xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "block-placement"
79 
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83           "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85           "Potential frequency of taking unconditional branches");
86 
87 static cl::opt<unsigned> AlignAllBlock(
88     "align-all-blocks",
89     cl::desc("Force the alignment of all blocks in the function in log2 format "
90              "(e.g 4 means align on 16B boundaries)."),
91     cl::init(0), cl::Hidden);
92 
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94     "align-all-nofallthru-blocks",
95     cl::desc("Force the alignment of all blocks that have no fall-through "
96              "predecessors (i.e. don't add nops that are executed). In log2 "
97              "format (e.g 4 means align on 16B boundaries)."),
98     cl::init(0), cl::Hidden);
99 
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101     "max-bytes-for-alignment",
102     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103              "alignment"),
104     cl::init(0), cl::Hidden);
105 
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108     "block-placement-exit-block-bias",
109     cl::desc("Block frequency percentage a loop exit block needs "
110              "over the original exit to be considered the new exit."),
111     cl::init(0), cl::Hidden);
112 
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115 
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117     "loop-to-cold-block-ratio",
118     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119              "(frequency of block) is greater than this ratio"),
120     cl::init(5), cl::Hidden);
121 
122 static cl::opt<bool> ForceLoopColdBlock(
123     "force-loop-cold-block",
124     cl::desc("Force outlining cold blocks from loops."),
125     cl::init(false), cl::Hidden);
126 
127 static cl::opt<bool>
128     PreciseRotationCost("precise-rotation-cost",
129                         cl::desc("Model the cost of loop rotation more "
130                                  "precisely by using profile data."),
131                         cl::init(false), cl::Hidden);
132 
133 static cl::opt<bool>
134     ForcePreciseRotationCost("force-precise-rotation-cost",
135                              cl::desc("Force the use of precise cost "
136                                       "loop rotation strategy."),
137                              cl::init(false), cl::Hidden);
138 
139 static cl::opt<unsigned> MisfetchCost(
140     "misfetch-cost",
141     cl::desc("Cost that models the probabilistic risk of an instruction "
142              "misfetch due to a jump comparing to falling through, whose cost "
143              "is zero."),
144     cl::init(1), cl::Hidden);
145 
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147                                       cl::desc("Cost of jump instructions."),
148                                       cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150 TailDupPlacement("tail-dup-placement",
151               cl::desc("Perform tail duplication during placement. "
152                        "Creates more fallthrough opportunites in "
153                        "outline branches."),
154               cl::init(true), cl::Hidden);
155 
156 static cl::opt<bool>
157 BranchFoldPlacement("branch-fold-placement",
158               cl::desc("Perform branch folding during placement. "
159                        "Reduces code size."),
160               cl::init(true), cl::Hidden);
161 
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164     "tail-dup-placement-threshold",
165     cl::desc("Instruction cutoff for tail duplication during layout. "
166              "Tail merging during layout is forced to have a threshold "
167              "that won't conflict."), cl::init(2),
168     cl::Hidden);
169 
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172     "tail-dup-placement-aggressive-threshold",
173     cl::desc("Instruction cutoff for aggressive tail duplication during "
174              "layout. Used at -O3. Tail merging during layout is forced to "
175              "have a threshold that won't conflict."), cl::init(4),
176     cl::Hidden);
177 
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180     "tail-dup-placement-penalty",
181     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182              "Copying can increase fallthrough, but it also increases icache "
183              "pressure. This parameter controls the penalty to account for that. "
184              "Percent as integer."),
185     cl::init(2),
186     cl::Hidden);
187 
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190     "tail-dup-profile-percent-threshold",
191     cl::desc("If profile count information is used in tail duplication cost "
192              "model, the gained fall through number from tail duplication "
193              "should be at least this percent of hot count."),
194     cl::init(50), cl::Hidden);
195 
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198     "triangle-chain-count",
199     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200              "triangle tail duplication heuristic to kick in. 0 to disable."),
201     cl::init(2),
202     cl::Hidden);
203 
204 extern cl::opt<bool> EnableExtTspBlockPlacement;
205 extern cl::opt<bool> ApplyExtTspWithoutProfile;
206 
207 namespace llvm {
208 extern cl::opt<unsigned> StaticLikelyProb;
209 extern cl::opt<unsigned> ProfileLikelyProb;
210 
211 // Internal option used to control BFI display only after MBP pass.
212 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
213 // -view-block-layout-with-bfi=
214 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
215 
216 // Command line option to specify the name of the function for CFG dump
217 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
218 extern cl::opt<std::string> ViewBlockFreqFuncName;
219 } // namespace llvm
220 
221 namespace {
222 
223 class BlockChain;
224 
225 /// Type for our function-wide basic block -> block chain mapping.
226 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
227 
228 /// A chain of blocks which will be laid out contiguously.
229 ///
230 /// This is the datastructure representing a chain of consecutive blocks that
231 /// are profitable to layout together in order to maximize fallthrough
232 /// probabilities and code locality. We also can use a block chain to represent
233 /// a sequence of basic blocks which have some external (correctness)
234 /// requirement for sequential layout.
235 ///
236 /// Chains can be built around a single basic block and can be merged to grow
237 /// them. They participate in a block-to-chain mapping, which is updated
238 /// automatically as chains are merged together.
239 class BlockChain {
240   /// The sequence of blocks belonging to this chain.
241   ///
242   /// This is the sequence of blocks for a particular chain. These will be laid
243   /// out in-order within the function.
244   SmallVector<MachineBasicBlock *, 4> Blocks;
245 
246   /// A handle to the function-wide basic block to block chain mapping.
247   ///
248   /// This is retained in each block chain to simplify the computation of child
249   /// block chains for SCC-formation and iteration. We store the edges to child
250   /// basic blocks, and map them back to their associated chains using this
251   /// structure.
252   BlockToChainMapType &BlockToChain;
253 
254 public:
255   /// Construct a new BlockChain.
256   ///
257   /// This builds a new block chain representing a single basic block in the
258   /// function. It also registers itself as the chain that block participates
259   /// in with the BlockToChain mapping.
260   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
261       : Blocks(1, BB), BlockToChain(BlockToChain) {
262     assert(BB && "Cannot create a chain with a null basic block");
263     BlockToChain[BB] = this;
264   }
265 
266   /// Iterator over blocks within the chain.
267   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
268   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
269 
270   /// Beginning of blocks within the chain.
271   iterator begin() { return Blocks.begin(); }
272   const_iterator begin() const { return Blocks.begin(); }
273 
274   /// End of blocks within the chain.
275   iterator end() { return Blocks.end(); }
276   const_iterator end() const { return Blocks.end(); }
277 
278   bool remove(MachineBasicBlock* BB) {
279     for(iterator i = begin(); i != end(); ++i) {
280       if (*i == BB) {
281         Blocks.erase(i);
282         return true;
283       }
284     }
285     return false;
286   }
287 
288   /// Merge a block chain into this one.
289   ///
290   /// This routine merges a block chain into this one. It takes care of forming
291   /// a contiguous sequence of basic blocks, updating the edge list, and
292   /// updating the block -> chain mapping. It does not free or tear down the
293   /// old chain, but the old chain's block list is no longer valid.
294   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
295     assert(BB && "Can't merge a null block.");
296     assert(!Blocks.empty() && "Can't merge into an empty chain.");
297 
298     // Fast path in case we don't have a chain already.
299     if (!Chain) {
300       assert(!BlockToChain[BB] &&
301              "Passed chain is null, but BB has entry in BlockToChain.");
302       Blocks.push_back(BB);
303       BlockToChain[BB] = this;
304       return;
305     }
306 
307     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
308     assert(Chain->begin() != Chain->end());
309 
310     // Update the incoming blocks to point to this chain, and add them to the
311     // chain structure.
312     for (MachineBasicBlock *ChainBB : *Chain) {
313       Blocks.push_back(ChainBB);
314       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
315       BlockToChain[ChainBB] = this;
316     }
317   }
318 
319 #ifndef NDEBUG
320   /// Dump the blocks in this chain.
321   LLVM_DUMP_METHOD void dump() {
322     for (MachineBasicBlock *MBB : *this)
323       MBB->dump();
324   }
325 #endif // NDEBUG
326 
327   /// Count of predecessors of any block within the chain which have not
328   /// yet been scheduled.  In general, we will delay scheduling this chain
329   /// until those predecessors are scheduled (or we find a sufficiently good
330   /// reason to override this heuristic.)  Note that when forming loop chains,
331   /// blocks outside the loop are ignored and treated as if they were already
332   /// scheduled.
333   ///
334   /// Note: This field is reinitialized multiple times - once for each loop,
335   /// and then once for the function as a whole.
336   unsigned UnscheduledPredecessors = 0;
337 };
338 
339 class MachineBlockPlacement : public MachineFunctionPass {
340   /// A type for a block filter set.
341   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
342 
343   /// Pair struct containing basic block and taildup profitability
344   struct BlockAndTailDupResult {
345     MachineBasicBlock *BB;
346     bool ShouldTailDup;
347   };
348 
349   /// Triple struct containing edge weight and the edge.
350   struct WeightedEdge {
351     BlockFrequency Weight;
352     MachineBasicBlock *Src;
353     MachineBasicBlock *Dest;
354   };
355 
356   /// work lists of blocks that are ready to be laid out
357   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
358   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
359 
360   /// Edges that have already been computed as optimal.
361   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
362 
363   /// Machine Function
364   MachineFunction *F;
365 
366   /// A handle to the branch probability pass.
367   const MachineBranchProbabilityInfo *MBPI;
368 
369   /// A handle to the function-wide block frequency pass.
370   std::unique_ptr<MBFIWrapper> MBFI;
371 
372   /// A handle to the loop info.
373   MachineLoopInfo *MLI;
374 
375   /// Preferred loop exit.
376   /// Member variable for convenience. It may be removed by duplication deep
377   /// in the call stack.
378   MachineBasicBlock *PreferredLoopExit;
379 
380   /// A handle to the target's instruction info.
381   const TargetInstrInfo *TII;
382 
383   /// A handle to the target's lowering info.
384   const TargetLoweringBase *TLI;
385 
386   /// A handle to the post dominator tree.
387   MachinePostDominatorTree *MPDT;
388 
389   ProfileSummaryInfo *PSI;
390 
391   /// Duplicator used to duplicate tails during placement.
392   ///
393   /// Placement decisions can open up new tail duplication opportunities, but
394   /// since tail duplication affects placement decisions of later blocks, it
395   /// must be done inline.
396   TailDuplicator TailDup;
397 
398   /// Partial tail duplication threshold.
399   BlockFrequency DupThreshold;
400 
401   /// True:  use block profile count to compute tail duplication cost.
402   /// False: use block frequency to compute tail duplication cost.
403   bool UseProfileCount;
404 
405   /// Allocator and owner of BlockChain structures.
406   ///
407   /// We build BlockChains lazily while processing the loop structure of
408   /// a function. To reduce malloc traffic, we allocate them using this
409   /// slab-like allocator, and destroy them after the pass completes. An
410   /// important guarantee is that this allocator produces stable pointers to
411   /// the chains.
412   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
413 
414   /// Function wide BasicBlock to BlockChain mapping.
415   ///
416   /// This mapping allows efficiently moving from any given basic block to the
417   /// BlockChain it participates in, if any. We use it to, among other things,
418   /// allow implicitly defining edges between chains as the existing edges
419   /// between basic blocks.
420   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
421 
422 #ifndef NDEBUG
423   /// The set of basic blocks that have terminators that cannot be fully
424   /// analyzed.  These basic blocks cannot be re-ordered safely by
425   /// MachineBlockPlacement, and we must preserve physical layout of these
426   /// blocks and their successors through the pass.
427   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
428 #endif
429 
430   /// Get block profile count or frequency according to UseProfileCount.
431   /// The return value is used to model tail duplication cost.
432   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
433     if (UseProfileCount) {
434       auto Count = MBFI->getBlockProfileCount(BB);
435       if (Count)
436         return *Count;
437       else
438         return 0;
439     } else
440       return MBFI->getBlockFreq(BB);
441   }
442 
443   /// Scale the DupThreshold according to basic block size.
444   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
445   void initDupThreshold();
446 
447   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
448   /// if the count goes to 0, add them to the appropriate work list.
449   void markChainSuccessors(
450       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
451       const BlockFilterSet *BlockFilter = nullptr);
452 
453   /// Decrease the UnscheduledPredecessors count for a single block, and
454   /// if the count goes to 0, add them to the appropriate work list.
455   void markBlockSuccessors(
456       const BlockChain &Chain, const MachineBasicBlock *BB,
457       const MachineBasicBlock *LoopHeaderBB,
458       const BlockFilterSet *BlockFilter = nullptr);
459 
460   BranchProbability
461   collectViableSuccessors(
462       const MachineBasicBlock *BB, const BlockChain &Chain,
463       const BlockFilterSet *BlockFilter,
464       SmallVector<MachineBasicBlock *, 4> &Successors);
465   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
466                        BlockFilterSet *BlockFilter);
467   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
468                                MachineBasicBlock *BB,
469                                BlockFilterSet *BlockFilter);
470   bool repeatedlyTailDuplicateBlock(
471       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
472       const MachineBasicBlock *LoopHeaderBB,
473       BlockChain &Chain, BlockFilterSet *BlockFilter,
474       MachineFunction::iterator &PrevUnplacedBlockIt);
475   bool maybeTailDuplicateBlock(
476       MachineBasicBlock *BB, MachineBasicBlock *LPred,
477       BlockChain &Chain, BlockFilterSet *BlockFilter,
478       MachineFunction::iterator &PrevUnplacedBlockIt,
479       bool &DuplicatedToLPred);
480   bool hasBetterLayoutPredecessor(
481       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
482       const BlockChain &SuccChain, BranchProbability SuccProb,
483       BranchProbability RealSuccProb, const BlockChain &Chain,
484       const BlockFilterSet *BlockFilter);
485   BlockAndTailDupResult selectBestSuccessor(
486       const MachineBasicBlock *BB, const BlockChain &Chain,
487       const BlockFilterSet *BlockFilter);
488   MachineBasicBlock *selectBestCandidateBlock(
489       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
490   MachineBasicBlock *getFirstUnplacedBlock(
491       const BlockChain &PlacedChain,
492       MachineFunction::iterator &PrevUnplacedBlockIt,
493       const BlockFilterSet *BlockFilter);
494 
495   /// Add a basic block to the work list if it is appropriate.
496   ///
497   /// If the optional parameter BlockFilter is provided, only MBB
498   /// present in the set will be added to the worklist. If nullptr
499   /// is provided, no filtering occurs.
500   void fillWorkLists(const MachineBasicBlock *MBB,
501                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
502                      const BlockFilterSet *BlockFilter);
503 
504   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
505                   BlockFilterSet *BlockFilter = nullptr);
506   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
507                                const MachineBasicBlock *OldTop);
508   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
509                                const BlockFilterSet &LoopBlockSet);
510   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
511                                     const BlockFilterSet &LoopBlockSet);
512   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
513                                   const MachineBasicBlock *OldTop,
514                                   const MachineBasicBlock *ExitBB,
515                                   const BlockFilterSet &LoopBlockSet);
516   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
517       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
518   MachineBasicBlock *findBestLoopTop(
519       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
520   MachineBasicBlock *findBestLoopExit(
521       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
522       BlockFrequency &ExitFreq);
523   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
524   void buildLoopChains(const MachineLoop &L);
525   void rotateLoop(
526       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
527       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
528   void rotateLoopWithProfile(
529       BlockChain &LoopChain, const MachineLoop &L,
530       const BlockFilterSet &LoopBlockSet);
531   void buildCFGChains();
532   void optimizeBranches();
533   void alignBlocks();
534   /// Returns true if a block should be tail-duplicated to increase fallthrough
535   /// opportunities.
536   bool shouldTailDuplicate(MachineBasicBlock *BB);
537   /// Check the edge frequencies to see if tail duplication will increase
538   /// fallthroughs.
539   bool isProfitableToTailDup(
540     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
541     BranchProbability QProb,
542     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
543 
544   /// Check for a trellis layout.
545   bool isTrellis(const MachineBasicBlock *BB,
546                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
547                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
548 
549   /// Get the best successor given a trellis layout.
550   BlockAndTailDupResult getBestTrellisSuccessor(
551       const MachineBasicBlock *BB,
552       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
553       BranchProbability AdjustedSumProb, const BlockChain &Chain,
554       const BlockFilterSet *BlockFilter);
555 
556   /// Get the best pair of non-conflicting edges.
557   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
558       const MachineBasicBlock *BB,
559       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
560 
561   /// Returns true if a block can tail duplicate into all unplaced
562   /// predecessors. Filters based on loop.
563   bool canTailDuplicateUnplacedPreds(
564       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
565       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
566 
567   /// Find chains of triangles to tail-duplicate where a global analysis works,
568   /// but a local analysis would not find them.
569   void precomputeTriangleChains();
570 
571   /// Apply a post-processing step optimizing block placement.
572   void applyExtTsp();
573 
574   /// Modify the existing block placement in the function and adjust all jumps.
575   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
576 
577   /// Create a single CFG chain from the current block order.
578   void createCFGChainExtTsp();
579 
580 public:
581   static char ID; // Pass identification, replacement for typeid
582 
583   MachineBlockPlacement() : MachineFunctionPass(ID) {
584     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
585   }
586 
587   bool runOnMachineFunction(MachineFunction &F) override;
588 
589   bool allowTailDupPlacement() const {
590     assert(F);
591     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
592   }
593 
594   void getAnalysisUsage(AnalysisUsage &AU) const override {
595     AU.addRequired<MachineBranchProbabilityInfo>();
596     AU.addRequired<MachineBlockFrequencyInfo>();
597     if (TailDupPlacement)
598       AU.addRequired<MachinePostDominatorTree>();
599     AU.addRequired<MachineLoopInfo>();
600     AU.addRequired<ProfileSummaryInfoWrapperPass>();
601     AU.addRequired<TargetPassConfig>();
602     MachineFunctionPass::getAnalysisUsage(AU);
603   }
604 };
605 
606 } // end anonymous namespace
607 
608 char MachineBlockPlacement::ID = 0;
609 
610 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
611 
612 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
613                       "Branch Probability Basic Block Placement", false, false)
614 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
615 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
616 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
617 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
618 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
619 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
620                     "Branch Probability Basic Block Placement", false, false)
621 
622 #ifndef NDEBUG
623 /// Helper to print the name of a MBB.
624 ///
625 /// Only used by debug logging.
626 static std::string getBlockName(const MachineBasicBlock *BB) {
627   std::string Result;
628   raw_string_ostream OS(Result);
629   OS << printMBBReference(*BB);
630   OS << " ('" << BB->getName() << "')";
631   OS.flush();
632   return Result;
633 }
634 #endif
635 
636 /// Mark a chain's successors as having one fewer preds.
637 ///
638 /// When a chain is being merged into the "placed" chain, this routine will
639 /// quickly walk the successors of each block in the chain and mark them as
640 /// having one fewer active predecessor. It also adds any successors of this
641 /// chain which reach the zero-predecessor state to the appropriate worklist.
642 void MachineBlockPlacement::markChainSuccessors(
643     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
644     const BlockFilterSet *BlockFilter) {
645   // Walk all the blocks in this chain, marking their successors as having
646   // a predecessor placed.
647   for (MachineBasicBlock *MBB : Chain) {
648     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
649   }
650 }
651 
652 /// Mark a single block's successors as having one fewer preds.
653 ///
654 /// Under normal circumstances, this is only called by markChainSuccessors,
655 /// but if a block that was to be placed is completely tail-duplicated away,
656 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
657 /// for just that block.
658 void MachineBlockPlacement::markBlockSuccessors(
659     const BlockChain &Chain, const MachineBasicBlock *MBB,
660     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
661   // Add any successors for which this is the only un-placed in-loop
662   // predecessor to the worklist as a viable candidate for CFG-neutral
663   // placement. No subsequent placement of this block will violate the CFG
664   // shape, so we get to use heuristics to choose a favorable placement.
665   for (MachineBasicBlock *Succ : MBB->successors()) {
666     if (BlockFilter && !BlockFilter->count(Succ))
667       continue;
668     BlockChain &SuccChain = *BlockToChain[Succ];
669     // Disregard edges within a fixed chain, or edges to the loop header.
670     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
671       continue;
672 
673     // This is a cross-chain edge that is within the loop, so decrement the
674     // loop predecessor count of the destination chain.
675     if (SuccChain.UnscheduledPredecessors == 0 ||
676         --SuccChain.UnscheduledPredecessors > 0)
677       continue;
678 
679     auto *NewBB = *SuccChain.begin();
680     if (NewBB->isEHPad())
681       EHPadWorkList.push_back(NewBB);
682     else
683       BlockWorkList.push_back(NewBB);
684   }
685 }
686 
687 /// This helper function collects the set of successors of block
688 /// \p BB that are allowed to be its layout successors, and return
689 /// the total branch probability of edges from \p BB to those
690 /// blocks.
691 BranchProbability MachineBlockPlacement::collectViableSuccessors(
692     const MachineBasicBlock *BB, const BlockChain &Chain,
693     const BlockFilterSet *BlockFilter,
694     SmallVector<MachineBasicBlock *, 4> &Successors) {
695   // Adjust edge probabilities by excluding edges pointing to blocks that is
696   // either not in BlockFilter or is already in the current chain. Consider the
697   // following CFG:
698   //
699   //     --->A
700   //     |  / \
701   //     | B   C
702   //     |  \ / \
703   //     ----D   E
704   //
705   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
706   // A->C is chosen as a fall-through, D won't be selected as a successor of C
707   // due to CFG constraint (the probability of C->D is not greater than
708   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
709   // when calculating the probability of C->D, D will be selected and we
710   // will get A C D B as the layout of this loop.
711   auto AdjustedSumProb = BranchProbability::getOne();
712   for (MachineBasicBlock *Succ : BB->successors()) {
713     bool SkipSucc = false;
714     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
715       SkipSucc = true;
716     } else {
717       BlockChain *SuccChain = BlockToChain[Succ];
718       if (SuccChain == &Chain) {
719         SkipSucc = true;
720       } else if (Succ != *SuccChain->begin()) {
721         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
722                           << " -> Mid chain!\n");
723         continue;
724       }
725     }
726     if (SkipSucc)
727       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
728     else
729       Successors.push_back(Succ);
730   }
731 
732   return AdjustedSumProb;
733 }
734 
735 /// The helper function returns the branch probability that is adjusted
736 /// or normalized over the new total \p AdjustedSumProb.
737 static BranchProbability
738 getAdjustedProbability(BranchProbability OrigProb,
739                        BranchProbability AdjustedSumProb) {
740   BranchProbability SuccProb;
741   uint32_t SuccProbN = OrigProb.getNumerator();
742   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
743   if (SuccProbN >= SuccProbD)
744     SuccProb = BranchProbability::getOne();
745   else
746     SuccProb = BranchProbability(SuccProbN, SuccProbD);
747 
748   return SuccProb;
749 }
750 
751 /// Check if \p BB has exactly the successors in \p Successors.
752 static bool
753 hasSameSuccessors(MachineBasicBlock &BB,
754                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
755   if (BB.succ_size() != Successors.size())
756     return false;
757   // We don't want to count self-loops
758   if (Successors.count(&BB))
759     return false;
760   for (MachineBasicBlock *Succ : BB.successors())
761     if (!Successors.count(Succ))
762       return false;
763   return true;
764 }
765 
766 /// Check if a block should be tail duplicated to increase fallthrough
767 /// opportunities.
768 /// \p BB Block to check.
769 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
770   // Blocks with single successors don't create additional fallthrough
771   // opportunities. Don't duplicate them. TODO: When conditional exits are
772   // analyzable, allow them to be duplicated.
773   bool IsSimple = TailDup.isSimpleBB(BB);
774 
775   if (BB->succ_size() == 1)
776     return false;
777   return TailDup.shouldTailDuplicate(IsSimple, *BB);
778 }
779 
780 /// Compare 2 BlockFrequency's with a small penalty for \p A.
781 /// In order to be conservative, we apply a X% penalty to account for
782 /// increased icache pressure and static heuristics. For small frequencies
783 /// we use only the numerators to improve accuracy. For simplicity, we assume the
784 /// penalty is less than 100%
785 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
786 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
787                             uint64_t EntryFreq) {
788   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
789   BlockFrequency Gain = A - B;
790   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
791 }
792 
793 /// Check the edge frequencies to see if tail duplication will increase
794 /// fallthroughs. It only makes sense to call this function when
795 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
796 /// always locally profitable if we would have picked \p Succ without
797 /// considering duplication.
798 bool MachineBlockPlacement::isProfitableToTailDup(
799     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
800     BranchProbability QProb,
801     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
802   // We need to do a probability calculation to make sure this is profitable.
803   // First: does succ have a successor that post-dominates? This affects the
804   // calculation. The 2 relevant cases are:
805   //    BB         BB
806   //    | \Qout    | \Qout
807   //   P|  C       |P C
808   //    =   C'     =   C'
809   //    |  /Qin    |  /Qin
810   //    | /        | /
811   //    Succ       Succ
812   //    / \        | \  V
813   //  U/   =V      |U \
814   //  /     \      =   D
815   //  D      E     |  /
816   //               | /
817   //               |/
818   //               PDom
819   //  '=' : Branch taken for that CFG edge
820   // In the second case, Placing Succ while duplicating it into C prevents the
821   // fallthrough of Succ into either D or PDom, because they now have C as an
822   // unplaced predecessor
823 
824   // Start by figuring out which case we fall into
825   MachineBasicBlock *PDom = nullptr;
826   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
827   // Only scan the relevant successors
828   auto AdjustedSuccSumProb =
829       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
830   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
831   auto BBFreq = MBFI->getBlockFreq(BB);
832   auto SuccFreq = MBFI->getBlockFreq(Succ);
833   BlockFrequency P = BBFreq * PProb;
834   BlockFrequency Qout = BBFreq * QProb;
835   uint64_t EntryFreq = MBFI->getEntryFreq();
836   // If there are no more successors, it is profitable to copy, as it strictly
837   // increases fallthrough.
838   if (SuccSuccs.size() == 0)
839     return greaterWithBias(P, Qout, EntryFreq);
840 
841   auto BestSuccSucc = BranchProbability::getZero();
842   // Find the PDom or the best Succ if no PDom exists.
843   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
844     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
845     if (Prob > BestSuccSucc)
846       BestSuccSucc = Prob;
847     if (PDom == nullptr)
848       if (MPDT->dominates(SuccSucc, Succ)) {
849         PDom = SuccSucc;
850         break;
851       }
852   }
853   // For the comparisons, we need to know Succ's best incoming edge that isn't
854   // from BB.
855   auto SuccBestPred = BlockFrequency(0);
856   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
857     if (SuccPred == Succ || SuccPred == BB
858         || BlockToChain[SuccPred] == &Chain
859         || (BlockFilter && !BlockFilter->count(SuccPred)))
860       continue;
861     auto Freq = MBFI->getBlockFreq(SuccPred)
862         * MBPI->getEdgeProbability(SuccPred, Succ);
863     if (Freq > SuccBestPred)
864       SuccBestPred = Freq;
865   }
866   // Qin is Succ's best unplaced incoming edge that isn't BB
867   BlockFrequency Qin = SuccBestPred;
868   // If it doesn't have a post-dominating successor, here is the calculation:
869   //    BB        BB
870   //    | \Qout   |  \
871   //   P|  C      |   =
872   //    =   C'    |    C
873   //    |  /Qin   |     |
874   //    | /       |     C' (+Succ)
875   //    Succ      Succ /|
876   //    / \       |  \/ |
877   //  U/   =V     |  == |
878   //  /     \     | /  \|
879   //  D      E    D     E
880   //  '=' : Branch taken for that CFG edge
881   //  Cost in the first case is: P + V
882   //  For this calculation, we always assume P > Qout. If Qout > P
883   //  The result of this function will be ignored at the caller.
884   //  Let F = SuccFreq - Qin
885   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
886 
887   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
888     BranchProbability UProb = BestSuccSucc;
889     BranchProbability VProb = AdjustedSuccSumProb - UProb;
890     BlockFrequency F = SuccFreq - Qin;
891     BlockFrequency V = SuccFreq * VProb;
892     BlockFrequency QinU = std::min(Qin, F) * UProb;
893     BlockFrequency BaseCost = P + V;
894     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
895     return greaterWithBias(BaseCost, DupCost, EntryFreq);
896   }
897   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
898   BranchProbability VProb = AdjustedSuccSumProb - UProb;
899   BlockFrequency U = SuccFreq * UProb;
900   BlockFrequency V = SuccFreq * VProb;
901   BlockFrequency F = SuccFreq - Qin;
902   // If there is a post-dominating successor, here is the calculation:
903   // BB         BB                 BB          BB
904   // | \Qout    |   \               | \Qout     |  \
905   // |P C       |    =              |P C        |   =
906   // =   C'     |P    C             =   C'      |P   C
907   // |  /Qin    |      |            |  /Qin     |     |
908   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
909   // Succ       Succ  /|            Succ        Succ /|
910   // | \  V     |   \/ |            | \  V      |  \/ |
911   // |U \       |U  /\ =?           |U =        |U /\ |
912   // =   D      = =  =?|            |   D       | =  =|
913   // |  /       |/     D            |  /        |/    D
914   // | /        |     /             | =         |    /
915   // |/         |    /              |/          |   =
916   // Dom         Dom                Dom         Dom
917   //  '=' : Branch taken for that CFG edge
918   // The cost for taken branches in the first case is P + U
919   // Let F = SuccFreq - Qin
920   // The cost in the second case (assuming independence), given the layout:
921   // BB, Succ, (C+Succ), D, Dom or the layout:
922   // BB, Succ, D, Dom, (C+Succ)
923   // is Qout + max(F, Qin) * U + min(F, Qin)
924   // compare P + U vs Qout + P * U + Qin.
925   //
926   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
927   //
928   // For the 3rd case, the cost is P + 2 * V
929   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
930   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
931   if (UProb > AdjustedSuccSumProb / 2 &&
932       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
933                                   Chain, BlockFilter))
934     // Cases 3 & 4
935     return greaterWithBias(
936         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
937         EntryFreq);
938   // Cases 1 & 2
939   return greaterWithBias((P + U),
940                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
941                           std::max(Qin, F) * UProb),
942                          EntryFreq);
943 }
944 
945 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
946 /// successors form the lower part of a trellis. A successor set S forms the
947 /// lower part of a trellis if all of the predecessors of S are either in S or
948 /// have all of S as successors. We ignore trellises where BB doesn't have 2
949 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
950 /// are very uncommon and complex to compute optimally. Allowing edges within S
951 /// is not strictly a trellis, but the same algorithm works, so we allow it.
952 bool MachineBlockPlacement::isTrellis(
953     const MachineBasicBlock *BB,
954     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
955     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
956   // Technically BB could form a trellis with branching factor higher than 2.
957   // But that's extremely uncommon.
958   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
959     return false;
960 
961   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
962                                                        BB->succ_end());
963   // To avoid reviewing the same predecessors twice.
964   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
965 
966   for (MachineBasicBlock *Succ : ViableSuccs) {
967     int PredCount = 0;
968     for (auto *SuccPred : Succ->predecessors()) {
969       // Allow triangle successors, but don't count them.
970       if (Successors.count(SuccPred)) {
971         // Make sure that it is actually a triangle.
972         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
973           if (!Successors.count(CheckSucc))
974             return false;
975         continue;
976       }
977       const BlockChain *PredChain = BlockToChain[SuccPred];
978       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
979           PredChain == &Chain || PredChain == BlockToChain[Succ])
980         continue;
981       ++PredCount;
982       // Perform the successor check only once.
983       if (!SeenPreds.insert(SuccPred).second)
984         continue;
985       if (!hasSameSuccessors(*SuccPred, Successors))
986         return false;
987     }
988     // If one of the successors has only BB as a predecessor, it is not a
989     // trellis.
990     if (PredCount < 1)
991       return false;
992   }
993   return true;
994 }
995 
996 /// Pick the highest total weight pair of edges that can both be laid out.
997 /// The edges in \p Edges[0] are assumed to have a different destination than
998 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
999 /// the individual highest weight edges to the 2 different destinations, or in
1000 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1001 std::pair<MachineBlockPlacement::WeightedEdge,
1002           MachineBlockPlacement::WeightedEdge>
1003 MachineBlockPlacement::getBestNonConflictingEdges(
1004     const MachineBasicBlock *BB,
1005     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1006         Edges) {
1007   // Sort the edges, and then for each successor, find the best incoming
1008   // predecessor. If the best incoming predecessors aren't the same,
1009   // then that is clearly the best layout. If there is a conflict, one of the
1010   // successors will have to fallthrough from the second best predecessor. We
1011   // compare which combination is better overall.
1012 
1013   // Sort for highest frequency.
1014   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1015 
1016   llvm::stable_sort(Edges[0], Cmp);
1017   llvm::stable_sort(Edges[1], Cmp);
1018   auto BestA = Edges[0].begin();
1019   auto BestB = Edges[1].begin();
1020   // Arrange for the correct answer to be in BestA and BestB
1021   // If the 2 best edges don't conflict, the answer is already there.
1022   if (BestA->Src == BestB->Src) {
1023     // Compare the total fallthrough of (Best + Second Best) for both pairs
1024     auto SecondBestA = std::next(BestA);
1025     auto SecondBestB = std::next(BestB);
1026     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1027     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1028     if (BestAScore < BestBScore)
1029       BestA = SecondBestA;
1030     else
1031       BestB = SecondBestB;
1032   }
1033   // Arrange for the BB edge to be in BestA if it exists.
1034   if (BestB->Src == BB)
1035     std::swap(BestA, BestB);
1036   return std::make_pair(*BestA, *BestB);
1037 }
1038 
1039 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1040 /// We only handle trellises with 2 successors, so the algorithm is
1041 /// straightforward: Find the best pair of edges that don't conflict. We find
1042 /// the best incoming edge for each successor in the trellis. If those conflict,
1043 /// we consider which of them should be replaced with the second best.
1044 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1045 /// comes from \p BB, it will be in \p BestEdges[0]
1046 MachineBlockPlacement::BlockAndTailDupResult
1047 MachineBlockPlacement::getBestTrellisSuccessor(
1048     const MachineBasicBlock *BB,
1049     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1050     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1051     const BlockFilterSet *BlockFilter) {
1052 
1053   BlockAndTailDupResult Result = {nullptr, false};
1054   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1055                                                        BB->succ_end());
1056 
1057   // We assume size 2 because it's common. For general n, we would have to do
1058   // the Hungarian algorithm, but it's not worth the complexity because more
1059   // than 2 successors is fairly uncommon, and a trellis even more so.
1060   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1061     return Result;
1062 
1063   // Collect the edge frequencies of all edges that form the trellis.
1064   SmallVector<WeightedEdge, 8> Edges[2];
1065   int SuccIndex = 0;
1066   for (auto *Succ : ViableSuccs) {
1067     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1068       // Skip any placed predecessors that are not BB
1069       if (SuccPred != BB)
1070         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1071             BlockToChain[SuccPred] == &Chain ||
1072             BlockToChain[SuccPred] == BlockToChain[Succ])
1073           continue;
1074       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1075                                 MBPI->getEdgeProbability(SuccPred, Succ);
1076       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1077     }
1078     ++SuccIndex;
1079   }
1080 
1081   // Pick the best combination of 2 edges from all the edges in the trellis.
1082   WeightedEdge BestA, BestB;
1083   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1084 
1085   if (BestA.Src != BB) {
1086     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1087     // we shouldn't choose any successor. We've already looked and there's a
1088     // better fallthrough edge for all the successors.
1089     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1090     return Result;
1091   }
1092 
1093   // Did we pick the triangle edge? If tail-duplication is profitable, do
1094   // that instead. Otherwise merge the triangle edge now while we know it is
1095   // optimal.
1096   if (BestA.Dest == BestB.Src) {
1097     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1098     // would be better.
1099     MachineBasicBlock *Succ1 = BestA.Dest;
1100     MachineBasicBlock *Succ2 = BestB.Dest;
1101     // Check to see if tail-duplication would be profitable.
1102     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1103         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1104         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1105                               Chain, BlockFilter)) {
1106       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1107                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1108                  dbgs() << "    Selected: " << getBlockName(Succ2)
1109                         << ", probability: " << Succ2Prob
1110                         << " (Tail Duplicate)\n");
1111       Result.BB = Succ2;
1112       Result.ShouldTailDup = true;
1113       return Result;
1114     }
1115   }
1116   // We have already computed the optimal edge for the other side of the
1117   // trellis.
1118   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1119 
1120   auto TrellisSucc = BestA.Dest;
1121   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1122                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1123              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1124                     << ", probability: " << SuccProb << " (Trellis)\n");
1125   Result.BB = TrellisSucc;
1126   return Result;
1127 }
1128 
1129 /// When the option allowTailDupPlacement() is on, this method checks if the
1130 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1131 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1132 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1133     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1134     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1135   if (!shouldTailDuplicate(Succ))
1136     return false;
1137 
1138   // The result of canTailDuplicate.
1139   bool Duplicate = true;
1140   // Number of possible duplication.
1141   unsigned int NumDup = 0;
1142 
1143   // For CFG checking.
1144   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1145                                                        BB->succ_end());
1146   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1147     // Make sure all unplaced and unfiltered predecessors can be
1148     // tail-duplicated into.
1149     // Skip any blocks that are already placed or not in this loop.
1150     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1151         || BlockToChain[Pred] == &Chain)
1152       continue;
1153     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1154       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1155         // This will result in a trellis after tail duplication, so we don't
1156         // need to copy Succ into this predecessor. In the presence
1157         // of a trellis tail duplication can continue to be profitable.
1158         // For example:
1159         // A            A
1160         // |\           |\
1161         // | \          | \
1162         // |  C         |  C+BB
1163         // | /          |  |
1164         // |/           |  |
1165         // BB    =>     BB |
1166         // |\           |\/|
1167         // | \          |/\|
1168         // |  D         |  D
1169         // | /          | /
1170         // |/           |/
1171         // Succ         Succ
1172         //
1173         // After BB was duplicated into C, the layout looks like the one on the
1174         // right. BB and C now have the same successors. When considering
1175         // whether Succ can be duplicated into all its unplaced predecessors, we
1176         // ignore C.
1177         // We can do this because C already has a profitable fallthrough, namely
1178         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1179         // duplication and for this test.
1180         //
1181         // This allows trellises to be laid out in 2 separate chains
1182         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1183         // because it allows the creation of 2 fallthrough paths with links
1184         // between them, and we correctly identify the best layout for these
1185         // CFGs. We want to extend trellises that the user created in addition
1186         // to trellises created by tail-duplication, so we just look for the
1187         // CFG.
1188         continue;
1189       Duplicate = false;
1190       continue;
1191     }
1192     NumDup++;
1193   }
1194 
1195   // No possible duplication in current filter set.
1196   if (NumDup == 0)
1197     return false;
1198 
1199   // If profile information is available, findDuplicateCandidates can do more
1200   // precise benefit analysis.
1201   if (F->getFunction().hasProfileData())
1202     return true;
1203 
1204   // This is mainly for function exit BB.
1205   // The integrated tail duplication is really designed for increasing
1206   // fallthrough from predecessors from Succ to its successors. We may need
1207   // other machanism to handle different cases.
1208   if (Succ->succ_empty())
1209     return true;
1210 
1211   // Plus the already placed predecessor.
1212   NumDup++;
1213 
1214   // If the duplication candidate has more unplaced predecessors than
1215   // successors, the extra duplication can't bring more fallthrough.
1216   //
1217   //     Pred1 Pred2 Pred3
1218   //         \   |   /
1219   //          \  |  /
1220   //           \ | /
1221   //            Dup
1222   //            / \
1223   //           /   \
1224   //       Succ1  Succ2
1225   //
1226   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1227   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1228   // but the duplication into Pred3 can't increase fallthrough.
1229   //
1230   // A small number of extra duplication may not hurt too much. We need a better
1231   // heuristic to handle it.
1232   if ((NumDup > Succ->succ_size()) || !Duplicate)
1233     return false;
1234 
1235   return true;
1236 }
1237 
1238 /// Find chains of triangles where we believe it would be profitable to
1239 /// tail-duplicate them all, but a local analysis would not find them.
1240 /// There are 3 ways this can be profitable:
1241 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1242 ///    longer chains)
1243 /// 2) The chains are statically correlated. Branch probabilities have a very
1244 ///    U-shaped distribution.
1245 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1246 ///    If the branches in a chain are likely to be from the same side of the
1247 ///    distribution as their predecessor, but are independent at runtime, this
1248 ///    transformation is profitable. (Because the cost of being wrong is a small
1249 ///    fixed cost, unlike the standard triangle layout where the cost of being
1250 ///    wrong scales with the # of triangles.)
1251 /// 3) The chains are dynamically correlated. If the probability that a previous
1252 ///    branch was taken positively influences whether the next branch will be
1253 ///    taken
1254 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1255 void MachineBlockPlacement::precomputeTriangleChains() {
1256   struct TriangleChain {
1257     std::vector<MachineBasicBlock *> Edges;
1258 
1259     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1260         : Edges({src, dst}) {}
1261 
1262     void append(MachineBasicBlock *dst) {
1263       assert(getKey()->isSuccessor(dst) &&
1264              "Attempting to append a block that is not a successor.");
1265       Edges.push_back(dst);
1266     }
1267 
1268     unsigned count() const { return Edges.size() - 1; }
1269 
1270     MachineBasicBlock *getKey() const {
1271       return Edges.back();
1272     }
1273   };
1274 
1275   if (TriangleChainCount == 0)
1276     return;
1277 
1278   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1279   // Map from last block to the chain that contains it. This allows us to extend
1280   // chains as we find new triangles.
1281   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1282   for (MachineBasicBlock &BB : *F) {
1283     // If BB doesn't have 2 successors, it doesn't start a triangle.
1284     if (BB.succ_size() != 2)
1285       continue;
1286     MachineBasicBlock *PDom = nullptr;
1287     for (MachineBasicBlock *Succ : BB.successors()) {
1288       if (!MPDT->dominates(Succ, &BB))
1289         continue;
1290       PDom = Succ;
1291       break;
1292     }
1293     // If BB doesn't have a post-dominating successor, it doesn't form a
1294     // triangle.
1295     if (PDom == nullptr)
1296       continue;
1297     // If PDom has a hint that it is low probability, skip this triangle.
1298     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1299       continue;
1300     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1301     // we're looking for.
1302     if (!shouldTailDuplicate(PDom))
1303       continue;
1304     bool CanTailDuplicate = true;
1305     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1306     // isn't the kind of triangle we're looking for.
1307     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1308       if (Pred == &BB)
1309         continue;
1310       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1311         CanTailDuplicate = false;
1312         break;
1313       }
1314     }
1315     // If we can't tail-duplicate PDom to its predecessors, then skip this
1316     // triangle.
1317     if (!CanTailDuplicate)
1318       continue;
1319 
1320     // Now we have an interesting triangle. Insert it if it's not part of an
1321     // existing chain.
1322     // Note: This cannot be replaced with a call insert() or emplace() because
1323     // the find key is BB, but the insert/emplace key is PDom.
1324     auto Found = TriangleChainMap.find(&BB);
1325     // If it is, remove the chain from the map, grow it, and put it back in the
1326     // map with the end as the new key.
1327     if (Found != TriangleChainMap.end()) {
1328       TriangleChain Chain = std::move(Found->second);
1329       TriangleChainMap.erase(Found);
1330       Chain.append(PDom);
1331       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1332     } else {
1333       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1334       assert(InsertResult.second && "Block seen twice.");
1335       (void)InsertResult;
1336     }
1337   }
1338 
1339   // Iterating over a DenseMap is safe here, because the only thing in the body
1340   // of the loop is inserting into another DenseMap (ComputedEdges).
1341   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1342   for (auto &ChainPair : TriangleChainMap) {
1343     TriangleChain &Chain = ChainPair.second;
1344     // Benchmarking has shown that due to branch correlation duplicating 2 or
1345     // more triangles is profitable, despite the calculations assuming
1346     // independence.
1347     if (Chain.count() < TriangleChainCount)
1348       continue;
1349     MachineBasicBlock *dst = Chain.Edges.back();
1350     Chain.Edges.pop_back();
1351     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1352       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1353                         << getBlockName(dst)
1354                         << " as pre-computed based on triangles.\n");
1355 
1356       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1357       assert(InsertResult.second && "Block seen twice.");
1358       (void)InsertResult;
1359 
1360       dst = src;
1361     }
1362   }
1363 }
1364 
1365 // When profile is not present, return the StaticLikelyProb.
1366 // When profile is available, we need to handle the triangle-shape CFG.
1367 static BranchProbability getLayoutSuccessorProbThreshold(
1368       const MachineBasicBlock *BB) {
1369   if (!BB->getParent()->getFunction().hasProfileData())
1370     return BranchProbability(StaticLikelyProb, 100);
1371   if (BB->succ_size() == 2) {
1372     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1373     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1374     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1375       /* See case 1 below for the cost analysis. For BB->Succ to
1376        * be taken with smaller cost, the following needs to hold:
1377        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1378        *   So the threshold T in the calculation below
1379        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1380        *   So T / (1 - T) = 2, Yielding T = 2/3
1381        * Also adding user specified branch bias, we have
1382        *   T = (2/3)*(ProfileLikelyProb/50)
1383        *     = (2*ProfileLikelyProb)/150)
1384        */
1385       return BranchProbability(2 * ProfileLikelyProb, 150);
1386     }
1387   }
1388   return BranchProbability(ProfileLikelyProb, 100);
1389 }
1390 
1391 /// Checks to see if the layout candidate block \p Succ has a better layout
1392 /// predecessor than \c BB. If yes, returns true.
1393 /// \p SuccProb: The probability adjusted for only remaining blocks.
1394 ///   Only used for logging
1395 /// \p RealSuccProb: The un-adjusted probability.
1396 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1397 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1398 ///    considered
1399 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1400     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1401     const BlockChain &SuccChain, BranchProbability SuccProb,
1402     BranchProbability RealSuccProb, const BlockChain &Chain,
1403     const BlockFilterSet *BlockFilter) {
1404 
1405   // There isn't a better layout when there are no unscheduled predecessors.
1406   if (SuccChain.UnscheduledPredecessors == 0)
1407     return false;
1408 
1409   // There are two basic scenarios here:
1410   // -------------------------------------
1411   // Case 1: triangular shape CFG (if-then):
1412   //     BB
1413   //     | \
1414   //     |  \
1415   //     |   Pred
1416   //     |   /
1417   //     Succ
1418   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1419   // set Succ as the layout successor of BB. Picking Succ as BB's
1420   // successor breaks the CFG constraints (FIXME: define these constraints).
1421   // With this layout, Pred BB
1422   // is forced to be outlined, so the overall cost will be cost of the
1423   // branch taken from BB to Pred, plus the cost of back taken branch
1424   // from Pred to Succ, as well as the additional cost associated
1425   // with the needed unconditional jump instruction from Pred To Succ.
1426 
1427   // The cost of the topological order layout is the taken branch cost
1428   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1429   // must hold:
1430   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1431   //      < freq(BB->Succ) *  taken_branch_cost.
1432   // Ignoring unconditional jump cost, we get
1433   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1434   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1435   //
1436   // When real profile data is available, we can precisely compute the
1437   // probability threshold that is needed for edge BB->Succ to be considered.
1438   // Without profile data, the heuristic requires the branch bias to be
1439   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1440   // -----------------------------------------------------------------
1441   // Case 2: diamond like CFG (if-then-else):
1442   //     S
1443   //    / \
1444   //   |   \
1445   //  BB    Pred
1446   //   \    /
1447   //    Succ
1448   //    ..
1449   //
1450   // The current block is BB and edge BB->Succ is now being evaluated.
1451   // Note that edge S->BB was previously already selected because
1452   // prob(S->BB) > prob(S->Pred).
1453   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1454   // choose Pred, we will have a topological ordering as shown on the left
1455   // in the picture below. If we choose Succ, we have the solution as shown
1456   // on the right:
1457   //
1458   //   topo-order:
1459   //
1460   //       S-----                             ---S
1461   //       |    |                             |  |
1462   //    ---BB   |                             |  BB
1463   //    |       |                             |  |
1464   //    |  Pred--                             |  Succ--
1465   //    |  |                                  |       |
1466   //    ---Succ                               ---Pred--
1467   //
1468   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1469   //      = freq(S->Pred) + freq(S->BB)
1470   //
1471   // If we have profile data (i.e, branch probabilities can be trusted), the
1472   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1473   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1474   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1475   // means the cost of topological order is greater.
1476   // When profile data is not available, however, we need to be more
1477   // conservative. If the branch prediction is wrong, breaking the topo-order
1478   // will actually yield a layout with large cost. For this reason, we need
1479   // strong biased branch at block S with Prob(S->BB) in order to select
1480   // BB->Succ. This is equivalent to looking the CFG backward with backward
1481   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1482   // profile data).
1483   // --------------------------------------------------------------------------
1484   // Case 3: forked diamond
1485   //       S
1486   //      / \
1487   //     /   \
1488   //   BB    Pred
1489   //   | \   / |
1490   //   |  \ /  |
1491   //   |   X   |
1492   //   |  / \  |
1493   //   | /   \ |
1494   //   S1     S2
1495   //
1496   // The current block is BB and edge BB->S1 is now being evaluated.
1497   // As above S->BB was already selected because
1498   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1499   //
1500   // topo-order:
1501   //
1502   //     S-------|                     ---S
1503   //     |       |                     |  |
1504   //  ---BB      |                     |  BB
1505   //  |          |                     |  |
1506   //  |  Pred----|                     |  S1----
1507   //  |  |                             |       |
1508   //  --(S1 or S2)                     ---Pred--
1509   //                                        |
1510   //                                       S2
1511   //
1512   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1513   //    + min(freq(Pred->S1), freq(Pred->S2))
1514   // Non-topo-order cost:
1515   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1516   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1517   // is 0. Then the non topo layout is better when
1518   // freq(S->Pred) < freq(BB->S1).
1519   // This is exactly what is checked below.
1520   // Note there are other shapes that apply (Pred may not be a single block,
1521   // but they all fit this general pattern.)
1522   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1523 
1524   // Make sure that a hot successor doesn't have a globally more
1525   // important predecessor.
1526   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1527   bool BadCFGConflict = false;
1528 
1529   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1530     BlockChain *PredChain = BlockToChain[Pred];
1531     if (Pred == Succ || PredChain == &SuccChain ||
1532         (BlockFilter && !BlockFilter->count(Pred)) ||
1533         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1534         // This check is redundant except for look ahead. This function is
1535         // called for lookahead by isProfitableToTailDup when BB hasn't been
1536         // placed yet.
1537         (Pred == BB))
1538       continue;
1539     // Do backward checking.
1540     // For all cases above, we need a backward checking to filter out edges that
1541     // are not 'strongly' biased.
1542     // BB  Pred
1543     //  \ /
1544     //  Succ
1545     // We select edge BB->Succ if
1546     //      freq(BB->Succ) > freq(Succ) * HotProb
1547     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1548     //      HotProb
1549     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1550     // Case 1 is covered too, because the first equation reduces to:
1551     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1552     BlockFrequency PredEdgeFreq =
1553         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1554     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1555       BadCFGConflict = true;
1556       break;
1557     }
1558   }
1559 
1560   if (BadCFGConflict) {
1561     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1562                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1563     return true;
1564   }
1565 
1566   return false;
1567 }
1568 
1569 /// Select the best successor for a block.
1570 ///
1571 /// This looks across all successors of a particular block and attempts to
1572 /// select the "best" one to be the layout successor. It only considers direct
1573 /// successors which also pass the block filter. It will attempt to avoid
1574 /// breaking CFG structure, but cave and break such structures in the case of
1575 /// very hot successor edges.
1576 ///
1577 /// \returns The best successor block found, or null if none are viable, along
1578 /// with a boolean indicating if tail duplication is necessary.
1579 MachineBlockPlacement::BlockAndTailDupResult
1580 MachineBlockPlacement::selectBestSuccessor(
1581     const MachineBasicBlock *BB, const BlockChain &Chain,
1582     const BlockFilterSet *BlockFilter) {
1583   const BranchProbability HotProb(StaticLikelyProb, 100);
1584 
1585   BlockAndTailDupResult BestSucc = { nullptr, false };
1586   auto BestProb = BranchProbability::getZero();
1587 
1588   SmallVector<MachineBasicBlock *, 4> Successors;
1589   auto AdjustedSumProb =
1590       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1591 
1592   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1593                     << "\n");
1594 
1595   // if we already precomputed the best successor for BB, return that if still
1596   // applicable.
1597   auto FoundEdge = ComputedEdges.find(BB);
1598   if (FoundEdge != ComputedEdges.end()) {
1599     MachineBasicBlock *Succ = FoundEdge->second.BB;
1600     ComputedEdges.erase(FoundEdge);
1601     BlockChain *SuccChain = BlockToChain[Succ];
1602     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1603         SuccChain != &Chain && Succ == *SuccChain->begin())
1604       return FoundEdge->second;
1605   }
1606 
1607   // if BB is part of a trellis, Use the trellis to determine the optimal
1608   // fallthrough edges
1609   if (isTrellis(BB, Successors, Chain, BlockFilter))
1610     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1611                                    BlockFilter);
1612 
1613   // For blocks with CFG violations, we may be able to lay them out anyway with
1614   // tail-duplication. We keep this vector so we can perform the probability
1615   // calculations the minimum number of times.
1616   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1617       DupCandidates;
1618   for (MachineBasicBlock *Succ : Successors) {
1619     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1620     BranchProbability SuccProb =
1621         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1622 
1623     BlockChain &SuccChain = *BlockToChain[Succ];
1624     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1625     // predecessor that yields lower global cost.
1626     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1627                                    Chain, BlockFilter)) {
1628       // If tail duplication would make Succ profitable, place it.
1629       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1630         DupCandidates.emplace_back(SuccProb, Succ);
1631       continue;
1632     }
1633 
1634     LLVM_DEBUG(
1635         dbgs() << "    Candidate: " << getBlockName(Succ)
1636                << ", probability: " << SuccProb
1637                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1638                << "\n");
1639 
1640     if (BestSucc.BB && BestProb >= SuccProb) {
1641       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1642       continue;
1643     }
1644 
1645     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1646     BestSucc.BB = Succ;
1647     BestProb = SuccProb;
1648   }
1649   // Handle the tail duplication candidates in order of decreasing probability.
1650   // Stop at the first one that is profitable. Also stop if they are less
1651   // profitable than BestSucc. Position is important because we preserve it and
1652   // prefer first best match. Here we aren't comparing in order, so we capture
1653   // the position instead.
1654   llvm::stable_sort(DupCandidates,
1655                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1656                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1657                       return std::get<0>(L) > std::get<0>(R);
1658                     });
1659   for (auto &Tup : DupCandidates) {
1660     BranchProbability DupProb;
1661     MachineBasicBlock *Succ;
1662     std::tie(DupProb, Succ) = Tup;
1663     if (DupProb < BestProb)
1664       break;
1665     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1666         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1667       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1668                         << ", probability: " << DupProb
1669                         << " (Tail Duplicate)\n");
1670       BestSucc.BB = Succ;
1671       BestSucc.ShouldTailDup = true;
1672       break;
1673     }
1674   }
1675 
1676   if (BestSucc.BB)
1677     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1678 
1679   return BestSucc;
1680 }
1681 
1682 /// Select the best block from a worklist.
1683 ///
1684 /// This looks through the provided worklist as a list of candidate basic
1685 /// blocks and select the most profitable one to place. The definition of
1686 /// profitable only really makes sense in the context of a loop. This returns
1687 /// the most frequently visited block in the worklist, which in the case of
1688 /// a loop, is the one most desirable to be physically close to the rest of the
1689 /// loop body in order to improve i-cache behavior.
1690 ///
1691 /// \returns The best block found, or null if none are viable.
1692 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1693     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1694   // Once we need to walk the worklist looking for a candidate, cleanup the
1695   // worklist of already placed entries.
1696   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1697   // some code complexity) into the loop below.
1698   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1699     return BlockToChain.lookup(BB) == &Chain;
1700   });
1701 
1702   if (WorkList.empty())
1703     return nullptr;
1704 
1705   bool IsEHPad = WorkList[0]->isEHPad();
1706 
1707   MachineBasicBlock *BestBlock = nullptr;
1708   BlockFrequency BestFreq;
1709   for (MachineBasicBlock *MBB : WorkList) {
1710     assert(MBB->isEHPad() == IsEHPad &&
1711            "EHPad mismatch between block and work list.");
1712 
1713     BlockChain &SuccChain = *BlockToChain[MBB];
1714     if (&SuccChain == &Chain)
1715       continue;
1716 
1717     assert(SuccChain.UnscheduledPredecessors == 0 &&
1718            "Found CFG-violating block");
1719 
1720     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1721     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1722                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1723 
1724     // For ehpad, we layout the least probable first as to avoid jumping back
1725     // from least probable landingpads to more probable ones.
1726     //
1727     // FIXME: Using probability is probably (!) not the best way to achieve
1728     // this. We should probably have a more principled approach to layout
1729     // cleanup code.
1730     //
1731     // The goal is to get:
1732     //
1733     //                 +--------------------------+
1734     //                 |                          V
1735     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1736     //
1737     // Rather than:
1738     //
1739     //                 +-------------------------------------+
1740     //                 V                                     |
1741     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1742     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1743       continue;
1744 
1745     BestBlock = MBB;
1746     BestFreq = CandidateFreq;
1747   }
1748 
1749   return BestBlock;
1750 }
1751 
1752 /// Retrieve the first unplaced basic block.
1753 ///
1754 /// This routine is called when we are unable to use the CFG to walk through
1755 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1756 /// We walk through the function's blocks in order, starting from the
1757 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1758 /// re-scanning the entire sequence on repeated calls to this routine.
1759 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1760     const BlockChain &PlacedChain,
1761     MachineFunction::iterator &PrevUnplacedBlockIt,
1762     const BlockFilterSet *BlockFilter) {
1763   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1764        ++I) {
1765     if (BlockFilter && !BlockFilter->count(&*I))
1766       continue;
1767     if (BlockToChain[&*I] != &PlacedChain) {
1768       PrevUnplacedBlockIt = I;
1769       // Now select the head of the chain to which the unplaced block belongs
1770       // as the block to place. This will force the entire chain to be placed,
1771       // and satisfies the requirements of merging chains.
1772       return *BlockToChain[&*I]->begin();
1773     }
1774   }
1775   return nullptr;
1776 }
1777 
1778 void MachineBlockPlacement::fillWorkLists(
1779     const MachineBasicBlock *MBB,
1780     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1781     const BlockFilterSet *BlockFilter = nullptr) {
1782   BlockChain &Chain = *BlockToChain[MBB];
1783   if (!UpdatedPreds.insert(&Chain).second)
1784     return;
1785 
1786   assert(
1787       Chain.UnscheduledPredecessors == 0 &&
1788       "Attempting to place block with unscheduled predecessors in worklist.");
1789   for (MachineBasicBlock *ChainBB : Chain) {
1790     assert(BlockToChain[ChainBB] == &Chain &&
1791            "Block in chain doesn't match BlockToChain map.");
1792     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1793       if (BlockFilter && !BlockFilter->count(Pred))
1794         continue;
1795       if (BlockToChain[Pred] == &Chain)
1796         continue;
1797       ++Chain.UnscheduledPredecessors;
1798     }
1799   }
1800 
1801   if (Chain.UnscheduledPredecessors != 0)
1802     return;
1803 
1804   MachineBasicBlock *BB = *Chain.begin();
1805   if (BB->isEHPad())
1806     EHPadWorkList.push_back(BB);
1807   else
1808     BlockWorkList.push_back(BB);
1809 }
1810 
1811 void MachineBlockPlacement::buildChain(
1812     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1813     BlockFilterSet *BlockFilter) {
1814   assert(HeadBB && "BB must not be null.\n");
1815   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1816   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1817 
1818   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1819   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1820   MachineBasicBlock *BB = *std::prev(Chain.end());
1821   while (true) {
1822     assert(BB && "null block found at end of chain in loop.");
1823     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1824     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1825 
1826 
1827     // Look for the best viable successor if there is one to place immediately
1828     // after this block.
1829     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1830     MachineBasicBlock* BestSucc = Result.BB;
1831     bool ShouldTailDup = Result.ShouldTailDup;
1832     if (allowTailDupPlacement())
1833       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1834                                                                   Chain,
1835                                                                   BlockFilter));
1836 
1837     // If an immediate successor isn't available, look for the best viable
1838     // block among those we've identified as not violating the loop's CFG at
1839     // this point. This won't be a fallthrough, but it will increase locality.
1840     if (!BestSucc)
1841       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1842     if (!BestSucc)
1843       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1844 
1845     if (!BestSucc) {
1846       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1847       if (!BestSucc)
1848         break;
1849 
1850       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1851                            "layout successor until the CFG reduces\n");
1852     }
1853 
1854     // Placement may have changed tail duplication opportunities.
1855     // Check for that now.
1856     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1857       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1858                                        BlockFilter, PrevUnplacedBlockIt);
1859       // If the chosen successor was duplicated into BB, don't bother laying
1860       // it out, just go round the loop again with BB as the chain end.
1861       if (!BB->isSuccessor(BestSucc))
1862         continue;
1863     }
1864 
1865     // Place this block, updating the datastructures to reflect its placement.
1866     BlockChain &SuccChain = *BlockToChain[BestSucc];
1867     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1868     // we selected a successor that didn't fit naturally into the CFG.
1869     SuccChain.UnscheduledPredecessors = 0;
1870     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1871                       << getBlockName(BestSucc) << "\n");
1872     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1873     Chain.merge(BestSucc, &SuccChain);
1874     BB = *std::prev(Chain.end());
1875   }
1876 
1877   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1878                     << getBlockName(*Chain.begin()) << "\n");
1879 }
1880 
1881 // If bottom of block BB has only one successor OldTop, in most cases it is
1882 // profitable to move it before OldTop, except the following case:
1883 //
1884 //     -->OldTop<-
1885 //     |    .    |
1886 //     |    .    |
1887 //     |    .    |
1888 //     ---Pred   |
1889 //          |    |
1890 //         BB-----
1891 //
1892 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1893 // layout the other successor below it, so it can't reduce taken branch.
1894 // In this case we keep its original layout.
1895 bool
1896 MachineBlockPlacement::canMoveBottomBlockToTop(
1897     const MachineBasicBlock *BottomBlock,
1898     const MachineBasicBlock *OldTop) {
1899   if (BottomBlock->pred_size() != 1)
1900     return true;
1901   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1902   if (Pred->succ_size() != 2)
1903     return true;
1904 
1905   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1906   if (OtherBB == BottomBlock)
1907     OtherBB = *Pred->succ_rbegin();
1908   if (OtherBB == OldTop)
1909     return false;
1910 
1911   return true;
1912 }
1913 
1914 // Find out the possible fall through frequence to the top of a loop.
1915 BlockFrequency
1916 MachineBlockPlacement::TopFallThroughFreq(
1917     const MachineBasicBlock *Top,
1918     const BlockFilterSet &LoopBlockSet) {
1919   BlockFrequency MaxFreq = 0;
1920   for (MachineBasicBlock *Pred : Top->predecessors()) {
1921     BlockChain *PredChain = BlockToChain[Pred];
1922     if (!LoopBlockSet.count(Pred) &&
1923         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1924       // Found a Pred block can be placed before Top.
1925       // Check if Top is the best successor of Pred.
1926       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1927       bool TopOK = true;
1928       for (MachineBasicBlock *Succ : Pred->successors()) {
1929         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1930         BlockChain *SuccChain = BlockToChain[Succ];
1931         // Check if Succ can be placed after Pred.
1932         // Succ should not be in any chain, or it is the head of some chain.
1933         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1934             (!SuccChain || Succ == *SuccChain->begin())) {
1935           TopOK = false;
1936           break;
1937         }
1938       }
1939       if (TopOK) {
1940         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1941                                   MBPI->getEdgeProbability(Pred, Top);
1942         if (EdgeFreq > MaxFreq)
1943           MaxFreq = EdgeFreq;
1944       }
1945     }
1946   }
1947   return MaxFreq;
1948 }
1949 
1950 // Compute the fall through gains when move NewTop before OldTop.
1951 //
1952 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1953 // marked as "+" are increased fallthrough, this function computes
1954 //
1955 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1956 //
1957 //              |
1958 //              | -
1959 //              V
1960 //        --->OldTop
1961 //        |     .
1962 //        |     .
1963 //       +|     .    +
1964 //        |   Pred --->
1965 //        |     |-
1966 //        |     V
1967 //        --- NewTop <---
1968 //              |-
1969 //              V
1970 //
1971 BlockFrequency
1972 MachineBlockPlacement::FallThroughGains(
1973     const MachineBasicBlock *NewTop,
1974     const MachineBasicBlock *OldTop,
1975     const MachineBasicBlock *ExitBB,
1976     const BlockFilterSet &LoopBlockSet) {
1977   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1978   BlockFrequency FallThrough2Exit = 0;
1979   if (ExitBB)
1980     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1981         MBPI->getEdgeProbability(NewTop, ExitBB);
1982   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1983       MBPI->getEdgeProbability(NewTop, OldTop);
1984 
1985   // Find the best Pred of NewTop.
1986    MachineBasicBlock *BestPred = nullptr;
1987    BlockFrequency FallThroughFromPred = 0;
1988    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1989      if (!LoopBlockSet.count(Pred))
1990        continue;
1991      BlockChain *PredChain = BlockToChain[Pred];
1992      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1993        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1994            MBPI->getEdgeProbability(Pred, NewTop);
1995        if (EdgeFreq > FallThroughFromPred) {
1996          FallThroughFromPred = EdgeFreq;
1997          BestPred = Pred;
1998        }
1999      }
2000    }
2001 
2002    // If NewTop is not placed after Pred, another successor can be placed
2003    // after Pred.
2004    BlockFrequency NewFreq = 0;
2005    if (BestPred) {
2006      for (MachineBasicBlock *Succ : BestPred->successors()) {
2007        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2008          continue;
2009        if (ComputedEdges.find(Succ) != ComputedEdges.end())
2010          continue;
2011        BlockChain *SuccChain = BlockToChain[Succ];
2012        if ((SuccChain && (Succ != *SuccChain->begin())) ||
2013            (SuccChain == BlockToChain[BestPred]))
2014          continue;
2015        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2016            MBPI->getEdgeProbability(BestPred, Succ);
2017        if (EdgeFreq > NewFreq)
2018          NewFreq = EdgeFreq;
2019      }
2020      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2021          MBPI->getEdgeProbability(BestPred, NewTop);
2022      if (NewFreq > OrigEdgeFreq) {
2023        // If NewTop is not the best successor of Pred, then Pred doesn't
2024        // fallthrough to NewTop. So there is no FallThroughFromPred and
2025        // NewFreq.
2026        NewFreq = 0;
2027        FallThroughFromPred = 0;
2028      }
2029    }
2030 
2031    BlockFrequency Result = 0;
2032    BlockFrequency Gains = BackEdgeFreq + NewFreq;
2033    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2034        FallThroughFromPred;
2035    if (Gains > Lost)
2036      Result = Gains - Lost;
2037    return Result;
2038 }
2039 
2040 /// Helper function of findBestLoopTop. Find the best loop top block
2041 /// from predecessors of old top.
2042 ///
2043 /// Look for a block which is strictly better than the old top for laying
2044 /// out before the old top of the loop. This looks for only two patterns:
2045 ///
2046 ///     1. a block has only one successor, the old loop top
2047 ///
2048 ///        Because such a block will always result in an unconditional jump,
2049 ///        rotating it in front of the old top is always profitable.
2050 ///
2051 ///     2. a block has two successors, one is old top, another is exit
2052 ///        and it has more than one predecessors
2053 ///
2054 ///        If it is below one of its predecessors P, only P can fall through to
2055 ///        it, all other predecessors need a jump to it, and another conditional
2056 ///        jump to loop header. If it is moved before loop header, all its
2057 ///        predecessors jump to it, then fall through to loop header. So all its
2058 ///        predecessors except P can reduce one taken branch.
2059 ///        At the same time, move it before old top increases the taken branch
2060 ///        to loop exit block, so the reduced taken branch will be compared with
2061 ///        the increased taken branch to the loop exit block.
2062 MachineBasicBlock *
2063 MachineBlockPlacement::findBestLoopTopHelper(
2064     MachineBasicBlock *OldTop,
2065     const MachineLoop &L,
2066     const BlockFilterSet &LoopBlockSet) {
2067   // Check that the header hasn't been fused with a preheader block due to
2068   // crazy branches. If it has, we need to start with the header at the top to
2069   // prevent pulling the preheader into the loop body.
2070   BlockChain &HeaderChain = *BlockToChain[OldTop];
2071   if (!LoopBlockSet.count(*HeaderChain.begin()))
2072     return OldTop;
2073   if (OldTop != *HeaderChain.begin())
2074     return OldTop;
2075 
2076   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2077                     << "\n");
2078 
2079   BlockFrequency BestGains = 0;
2080   MachineBasicBlock *BestPred = nullptr;
2081   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2082     if (!LoopBlockSet.count(Pred))
2083       continue;
2084     if (Pred == L.getHeader())
2085       continue;
2086     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2087                       << Pred->succ_size() << " successors, ";
2088                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2089     if (Pred->succ_size() > 2)
2090       continue;
2091 
2092     MachineBasicBlock *OtherBB = nullptr;
2093     if (Pred->succ_size() == 2) {
2094       OtherBB = *Pred->succ_begin();
2095       if (OtherBB == OldTop)
2096         OtherBB = *Pred->succ_rbegin();
2097     }
2098 
2099     if (!canMoveBottomBlockToTop(Pred, OldTop))
2100       continue;
2101 
2102     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2103                                             LoopBlockSet);
2104     if ((Gains > 0) && (Gains > BestGains ||
2105         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2106       BestPred = Pred;
2107       BestGains = Gains;
2108     }
2109   }
2110 
2111   // If no direct predecessor is fine, just use the loop header.
2112   if (!BestPred) {
2113     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2114     return OldTop;
2115   }
2116 
2117   // Walk backwards through any straight line of predecessors.
2118   while (BestPred->pred_size() == 1 &&
2119          (*BestPred->pred_begin())->succ_size() == 1 &&
2120          *BestPred->pred_begin() != L.getHeader())
2121     BestPred = *BestPred->pred_begin();
2122 
2123   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2124   return BestPred;
2125 }
2126 
2127 /// Find the best loop top block for layout.
2128 ///
2129 /// This function iteratively calls findBestLoopTopHelper, until no new better
2130 /// BB can be found.
2131 MachineBasicBlock *
2132 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2133                                        const BlockFilterSet &LoopBlockSet) {
2134   // Placing the latch block before the header may introduce an extra branch
2135   // that skips this block the first time the loop is executed, which we want
2136   // to avoid when optimising for size.
2137   // FIXME: in theory there is a case that does not introduce a new branch,
2138   // i.e. when the layout predecessor does not fallthrough to the loop header.
2139   // In practice this never happens though: there always seems to be a preheader
2140   // that can fallthrough and that is also placed before the header.
2141   bool OptForSize = F->getFunction().hasOptSize() ||
2142                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2143   if (OptForSize)
2144     return L.getHeader();
2145 
2146   MachineBasicBlock *OldTop = nullptr;
2147   MachineBasicBlock *NewTop = L.getHeader();
2148   while (NewTop != OldTop) {
2149     OldTop = NewTop;
2150     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2151     if (NewTop != OldTop)
2152       ComputedEdges[NewTop] = { OldTop, false };
2153   }
2154   return NewTop;
2155 }
2156 
2157 /// Find the best loop exiting block for layout.
2158 ///
2159 /// This routine implements the logic to analyze the loop looking for the best
2160 /// block to layout at the top of the loop. Typically this is done to maximize
2161 /// fallthrough opportunities.
2162 MachineBasicBlock *
2163 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2164                                         const BlockFilterSet &LoopBlockSet,
2165                                         BlockFrequency &ExitFreq) {
2166   // We don't want to layout the loop linearly in all cases. If the loop header
2167   // is just a normal basic block in the loop, we want to look for what block
2168   // within the loop is the best one to layout at the top. However, if the loop
2169   // header has be pre-merged into a chain due to predecessors not having
2170   // analyzable branches, *and* the predecessor it is merged with is *not* part
2171   // of the loop, rotating the header into the middle of the loop will create
2172   // a non-contiguous range of blocks which is Very Bad. So start with the
2173   // header and only rotate if safe.
2174   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2175   if (!LoopBlockSet.count(*HeaderChain.begin()))
2176     return nullptr;
2177 
2178   BlockFrequency BestExitEdgeFreq;
2179   unsigned BestExitLoopDepth = 0;
2180   MachineBasicBlock *ExitingBB = nullptr;
2181   // If there are exits to outer loops, loop rotation can severely limit
2182   // fallthrough opportunities unless it selects such an exit. Keep a set of
2183   // blocks where rotating to exit with that block will reach an outer loop.
2184   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2185 
2186   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2187                     << getBlockName(L.getHeader()) << "\n");
2188   for (MachineBasicBlock *MBB : L.getBlocks()) {
2189     BlockChain &Chain = *BlockToChain[MBB];
2190     // Ensure that this block is at the end of a chain; otherwise it could be
2191     // mid-way through an inner loop or a successor of an unanalyzable branch.
2192     if (MBB != *std::prev(Chain.end()))
2193       continue;
2194 
2195     // Now walk the successors. We need to establish whether this has a viable
2196     // exiting successor and whether it has a viable non-exiting successor.
2197     // We store the old exiting state and restore it if a viable looping
2198     // successor isn't found.
2199     MachineBasicBlock *OldExitingBB = ExitingBB;
2200     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2201     bool HasLoopingSucc = false;
2202     for (MachineBasicBlock *Succ : MBB->successors()) {
2203       if (Succ->isEHPad())
2204         continue;
2205       if (Succ == MBB)
2206         continue;
2207       BlockChain &SuccChain = *BlockToChain[Succ];
2208       // Don't split chains, either this chain or the successor's chain.
2209       if (&Chain == &SuccChain) {
2210         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2211                           << getBlockName(Succ) << " (chain conflict)\n");
2212         continue;
2213       }
2214 
2215       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2216       if (LoopBlockSet.count(Succ)) {
2217         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2218                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2219         HasLoopingSucc = true;
2220         continue;
2221       }
2222 
2223       unsigned SuccLoopDepth = 0;
2224       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2225         SuccLoopDepth = ExitLoop->getLoopDepth();
2226         if (ExitLoop->contains(&L))
2227           BlocksExitingToOuterLoop.insert(MBB);
2228       }
2229 
2230       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2231       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2232                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2233                         << "] (";
2234                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2235       // Note that we bias this toward an existing layout successor to retain
2236       // incoming order in the absence of better information. The exit must have
2237       // a frequency higher than the current exit before we consider breaking
2238       // the layout.
2239       BranchProbability Bias(100 - ExitBlockBias, 100);
2240       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2241           ExitEdgeFreq > BestExitEdgeFreq ||
2242           (MBB->isLayoutSuccessor(Succ) &&
2243            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2244         BestExitEdgeFreq = ExitEdgeFreq;
2245         ExitingBB = MBB;
2246       }
2247     }
2248 
2249     if (!HasLoopingSucc) {
2250       // Restore the old exiting state, no viable looping successor was found.
2251       ExitingBB = OldExitingBB;
2252       BestExitEdgeFreq = OldBestExitEdgeFreq;
2253     }
2254   }
2255   // Without a candidate exiting block or with only a single block in the
2256   // loop, just use the loop header to layout the loop.
2257   if (!ExitingBB) {
2258     LLVM_DEBUG(
2259         dbgs() << "    No other candidate exit blocks, using loop header\n");
2260     return nullptr;
2261   }
2262   if (L.getNumBlocks() == 1) {
2263     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2264     return nullptr;
2265   }
2266 
2267   // Also, if we have exit blocks which lead to outer loops but didn't select
2268   // one of them as the exiting block we are rotating toward, disable loop
2269   // rotation altogether.
2270   if (!BlocksExitingToOuterLoop.empty() &&
2271       !BlocksExitingToOuterLoop.count(ExitingBB))
2272     return nullptr;
2273 
2274   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2275                     << "\n");
2276   ExitFreq = BestExitEdgeFreq;
2277   return ExitingBB;
2278 }
2279 
2280 /// Check if there is a fallthrough to loop header Top.
2281 ///
2282 ///   1. Look for a Pred that can be layout before Top.
2283 ///   2. Check if Top is the most possible successor of Pred.
2284 bool
2285 MachineBlockPlacement::hasViableTopFallthrough(
2286     const MachineBasicBlock *Top,
2287     const BlockFilterSet &LoopBlockSet) {
2288   for (MachineBasicBlock *Pred : Top->predecessors()) {
2289     BlockChain *PredChain = BlockToChain[Pred];
2290     if (!LoopBlockSet.count(Pred) &&
2291         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2292       // Found a Pred block can be placed before Top.
2293       // Check if Top is the best successor of Pred.
2294       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2295       bool TopOK = true;
2296       for (MachineBasicBlock *Succ : Pred->successors()) {
2297         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2298         BlockChain *SuccChain = BlockToChain[Succ];
2299         // Check if Succ can be placed after Pred.
2300         // Succ should not be in any chain, or it is the head of some chain.
2301         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2302           TopOK = false;
2303           break;
2304         }
2305       }
2306       if (TopOK)
2307         return true;
2308     }
2309   }
2310   return false;
2311 }
2312 
2313 /// Attempt to rotate an exiting block to the bottom of the loop.
2314 ///
2315 /// Once we have built a chain, try to rotate it to line up the hot exit block
2316 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2317 /// branches. For example, if the loop has fallthrough into its header and out
2318 /// of its bottom already, don't rotate it.
2319 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2320                                        const MachineBasicBlock *ExitingBB,
2321                                        BlockFrequency ExitFreq,
2322                                        const BlockFilterSet &LoopBlockSet) {
2323   if (!ExitingBB)
2324     return;
2325 
2326   MachineBasicBlock *Top = *LoopChain.begin();
2327   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2328 
2329   // If ExitingBB is already the last one in a chain then nothing to do.
2330   if (Bottom == ExitingBB)
2331     return;
2332 
2333   // The entry block should always be the first BB in a function.
2334   if (Top->isEntryBlock())
2335     return;
2336 
2337   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2338 
2339   // If the header has viable fallthrough, check whether the current loop
2340   // bottom is a viable exiting block. If so, bail out as rotating will
2341   // introduce an unnecessary branch.
2342   if (ViableTopFallthrough) {
2343     for (MachineBasicBlock *Succ : Bottom->successors()) {
2344       BlockChain *SuccChain = BlockToChain[Succ];
2345       if (!LoopBlockSet.count(Succ) &&
2346           (!SuccChain || Succ == *SuccChain->begin()))
2347         return;
2348     }
2349 
2350     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2351     // frequency is larger than top fallthrough.
2352     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2353     if (FallThrough2Top >= ExitFreq)
2354       return;
2355   }
2356 
2357   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2358   if (ExitIt == LoopChain.end())
2359     return;
2360 
2361   // Rotating a loop exit to the bottom when there is a fallthrough to top
2362   // trades the entry fallthrough for an exit fallthrough.
2363   // If there is no bottom->top edge, but the chosen exit block does have
2364   // a fallthrough, we break that fallthrough for nothing in return.
2365 
2366   // Let's consider an example. We have a built chain of basic blocks
2367   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2368   // By doing a rotation we get
2369   // Bk+1, ..., Bn, B1, ..., Bk
2370   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2371   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2372   // It might be compensated by fallthrough Bn -> B1.
2373   // So we have a condition to avoid creation of extra branch by loop rotation.
2374   // All below must be true to avoid loop rotation:
2375   //   If there is a fallthrough to top (B1)
2376   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2377   //   There is no fallthrough from bottom (Bn) to top (B1).
2378   // Please note that there is no exit fallthrough from Bn because we checked it
2379   // above.
2380   if (ViableTopFallthrough) {
2381     assert(std::next(ExitIt) != LoopChain.end() &&
2382            "Exit should not be last BB");
2383     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2384     if (ExitingBB->isSuccessor(NextBlockInChain))
2385       if (!Bottom->isSuccessor(Top))
2386         return;
2387   }
2388 
2389   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2390                     << " at bottom\n");
2391   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2392 }
2393 
2394 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2395 ///
2396 /// With profile data, we can determine the cost in terms of missed fall through
2397 /// opportunities when rotating a loop chain and select the best rotation.
2398 /// Basically, there are three kinds of cost to consider for each rotation:
2399 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2400 ///    the loop to the loop header.
2401 ///    2. The possibly missed fall through edges (if they exist) from the loop
2402 ///    exits to BB out of the loop.
2403 ///    3. The missed fall through edge (if it exists) from the last BB to the
2404 ///    first BB in the loop chain.
2405 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2406 ///  We select the best rotation with the smallest cost.
2407 void MachineBlockPlacement::rotateLoopWithProfile(
2408     BlockChain &LoopChain, const MachineLoop &L,
2409     const BlockFilterSet &LoopBlockSet) {
2410   auto RotationPos = LoopChain.end();
2411   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2412 
2413   // The entry block should always be the first BB in a function.
2414   if (ChainHeaderBB->isEntryBlock())
2415     return;
2416 
2417   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2418 
2419   // A utility lambda that scales up a block frequency by dividing it by a
2420   // branch probability which is the reciprocal of the scale.
2421   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2422                                 unsigned Scale) -> BlockFrequency {
2423     if (Scale == 0)
2424       return 0;
2425     // Use operator / between BlockFrequency and BranchProbability to implement
2426     // saturating multiplication.
2427     return Freq / BranchProbability(1, Scale);
2428   };
2429 
2430   // Compute the cost of the missed fall-through edge to the loop header if the
2431   // chain head is not the loop header. As we only consider natural loops with
2432   // single header, this computation can be done only once.
2433   BlockFrequency HeaderFallThroughCost(0);
2434   for (auto *Pred : ChainHeaderBB->predecessors()) {
2435     BlockChain *PredChain = BlockToChain[Pred];
2436     if (!LoopBlockSet.count(Pred) &&
2437         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2438       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2439           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2440       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2441       // If the predecessor has only an unconditional jump to the header, we
2442       // need to consider the cost of this jump.
2443       if (Pred->succ_size() == 1)
2444         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2445       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2446     }
2447   }
2448 
2449   // Here we collect all exit blocks in the loop, and for each exit we find out
2450   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2451   // as the sum of frequencies of exit edges we collect here, excluding the exit
2452   // edge from the tail of the loop chain.
2453   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2454   for (auto *BB : LoopChain) {
2455     auto LargestExitEdgeProb = BranchProbability::getZero();
2456     for (auto *Succ : BB->successors()) {
2457       BlockChain *SuccChain = BlockToChain[Succ];
2458       if (!LoopBlockSet.count(Succ) &&
2459           (!SuccChain || Succ == *SuccChain->begin())) {
2460         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2461         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2462       }
2463     }
2464     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2465       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2466       ExitsWithFreq.emplace_back(BB, ExitFreq);
2467     }
2468   }
2469 
2470   // In this loop we iterate every block in the loop chain and calculate the
2471   // cost assuming the block is the head of the loop chain. When the loop ends,
2472   // we should have found the best candidate as the loop chain's head.
2473   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2474             EndIter = LoopChain.end();
2475        Iter != EndIter; Iter++, TailIter++) {
2476     // TailIter is used to track the tail of the loop chain if the block we are
2477     // checking (pointed by Iter) is the head of the chain.
2478     if (TailIter == LoopChain.end())
2479       TailIter = LoopChain.begin();
2480 
2481     auto TailBB = *TailIter;
2482 
2483     // Calculate the cost by putting this BB to the top.
2484     BlockFrequency Cost = 0;
2485 
2486     // If the current BB is the loop header, we need to take into account the
2487     // cost of the missed fall through edge from outside of the loop to the
2488     // header.
2489     if (Iter != LoopChain.begin())
2490       Cost += HeaderFallThroughCost;
2491 
2492     // Collect the loop exit cost by summing up frequencies of all exit edges
2493     // except the one from the chain tail.
2494     for (auto &ExitWithFreq : ExitsWithFreq)
2495       if (TailBB != ExitWithFreq.first)
2496         Cost += ExitWithFreq.second;
2497 
2498     // The cost of breaking the once fall-through edge from the tail to the top
2499     // of the loop chain. Here we need to consider three cases:
2500     // 1. If the tail node has only one successor, then we will get an
2501     //    additional jmp instruction. So the cost here is (MisfetchCost +
2502     //    JumpInstCost) * tail node frequency.
2503     // 2. If the tail node has two successors, then we may still get an
2504     //    additional jmp instruction if the layout successor after the loop
2505     //    chain is not its CFG successor. Note that the more frequently executed
2506     //    jmp instruction will be put ahead of the other one. Assume the
2507     //    frequency of those two branches are x and y, where x is the frequency
2508     //    of the edge to the chain head, then the cost will be
2509     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2510     // 3. If the tail node has more than two successors (this rarely happens),
2511     //    we won't consider any additional cost.
2512     if (TailBB->isSuccessor(*Iter)) {
2513       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2514       if (TailBB->succ_size() == 1)
2515         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2516                                     MisfetchCost + JumpInstCost);
2517       else if (TailBB->succ_size() == 2) {
2518         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2519         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2520         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2521                                   ? TailBBFreq * TailToHeadProb.getCompl()
2522                                   : TailToHeadFreq;
2523         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2524                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2525       }
2526     }
2527 
2528     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2529                       << getBlockName(*Iter)
2530                       << " to the top: " << Cost.getFrequency() << "\n");
2531 
2532     if (Cost < SmallestRotationCost) {
2533       SmallestRotationCost = Cost;
2534       RotationPos = Iter;
2535     }
2536   }
2537 
2538   if (RotationPos != LoopChain.end()) {
2539     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2540                       << " to the top\n");
2541     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2542   }
2543 }
2544 
2545 /// Collect blocks in the given loop that are to be placed.
2546 ///
2547 /// When profile data is available, exclude cold blocks from the returned set;
2548 /// otherwise, collect all blocks in the loop.
2549 MachineBlockPlacement::BlockFilterSet
2550 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2551   BlockFilterSet LoopBlockSet;
2552 
2553   // Filter cold blocks off from LoopBlockSet when profile data is available.
2554   // Collect the sum of frequencies of incoming edges to the loop header from
2555   // outside. If we treat the loop as a super block, this is the frequency of
2556   // the loop. Then for each block in the loop, we calculate the ratio between
2557   // its frequency and the frequency of the loop block. When it is too small,
2558   // don't add it to the loop chain. If there are outer loops, then this block
2559   // will be merged into the first outer loop chain for which this block is not
2560   // cold anymore. This needs precise profile data and we only do this when
2561   // profile data is available.
2562   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2563     BlockFrequency LoopFreq(0);
2564     for (auto *LoopPred : L.getHeader()->predecessors())
2565       if (!L.contains(LoopPred))
2566         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2567                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2568 
2569     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2570       if (LoopBlockSet.count(LoopBB))
2571         continue;
2572       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2573       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2574         continue;
2575       BlockChain *Chain = BlockToChain[LoopBB];
2576       for (MachineBasicBlock *ChainBB : *Chain)
2577         LoopBlockSet.insert(ChainBB);
2578     }
2579   } else
2580     LoopBlockSet.insert(L.block_begin(), L.block_end());
2581 
2582   return LoopBlockSet;
2583 }
2584 
2585 /// Forms basic block chains from the natural loop structures.
2586 ///
2587 /// These chains are designed to preserve the existing *structure* of the code
2588 /// as much as possible. We can then stitch the chains together in a way which
2589 /// both preserves the topological structure and minimizes taken conditional
2590 /// branches.
2591 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2592   // First recurse through any nested loops, building chains for those inner
2593   // loops.
2594   for (const MachineLoop *InnerLoop : L)
2595     buildLoopChains(*InnerLoop);
2596 
2597   assert(BlockWorkList.empty() &&
2598          "BlockWorkList not empty when starting to build loop chains.");
2599   assert(EHPadWorkList.empty() &&
2600          "EHPadWorkList not empty when starting to build loop chains.");
2601   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2602 
2603   // Check if we have profile data for this function. If yes, we will rotate
2604   // this loop by modeling costs more precisely which requires the profile data
2605   // for better layout.
2606   bool RotateLoopWithProfile =
2607       ForcePreciseRotationCost ||
2608       (PreciseRotationCost && F->getFunction().hasProfileData());
2609 
2610   // First check to see if there is an obviously preferable top block for the
2611   // loop. This will default to the header, but may end up as one of the
2612   // predecessors to the header if there is one which will result in strictly
2613   // fewer branches in the loop body.
2614   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2615 
2616   // If we selected just the header for the loop top, look for a potentially
2617   // profitable exit block in the event that rotating the loop can eliminate
2618   // branches by placing an exit edge at the bottom.
2619   //
2620   // Loops are processed innermost to uttermost, make sure we clear
2621   // PreferredLoopExit before processing a new loop.
2622   PreferredLoopExit = nullptr;
2623   BlockFrequency ExitFreq;
2624   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2625     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2626 
2627   BlockChain &LoopChain = *BlockToChain[LoopTop];
2628 
2629   // FIXME: This is a really lame way of walking the chains in the loop: we
2630   // walk the blocks, and use a set to prevent visiting a particular chain
2631   // twice.
2632   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2633   assert(LoopChain.UnscheduledPredecessors == 0 &&
2634          "LoopChain should not have unscheduled predecessors.");
2635   UpdatedPreds.insert(&LoopChain);
2636 
2637   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2638     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2639 
2640   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2641 
2642   if (RotateLoopWithProfile)
2643     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2644   else
2645     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2646 
2647   LLVM_DEBUG({
2648     // Crash at the end so we get all of the debugging output first.
2649     bool BadLoop = false;
2650     if (LoopChain.UnscheduledPredecessors) {
2651       BadLoop = true;
2652       dbgs() << "Loop chain contains a block without its preds placed!\n"
2653              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2654              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2655     }
2656     for (MachineBasicBlock *ChainBB : LoopChain) {
2657       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2658       if (!LoopBlockSet.remove(ChainBB)) {
2659         // We don't mark the loop as bad here because there are real situations
2660         // where this can occur. For example, with an unanalyzable fallthrough
2661         // from a loop block to a non-loop block or vice versa.
2662         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2663                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2664                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2665                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2666       }
2667     }
2668 
2669     if (!LoopBlockSet.empty()) {
2670       BadLoop = true;
2671       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2672         dbgs() << "Loop contains blocks never placed into a chain!\n"
2673                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2674                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2675                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2676     }
2677     assert(!BadLoop && "Detected problems with the placement of this loop.");
2678   });
2679 
2680   BlockWorkList.clear();
2681   EHPadWorkList.clear();
2682 }
2683 
2684 void MachineBlockPlacement::buildCFGChains() {
2685   // Ensure that every BB in the function has an associated chain to simplify
2686   // the assumptions of the remaining algorithm.
2687   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2688   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2689        ++FI) {
2690     MachineBasicBlock *BB = &*FI;
2691     BlockChain *Chain =
2692         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2693     // Also, merge any blocks which we cannot reason about and must preserve
2694     // the exact fallthrough behavior for.
2695     while (true) {
2696       Cond.clear();
2697       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2698       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2699         break;
2700 
2701       MachineFunction::iterator NextFI = std::next(FI);
2702       MachineBasicBlock *NextBB = &*NextFI;
2703       // Ensure that the layout successor is a viable block, as we know that
2704       // fallthrough is a possibility.
2705       assert(NextFI != FE && "Can't fallthrough past the last block.");
2706       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2707                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2708                         << "\n");
2709       Chain->merge(NextBB, nullptr);
2710 #ifndef NDEBUG
2711       BlocksWithUnanalyzableExits.insert(&*BB);
2712 #endif
2713       FI = NextFI;
2714       BB = NextBB;
2715     }
2716   }
2717 
2718   // Build any loop-based chains.
2719   PreferredLoopExit = nullptr;
2720   for (MachineLoop *L : *MLI)
2721     buildLoopChains(*L);
2722 
2723   assert(BlockWorkList.empty() &&
2724          "BlockWorkList should be empty before building final chain.");
2725   assert(EHPadWorkList.empty() &&
2726          "EHPadWorkList should be empty before building final chain.");
2727 
2728   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2729   for (MachineBasicBlock &MBB : *F)
2730     fillWorkLists(&MBB, UpdatedPreds);
2731 
2732   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2733   buildChain(&F->front(), FunctionChain);
2734 
2735 #ifndef NDEBUG
2736   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2737 #endif
2738   LLVM_DEBUG({
2739     // Crash at the end so we get all of the debugging output first.
2740     bool BadFunc = false;
2741     FunctionBlockSetType FunctionBlockSet;
2742     for (MachineBasicBlock &MBB : *F)
2743       FunctionBlockSet.insert(&MBB);
2744 
2745     for (MachineBasicBlock *ChainBB : FunctionChain)
2746       if (!FunctionBlockSet.erase(ChainBB)) {
2747         BadFunc = true;
2748         dbgs() << "Function chain contains a block not in the function!\n"
2749                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2750       }
2751 
2752     if (!FunctionBlockSet.empty()) {
2753       BadFunc = true;
2754       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2755         dbgs() << "Function contains blocks never placed into a chain!\n"
2756                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2757     }
2758     assert(!BadFunc && "Detected problems with the block placement.");
2759   });
2760 
2761   // Remember original layout ordering, so we can update terminators after
2762   // reordering to point to the original layout successor.
2763   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2764       F->getNumBlockIDs());
2765   {
2766     MachineBasicBlock *LastMBB = nullptr;
2767     for (auto &MBB : *F) {
2768       if (LastMBB != nullptr)
2769         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2770       LastMBB = &MBB;
2771     }
2772     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2773   }
2774 
2775   // Splice the blocks into place.
2776   MachineFunction::iterator InsertPos = F->begin();
2777   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2778   for (MachineBasicBlock *ChainBB : FunctionChain) {
2779     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2780                                                             : "          ... ")
2781                       << getBlockName(ChainBB) << "\n");
2782     if (InsertPos != MachineFunction::iterator(ChainBB))
2783       F->splice(InsertPos, ChainBB);
2784     else
2785       ++InsertPos;
2786 
2787     // Update the terminator of the previous block.
2788     if (ChainBB == *FunctionChain.begin())
2789       continue;
2790     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2791 
2792     // FIXME: It would be awesome of updateTerminator would just return rather
2793     // than assert when the branch cannot be analyzed in order to remove this
2794     // boiler plate.
2795     Cond.clear();
2796     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2797 
2798 #ifndef NDEBUG
2799     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2800       // Given the exact block placement we chose, we may actually not _need_ to
2801       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2802       // do that at this point is a bug.
2803       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2804               !PrevBB->canFallThrough()) &&
2805              "Unexpected block with un-analyzable fallthrough!");
2806       Cond.clear();
2807       TBB = FBB = nullptr;
2808     }
2809 #endif
2810 
2811     // The "PrevBB" is not yet updated to reflect current code layout, so,
2812     //   o. it may fall-through to a block without explicit "goto" instruction
2813     //      before layout, and no longer fall-through it after layout; or
2814     //   o. just opposite.
2815     //
2816     // analyzeBranch() may return erroneous value for FBB when these two
2817     // situations take place. For the first scenario FBB is mistakenly set NULL;
2818     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2819     // mistakenly pointing to "*BI".
2820     // Thus, if the future change needs to use FBB before the layout is set, it
2821     // has to correct FBB first by using the code similar to the following:
2822     //
2823     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2824     //   PrevBB->updateTerminator();
2825     //   Cond.clear();
2826     //   TBB = FBB = nullptr;
2827     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2828     //     // FIXME: This should never take place.
2829     //     TBB = FBB = nullptr;
2830     //   }
2831     // }
2832     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2833       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2834     }
2835   }
2836 
2837   // Fixup the last block.
2838   Cond.clear();
2839   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2840   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2841     MachineBasicBlock *PrevBB = &F->back();
2842     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2843   }
2844 
2845   BlockWorkList.clear();
2846   EHPadWorkList.clear();
2847 }
2848 
2849 void MachineBlockPlacement::optimizeBranches() {
2850   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2851   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2852 
2853   // Now that all the basic blocks in the chain have the proper layout,
2854   // make a final call to analyzeBranch with AllowModify set.
2855   // Indeed, the target may be able to optimize the branches in a way we
2856   // cannot because all branches may not be analyzable.
2857   // E.g., the target may be able to remove an unconditional branch to
2858   // a fallthrough when it occurs after predicated terminators.
2859   for (MachineBasicBlock *ChainBB : FunctionChain) {
2860     Cond.clear();
2861     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2862     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2863       // If PrevBB has a two-way branch, try to re-order the branches
2864       // such that we branch to the successor with higher probability first.
2865       if (TBB && !Cond.empty() && FBB &&
2866           MBPI->getEdgeProbability(ChainBB, FBB) >
2867               MBPI->getEdgeProbability(ChainBB, TBB) &&
2868           !TII->reverseBranchCondition(Cond)) {
2869         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2870                           << getBlockName(ChainBB) << "\n");
2871         LLVM_DEBUG(dbgs() << "    Edge probability: "
2872                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2873                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2874         DebugLoc dl; // FIXME: this is nowhere
2875         TII->removeBranch(*ChainBB);
2876         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2877       }
2878     }
2879   }
2880 }
2881 
2882 void MachineBlockPlacement::alignBlocks() {
2883   // Walk through the backedges of the function now that we have fully laid out
2884   // the basic blocks and align the destination of each backedge. We don't rely
2885   // exclusively on the loop info here so that we can align backedges in
2886   // unnatural CFGs and backedges that were introduced purely because of the
2887   // loop rotations done during this layout pass.
2888   if (F->getFunction().hasMinSize() ||
2889       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2890     return;
2891   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2892   if (FunctionChain.begin() == FunctionChain.end())
2893     return; // Empty chain.
2894 
2895   const BranchProbability ColdProb(1, 5); // 20%
2896   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2897   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2898   for (MachineBasicBlock *ChainBB : FunctionChain) {
2899     if (ChainBB == *FunctionChain.begin())
2900       continue;
2901 
2902     // Don't align non-looping basic blocks. These are unlikely to execute
2903     // enough times to matter in practice. Note that we'll still handle
2904     // unnatural CFGs inside of a natural outer loop (the common case) and
2905     // rotated loops.
2906     MachineLoop *L = MLI->getLoopFor(ChainBB);
2907     if (!L)
2908       continue;
2909 
2910     const Align Align = TLI->getPrefLoopAlignment(L);
2911     if (Align == 1)
2912       continue; // Don't care about loop alignment.
2913 
2914     // If the block is cold relative to the function entry don't waste space
2915     // aligning it.
2916     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2917     if (Freq < WeightedEntryFreq)
2918       continue;
2919 
2920     // If the block is cold relative to its loop header, don't align it
2921     // regardless of what edges into the block exist.
2922     MachineBasicBlock *LoopHeader = L->getHeader();
2923     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2924     if (Freq < (LoopHeaderFreq * ColdProb))
2925       continue;
2926 
2927     // If the global profiles indicates so, don't align it.
2928     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2929         !TLI->alignLoopsWithOptSize())
2930       continue;
2931 
2932     // Check for the existence of a non-layout predecessor which would benefit
2933     // from aligning this block.
2934     MachineBasicBlock *LayoutPred =
2935         &*std::prev(MachineFunction::iterator(ChainBB));
2936 
2937     auto DetermineMaxAlignmentPadding = [&]() {
2938       // Set the maximum bytes allowed to be emitted for alignment.
2939       unsigned MaxBytes;
2940       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2941         MaxBytes = MaxBytesForAlignmentOverride;
2942       else
2943         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
2944       ChainBB->setMaxBytesForAlignment(MaxBytes);
2945     };
2946 
2947     // Force alignment if all the predecessors are jumps. We already checked
2948     // that the block isn't cold above.
2949     if (!LayoutPred->isSuccessor(ChainBB)) {
2950       ChainBB->setAlignment(Align);
2951       DetermineMaxAlignmentPadding();
2952       continue;
2953     }
2954 
2955     // Align this block if the layout predecessor's edge into this block is
2956     // cold relative to the block. When this is true, other predecessors make up
2957     // all of the hot entries into the block and thus alignment is likely to be
2958     // important.
2959     BranchProbability LayoutProb =
2960         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2961     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2962     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2963       ChainBB->setAlignment(Align);
2964       DetermineMaxAlignmentPadding();
2965     }
2966   }
2967 }
2968 
2969 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2970 /// it was duplicated into its chain predecessor and removed.
2971 /// \p BB    - Basic block that may be duplicated.
2972 ///
2973 /// \p LPred - Chosen layout predecessor of \p BB.
2974 ///            Updated to be the chain end if LPred is removed.
2975 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2976 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2977 ///                  Used to identify which blocks to update predecessor
2978 ///                  counts.
2979 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2980 ///                          chosen in the given order due to unnatural CFG
2981 ///                          only needed if \p BB is removed and
2982 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2983 /// @return true if \p BB was removed.
2984 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2985     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2986     const MachineBasicBlock *LoopHeaderBB,
2987     BlockChain &Chain, BlockFilterSet *BlockFilter,
2988     MachineFunction::iterator &PrevUnplacedBlockIt) {
2989   bool Removed, DuplicatedToLPred;
2990   bool DuplicatedToOriginalLPred;
2991   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2992                                     PrevUnplacedBlockIt,
2993                                     DuplicatedToLPred);
2994   if (!Removed)
2995     return false;
2996   DuplicatedToOriginalLPred = DuplicatedToLPred;
2997   // Iteratively try to duplicate again. It can happen that a block that is
2998   // duplicated into is still small enough to be duplicated again.
2999   // No need to call markBlockSuccessors in this case, as the blocks being
3000   // duplicated from here on are already scheduled.
3001   while (DuplicatedToLPred && Removed) {
3002     MachineBasicBlock *DupBB, *DupPred;
3003     // The removal callback causes Chain.end() to be updated when a block is
3004     // removed. On the first pass through the loop, the chain end should be the
3005     // same as it was on function entry. On subsequent passes, because we are
3006     // duplicating the block at the end of the chain, if it is removed the
3007     // chain will have shrunk by one block.
3008     BlockChain::iterator ChainEnd = Chain.end();
3009     DupBB = *(--ChainEnd);
3010     // Now try to duplicate again.
3011     if (ChainEnd == Chain.begin())
3012       break;
3013     DupPred = *std::prev(ChainEnd);
3014     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
3015                                       PrevUnplacedBlockIt,
3016                                       DuplicatedToLPred);
3017   }
3018   // If BB was duplicated into LPred, it is now scheduled. But because it was
3019   // removed, markChainSuccessors won't be called for its chain. Instead we
3020   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3021   // at the end because repeating the tail duplication can increase the number
3022   // of unscheduled predecessors.
3023   LPred = *std::prev(Chain.end());
3024   if (DuplicatedToOriginalLPred)
3025     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3026   return true;
3027 }
3028 
3029 /// Tail duplicate \p BB into (some) predecessors if profitable.
3030 /// \p BB    - Basic block that may be duplicated
3031 /// \p LPred - Chosen layout predecessor of \p BB
3032 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3033 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3034 ///                  Used to identify which blocks to update predecessor
3035 ///                  counts.
3036 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3037 ///                          chosen in the given order due to unnatural CFG
3038 ///                          only needed if \p BB is removed and
3039 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3040 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3041 /// \return  - True if the block was duplicated into all preds and removed.
3042 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3043     MachineBasicBlock *BB, MachineBasicBlock *LPred,
3044     BlockChain &Chain, BlockFilterSet *BlockFilter,
3045     MachineFunction::iterator &PrevUnplacedBlockIt,
3046     bool &DuplicatedToLPred) {
3047   DuplicatedToLPred = false;
3048   if (!shouldTailDuplicate(BB))
3049     return false;
3050 
3051   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3052                     << "\n");
3053 
3054   // This has to be a callback because none of it can be done after
3055   // BB is deleted.
3056   bool Removed = false;
3057   auto RemovalCallback =
3058       [&](MachineBasicBlock *RemBB) {
3059         // Signal to outer function
3060         Removed = true;
3061 
3062         // Conservative default.
3063         bool InWorkList = true;
3064         // Remove from the Chain and Chain Map
3065         if (BlockToChain.count(RemBB)) {
3066           BlockChain *Chain = BlockToChain[RemBB];
3067           InWorkList = Chain->UnscheduledPredecessors == 0;
3068           Chain->remove(RemBB);
3069           BlockToChain.erase(RemBB);
3070         }
3071 
3072         // Handle the unplaced block iterator
3073         if (&(*PrevUnplacedBlockIt) == RemBB) {
3074           PrevUnplacedBlockIt++;
3075         }
3076 
3077         // Handle the Work Lists
3078         if (InWorkList) {
3079           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3080           if (RemBB->isEHPad())
3081             RemoveList = EHPadWorkList;
3082           llvm::erase_value(RemoveList, RemBB);
3083         }
3084 
3085         // Handle the filter set
3086         if (BlockFilter) {
3087           BlockFilter->remove(RemBB);
3088         }
3089 
3090         // Remove the block from loop info.
3091         MLI->removeBlock(RemBB);
3092         if (RemBB == PreferredLoopExit)
3093           PreferredLoopExit = nullptr;
3094 
3095         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3096                           << getBlockName(RemBB) << "\n");
3097       };
3098   auto RemovalCallbackRef =
3099       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3100 
3101   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3102   bool IsSimple = TailDup.isSimpleBB(BB);
3103   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3104   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3105   if (F->getFunction().hasProfileData()) {
3106     // We can do partial duplication with precise profile information.
3107     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3108     if (CandidatePreds.size() == 0)
3109       return false;
3110     if (CandidatePreds.size() < BB->pred_size())
3111       CandidatePtr = &CandidatePreds;
3112   }
3113   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3114                                  &RemovalCallbackRef, CandidatePtr);
3115 
3116   // Update UnscheduledPredecessors to reflect tail-duplication.
3117   DuplicatedToLPred = false;
3118   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3119     // We're only looking for unscheduled predecessors that match the filter.
3120     BlockChain* PredChain = BlockToChain[Pred];
3121     if (Pred == LPred)
3122       DuplicatedToLPred = true;
3123     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3124         || PredChain == &Chain)
3125       continue;
3126     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3127       if (BlockFilter && !BlockFilter->count(NewSucc))
3128         continue;
3129       BlockChain *NewChain = BlockToChain[NewSucc];
3130       if (NewChain != &Chain && NewChain != PredChain)
3131         NewChain->UnscheduledPredecessors++;
3132     }
3133   }
3134   return Removed;
3135 }
3136 
3137 // Count the number of actual machine instructions.
3138 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3139   uint64_t InstrCount = 0;
3140   for (MachineInstr &MI : *MBB) {
3141     if (!MI.isPHI() && !MI.isMetaInstruction())
3142       InstrCount += 1;
3143   }
3144   return InstrCount;
3145 }
3146 
3147 // The size cost of duplication is the instruction size of the duplicated block.
3148 // So we should scale the threshold accordingly. But the instruction size is not
3149 // available on all targets, so we use the number of instructions instead.
3150 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3151   return DupThreshold.getFrequency() * countMBBInstruction(BB);
3152 }
3153 
3154 // Returns true if BB is Pred's best successor.
3155 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3156                                             MachineBasicBlock *Pred,
3157                                             BlockFilterSet *BlockFilter) {
3158   if (BB == Pred)
3159     return false;
3160   if (BlockFilter && !BlockFilter->count(Pred))
3161     return false;
3162   BlockChain *PredChain = BlockToChain[Pred];
3163   if (PredChain && (Pred != *std::prev(PredChain->end())))
3164     return false;
3165 
3166   // Find the successor with largest probability excluding BB.
3167   BranchProbability BestProb = BranchProbability::getZero();
3168   for (MachineBasicBlock *Succ : Pred->successors())
3169     if (Succ != BB) {
3170       if (BlockFilter && !BlockFilter->count(Succ))
3171         continue;
3172       BlockChain *SuccChain = BlockToChain[Succ];
3173       if (SuccChain && (Succ != *SuccChain->begin()))
3174         continue;
3175       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3176       if (SuccProb > BestProb)
3177         BestProb = SuccProb;
3178     }
3179 
3180   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3181   if (BBProb <= BestProb)
3182     return false;
3183 
3184   // Compute the number of reduced taken branches if Pred falls through to BB
3185   // instead of another successor. Then compare it with threshold.
3186   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3187   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3188   return Gain > scaleThreshold(BB);
3189 }
3190 
3191 // Find out the predecessors of BB and BB can be beneficially duplicated into
3192 // them.
3193 void MachineBlockPlacement::findDuplicateCandidates(
3194     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3195     MachineBasicBlock *BB,
3196     BlockFilterSet *BlockFilter) {
3197   MachineBasicBlock *Fallthrough = nullptr;
3198   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3199   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3200   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3201   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3202 
3203   // Sort for highest frequency.
3204   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3205     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3206   };
3207   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3208     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3209   };
3210   llvm::stable_sort(Succs, CmpSucc);
3211   llvm::stable_sort(Preds, CmpPred);
3212 
3213   auto SuccIt = Succs.begin();
3214   if (SuccIt != Succs.end()) {
3215     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3216   }
3217 
3218   // For each predecessors of BB, compute the benefit of duplicating BB,
3219   // if it is larger than the threshold, add it into Candidates.
3220   //
3221   // If we have following control flow.
3222   //
3223   //     PB1 PB2 PB3 PB4
3224   //      \   |  /    /\
3225   //       \  | /    /  \
3226   //        \ |/    /    \
3227   //         BB----/     OB
3228   //         /\
3229   //        /  \
3230   //      SB1 SB2
3231   //
3232   // And it can be partially duplicated as
3233   //
3234   //   PB2+BB
3235   //      |  PB1 PB3 PB4
3236   //      |   |  /    /\
3237   //      |   | /    /  \
3238   //      |   |/    /    \
3239   //      |  BB----/     OB
3240   //      |\ /|
3241   //      | X |
3242   //      |/ \|
3243   //     SB2 SB1
3244   //
3245   // The benefit of duplicating into a predecessor is defined as
3246   //         Orig_taken_branch - Duplicated_taken_branch
3247   //
3248   // The Orig_taken_branch is computed with the assumption that predecessor
3249   // jumps to BB and the most possible successor is laid out after BB.
3250   //
3251   // The Duplicated_taken_branch is computed with the assumption that BB is
3252   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3253   // SB2 for PB2 in our case). If there is no available successor, the combined
3254   // block jumps to all BB's successor, like PB3 in this example.
3255   //
3256   // If a predecessor has multiple successors, so BB can't be duplicated into
3257   // it. But it can beneficially fall through to BB, and duplicate BB into other
3258   // predecessors.
3259   for (MachineBasicBlock *Pred : Preds) {
3260     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3261 
3262     if (!TailDup.canTailDuplicate(BB, Pred)) {
3263       // BB can't be duplicated into Pred, but it is possible to be layout
3264       // below Pred.
3265       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3266         Fallthrough = Pred;
3267         if (SuccIt != Succs.end())
3268           SuccIt++;
3269       }
3270       continue;
3271     }
3272 
3273     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3274     BlockFrequency DupCost;
3275     if (SuccIt == Succs.end()) {
3276       // Jump to all successors;
3277       if (Succs.size() > 0)
3278         DupCost += PredFreq;
3279     } else {
3280       // Fallthrough to *SuccIt, jump to all other successors;
3281       DupCost += PredFreq;
3282       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3283     }
3284 
3285     assert(OrigCost >= DupCost);
3286     OrigCost -= DupCost;
3287     if (OrigCost > BBDupThreshold) {
3288       Candidates.push_back(Pred);
3289       if (SuccIt != Succs.end())
3290         SuccIt++;
3291     }
3292   }
3293 
3294   // No predecessors can optimally fallthrough to BB.
3295   // So we can change one duplication into fallthrough.
3296   if (!Fallthrough) {
3297     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3298       Candidates[0] = Candidates.back();
3299       Candidates.pop_back();
3300     }
3301   }
3302 }
3303 
3304 void MachineBlockPlacement::initDupThreshold() {
3305   DupThreshold = 0;
3306   if (!F->getFunction().hasProfileData())
3307     return;
3308 
3309   // We prefer to use prifile count.
3310   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3311   if (HotThreshold != UINT64_MAX) {
3312     UseProfileCount = true;
3313     DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3314     return;
3315   }
3316 
3317   // Profile count is not available, we can use block frequency instead.
3318   BlockFrequency MaxFreq = 0;
3319   for (MachineBasicBlock &MBB : *F) {
3320     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3321     if (Freq > MaxFreq)
3322       MaxFreq = Freq;
3323   }
3324 
3325   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3326   DupThreshold = MaxFreq * ThresholdProb;
3327   UseProfileCount = false;
3328 }
3329 
3330 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3331   if (skipFunction(MF.getFunction()))
3332     return false;
3333 
3334   // Check for single-block functions and skip them.
3335   if (std::next(MF.begin()) == MF.end())
3336     return false;
3337 
3338   F = &MF;
3339   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3340   MBFI = std::make_unique<MBFIWrapper>(
3341       getAnalysis<MachineBlockFrequencyInfo>());
3342   MLI = &getAnalysis<MachineLoopInfo>();
3343   TII = MF.getSubtarget().getInstrInfo();
3344   TLI = MF.getSubtarget().getTargetLowering();
3345   MPDT = nullptr;
3346   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3347 
3348   initDupThreshold();
3349 
3350   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3351   // there are no MachineLoops.
3352   PreferredLoopExit = nullptr;
3353 
3354   assert(BlockToChain.empty() &&
3355          "BlockToChain map should be empty before starting placement.");
3356   assert(ComputedEdges.empty() &&
3357          "Computed Edge map should be empty before starting placement.");
3358 
3359   unsigned TailDupSize = TailDupPlacementThreshold;
3360   // If only the aggressive threshold is explicitly set, use it.
3361   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3362       TailDupPlacementThreshold.getNumOccurrences() == 0)
3363     TailDupSize = TailDupPlacementAggressiveThreshold;
3364 
3365   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3366   // For aggressive optimization, we can adjust some thresholds to be less
3367   // conservative.
3368   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3369     // At O3 we should be more willing to copy blocks for tail duplication. This
3370     // increases size pressure, so we only do it at O3
3371     // Do this unless only the regular threshold is explicitly set.
3372     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3373         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3374       TailDupSize = TailDupPlacementAggressiveThreshold;
3375   }
3376 
3377   // If there's no threshold provided through options, query the target
3378   // information for a threshold instead.
3379   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3380       (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3381        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3382     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3383 
3384   if (allowTailDupPlacement()) {
3385     MPDT = &getAnalysis<MachinePostDominatorTree>();
3386     bool OptForSize = MF.getFunction().hasOptSize() ||
3387                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3388     if (OptForSize)
3389       TailDupSize = 1;
3390     bool PreRegAlloc = false;
3391     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3392                    /* LayoutMode */ true, TailDupSize);
3393     precomputeTriangleChains();
3394   }
3395 
3396   buildCFGChains();
3397 
3398   // Changing the layout can create new tail merging opportunities.
3399   // TailMerge can create jump into if branches that make CFG irreducible for
3400   // HW that requires structured CFG.
3401   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3402                          PassConfig->getEnableTailMerge() &&
3403                          BranchFoldPlacement;
3404   // No tail merging opportunities if the block number is less than four.
3405   if (MF.size() > 3 && EnableTailMerge) {
3406     unsigned TailMergeSize = TailDupSize + 1;
3407     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3408                     *MBFI, *MBPI, PSI, TailMergeSize);
3409 
3410     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3411                             /*AfterPlacement=*/true)) {
3412       // Redo the layout if tail merging creates/removes/moves blocks.
3413       BlockToChain.clear();
3414       ComputedEdges.clear();
3415       // Must redo the post-dominator tree if blocks were changed.
3416       if (MPDT)
3417         MPDT->runOnMachineFunction(MF);
3418       ChainAllocator.DestroyAll();
3419       buildCFGChains();
3420     }
3421   }
3422 
3423   // Apply a post-processing optimizing block placement.
3424   if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3425       (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) {
3426     // Find a new placement and modify the layout of the blocks in the function.
3427     applyExtTsp();
3428 
3429     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3430     createCFGChainExtTsp();
3431   }
3432 
3433   optimizeBranches();
3434   alignBlocks();
3435 
3436   BlockToChain.clear();
3437   ComputedEdges.clear();
3438   ChainAllocator.DestroyAll();
3439 
3440   bool HasMaxBytesOverride =
3441       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3442 
3443   if (AlignAllBlock)
3444     // Align all of the blocks in the function to a specific alignment.
3445     for (MachineBasicBlock &MBB : MF) {
3446       if (HasMaxBytesOverride)
3447         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3448                          MaxBytesForAlignmentOverride);
3449       else
3450         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3451     }
3452   else if (AlignAllNonFallThruBlocks) {
3453     // Align all of the blocks that have no fall-through predecessors to a
3454     // specific alignment.
3455     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3456       auto LayoutPred = std::prev(MBI);
3457       if (!LayoutPred->isSuccessor(&*MBI)) {
3458         if (HasMaxBytesOverride)
3459           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3460                             MaxBytesForAlignmentOverride);
3461         else
3462           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3463       }
3464     }
3465   }
3466   if (ViewBlockLayoutWithBFI != GVDT_None &&
3467       (ViewBlockFreqFuncName.empty() ||
3468        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3469     MBFI->view("MBP." + MF.getName(), false);
3470   }
3471 
3472   // We always return true as we have no way to track whether the final order
3473   // differs from the original order.
3474   return true;
3475 }
3476 
3477 void MachineBlockPlacement::applyExtTsp() {
3478   // Prepare data; blocks are indexed by their index in the current ordering.
3479   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3480   BlockIndex.reserve(F->size());
3481   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3482   CurrentBlockOrder.reserve(F->size());
3483   size_t NumBlocks = 0;
3484   for (const MachineBasicBlock &MBB : *F) {
3485     BlockIndex[&MBB] = NumBlocks++;
3486     CurrentBlockOrder.push_back(&MBB);
3487   }
3488 
3489   auto BlockSizes = std::vector<uint64_t>(F->size());
3490   auto BlockCounts = std::vector<uint64_t>(F->size());
3491   DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> JumpCounts;
3492   for (MachineBasicBlock &MBB : *F) {
3493     // Getting the block frequency.
3494     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3495     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3496     // Getting the block size:
3497     // - approximate the size of an instruction by 4 bytes, and
3498     // - ignore debug instructions.
3499     // Note: getting the exact size of each block is target-dependent and can be
3500     // done by extending the interface of MCCodeEmitter. Experimentally we do
3501     // not see a perf improvement with the exact block sizes.
3502     auto NonDbgInsts =
3503         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3504     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3505     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3506     // Getting jump frequencies.
3507     for (MachineBasicBlock *Succ : MBB.successors()) {
3508       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3509       BlockFrequency EdgeFreq = BlockFreq * EP;
3510       auto Edge = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3511       JumpCounts[Edge] = EdgeFreq.getFrequency();
3512     }
3513   }
3514 
3515   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3516                     << " with profile = " << F->getFunction().hasProfileData()
3517                     << " (" << F->getName().str() << ")"
3518                     << "\n");
3519   LLVM_DEBUG(
3520       dbgs() << format("  original  layout score: %0.2f\n",
3521                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3522 
3523   // Run the layout algorithm.
3524   auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3525   std::vector<const MachineBasicBlock *> NewBlockOrder;
3526   NewBlockOrder.reserve(F->size());
3527   for (uint64_t Node : NewOrder) {
3528     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3529   }
3530   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3531                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3532                                               JumpCounts)));
3533 
3534   // Assign new block order.
3535   assignBlockOrder(NewBlockOrder);
3536 }
3537 
3538 void MachineBlockPlacement::assignBlockOrder(
3539     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3540   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3541   F->RenumberBlocks();
3542 
3543   bool HasChanges = false;
3544   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3545     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3546       HasChanges = true;
3547       break;
3548     }
3549   }
3550   // Stop early if the new block order is identical to the existing one.
3551   if (!HasChanges)
3552     return;
3553 
3554   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3555   for (auto &MBB : *F) {
3556     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3557   }
3558 
3559   // Sort basic blocks in the function according to the computed order.
3560   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3561   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3562     NewIndex[MBB] = NewIndex.size();
3563   }
3564   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3565     return NewIndex[&L] < NewIndex[&R];
3566   });
3567 
3568   // Update basic block branches by inserting explicit fallthrough branches
3569   // when required and re-optimize branches when possible.
3570   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3571   SmallVector<MachineOperand, 4> Cond;
3572   for (auto &MBB : *F) {
3573     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3574     MachineFunction::iterator EndIt = MBB.getParent()->end();
3575     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3576     // If this block had a fallthrough before we need an explicit unconditional
3577     // branch to that block if the fallthrough block is not adjacent to the
3578     // block in the new order.
3579     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3580       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3581     }
3582 
3583     // It might be possible to optimize branches by flipping the condition.
3584     Cond.clear();
3585     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3586     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3587       continue;
3588     MBB.updateTerminator(FTMBB);
3589   }
3590 
3591 #ifndef NDEBUG
3592   // Make sure we correctly constructed all branches.
3593   F->verify(this, "After optimized block reordering");
3594 #endif
3595 }
3596 
3597 void MachineBlockPlacement::createCFGChainExtTsp() {
3598   BlockToChain.clear();
3599   ComputedEdges.clear();
3600   ChainAllocator.DestroyAll();
3601 
3602   MachineBasicBlock *HeadBB = &F->front();
3603   BlockChain *FunctionChain =
3604       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3605 
3606   for (MachineBasicBlock &MBB : *F) {
3607     if (HeadBB == &MBB)
3608       continue; // Ignore head of the chain
3609     FunctionChain->merge(&MBB, nullptr);
3610   }
3611 }
3612 
3613 namespace {
3614 
3615 /// A pass to compute block placement statistics.
3616 ///
3617 /// A separate pass to compute interesting statistics for evaluating block
3618 /// placement. This is separate from the actual placement pass so that they can
3619 /// be computed in the absence of any placement transformations or when using
3620 /// alternative placement strategies.
3621 class MachineBlockPlacementStats : public MachineFunctionPass {
3622   /// A handle to the branch probability pass.
3623   const MachineBranchProbabilityInfo *MBPI;
3624 
3625   /// A handle to the function-wide block frequency pass.
3626   const MachineBlockFrequencyInfo *MBFI;
3627 
3628 public:
3629   static char ID; // Pass identification, replacement for typeid
3630 
3631   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3632     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3633   }
3634 
3635   bool runOnMachineFunction(MachineFunction &F) override;
3636 
3637   void getAnalysisUsage(AnalysisUsage &AU) const override {
3638     AU.addRequired<MachineBranchProbabilityInfo>();
3639     AU.addRequired<MachineBlockFrequencyInfo>();
3640     AU.setPreservesAll();
3641     MachineFunctionPass::getAnalysisUsage(AU);
3642   }
3643 };
3644 
3645 } // end anonymous namespace
3646 
3647 char MachineBlockPlacementStats::ID = 0;
3648 
3649 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3650 
3651 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3652                       "Basic Block Placement Stats", false, false)
3653 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3654 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3655 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3656                     "Basic Block Placement Stats", false, false)
3657 
3658 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3659   // Check for single-block functions and skip them.
3660   if (std::next(F.begin()) == F.end())
3661     return false;
3662 
3663   if (!isFunctionInPrintList(F.getName()))
3664     return false;
3665 
3666   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3667   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3668 
3669   for (MachineBasicBlock &MBB : F) {
3670     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3671     Statistic &NumBranches =
3672         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3673     Statistic &BranchTakenFreq =
3674         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3675     for (MachineBasicBlock *Succ : MBB.successors()) {
3676       // Skip if this successor is a fallthrough.
3677       if (MBB.isLayoutSuccessor(Succ))
3678         continue;
3679 
3680       BlockFrequency EdgeFreq =
3681           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3682       ++NumBranches;
3683       BranchTakenFreq += EdgeFreq.getFrequency();
3684     }
3685   }
3686 
3687   return false;
3688 }
3689