
1122     }
1123   }
1124   return true;
1125 }
1126 
1127 /// Find chains of triangles where we believe it would be profitable to
1128 /// tail-duplicate them all, but a local analysis would not find them.
1129 /// There are 3 ways this can be profitable:
1130 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1131 ///    longer chains)
1132 /// 2) The chains are statically correlated. Branch probabilities have a very
1133 ///    U-shaped distribution.
1134 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1135 ///    If the branches in a chain are likely to be from the same side of the
1136 ///    distribution as their predecessor, but are independent at runtime, this
1137 ///    transformation is profitable. (Because the cost of being wrong is a small
1138 ///    fixed cost, unlike the standard triangle layout where the cost of being
1139 ///    wrong scales with the # of triangles.)
1140 /// 3) The chains are dynamically correlated. If the probability that a previous
1141 ///    branch was taken positively influences whether the next branch will be
1142 ///    taken
1143 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1144 void MachineBlockPlacement::precomputeTriangleChains() {
1145   struct TriangleChain {
1146     std::vector<MachineBasicBlock *> Edges;
1147 
1148     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1149         : Edges({src, dst}) {}
1150 
1151     void append(MachineBasicBlock *dst) {
1152       assert(getKey()->isSuccessor(dst) &&
1153              "Attempting to append a block that is not a successor.");
1154       Edges.push_back(dst);
1155     }
1156 
1157     unsigned count() const { return Edges.size() - 1; }
1158 
1159     MachineBasicBlock *getKey() const {
1160       return Edges.back();
1161     }
1162   };
1163 
1164   if (TriangleChainCount == 0)
1165     return;
1166 
1167   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1168   // Map from last block to the chain that contains it. This allows us to extend
1169   // chains as we find new triangles.
1170   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1171   for (MachineBasicBlock &BB : *F) {
1172     // If BB doesn't have 2 successors, it doesn't start a triangle.
1173     if (BB.succ_size() != 2)
1174       continue;
1175     MachineBasicBlock *PDom = nullptr;
1176     for (MachineBasicBlock *Succ : BB.successors()) {
1177       if (!MPDT->dominates(Succ, &BB))
1178         continue;
1179       PDom = Succ;
1180       break;
1181     }
1182     // If BB doesn't have a post-dominating successor, it doesn't form a
1183     // triangle.
1184     if (PDom == nullptr)
1185       continue;
1186     // If PDom has a hint that it is low probability, skip this triangle.
1187     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1188       continue;
1189     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1190     // we're looking for.
1191     if (!shouldTailDuplicate(PDom))
1192       continue;
1193     bool CanTailDuplicate = true;
1194     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1195     // isn't the kind of triangle we're looking for.
1196     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1197       if (Pred == &BB)
1198         continue;
1199       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1200         CanTailDuplicate = false;
1201         break;
1202       }
1203     }
1204     // If we can't tail-duplicate PDom to its predecessors, then skip this
1205     // triangle.
1206     if (!CanTailDuplicate)
1207       continue;
1208 
1209     // Now we have an interesting triangle. Insert it if it's not part of an
1210     // existing chain.
1211     // Note: This cannot be replaced with a call insert() or emplace() because
1212     // the find key is BB, but the insert/emplace key is PDom.
1213     auto Found = TriangleChainMap.find(&BB);
1214     // If it is, remove the chain from the map, grow it, and put it back in the
1215     // map with the end as the new key.
1216     if (Found != TriangleChainMap.end()) {
1217       TriangleChain Chain = std::move(Found->second);
1218       TriangleChainMap.erase(Found);
1219       Chain.append(PDom);
1220       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1221     } else {
1222       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1223       assert(InsertResult.second && "Block seen twice.");
1224       (void)InsertResult;
1225     }
1226   }
1227 
1228   // Iterating over a DenseMap is safe here, because the only thing in the body
1229   // of the loop is inserting into another DenseMap (ComputedEdges).
1230   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1231   for (auto &ChainPair : TriangleChainMap) {
1232     TriangleChain &Chain = ChainPair.second;
1233     // Benchmarking has shown that due to branch correlation duplicating 2 or
1234     // more triangles is profitable, despite the calculations assuming
1235     // independence.
1236     if (Chain.count() < TriangleChainCount)
1237       continue;
1238     MachineBasicBlock *dst = Chain.Edges.back();
1239     Chain.Edges.pop_back();
1240     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1241       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1242                         << getBlockName(dst)
1243                         << " as pre-computed based on triangles.\n");
1244 
1245       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1246       assert(InsertResult.second && "Block seen twice.");
1247       (void)InsertResult;
1248 
1249       dst = src;
1250     }
1251   }
1252 }
1253 
1254 // When profile is not present, return the StaticLikelyProb.
1255 // When profile is available, we need to handle the triangle-shape CFG.
1256 static BranchProbability getLayoutSuccessorProbThreshold(
1257       const MachineBasicBlock *BB) {
1258   if (!BB->getParent()->getFunction().hasProfileData())
1259     return BranchProbability(StaticLikelyProb, 100);
1260   if (BB->succ_size() == 2) {
1261     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1262     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1263     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1264       /* See case 1 below for the cost analysis. For BB->Succ to
1265        * be taken with smaller cost, the following needs to hold:
1266        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1267        *   So the threshold T in the calculation below
1268        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1269        *   So T / (1 - T) = 2, Yielding T = 2/3
1270        * Also adding user specified branch bias, we have
1271        *   T = (2/3)*(ProfileLikelyProb/50)
1272        *     = (2*ProfileLikelyProb)/150)
1273        */
1274       return BranchProbability(2 * ProfileLikelyProb, 150);
1275     }
1276   }
1277   return BranchProbability(ProfileLikelyProb, 100);
1278 }
1279 
1280 /// Checks to see if the layout candidate block \p Succ has a better layout
1281 /// predecessor than \c BB. If yes, returns true.
1282 /// \p SuccProb: The probability adjusted for only remaining blocks.
1283 ///   Only used for logging
1284 /// \p RealSuccProb: The un-adjusted probability.
1285 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1286 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1287 ///    considered
1288 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1289     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1290     const BlockChain &SuccChain, BranchProbability SuccProb,
1291     BranchProbability RealSuccProb, const BlockChain &Chain,
1292     const BlockFilterSet *BlockFilter) {
1293 
1294   // There isn't a better layout when there are no unscheduled predecessors.
1295   if (SuccChain.UnscheduledPredecessors == 0)
1296     return false;
1297 
1298   // There are two basic scenarios here:
1299   // -------------------------------------
1300   // Case 1: triangular shape CFG (if-then):
1301   //     BB
1302   //     | \
1303   //     |  \
1304   //     |   Pred
1305   //     |   /
1306   //     Succ
1307   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1308   // set Succ as the layout successor of BB. Picking Succ as BB's
1309   // successor breaks the CFG constraints (FIXME: define these constraints).
1310   // With this layout, Pred BB
1311   // is forced to be outlined, so the overall cost will be cost of the
1312   // branch taken from BB to Pred, plus the cost of back taken branch
1313   // from Pred to Succ, as well as the additional cost associated
1314   // with the needed unconditional jump instruction from Pred To Succ.
1315 
1316   // The cost of the topological order layout is the taken branch cost
1317   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1318   // must hold:
1319   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1320   //      < freq(BB->Succ) *  taken_branch_cost.
1321   // Ignoring unconditional jump cost, we get
1322   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1323   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1324   //
1325   // When real profile data is available, we can precisely compute the
1326   // probability threshold that is needed for edge BB->Succ to be considered.
1327   // Without profile data, the heuristic requires the branch bias to be
1328   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1329   // -----------------------------------------------------------------
1330   // Case 2: diamond like CFG (if-then-else):
1331   //     S
1332   //    / \
1333   //   |   \
1334   //  BB    Pred
1335   //   \    /
1336   //    Succ
1337   //    ..
1338   //
1339   // The current block is BB and edge BB->Succ is now being evaluated.
1340   // Note that edge S->BB was previously already selected because
1341   // prob(S->BB) > prob(S->Pred).
1342   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1343   // choose Pred, we will have a topological ordering as shown on the left
1344   // in the picture below. If we choose Succ, we have the solution as shown
1345   // on the right:
1346   //
1347   //   topo-order:
1348   //
1349   //       S-----                             ---S
1350   //       |    |                             |  |
1351   //    ---BB   |                             |  BB
1352   //    |       |                             |  |
1353   //    |  Pred--                             |  Succ--
1354   //    |  |                                  |       |
1355   //    ---Succ                               ---Pred--
1356   //
1357   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1358   //      = freq(S->Pred) + freq(S->BB)
1359   //
1360   // If we have profile data (i.e, branch probabilities can be trusted), the
1361   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1362   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1363   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1364   // means the cost of topological order is greater.
1365   // When profile data is not available, however, we need to be more
1366   // conservative. If the branch prediction is wrong, breaking the topo-order
1367   // will actually yield a layout with large cost. For this reason, we need
1368   // strong biased branch at block S with Prob(S->BB) in order to select
1369   // BB->Succ. This is equivalent to looking the CFG backward with backward
1370   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1371   // profile data).
1372   // --------------------------------------------------------------------------
1373   // Case 3: forked diamond
1374   //       S
1375   //      / \
1376   //     /   \
1377   //   BB    Pred
1378   //   | \   / |
1379   //   |  \ /  |
1380   //   |   X   |
1381   //   |  / \  |
1382   //   | /   \ |
1383   //   S1     S2
1384   //
1385   // The current block is BB and edge BB->S1 is now being evaluated.
1386   // As above S->BB was already selected because
1387   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1388   //
1389   // topo-order:
1390   //
1391   //     S-------|                     ---S
1392   //     |       |                     |  |
1393   //  ---BB      |                     |  BB
1394   //  |          |                     |  |
1395   //  |  Pred----|                     |  S1----
1396   //  |  |                             |       |
1397   //  --(S1 or S2)                     ---Pred--
1398   //                                        |
1399   //                                       S2
1400   //
1401   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1402   //    + min(freq(Pred->S1), freq(Pred->S2))
1403   // Non-topo-order cost:
1404   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1405   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1406   // is 0. Then the non topo layout is better when
1407   // freq(S->Pred) < freq(BB->S1).
1408   // This is exactly what is checked below.
1409   // Note there are other shapes that apply (Pred may not be a single block,
1410   // but they all fit this general pattern.)
1411   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1412 
1413   // Make sure that a hot successor doesn't have a globally more
1414   // important predecessor.
1415   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1416   bool BadCFGConflict = false;
1417 
1418   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1419     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1420         (BlockFilter && !BlockFilter->count(Pred)) ||
1421         BlockToChain[Pred] == &Chain ||
1422         // This check is redundant except for look ahead. This function is
1423         // called for lookahead by isProfitableToTailDup when BB hasn't been
1424         // placed yet.
1425         (Pred == BB))
1426       continue;
1427     // Do backward checking.
1428     // For all cases above, we need a backward checking to filter out edges that
1429     // are not 'strongly' biased.
1430     // BB  Pred
1431     //  \ /
1432     //  Succ
1433     // We select edge BB->Succ if
1434     //      freq(BB->Succ) > freq(Succ) * HotProb
1435     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1436     //      HotProb
1437     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1438     // Case 1 is covered too, because the first equation reduces to:
1439     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1440     BlockFrequency PredEdgeFreq =
1441         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1442     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1443       BadCFGConflict = true;
1444       break;
1445     }
1446   }
1447 
1448   if (BadCFGConflict) {
1449     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1450                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1451     return true;
1452   }
1453 
1454   return false;
1455 }
1456 
1457 /// Select the best successor for a block.
1458 ///
1459 /// This looks across all successors of a particular block and attempts to
1460 /// select the "best" one to be the layout successor. It only considers direct
1461 /// successors which also pass the block filter. It will attempt to avoid
1462 /// breaking CFG structure, but cave and break such structures in the case of
1463 /// very hot successor edges.
1464 ///
1465 /// \returns The best successor block found, or null if none are viable, along
1466 /// with a boolean indicating if tail duplication is necessary.
1467 MachineBlockPlacement::BlockAndTailDupResult
1468 MachineBlockPlacement::selectBestSuccessor(
1469     const MachineBasicBlock *BB, const BlockChain &Chain,
1470     const BlockFilterSet *BlockFilter) {
1471   const BranchProbability HotProb(StaticLikelyProb, 100);
1472 
1473   BlockAndTailDupResult BestSucc = { nullptr, false };
1474   auto BestProb = BranchProbability::getZero();
1475 
1476   SmallVector<MachineBasicBlock *, 4> Successors;
1477   auto AdjustedSumProb =
1478       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1479 
1480   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1481                     << "\n");
1482 
1483   // if we already precomputed the best successor for BB, return that if still
1484   // applicable.
1485   auto FoundEdge = ComputedEdges.find(BB);
1486   if (FoundEdge != ComputedEdges.end()) {
1487     MachineBasicBlock *Succ = FoundEdge->second.BB;
1488     ComputedEdges.erase(FoundEdge);
1489     BlockChain *SuccChain = BlockToChain[Succ];
1490     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1491         SuccChain != &Chain && Succ == *SuccChain->begin())
1492       return FoundEdge->second;
1493   }
1494 
1495   // if BB is part of a trellis, Use the trellis to determine the optimal
1496   // fallthrough edges
1497   if (isTrellis(BB, Successors, Chain, BlockFilter))
1498     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1499                                    BlockFilter);
1500 
1501   // For blocks with CFG violations, we may be able to lay them out anyway with
1502   // tail-duplication. We keep this vector so we can perform the probability
1503   // calculations the minimum number of times.
1504   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1505       DupCandidates;
1506   for (MachineBasicBlock *Succ : Successors) {
1507     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1508     BranchProbability SuccProb =
1509         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1510 
1511     BlockChain &SuccChain = *BlockToChain[Succ];
1512     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1513     // predecessor that yields lower global cost.
1514     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1515                                    Chain, BlockFilter)) {
1516       // If tail duplication would make Succ profitable, place it.
1517       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1518         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1519       continue;
1520     }
1521 
1522     LLVM_DEBUG(
1523         dbgs() << "    Candidate: " << getBlockName(Succ)
1524                << ", probability: " << SuccProb
1525                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1526                << "\n");
1527 
1528     if (BestSucc.BB && BestProb >= SuccProb) {
1529       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1530       continue;
1531     }
1532 
1533     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1534     BestSucc.BB = Succ;
1535     BestProb = SuccProb;
1536   }
1537   // Handle the tail duplication candidates in order of decreasing probability.
1538   // Stop at the first one that is profitable. Also stop if they are less
1539   // profitable than BestSucc. Position is important because we preserve it and
1540   // prefer first best match. Here we aren't comparing in order, so we capture
1541   // the position instead.
1542   llvm::stable_sort(DupCandidates,
1543                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1544                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1545                       return std::get<0>(L) > std::get<0>(R);
1546                     });
1547   for (auto &Tup : DupCandidates) {
1548     BranchProbability DupProb;
1549     MachineBasicBlock *Succ;
1550     std::tie(DupProb, Succ) = Tup;
1551     if (DupProb < BestProb)
1552       break;
1553     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1554         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1555       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1556                         << ", probability: " << DupProb
1557                         << " (Tail Duplicate)\n");
1558       BestSucc.BB = Succ;
1559       BestSucc.ShouldTailDup = true;
1560       break;
1561     }
1562   }
1563 
1564   if (BestSucc.BB)
1565     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1566 
1567   return BestSucc;
1568 }
1569 
1570 /// Select the best block from a worklist.
1571 ///
1572 /// This looks through the provided worklist as a list of candidate basic
1573 /// blocks and select the most profitable one to place. The definition of
1574 /// profitable only really makes sense in the context of a loop. This returns
1575 /// the most frequently visited block in the worklist, which in the case of
1576 /// a loop, is the one most desirable to be physically close to the rest of the
1577 /// loop body in order to improve i-cache behavior.
1578 ///
1579 /// \returns The best block found, or null if none are viable.
1580 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1581     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1582   // Once we need to walk the worklist looking for a candidate, cleanup the
1583   // worklist of already placed entries.
1584   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1585   // some code complexity) into the loop below.
1586   WorkList.erase(llvm::remove_if(WorkList,
1587                                  [&](MachineBasicBlock *BB) {
1588                                    return BlockToChain.lookup(BB) == &Chain;
1589                                  }),
1590                  WorkList.end());
1591 
1592   if (WorkList.empty())
1593     return nullptr;
1594 
1595   bool IsEHPad = WorkList[0]->isEHPad();
1596 
1597   MachineBasicBlock *BestBlock = nullptr;
1598   BlockFrequency BestFreq;
1599   for (MachineBasicBlock *MBB : WorkList) {
1600     assert(MBB->isEHPad() == IsEHPad &&
1601            "EHPad mismatch between block and work list.");
1602 
1603     BlockChain &SuccChain = *BlockToChain[MBB];
1604     if (&SuccChain == &Chain)
1605       continue;
1606 
1607     assert(SuccChain.UnscheduledPredecessors == 0 &&
1608            "Found CFG-violating block");
1609 
1610     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1611     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1612                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1613 
1614     // For ehpad, we layout the least probable first as to avoid jumping back
1615     // from least probable landingpads to more probable ones.
1616     //
1617     // FIXME: Using probability is probably (!) not the best way to achieve
1618     // this. We should probably have a more principled approach to layout
1619     // cleanup code.
1620     //
1621     // The goal is to get:
1622     //
1623     //                 +--------------------------+
1624     //                 |                          V
1625     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1626     //
1627     // Rather than:
1628     //
1629     //                 +-------------------------------------+
1630     //                 V                                     |
1631     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1632     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1633       continue;
1634 
1635     BestBlock = MBB;
1636     BestFreq = CandidateFreq;
1637   }
1638 
1639   return BestBlock;
1640 }
1641 
1642 /// Retrieve the first unplaced basic block.
1643 ///
1644 /// This routine is called when we are unable to use the CFG to walk through
1645 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1646 /// We walk through the function's blocks in order, starting from the
1647 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1648 /// re-scanning the entire sequence on repeated calls to this routine.
1649 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1650     const BlockChain &PlacedChain,
1651     MachineFunction::iterator &PrevUnplacedBlockIt,
1652     const BlockFilterSet *BlockFilter) {
1653   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1654        ++I) {
1655     if (BlockFilter && !BlockFilter->count(&*I))
1656       continue;
1657     if (BlockToChain[&*I] != &PlacedChain) {
1658       PrevUnplacedBlockIt = I;
1659       // Now select the head of the chain to which the unplaced block belongs
1660       // as the block to place. This will force the entire chain to be placed,
1661       // and satisfies the requirements of merging chains.
1662       return *BlockToChain[&*I]->begin();
1663     }
1664   }
1665   return nullptr;
1666 }
1667 
1668 void MachineBlockPlacement::fillWorkLists(
1669     const MachineBasicBlock *MBB,
1670     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1671     const BlockFilterSet *BlockFilter = nullptr) {
1672   BlockChain &Chain = *BlockToChain[MBB];
1673   if (!UpdatedPreds.insert(&Chain).second)
1674     return;
1675 
1676   assert(
1677       Chain.UnscheduledPredecessors == 0 &&
1678       "Attempting to place block with unscheduled predecessors in worklist.");
1679   for (MachineBasicBlock *ChainBB : Chain) {
1680     assert(BlockToChain[ChainBB] == &Chain &&
1681            "Block in chain doesn't match BlockToChain map.");
1682     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1683       if (BlockFilter && !BlockFilter->count(Pred))
1684         continue;
1685       if (BlockToChain[Pred] == &Chain)
1686         continue;
1687       ++Chain.UnscheduledPredecessors;
1688     }
1689   }
1690 
1691   if (Chain.UnscheduledPredecessors != 0)
1692     return;
1693 
1694   MachineBasicBlock *BB = *Chain.begin();
1695   if (BB->isEHPad())
1696     EHPadWorkList.push_back(BB);
1697   else
1698     BlockWorkList.push_back(BB);
1699 }
1700 
1701 void MachineBlockPlacement::buildChain(
1702     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1703     BlockFilterSet *BlockFilter) {
1704   assert(HeadBB && "BB must not be null.\n");
1705   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1706   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1707 
1708   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1709   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1710   MachineBasicBlock *BB = *std::prev(Chain.end());
1711   while (true) {
1712     assert(BB && "null block found at end of chain in loop.");
1713     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1714     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1715 
1716 
1717     // Look for the best viable successor if there is one to place immediately
1718     // after this block.
1719     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1720     MachineBasicBlock* BestSucc = Result.BB;
1721     bool ShouldTailDup = Result.ShouldTailDup;
1722     if (allowTailDupPlacement())
1723       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1724 
1725     // If an immediate successor isn't available, look for the best viable
1726     // block among those we've identified as not violating the loop's CFG at
1727     // this point. This won't be a fallthrough, but it will increase locality.
1728     if (!BestSucc)
1729       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1730     if (!BestSucc)
1731       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1732 
1733     if (!BestSucc) {
1734       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1735       if (!BestSucc)
1736         break;
1737 
1738       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1739                            "layout successor until the CFG reduces\n");
1740     }
1741 
1742     // Placement may have changed tail duplication opportunities.
1743     // Check for that now.
1744     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1745       // If the chosen successor was duplicated into all its predecessors,
1746       // don't bother laying it out, just go round the loop again with BB as
1747       // the chain end.
1748       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1749                                        BlockFilter, PrevUnplacedBlockIt))
1750         continue;
1751     }
1752 
1753     // Place this block, updating the datastructures to reflect its placement.
1754     BlockChain &SuccChain = *BlockToChain[BestSucc];
1755     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1756     // we selected a successor that didn't fit naturally into the CFG.
1757     SuccChain.UnscheduledPredecessors = 0;
1758     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1759                       << getBlockName(BestSucc) << "\n");
1760     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1761     Chain.merge(BestSucc, &SuccChain);
1762     BB = *std::prev(Chain.end());
1763   }
1764 
1765   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1766                     << getBlockName(*Chain.begin()) << "\n");
1767 }
1768 
1769 // If bottom of block BB has only one successor OldTop, in most cases it is
1770 // profitable to move it before OldTop, except the following case:
1771 //
1772 //     -->OldTop<-
1773 //     |    .    |
1774 //     |    .    |
1775 //     |    .    |
1776 //     ---Pred   |
1777 //          |    |
1778 //         BB-----
1779 //
1780 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1781 // layout the other successor below it, so it can't reduce taken branch.
1782 // In this case we keep its original layout.
1783 bool
1784 MachineBlockPlacement::canMoveBottomBlockToTop(
1785     const MachineBasicBlock *BottomBlock,
1786     const MachineBasicBlock *OldTop) {
1787   if (BottomBlock->pred_size() != 1)
1788     return true;
1789   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1790   if (Pred->succ_size() != 2)
1791     return true;
1792 
1793   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1794   if (OtherBB == BottomBlock)
1795     OtherBB = *Pred->succ_rbegin();
1796   if (OtherBB == OldTop)
1797     return false;
1798 
1799   return true;
1800 }
1801 
1802 // Find out the possible fall through frequence to the top of a loop.
1803 BlockFrequency
1804 MachineBlockPlacement::TopFallThroughFreq(
1805     const MachineBasicBlock *Top,
1806     const BlockFilterSet &LoopBlockSet) {
1807   BlockFrequency MaxFreq = 0;
1808   for (MachineBasicBlock *Pred : Top->predecessors()) {
1809     BlockChain *PredChain = BlockToChain[Pred];
1810     if (!LoopBlockSet.count(Pred) &&
1811         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1812       // Found a Pred block can be placed before Top.
1813       // Check if Top is the best successor of Pred.
1814       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1815       bool TopOK = true;
1816       for (MachineBasicBlock *Succ : Pred->successors()) {
1817         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1818         BlockChain *SuccChain = BlockToChain[Succ];
1819         // Check if Succ can be placed after Pred.
1820         // Succ should not be in any chain, or it is the head of some chain.
1821         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1822             (!SuccChain || Succ == *SuccChain->begin())) {
1823           TopOK = false;
1824           break;
1825         }
1826       }
1827       if (TopOK) {
1828         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1829                                   MBPI->getEdgeProbability(Pred, Top);
1830         if (EdgeFreq > MaxFreq)
1831           MaxFreq = EdgeFreq;
1832       }
1833     }
1834   }
1835   return MaxFreq;
1836 }
1837 
1838 // Compute the fall through gains when move NewTop before OldTop.
1839 //
1840 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1841 // marked as "+" are increased fallthrough, this function computes
1842 //
1843 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1844 //
1845 //              |
1846 //              | -
1847 //              V
1848 //        --->OldTop
1849 //        |     .
1850 //        |     .
1851 //       +|     .    +
1852 //        |   Pred --->
1853 //        |     |-
1854 //        |     V
1855 //        --- NewTop <---
1856 //              |-
1857 //              V
1858 //
1859 BlockFrequency
1860 MachineBlockPlacement::FallThroughGains(
1861     const MachineBasicBlock *NewTop,
1862     const MachineBasicBlock *OldTop,
1863     const MachineBasicBlock *ExitBB,
1864     const BlockFilterSet &LoopBlockSet) {
1865   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1866   BlockFrequency FallThrough2Exit = 0;
1867   if (ExitBB)
1868     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1869         MBPI->getEdgeProbability(NewTop, ExitBB);
1870   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1871       MBPI->getEdgeProbability(NewTop, OldTop);
1872 
1873   // Find the best Pred of NewTop.
1874    MachineBasicBlock *BestPred = nullptr;
1875    BlockFrequency FallThroughFromPred = 0;
1876    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1877      if (!LoopBlockSet.count(Pred))
1878        continue;
1879      BlockChain *PredChain = BlockToChain[Pred];
1880      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1881        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1882            MBPI->getEdgeProbability(Pred, NewTop);
1883        if (EdgeFreq > FallThroughFromPred) {
1884          FallThroughFromPred = EdgeFreq;
1885          BestPred = Pred;
1886        }
1887      }
1888    }
1889 
1890    // If NewTop is not placed after Pred, another successor can be placed
1891    // after Pred.
1892    BlockFrequency NewFreq = 0;
1893    if (BestPred) {
1894      for (MachineBasicBlock *Succ : BestPred->successors()) {
1895        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1896          continue;
1897        if (ComputedEdges.find(Succ) != ComputedEdges.end())
1898          continue;
1899        BlockChain *SuccChain = BlockToChain[Succ];
1900        if ((SuccChain && (Succ != *SuccChain->begin())) ||
1901            (SuccChain == BlockToChain[BestPred]))
1902          continue;
1903        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1904            MBPI->getEdgeProbability(BestPred, Succ);
1905        if (EdgeFreq > NewFreq)
1906          NewFreq = EdgeFreq;
1907      }
1908      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1909          MBPI->getEdgeProbability(BestPred, NewTop);
1910      if (NewFreq > OrigEdgeFreq) {
1911        // If NewTop is not the best successor of Pred, then Pred doesn't
1912        // fallthrough to NewTop. So there is no FallThroughFromPred and
1913        // NewFreq.
1914        NewFreq = 0;
1915        FallThroughFromPred = 0;
1916      }
1917    }
1918 
1919    BlockFrequency Result = 0;
1920    BlockFrequency Gains = BackEdgeFreq + NewFreq;
1921    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1922        FallThroughFromPred;
1923    if (Gains > Lost)
1924      Result = Gains - Lost;
1925    return Result;
1926 }
1927 
1928 /// Helper function of findBestLoopTop. Find the best loop top block
1929 /// from predecessors of old top.
1930 ///
1931 /// Look for a block which is strictly better than the old top for laying
1932 /// out before the old top of the loop. This looks for only two patterns:
1933 ///
1934 ///     1. a block has only one successor, the old loop top
1935 ///
1936 ///        Because such a block will always result in an unconditional jump,
1937 ///        rotating it in front of the old top is always profitable.
1938 ///
1939 ///     2. a block has two successors, one is old top, another is exit
1940 ///        and it has more than one predecessors
1941 ///
1942 ///        If it is below one of its predecessors P, only P can fall through to
1943 ///        it, all other predecessors need a jump to it, and another conditional
1944 ///        jump to loop header. If it is moved before loop header, all its
1945 ///        predecessors jump to it, then fall through to loop header. So all its
1946 ///        predecessors except P can reduce one taken branch.
1947 ///        At the same time, move it before old top increases the taken branch
1948 ///        to loop exit block, so the reduced taken branch will be compared with
1949 ///        the increased taken branch to the loop exit block.
1950 MachineBasicBlock *
1951 MachineBlockPlacement::findBestLoopTopHelper(
1952     MachineBasicBlock *OldTop,
1953     const MachineLoop &L,
1954     const BlockFilterSet &LoopBlockSet) {
1955   // Check that the header hasn't been fused with a preheader block due to
1956   // crazy branches. If it has, we need to start with the header at the top to
1957   // prevent pulling the preheader into the loop body.
1958   BlockChain &HeaderChain = *BlockToChain[OldTop];
1959   if (!LoopBlockSet.count(*HeaderChain.begin()))
1960     return OldTop;
1961 
1962   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
1963                     << "\n");
1964 
1965   BlockFrequency BestGains = 0;
1966   MachineBasicBlock *BestPred = nullptr;
1967   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
1968     if (!LoopBlockSet.count(Pred))
1969       continue;
1970     if (Pred == L.getHeader())
1971       continue;
1972     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
1973                       << Pred->succ_size() << " successors, ";
1974                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1975     if (Pred->succ_size() > 2)
1976       continue;
1977 
1978     MachineBasicBlock *OtherBB = nullptr;
1979     if (Pred->succ_size() == 2) {
1980       OtherBB = *Pred->succ_begin();
1981       if (OtherBB == OldTop)
1982         OtherBB = *Pred->succ_rbegin();
1983     }
1984 
1985     if (!canMoveBottomBlockToTop(Pred, OldTop))
1986       continue;
1987 
1988     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
1989                                             LoopBlockSet);
1990     if ((Gains > 0) && (Gains > BestGains ||
1991         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
1992       BestPred = Pred;
1993       BestGains = Gains;
1994     }
1995   }
1996 
1997   // If no direct predecessor is fine, just use the loop header.
1998   if (!BestPred) {
1999     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2000     return OldTop;
2001   }
2002 
2003   // Walk backwards through any straight line of predecessors.
2004   while (BestPred->pred_size() == 1 &&
2005          (*BestPred->pred_begin())->succ_size() == 1 &&
2006          *BestPred->pred_begin() != L.getHeader())
2007     BestPred = *BestPred->pred_begin();
2008 
2009   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2010   return BestPred;
2011 }
2012 
2013 /// Find the best loop top block for layout.
2014 ///
2015 /// This function iteratively calls findBestLoopTopHelper, until no new better
2016 /// BB can be found.
2017 MachineBasicBlock *
2018 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2019                                        const BlockFilterSet &LoopBlockSet) {
2020   // Placing the latch block before the header may introduce an extra branch
2021   // that skips this block the first time the loop is executed, which we want
2022   // to avoid when optimising for size.
2023   // FIXME: in theory there is a case that does not introduce a new branch,
2024   // i.e. when the layout predecessor does not fallthrough to the loop header.
2025   // In practice this never happens though: there always seems to be a preheader
2026   // that can fallthrough and that is also placed before the header.
2027   if (F->getFunction().hasOptSize())
2028     return L.getHeader();
2029 
2030   MachineBasicBlock *OldTop = nullptr;
2031   MachineBasicBlock *NewTop = L.getHeader();
2032   while (NewTop != OldTop) {
2033     OldTop = NewTop;
2034     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2035     if (NewTop != OldTop)
2036       ComputedEdges[NewTop] = { OldTop, false };
2037   }
2038   return NewTop;
2039 }
2040 
2041 /// Find the best loop exiting block for layout.
2042 ///
2043 /// This routine implements the logic to analyze the loop looking for the best
2044 /// block to layout at the top of the loop. Typically this is done to maximize
2045 /// fallthrough opportunities.
2046 MachineBasicBlock *
2047 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2048                                         const BlockFilterSet &LoopBlockSet,
2049                                         BlockFrequency &ExitFreq) {
2050   // We don't want to layout the loop linearly in all cases. If the loop header
2051   // is just a normal basic block in the loop, we want to look for what block
2052   // within the loop is the best one to layout at the top. However, if the loop
2053   // header has be pre-merged into a chain due to predecessors not having
2054   // analyzable branches, *and* the predecessor it is merged with is *not* part
2055   // of the loop, rotating the header into the middle of the loop will create
2056   // a non-contiguous range of blocks which is Very Bad. So start with the
2057   // header and only rotate if safe.
2058   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2059   if (!LoopBlockSet.count(*HeaderChain.begin()))
2060     return nullptr;
2061 
2062   BlockFrequency BestExitEdgeFreq;
2063   unsigned BestExitLoopDepth = 0;
2064   MachineBasicBlock *ExitingBB = nullptr;
2065   // If there are exits to outer loops, loop rotation can severely limit
2066   // fallthrough opportunities unless it selects such an exit. Keep a set of
2067   // blocks where rotating to exit with that block will reach an outer loop.
2068   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2069 
2070   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2071                     << getBlockName(L.getHeader()) << "\n");
2072   for (MachineBasicBlock *MBB : L.getBlocks()) {
2073     BlockChain &Chain = *BlockToChain[MBB];
2074     // Ensure that this block is at the end of a chain; otherwise it could be
2075     // mid-way through an inner loop or a successor of an unanalyzable branch.
2076     if (MBB != *std::prev(Chain.end()))
2077       continue;
2078 
2079     // Now walk the successors. We need to establish whether this has a viable
2080     // exiting successor and whether it has a viable non-exiting successor.
2081     // We store the old exiting state and restore it if a viable looping
2082     // successor isn't found.
2083     MachineBasicBlock *OldExitingBB = ExitingBB;
2084     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2085     bool HasLoopingSucc = false;
2086     for (MachineBasicBlock *Succ : MBB->successors()) {
2087       if (Succ->isEHPad())
2088         continue;
2089       if (Succ == MBB)
2090         continue;
2091       BlockChain &SuccChain = *BlockToChain[Succ];
2092       // Don't split chains, either this chain or the successor's chain.
2093       if (&Chain == &SuccChain) {
2094         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2095                           << getBlockName(Succ) << " (chain conflict)\n");
2096         continue;
2097       }
2098 
2099       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2100       if (LoopBlockSet.count(Succ)) {
2101         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2102                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2103         HasLoopingSucc = true;
2104         continue;
2105       }
2106 
2107       unsigned SuccLoopDepth = 0;
2108       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2109         SuccLoopDepth = ExitLoop->getLoopDepth();
2110         if (ExitLoop->contains(&L))
2111           BlocksExitingToOuterLoop.insert(MBB);
2112       }
2113 
2114       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2115       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2116                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2117                         << "] (";
2118                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2119       // Note that we bias this toward an existing layout successor to retain
2120       // incoming order in the absence of better information. The exit must have
2121       // a frequency higher than the current exit before we consider breaking
2122       // the layout.
2123       BranchProbability Bias(100 - ExitBlockBias, 100);
2124       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2125           ExitEdgeFreq > BestExitEdgeFreq ||
2126           (MBB->isLayoutSuccessor(Succ) &&
2127            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2128         BestExitEdgeFreq = ExitEdgeFreq;
2129         ExitingBB = MBB;
2130       }
2131     }
2132 
2133     if (!HasLoopingSucc) {
2134       // Restore the old exiting state, no viable looping successor was found.
2135       ExitingBB = OldExitingBB;
2136       BestExitEdgeFreq = OldBestExitEdgeFreq;
2137     }
2138   }
2139   // Without a candidate exiting block or with only a single block in the
2140   // loop, just use the loop header to layout the loop.
2141   if (!ExitingBB) {
2142     LLVM_DEBUG(
2143         dbgs() << "    No other candidate exit blocks, using loop header\n");
2144     return nullptr;
2145   }
2146   if (L.getNumBlocks() == 1) {
2147     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2148     return nullptr;
2149   }
2150 
2151   // Also, if we have exit blocks which lead to outer loops but didn't select
2152   // one of them as the exiting block we are rotating toward, disable loop
2153   // rotation altogether.
2154   if (!BlocksExitingToOuterLoop.empty() &&
2155       !BlocksExitingToOuterLoop.count(ExitingBB))
2156     return nullptr;
2157 
2158   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2159                     << "\n");
2160   ExitFreq = BestExitEdgeFreq;
2161   return ExitingBB;
2162 }
2163 
2164 /// Check if there is a fallthrough to loop header Top.
2165 ///
2166 ///   1. Look for a Pred that can be layout before Top.
2167 ///   2. Check if Top is the most possible successor of Pred.
2168 bool
2169 MachineBlockPlacement::hasViableTopFallthrough(
2170     const MachineBasicBlock *Top,
2171     const BlockFilterSet &LoopBlockSet) {
2172   for (MachineBasicBlock *Pred : Top->predecessors()) {
2173     BlockChain *PredChain = BlockToChain[Pred];
2174     if (!LoopBlockSet.count(Pred) &&
2175         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2176       // Found a Pred block can be placed before Top.
2177       // Check if Top is the best successor of Pred.
2178       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2179       bool TopOK = true;
2180       for (MachineBasicBlock *Succ : Pred->successors()) {
2181         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2182         BlockChain *SuccChain = BlockToChain[Succ];
2183         // Check if Succ can be placed after Pred.
2184         // Succ should not be in any chain, or it is the head of some chain.
2185         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2186           TopOK = false;
2187           break;
2188         }
2189       }
2190       if (TopOK)
2191         return true;
2192     }
2193   }
2194   return false;
2195 }
2196 
2197 /// Attempt to rotate an exiting block to the bottom of the loop.
2198 ///
2199 /// Once we have built a chain, try to rotate it to line up the hot exit block
2200 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2201 /// branches. For example, if the loop has fallthrough into its header and out
2202 /// of its bottom already, don't rotate it.
2203 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2204                                        const MachineBasicBlock *ExitingBB,
2205                                        BlockFrequency ExitFreq,
2206                                        const BlockFilterSet &LoopBlockSet) {
2207   if (!ExitingBB)
2208     return;
2209 
2210   MachineBasicBlock *Top = *LoopChain.begin();
2211   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2212 
2213   // If ExitingBB is already the last one in a chain then nothing to do.
2214   if (Bottom == ExitingBB)
2215     return;
2216 
2217   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2218 
2219   // If the header has viable fallthrough, check whether the current loop
2220   // bottom is a viable exiting block. If so, bail out as rotating will
2221   // introduce an unnecessary branch.
2222   if (ViableTopFallthrough) {
2223     for (MachineBasicBlock *Succ : Bottom->successors()) {
2224       BlockChain *SuccChain = BlockToChain[Succ];
2225       if (!LoopBlockSet.count(Succ) &&
2226           (!SuccChain || Succ == *SuccChain->begin()))
2227         return;
2228     }
2229 
2230     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2231     // frequency is larger than top fallthrough.
2232     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2233     if (FallThrough2Top >= ExitFreq)
2234       return;
2235   }
2236 
2237   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2238   if (ExitIt == LoopChain.end())
2239     return;
2240 
2241   // Rotating a loop exit to the bottom when there is a fallthrough to top
2242   // trades the entry fallthrough for an exit fallthrough.
2243   // If there is no bottom->top edge, but the chosen exit block does have
2244   // a fallthrough, we break that fallthrough for nothing in return.
2245 
2246   // Let's consider an example. We have a built chain of basic blocks
2247   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2248   // By doing a rotation we get
2249   // Bk+1, ..., Bn, B1, ..., Bk
2250   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2251   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2252   // It might be compensated by fallthrough Bn -> B1.
2253   // So we have a condition to avoid creation of extra branch by loop rotation.
2254   // All below must be true to avoid loop rotation:
2255   //   If there is a fallthrough to top (B1)
2256   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2257   //   There is no fallthrough from bottom (Bn) to top (B1).
2258   // Please note that there is no exit fallthrough from Bn because we checked it
2259   // above.
2260   if (ViableTopFallthrough) {
2261     assert(std::next(ExitIt) != LoopChain.end() &&
2262            "Exit should not be last BB");
2263     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2264     if (ExitingBB->isSuccessor(NextBlockInChain))
2265       if (!Bottom->isSuccessor(Top))
2266         return;
2267   }
2268 
2269   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2270                     << " at bottom\n");
2271   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2272 }
2273 
2274 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2275 ///
2276 /// With profile data, we can determine the cost in terms of missed fall through
2277 /// opportunities when rotating a loop chain and select the best rotation.
2278 /// Basically, there are three kinds of cost to consider for each rotation:
2279 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2280 ///    the loop to the loop header.
2281 ///    2. The possibly missed fall through edges (if they exist) from the loop
2282 ///    exits to BB out of the loop.
2283 ///    3. The missed fall through edge (if it exists) from the last BB to the
2284 ///    first BB in the loop chain.
2285 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2286 ///  We select the best rotation with the smallest cost.
2287 void MachineBlockPlacement::rotateLoopWithProfile(
2288     BlockChain &LoopChain, const MachineLoop &L,
2289     const BlockFilterSet &LoopBlockSet) {
2290   auto RotationPos = LoopChain.end();
2291 
2292   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2293 
2294   // A utility lambda that scales up a block frequency by dividing it by a
2295   // branch probability which is the reciprocal of the scale.
2296   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2297                                 unsigned Scale) -> BlockFrequency {
2298     if (Scale == 0)
2299       return 0;
2300     // Use operator / between BlockFrequency and BranchProbability to implement
2301     // saturating multiplication.
2302     return Freq / BranchProbability(1, Scale);
2303   };
2304 
2305   // Compute the cost of the missed fall-through edge to the loop header if the
2306   // chain head is not the loop header. As we only consider natural loops with
2307   // single header, this computation can be done only once.
2308   BlockFrequency HeaderFallThroughCost(0);
2309   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2310   for (auto *Pred : ChainHeaderBB->predecessors()) {
2311     BlockChain *PredChain = BlockToChain[Pred];
2312     if (!LoopBlockSet.count(Pred) &&
2313         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2314       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2315           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2316       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2317       // If the predecessor has only an unconditional jump to the header, we
2318       // need to consider the cost of this jump.
2319       if (Pred->succ_size() == 1)
2320         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2321       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2322     }
2323   }
2324 
2325   // Here we collect all exit blocks in the loop, and for each exit we find out
2326   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2327   // as the sum of frequencies of exit edges we collect here, excluding the exit
2328   // edge from the tail of the loop chain.
2329   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2330   for (auto BB : LoopChain) {
2331     auto LargestExitEdgeProb = BranchProbability::getZero();
2332     for (auto *Succ : BB->successors()) {
2333       BlockChain *SuccChain = BlockToChain[Succ];
2334       if (!LoopBlockSet.count(Succ) &&
2335           (!SuccChain || Succ == *SuccChain->begin())) {
2336         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2337         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2338       }
2339     }
2340     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2341       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2342       ExitsWithFreq.emplace_back(BB, ExitFreq);
2343     }
2344   }
2345 
2346   // In this loop we iterate every block in the loop chain and calculate the
2347   // cost assuming the block is the head of the loop chain. When the loop ends,
2348   // we should have found the best candidate as the loop chain's head.
2349   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2350             EndIter = LoopChain.end();
2351        Iter != EndIter; Iter++, TailIter++) {
2352     // TailIter is used to track the tail of the loop chain if the block we are
2353     // checking (pointed by Iter) is the head of the chain.
2354     if (TailIter == LoopChain.end())
2355       TailIter = LoopChain.begin();
2356 
2357     auto TailBB = *TailIter;
2358 
2359     // Calculate the cost by putting this BB to the top.
2360     BlockFrequency Cost = 0;
2361 
2362     // If the current BB is the loop header, we need to take into account the
2363     // cost of the missed fall through edge from outside of the loop to the
2364     // header.
2365     if (Iter != LoopChain.begin())
2366       Cost += HeaderFallThroughCost;
2367 
2368     // Collect the loop exit cost by summing up frequencies of all exit edges
2369     // except the one from the chain tail.
2370     for (auto &ExitWithFreq : ExitsWithFreq)
2371       if (TailBB != ExitWithFreq.first)
2372         Cost += ExitWithFreq.second;
2373 
2374     // The cost of breaking the once fall-through edge from the tail to the top
2375     // of the loop chain. Here we need to consider three cases:
2376     // 1. If the tail node has only one successor, then we will get an
2377     //    additional jmp instruction. So the cost here is (MisfetchCost +
2378     //    JumpInstCost) * tail node frequency.
2379     // 2. If the tail node has two successors, then we may still get an
2380     //    additional jmp instruction if the layout successor after the loop
2381     //    chain is not its CFG successor. Note that the more frequently executed
2382     //    jmp instruction will be put ahead of the other one. Assume the
2383     //    frequency of those two branches are x and y, where x is the frequency
2384     //    of the edge to the chain head, then the cost will be
2385     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2386     // 3. If the tail node has more than two successors (this rarely happens),
2387     //    we won't consider any additional cost.
2388     if (TailBB->isSuccessor(*Iter)) {
2389       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2390       if (TailBB->succ_size() == 1)
2391         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2392                                     MisfetchCost + JumpInstCost);
2393       else if (TailBB->succ_size() == 2) {
2394         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2395         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2396         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2397                                   ? TailBBFreq * TailToHeadProb.getCompl()
2398                                   : TailToHeadFreq;
2399         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2400                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2401       }
2402     }
2403 
2404     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2405                       << getBlockName(*Iter)
2406                       << " to the top: " << Cost.getFrequency() << "\n");
2407 
2408     if (Cost < SmallestRotationCost) {
2409       SmallestRotationCost = Cost;
2410       RotationPos = Iter;
2411     }
2412   }
2413 
2414   if (RotationPos != LoopChain.end()) {
2415     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2416                       << " to the top\n");
2417     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2418   }
2419 }
2420 
2421 /// Collect blocks in the given loop that are to be placed.
2422 ///
2423 /// When profile data is available, exclude cold blocks from the returned set;
2424 /// otherwise, collect all blocks in the loop.
2425 MachineBlockPlacement::BlockFilterSet
2426 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2427   BlockFilterSet LoopBlockSet;
2428 
2429   // Filter cold blocks off from LoopBlockSet when profile data is available.
2430   // Collect the sum of frequencies of incoming edges to the loop header from
2431   // outside. If we treat the loop as a super block, this is the frequency of
2432   // the loop. Then for each block in the loop, we calculate the ratio between
2433   // its frequency and the frequency of the loop block. When it is too small,
2434   // don't add it to the loop chain. If there are outer loops, then this block
2435   // will be merged into the first outer loop chain for which this block is not
2436   // cold anymore. This needs precise profile data and we only do this when
2437   // profile data is available.
2438   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2439     BlockFrequency LoopFreq(0);
2440     for (auto LoopPred : L.getHeader()->predecessors())
2441       if (!L.contains(LoopPred))
2442         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2443                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2444 
2445     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2446       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2447       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2448         continue;
2449       LoopBlockSet.insert(LoopBB);
2450     }
2451   } else
2452     LoopBlockSet.insert(L.block_begin(), L.block_end());
2453 
2454   return LoopBlockSet;
2455 }
2456 
2457 /// Forms basic block chains from the natural loop structures.
2458 ///
2459 /// These chains are designed to preserve the existing *structure* of the code
2460 /// as much as possible. We can then stitch the chains together in a way which
2461 /// both preserves the topological structure and minimizes taken conditional
2462 /// branches.
2463 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2464   // First recurse through any nested loops, building chains for those inner
2465   // loops.
2466   for (const MachineLoop *InnerLoop : L)
2467     buildLoopChains(*InnerLoop);
2468 
2469   assert(BlockWorkList.empty() &&
2470          "BlockWorkList not empty when starting to build loop chains.");
2471   assert(EHPadWorkList.empty() &&
2472          "EHPadWorkList not empty when starting to build loop chains.");
2473   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2474 
2475   // Check if we have profile data for this function. If yes, we will rotate
2476   // this loop by modeling costs more precisely which requires the profile data
2477   // for better layout.
2478   bool RotateLoopWithProfile =
2479       ForcePreciseRotationCost ||
2480       (PreciseRotationCost && F->getFunction().hasProfileData());
2481 
2482   // First check to see if there is an obviously preferable top block for the
2483   // loop. This will default to the header, but may end up as one of the
2484   // predecessors to the header if there is one which will result in strictly
2485   // fewer branches in the loop body.
2486   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2487 
2488   // If we selected just the header for the loop top, look for a potentially
2489   // profitable exit block in the event that rotating the loop can eliminate
2490   // branches by placing an exit edge at the bottom.
2491   //
2492   // Loops are processed innermost to uttermost, make sure we clear
2493   // PreferredLoopExit before processing a new loop.
2494   PreferredLoopExit = nullptr;
2495   BlockFrequency ExitFreq;
2496   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2497     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2498 
2499   BlockChain &LoopChain = *BlockToChain[LoopTop];
2500 
2501   // FIXME: This is a really lame way of walking the chains in the loop: we
2502   // walk the blocks, and use a set to prevent visiting a particular chain
2503   // twice.
2504   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2505   assert(LoopChain.UnscheduledPredecessors == 0 &&
2506          "LoopChain should not have unscheduled predecessors.");
2507   UpdatedPreds.insert(&LoopChain);
2508 
2509   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2510     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2511 
2512   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2513 
2514   if (RotateLoopWithProfile)
2515     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2516   else
2517     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2518 
2519   LLVM_DEBUG({
2520     // Crash at the end so we get all of the debugging output first.
2521     bool BadLoop = false;
2522     if (LoopChain.UnscheduledPredecessors) {
2523       BadLoop = true;
2524       dbgs() << "Loop chain contains a block without its preds placed!\n"
2525              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2526              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2527     }
2528     for (MachineBasicBlock *ChainBB : LoopChain) {
2529       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2530       if (!LoopBlockSet.remove(ChainBB)) {
2531         // We don't mark the loop as bad here because there are real situations
2532         // where this can occur. For example, with an unanalyzable fallthrough
2533         // from a loop block to a non-loop block or vice versa.
2534         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2535                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2536                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2537                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2538       }
2539     }
2540 
2541     if (!LoopBlockSet.empty()) {
2542       BadLoop = true;
2543       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2544         dbgs() << "Loop contains blocks never placed into a chain!\n"
2545                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2546                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2547                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2548     }
2549     assert(!BadLoop && "Detected problems with the placement of this loop.");
2550   });
2551 
2552   BlockWorkList.clear();
2553   EHPadWorkList.clear();
2554 }
2555 
2556 void MachineBlockPlacement::buildCFGChains() {
2557   // Ensure that every BB in the function has an associated chain to simplify
2558   // the assumptions of the remaining algorithm.
2559   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2560   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2561        ++FI) {
2562     MachineBasicBlock *BB = &*FI;
2563     BlockChain *Chain =
2564         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2565     // Also, merge any blocks which we cannot reason about and must preserve
2566     // the exact fallthrough behavior for.
2567     while (true) {
2568       Cond.clear();
2569       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2570       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2571         break;
2572 
2573       MachineFunction::iterator NextFI = std::next(FI);
2574       MachineBasicBlock *NextBB = &*NextFI;
2575       // Ensure that the layout successor is a viable block, as we know that
2576       // fallthrough is a possibility.
2577       assert(NextFI != FE && "Can't fallthrough past the last block.");
2578       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2579                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2580                         << "\n");
2581       Chain->merge(NextBB, nullptr);
2582 #ifndef NDEBUG
2583       BlocksWithUnanalyzableExits.insert(&*BB);
2584 #endif
2585       FI = NextFI;
2586       BB = NextBB;
2587     }
2588   }
2589 
2590   // Build any loop-based chains.
2591   PreferredLoopExit = nullptr;
2592   for (MachineLoop *L : *MLI)
2593     buildLoopChains(*L);
2594 
2595   assert(BlockWorkList.empty() &&
2596          "BlockWorkList should be empty before building final chain.");
2597   assert(EHPadWorkList.empty() &&
2598          "EHPadWorkList should be empty before building final chain.");
2599 
2600   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2601   for (MachineBasicBlock &MBB : *F)
2602     fillWorkLists(&MBB, UpdatedPreds);
2603 
2604   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2605   buildChain(&F->front(), FunctionChain);
2606 
2607 #ifndef NDEBUG
2608   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2609 #endif
2610   LLVM_DEBUG({
2611     // Crash at the end so we get all of the debugging output first.
2612     bool BadFunc = false;
2613     FunctionBlockSetType FunctionBlockSet;
2614     for (MachineBasicBlock &MBB : *F)
2615       FunctionBlockSet.insert(&MBB);
2616 
2617     for (MachineBasicBlock *ChainBB : FunctionChain)
2618       if (!FunctionBlockSet.erase(ChainBB)) {
2619         BadFunc = true;
2620         dbgs() << "Function chain contains a block not in the function!\n"
2621                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2622       }
2623 
2624     if (!FunctionBlockSet.empty()) {
2625       BadFunc = true;
2626       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2627         dbgs() << "Function contains blocks never placed into a chain!\n"
2628                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2629     }
2630     assert(!BadFunc && "Detected problems with the block placement.");
2631   });
2632 
2633   // Splice the blocks into place.
2634   MachineFunction::iterator InsertPos = F->begin();
2635   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2636   for (MachineBasicBlock *ChainBB : FunctionChain) {
2637     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2638                                                             : "          ... ")
2639                       << getBlockName(ChainBB) << "\n");
2640     if (InsertPos != MachineFunction::iterator(ChainBB))
2641       F->splice(InsertPos, ChainBB);
2642     else
2643       ++InsertPos;
2644 
2645     // Update the terminator of the previous block.
2646     if (ChainBB == *FunctionChain.begin())
2647       continue;
2648     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2649 
2650     // FIXME: It would be awesome of updateTerminator would just return rather
2651     // than assert when the branch cannot be analyzed in order to remove this
2652     // boiler plate.
2653     Cond.clear();
2654     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2655 
2656 #ifndef NDEBUG
2657     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2658       // Given the exact block placement we chose, we may actually not _need_ to
2659       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2660       // do that at this point is a bug.
2661       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2662               !PrevBB->canFallThrough()) &&
2663              "Unexpected block with un-analyzable fallthrough!");
2664       Cond.clear();
2665       TBB = FBB = nullptr;
2666     }
2667 #endif
2668 
2669     // The "PrevBB" is not yet updated to reflect current code layout, so,
2670     //   o. it may fall-through to a block without explicit "goto" instruction
2671     //      before layout, and no longer fall-through it after layout; or
2672     //   o. just opposite.
2673     //
2674     // analyzeBranch() may return erroneous value for FBB when these two
2675     // situations take place. For the first scenario FBB is mistakenly set NULL;
2676     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2677     // mistakenly pointing to "*BI".
2678     // Thus, if the future change needs to use FBB before the layout is set, it
2679     // has to correct FBB first by using the code similar to the following:
2680     //
2681     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2682     //   PrevBB->updateTerminator();
2683     //   Cond.clear();
2684     //   TBB = FBB = nullptr;
2685     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2686     //     // FIXME: This should never take place.
2687     //     TBB = FBB = nullptr;
2688     //   }
2689     // }
2690     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2691       PrevBB->updateTerminator();
2692   }
2693 
2694   // Fixup the last block.
2695   Cond.clear();
2696   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2697   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2698     F->back().updateTerminator();
2699 
2700   BlockWorkList.clear();
2701   EHPadWorkList.clear();
2702 }
2703 
2704 void MachineBlockPlacement::optimizeBranches() {
2705   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2706   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2707 
2708   // Now that all the basic blocks in the chain have the proper layout,
2709   // make a final call to AnalyzeBranch with AllowModify set.
2710   // Indeed, the target may be able to optimize the branches in a way we
2711   // cannot because all branches may not be analyzable.
2712   // E.g., the target may be able to remove an unconditional branch to
2713   // a fallthrough when it occurs after predicated terminators.
2714   for (MachineBasicBlock *ChainBB : FunctionChain) {
2715     Cond.clear();
2716     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2717     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2718       // If PrevBB has a two-way branch, try to re-order the branches
2719       // such that we branch to the successor with higher probability first.
2720       if (TBB && !Cond.empty() && FBB &&
2721           MBPI->getEdgeProbability(ChainBB, FBB) >
2722               MBPI->getEdgeProbability(ChainBB, TBB) &&
2723           !TII->reverseBranchCondition(Cond)) {
2724         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2725                           << getBlockName(ChainBB) << "\n");
2726         LLVM_DEBUG(dbgs() << "    Edge probability: "
2727                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2728                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2729         DebugLoc dl; // FIXME: this is nowhere
2730         TII->removeBranch(*ChainBB);
2731         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2732         ChainBB->updateTerminator();
2733       }
2734     }
2735   }
2736 }
2737 
2738 void MachineBlockPlacement::alignBlocks() {
2739   // Walk through the backedges of the function now that we have fully laid out
2740   // the basic blocks and align the destination of each backedge. We don't rely
2741   // exclusively on the loop info here so that we can align backedges in
2742   // unnatural CFGs and backedges that were introduced purely because of the
2743   // loop rotations done during this layout pass.
2744   if (F->getFunction().hasMinSize() ||
2745       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2746     return;
2747   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2748   if (FunctionChain.begin() == FunctionChain.end())
2749     return; // Empty chain.
2750 
2751   const BranchProbability ColdProb(1, 5); // 20%
2752   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2753   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2754   for (MachineBasicBlock *ChainBB : FunctionChain) {
2755     if (ChainBB == *FunctionChain.begin())
2756       continue;
2757 
2758     // Don't align non-looping basic blocks. These are unlikely to execute
2759     // enough times to matter in practice. Note that we'll still handle
2760     // unnatural CFGs inside of a natural outer loop (the common case) and
2761     // rotated loops.
2762     MachineLoop *L = MLI->getLoopFor(ChainBB);
2763     if (!L)
2764       continue;
2765 
2766     unsigned Align = TLI->getPrefLoopAlignment(L);
2767     if (!Align)
2768       continue; // Don't care about loop alignment.
2769 
2770     // If the block is cold relative to the function entry don't waste space
2771     // aligning it.
2772     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2773     if (Freq < WeightedEntryFreq)
2774       continue;
2775 
2776     // If the block is cold relative to its loop header, don't align it
2777     // regardless of what edges into the block exist.
2778     MachineBasicBlock *LoopHeader = L->getHeader();
2779     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2780     if (Freq < (LoopHeaderFreq * ColdProb))
2781       continue;
2782 
2783     // Check for the existence of a non-layout predecessor which would benefit
2784     // from aligning this block.
2785     MachineBasicBlock *LayoutPred =
2786         &*std::prev(MachineFunction::iterator(ChainBB));
2787 
2788     // Force alignment if all the predecessors are jumps. We already checked
2789     // that the block isn't cold above.
2790     if (!LayoutPred->isSuccessor(ChainBB)) {
2791       ChainBB->setAlignment(Align);
2792       continue;
2793     }
2794 
2795     // Align this block if the layout predecessor's edge into this block is
2796     // cold relative to the block. When this is true, other predecessors make up
2797     // all of the hot entries into the block and thus alignment is likely to be
2798     // important.
2799     BranchProbability LayoutProb =
2800         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2801     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2802     if (LayoutEdgeFreq <= (Freq * ColdProb))
2803       ChainBB->setAlignment(Align);
2804   }
2805 }
2806 
2807 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2808 /// it was duplicated into its chain predecessor and removed.
2809 /// \p BB    - Basic block that may be duplicated.
2810 ///
2811 /// \p LPred - Chosen layout predecessor of \p BB.
2812 ///            Updated to be the chain end if LPred is removed.
2813 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2814 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2815 ///                  Used to identify which blocks to update predecessor
2816 ///                  counts.
2817 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2818 ///                          chosen in the given order due to unnatural CFG
2819 ///                          only needed if \p BB is removed and
2820 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2821 /// @return true if \p BB was removed.
2822 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2823     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2824     const MachineBasicBlock *LoopHeaderBB,
2825     BlockChain &Chain, BlockFilterSet *BlockFilter,
2826     MachineFunction::iterator &PrevUnplacedBlockIt) {
2827   bool Removed, DuplicatedToLPred;
2828   bool DuplicatedToOriginalLPred;
2829   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2830                                     PrevUnplacedBlockIt,
2831                                     DuplicatedToLPred);
2832   if (!Removed)
2833     return false;
2834   DuplicatedToOriginalLPred = DuplicatedToLPred;
2835   // Iteratively try to duplicate again. It can happen that a block that is
2836   // duplicated into is still small enough to be duplicated again.
2837   // No need to call markBlockSuccessors in this case, as the blocks being
2838   // duplicated from here on are already scheduled.
2839   // Note that DuplicatedToLPred always implies Removed.
2840   while (DuplicatedToLPred) {
2841     assert(Removed && "Block must have been removed to be duplicated into its "
2842            "layout predecessor.");
2843     MachineBasicBlock *DupBB, *DupPred;
2844     // The removal callback causes Chain.end() to be updated when a block is
2845     // removed. On the first pass through the loop, the chain end should be the
2846     // same as it was on function entry. On subsequent passes, because we are
2847     // duplicating the block at the end of the chain, if it is removed the
2848     // chain will have shrunk by one block.
2849     BlockChain::iterator ChainEnd = Chain.end();
2850     DupBB = *(--ChainEnd);
2851     // Now try to duplicate again.
2852     if (ChainEnd == Chain.begin())
2853       break;
2854     DupPred = *std::prev(ChainEnd);
2855     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2856                                       PrevUnplacedBlockIt,
2857                                       DuplicatedToLPred);
2858   }
2859   // If BB was duplicated into LPred, it is now scheduled. But because it was
2860   // removed, markChainSuccessors won't be called for its chain. Instead we
2861   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2862   // at the end because repeating the tail duplication can increase the number
2863   // of unscheduled predecessors.
2864   LPred = *std::prev(Chain.end());
2865   if (DuplicatedToOriginalLPred)
2866     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2867   return true;
2868 }
2869 
2870 /// Tail duplicate \p BB into (some) predecessors if profitable.
2871 /// \p BB    - Basic block that may be duplicated
2872 /// \p LPred - Chosen layout predecessor of \p BB
2873 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2874 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2875 ///                  Used to identify which blocks to update predecessor
2876 ///                  counts.
2877 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2878 ///                          chosen in the given order due to unnatural CFG
2879 ///                          only needed if \p BB is removed and
2880 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2881 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2882 ///                        only be true if the block was removed.
2883 /// \return  - True if the block was duplicated into all preds and removed.
2884 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2885     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2886     BlockChain &Chain, BlockFilterSet *BlockFilter,
2887     MachineFunction::iterator &PrevUnplacedBlockIt,
2888     bool &DuplicatedToLPred) {
2889   DuplicatedToLPred = false;
2890   if (!shouldTailDuplicate(BB))
2891     return false;
2892 
2893   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2894                     << "\n");
2895 
2896   // This has to be a callback because none of it can be done after
2897   // BB is deleted.
2898   bool Removed = false;
2899   auto RemovalCallback =
2900       [&](MachineBasicBlock *RemBB) {
2901         // Signal to outer function
2902         Removed = true;
2903 
2904         // Conservative default.
2905         bool InWorkList = true;
2906         // Remove from the Chain and Chain Map
2907         if (BlockToChain.count(RemBB)) {
2908           BlockChain *Chain = BlockToChain[RemBB];
2909           InWorkList = Chain->UnscheduledPredecessors == 0;
2910           Chain->remove(RemBB);
2911           BlockToChain.erase(RemBB);
2912         }
2913 
2914         // Handle the unplaced block iterator
2915         if (&(*PrevUnplacedBlockIt) == RemBB) {
2916           PrevUnplacedBlockIt++;
2917         }
2918 
2919         // Handle the Work Lists
2920         if (InWorkList) {
2921           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2922           if (RemBB->isEHPad())
2923             RemoveList = EHPadWorkList;
2924           RemoveList.erase(
2925               llvm::remove_if(RemoveList,
2926                               [RemBB](MachineBasicBlock *BB) {
2927                                 return BB == RemBB;
2928                               }),
2929               RemoveList.end());
2930         }
2931 
2932         // Handle the filter set
2933         if (BlockFilter) {
2934           BlockFilter->remove(RemBB);
2935         }
2936 
2937         // Remove the block from loop info.
2938         MLI->removeBlock(RemBB);
2939         if (RemBB == PreferredLoopExit)
2940           PreferredLoopExit = nullptr;
2941 
2942         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2943                           << getBlockName(RemBB) << "\n");
2944       };
2945   auto RemovalCallbackRef =
2946       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2947 
2948   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2949   bool IsSimple = TailDup.isSimpleBB(BB);
2950   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2951                                  &DuplicatedPreds, &RemovalCallbackRef);
2952 
2953   // Update UnscheduledPredecessors to reflect tail-duplication.
2954   DuplicatedToLPred = false;
2955   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2956     // We're only looking for unscheduled predecessors that match the filter.
2957     BlockChain* PredChain = BlockToChain[Pred];
2958     if (Pred == LPred)
2959       DuplicatedToLPred = true;
2960     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2961         || PredChain == &Chain)
2962       continue;
2963     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2964       if (BlockFilter && !BlockFilter->count(NewSucc))
2965         continue;
2966       BlockChain *NewChain = BlockToChain[NewSucc];
2967       if (NewChain != &Chain && NewChain != PredChain)
2968         NewChain->UnscheduledPredecessors++;
2969     }
2970   }
2971   return Removed;
2972 }
2973 
2974 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2975   if (skipFunction(MF.getFunction()))
2976     return false;
2977 
2978   // Check for single-block functions and skip them.
2979   if (std::next(MF.begin()) == MF.end())
2980     return false;
2981 
2982   F = &MF;
2983   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2984   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2985       getAnalysis<MachineBlockFrequencyInfo>());
2986   MLI = &getAnalysis<MachineLoopInfo>();
2987   TII = MF.getSubtarget().getInstrInfo();
2988   TLI = MF.getSubtarget().getTargetLowering();
2989   MPDT = nullptr;
2990 
2991   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2992   // there are no MachineLoops.
2993   PreferredLoopExit = nullptr;
2994 
2995   assert(BlockToChain.empty() &&
2996          "BlockToChain map should be empty before starting placement.");
2997   assert(ComputedEdges.empty() &&
2998          "Computed Edge map should be empty before starting placement.");
2999 
3000   unsigned TailDupSize = TailDupPlacementThreshold;
3001   // If only the aggressive threshold is explicitly set, use it.
3002   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3003       TailDupPlacementThreshold.getNumOccurrences() == 0)
3004     TailDupSize = TailDupPlacementAggressiveThreshold;
3005 
3006   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3007   // For aggressive optimization, we can adjust some thresholds to be less
3008   // conservative.
3009   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3010     // At O3 we should be more willing to copy blocks for tail duplication. This
3011     // increases size pressure, so we only do it at O3
3012     // Do this unless only the regular threshold is explicitly set.
3013     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3014         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3015       TailDupSize = TailDupPlacementAggressiveThreshold;
3016   }
3017 
3018   if (allowTailDupPlacement()) {
3019     MPDT = &getAnalysis<MachinePostDominatorTree>();
3020     if (MF.getFunction().hasOptSize())
3021       TailDupSize = 1;
3022     bool PreRegAlloc = false;
3023     TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3024     precomputeTriangleChains();
3025   }
3026 
3027   buildCFGChains();
3028 
3029   // Changing the layout can create new tail merging opportunities.
3030   // TailMerge can create jump into if branches that make CFG irreducible for
3031   // HW that requires structured CFG.
3032   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3033                          PassConfig->getEnableTailMerge() &&
3034                          BranchFoldPlacement;
3035   // No tail merging opportunities if the block number is less than four.
3036   if (MF.size() > 3 && EnableTailMerge) {
3037     unsigned TailMergeSize = TailDupSize + 1;
3038     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3039                     *MBPI, TailMergeSize);
3040 
3041     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3042                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
3043                             /*AfterPlacement=*/true)) {
3044       // Redo the layout if tail merging creates/removes/moves blocks.
3045       BlockToChain.clear();
3046       ComputedEdges.clear();
3047       // Must redo the post-dominator tree if blocks were changed.
3048       if (MPDT)
3049         MPDT->runOnMachineFunction(MF);
3050       ChainAllocator.DestroyAll();
3051       buildCFGChains();
3052     }
3053   }
3054 
3055   optimizeBranches();
3056   alignBlocks();
3057 
3058   BlockToChain.clear();
3059   ComputedEdges.clear();
3060   ChainAllocator.DestroyAll();
3061 
3062   if (AlignAllBlock)
3063     // Align all of the blocks in the function to a specific alignment.
3064     for (MachineBasicBlock &MBB : MF)
3065       MBB.setAlignment(AlignAllBlock);
3066   else if (AlignAllNonFallThruBlocks) {
3067     // Align all of the blocks that have no fall-through predecessors to a
3068     // specific alignment.
3069     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3070       auto LayoutPred = std::prev(MBI);
3071       if (!LayoutPred->isSuccessor(&*MBI))
3072         MBI->setAlignment(AlignAllNonFallThruBlocks);
3073     }
3074   }
3075   if (ViewBlockLayoutWithBFI != GVDT_None &&
3076       (ViewBlockFreqFuncName.empty() ||
3077        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3078     MBFI->view("MBP." + MF.getName(), false);
3079   }
3080 
3081 
3082   // We always return true as we have no way to track whether the final order
3083   // differs from the original order.
3084   return true;
3085 }
3086 
3087 namespace {
3088 
3089 /// A pass to compute block placement statistics.
3090 ///
3091 /// A separate pass to compute interesting statistics for evaluating block
3092 /// placement. This is separate from the actual placement pass so that they can
3093 /// be computed in the absence of any placement transformations or when using
3094 /// alternative placement strategies.
3095 class MachineBlockPlacementStats : public MachineFunctionPass {
3096   /// A handle to the branch probability pass.
3097   const MachineBranchProbabilityInfo *MBPI;
3098 
3099   /// A handle to the function-wide block frequency pass.
3100   const MachineBlockFrequencyInfo *MBFI;
3101 
3102 public:
3103   static char ID; // Pass identification, replacement for typeid
3104 
3105   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3106     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3107   }
3108 
3109   bool runOnMachineFunction(MachineFunction &F) override;
3110 
3111   void getAnalysisUsage(AnalysisUsage &AU) const override {
3112     AU.addRequired<MachineBranchProbabilityInfo>();
3113     AU.addRequired<MachineBlockFrequencyInfo>();
3114     AU.setPreservesAll();
3115     MachineFunctionPass::getAnalysisUsage(AU);
3116   }
3117 };
3118 
3119 } // end anonymous namespace
3120 
3121 char MachineBlockPlacementStats::ID = 0;
3122 
3123 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3124 
3125 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3126                       "Basic Block Placement Stats", false, false)
3127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3128 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3129 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3130                     "Basic Block Placement Stats", false, false)
3131 
3132 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3133   // Check for single-block functions and skip them.
3134   if (std::next(F.begin()) == F.end())
3135     return false;
3136 
3137   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3138   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3139 
3140   for (MachineBasicBlock &MBB : F) {
3141     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3142     Statistic &NumBranches =
3143         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3144     Statistic &BranchTakenFreq =
3145         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3146     for (MachineBasicBlock *Succ : MBB.successors()) {
3147       // Skip if this successor is a fallthrough.
3148       if (MBB.isLayoutSuccessor(Succ))
3149         continue;
3150 
3151       BlockFrequency EdgeFreq =
3152           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3153       ++NumBranches;
3154       BranchTakenFreq += EdgeFreq.getFrequency();
3155     }
3156   }
3157 
3158   return false;
3159 }
3160