1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 static cl::opt<bool> PrintSlotIndexes( 43 "print-slotindexes", 44 cl::desc("When printing machine IR, annotate instructions and blocks with " 45 "SlotIndexes when available"), 46 cl::init(true), cl::Hidden); 47 48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 49 : BB(B), Number(-1), xParent(&MF) { 50 Insts.Parent = this; 51 if (B) 52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 53 } 54 55 MachineBasicBlock::~MachineBasicBlock() { 56 } 57 58 /// Return the MCSymbol for this basic block. 59 MCSymbol *MachineBasicBlock::getSymbol() const { 60 if (!CachedMCSymbol) { 61 const MachineFunction *MF = getParent(); 62 MCContext &Ctx = MF->getContext(); 63 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 64 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 65 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 66 Twine(MF->getFunctionNumber()) + 67 "_" + Twine(getNumber())); 68 } 69 70 return CachedMCSymbol; 71 } 72 73 74 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 75 MBB.print(OS); 76 return OS; 77 } 78 79 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 80 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 81 } 82 83 /// When an MBB is added to an MF, we need to update the parent pointer of the 84 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 85 /// operand list for registers. 86 /// 87 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 88 /// gets the next available unique MBB number. If it is removed from a 89 /// MachineFunction, it goes back to being #-1. 90 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 91 MachineBasicBlock *N) { 92 MachineFunction &MF = *N->getParent(); 93 N->Number = MF.addToMBBNumbering(N); 94 95 // Make sure the instructions have their operands in the reginfo lists. 96 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 97 for (MachineBasicBlock::instr_iterator 98 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 99 I->AddRegOperandsToUseLists(RegInfo); 100 } 101 102 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 103 MachineBasicBlock *N) { 104 N->getParent()->removeFromMBBNumbering(N->Number); 105 N->Number = -1; 106 } 107 108 /// When we add an instruction to a basic block list, we update its parent 109 /// pointer and add its operands from reg use/def lists if appropriate. 110 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 111 assert(!N->getParent() && "machine instruction already in a basic block"); 112 N->setParent(Parent); 113 114 // Add the instruction's register operands to their corresponding 115 // use/def lists. 116 MachineFunction *MF = Parent->getParent(); 117 N->AddRegOperandsToUseLists(MF->getRegInfo()); 118 MF->handleInsertion(*N); 119 } 120 121 /// When we remove an instruction from a basic block list, we update its parent 122 /// pointer and remove its operands from reg use/def lists if appropriate. 123 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 124 assert(N->getParent() && "machine instruction not in a basic block"); 125 126 // Remove from the use/def lists. 127 if (MachineFunction *MF = N->getMF()) { 128 MF->handleRemoval(*N); 129 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 130 } 131 132 N->setParent(nullptr); 133 } 134 135 /// When moving a range of instructions from one MBB list to another, we need to 136 /// update the parent pointers and the use/def lists. 137 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 138 instr_iterator First, 139 instr_iterator Last) { 140 assert(Parent->getParent() == FromList.Parent->getParent() && 141 "cannot transfer MachineInstrs between MachineFunctions"); 142 143 // If it's within the same BB, there's nothing to do. 144 if (this == &FromList) 145 return; 146 147 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 148 149 // If splicing between two blocks within the same function, just update the 150 // parent pointers. 151 for (; First != Last; ++First) 152 First->setParent(Parent); 153 } 154 155 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 156 assert(!MI->getParent() && "MI is still in a block!"); 157 Parent->getParent()->DeleteMachineInstr(MI); 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 161 instr_iterator I = instr_begin(), E = instr_end(); 162 while (I != E && I->isPHI()) 163 ++I; 164 assert((I == E || !I->isInsideBundle()) && 165 "First non-phi MI cannot be inside a bundle!"); 166 return I; 167 } 168 169 MachineBasicBlock::iterator 170 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 171 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 172 173 iterator E = end(); 174 while (I != E && (I->isPHI() || I->isPosition() || 175 TII->isBasicBlockPrologue(*I))) 176 ++I; 177 // FIXME: This needs to change if we wish to bundle labels 178 // inside the bundle. 179 assert((I == E || !I->isInsideBundle()) && 180 "First non-phi / non-label instruction is inside a bundle!"); 181 return I; 182 } 183 184 MachineBasicBlock::iterator 185 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 186 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 187 188 iterator E = end(); 189 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 190 TII->isBasicBlockPrologue(*I))) 191 ++I; 192 // FIXME: This needs to change if we wish to bundle labels / dbg_values 193 // inside the bundle. 194 assert((I == E || !I->isInsideBundle()) && 195 "First non-phi / non-label / non-debug " 196 "instruction is inside a bundle!"); 197 return I; 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 201 iterator B = begin(), E = end(), I = E; 202 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 203 ; /*noop */ 204 while (I != E && !I->isTerminator()) 205 ++I; 206 return I; 207 } 208 209 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 210 instr_iterator B = instr_begin(), E = instr_end(), I = E; 211 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 212 ; /*noop */ 213 while (I != E && !I->isTerminator()) 214 ++I; 215 return I; 216 } 217 218 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 219 // Skip over begin-of-block dbg_value instructions. 220 return skipDebugInstructionsForward(begin(), end()); 221 } 222 223 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 224 // Skip over end-of-block dbg_value instructions. 225 instr_iterator B = instr_begin(), I = instr_end(); 226 while (I != B) { 227 --I; 228 // Return instruction that starts a bundle. 229 if (I->isDebugInstr() || I->isInsideBundle()) 230 continue; 231 return I; 232 } 233 // The block is all debug values. 234 return end(); 235 } 236 237 bool MachineBasicBlock::hasEHPadSuccessor() const { 238 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 239 if ((*I)->isEHPad()) 240 return true; 241 return false; 242 } 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 246 print(dbgs()); 247 } 248 #endif 249 250 bool MachineBasicBlock::isLegalToHoistInto() const { 251 if (isReturnBlock() || hasEHPadSuccessor()) 252 return false; 253 return true; 254 } 255 256 StringRef MachineBasicBlock::getName() const { 257 if (const BasicBlock *LBB = getBasicBlock()) 258 return LBB->getName(); 259 else 260 return StringRef("", 0); 261 } 262 263 /// Return a hopefully unique identifier for this block. 264 std::string MachineBasicBlock::getFullName() const { 265 std::string Name; 266 if (getParent()) 267 Name = (getParent()->getName() + ":").str(); 268 if (getBasicBlock()) 269 Name += getBasicBlock()->getName(); 270 else 271 Name += ("BB" + Twine(getNumber())).str(); 272 return Name; 273 } 274 275 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 276 bool IsStandalone) const { 277 const MachineFunction *MF = getParent(); 278 if (!MF) { 279 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 280 << " is null\n"; 281 return; 282 } 283 const Function &F = MF->getFunction(); 284 const Module *M = F.getParent(); 285 ModuleSlotTracker MST(M); 286 MST.incorporateFunction(F); 287 print(OS, MST, Indexes, IsStandalone); 288 } 289 290 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 291 const SlotIndexes *Indexes, 292 bool IsStandalone) const { 293 const MachineFunction *MF = getParent(); 294 if (!MF) { 295 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 296 << " is null\n"; 297 return; 298 } 299 300 if (Indexes && PrintSlotIndexes) 301 OS << Indexes->getMBBStartIdx(this) << '\t'; 302 303 OS << "bb." << getNumber(); 304 bool HasAttributes = false; 305 if (const auto *BB = getBasicBlock()) { 306 if (BB->hasName()) { 307 OS << "." << BB->getName(); 308 } else { 309 HasAttributes = true; 310 OS << " ("; 311 int Slot = MST.getLocalSlot(BB); 312 if (Slot == -1) 313 OS << "<ir-block badref>"; 314 else 315 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 316 } 317 } 318 319 if (hasAddressTaken()) { 320 OS << (HasAttributes ? ", " : " ("); 321 OS << "address-taken"; 322 HasAttributes = true; 323 } 324 if (isEHPad()) { 325 OS << (HasAttributes ? ", " : " ("); 326 OS << "landing-pad"; 327 HasAttributes = true; 328 } 329 if (getAlignment() != Align::None()) { 330 OS << (HasAttributes ? ", " : " ("); 331 OS << "align " << Log2(getAlignment()); 332 HasAttributes = true; 333 } 334 if (HasAttributes) 335 OS << ")"; 336 OS << ":\n"; 337 338 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 339 const MachineRegisterInfo &MRI = MF->getRegInfo(); 340 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 341 bool HasLineAttributes = false; 342 343 // Print the preds of this block according to the CFG. 344 if (!pred_empty() && IsStandalone) { 345 if (Indexes) OS << '\t'; 346 // Don't indent(2), align with previous line attributes. 347 OS << "; predecessors: "; 348 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 349 if (I != pred_begin()) 350 OS << ", "; 351 OS << printMBBReference(**I); 352 } 353 OS << '\n'; 354 HasLineAttributes = true; 355 } 356 357 if (!succ_empty()) { 358 if (Indexes) OS << '\t'; 359 // Print the successors 360 OS.indent(2) << "successors: "; 361 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 362 if (I != succ_begin()) 363 OS << ", "; 364 OS << printMBBReference(**I); 365 if (!Probs.empty()) 366 OS << '(' 367 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 368 << ')'; 369 } 370 if (!Probs.empty() && IsStandalone) { 371 // Print human readable probabilities as comments. 372 OS << "; "; 373 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 374 const BranchProbability &BP = getSuccProbability(I); 375 if (I != succ_begin()) 376 OS << ", "; 377 OS << printMBBReference(**I) << '(' 378 << format("%.2f%%", 379 rint(((double)BP.getNumerator() / BP.getDenominator()) * 380 100.0 * 100.0) / 381 100.0) 382 << ')'; 383 } 384 } 385 386 OS << '\n'; 387 HasLineAttributes = true; 388 } 389 390 if (!livein_empty() && MRI.tracksLiveness()) { 391 if (Indexes) OS << '\t'; 392 OS.indent(2) << "liveins: "; 393 394 bool First = true; 395 for (const auto &LI : liveins()) { 396 if (!First) 397 OS << ", "; 398 First = false; 399 OS << printReg(LI.PhysReg, TRI); 400 if (!LI.LaneMask.all()) 401 OS << ":0x" << PrintLaneMask(LI.LaneMask); 402 } 403 HasLineAttributes = true; 404 } 405 406 if (HasLineAttributes) 407 OS << '\n'; 408 409 bool IsInBundle = false; 410 for (const MachineInstr &MI : instrs()) { 411 if (Indexes && PrintSlotIndexes) { 412 if (Indexes->hasIndex(MI)) 413 OS << Indexes->getInstructionIndex(MI); 414 OS << '\t'; 415 } 416 417 if (IsInBundle && !MI.isInsideBundle()) { 418 OS.indent(2) << "}\n"; 419 IsInBundle = false; 420 } 421 422 OS.indent(IsInBundle ? 4 : 2); 423 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 424 /*AddNewLine=*/false, &TII); 425 426 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 427 OS << " {"; 428 IsInBundle = true; 429 } 430 OS << '\n'; 431 } 432 433 if (IsInBundle) 434 OS.indent(2) << "}\n"; 435 436 if (IrrLoopHeaderWeight && IsStandalone) { 437 if (Indexes) OS << '\t'; 438 OS.indent(2) << "; Irreducible loop header weight: " 439 << IrrLoopHeaderWeight.getValue() << '\n'; 440 } 441 } 442 443 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 444 bool /*PrintType*/) const { 445 OS << "%bb." << getNumber(); 446 } 447 448 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 449 LiveInVector::iterator I = find_if( 450 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 451 if (I == LiveIns.end()) 452 return; 453 454 I->LaneMask &= ~LaneMask; 455 if (I->LaneMask.none()) 456 LiveIns.erase(I); 457 } 458 459 MachineBasicBlock::livein_iterator 460 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 461 // Get non-const version of iterator. 462 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 463 return LiveIns.erase(LI); 464 } 465 466 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 467 livein_iterator I = find_if( 468 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 469 return I != livein_end() && (I->LaneMask & LaneMask).any(); 470 } 471 472 void MachineBasicBlock::sortUniqueLiveIns() { 473 llvm::sort(LiveIns, 474 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 475 return LI0.PhysReg < LI1.PhysReg; 476 }); 477 // Liveins are sorted by physreg now we can merge their lanemasks. 478 LiveInVector::const_iterator I = LiveIns.begin(); 479 LiveInVector::const_iterator J; 480 LiveInVector::iterator Out = LiveIns.begin(); 481 for (; I != LiveIns.end(); ++Out, I = J) { 482 unsigned PhysReg = I->PhysReg; 483 LaneBitmask LaneMask = I->LaneMask; 484 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 485 LaneMask |= J->LaneMask; 486 Out->PhysReg = PhysReg; 487 Out->LaneMask = LaneMask; 488 } 489 LiveIns.erase(Out, LiveIns.end()); 490 } 491 492 unsigned 493 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 494 assert(getParent() && "MBB must be inserted in function"); 495 assert(PhysReg.isPhysical() && "Expected physreg"); 496 assert(RC && "Register class is required"); 497 assert((isEHPad() || this == &getParent()->front()) && 498 "Only the entry block and landing pads can have physreg live ins"); 499 500 bool LiveIn = isLiveIn(PhysReg); 501 iterator I = SkipPHIsAndLabels(begin()), E = end(); 502 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 503 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 504 505 // Look for an existing copy. 506 if (LiveIn) 507 for (;I != E && I->isCopy(); ++I) 508 if (I->getOperand(1).getReg() == PhysReg) { 509 Register VirtReg = I->getOperand(0).getReg(); 510 if (!MRI.constrainRegClass(VirtReg, RC)) 511 llvm_unreachable("Incompatible live-in register class."); 512 return VirtReg; 513 } 514 515 // No luck, create a virtual register. 516 Register VirtReg = MRI.createVirtualRegister(RC); 517 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 518 .addReg(PhysReg, RegState::Kill); 519 if (!LiveIn) 520 addLiveIn(PhysReg); 521 return VirtReg; 522 } 523 524 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 525 getParent()->splice(NewAfter->getIterator(), getIterator()); 526 } 527 528 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 529 getParent()->splice(++NewBefore->getIterator(), getIterator()); 530 } 531 532 void MachineBasicBlock::updateTerminator() { 533 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 534 // A block with no successors has no concerns with fall-through edges. 535 if (this->succ_empty()) 536 return; 537 538 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 539 SmallVector<MachineOperand, 4> Cond; 540 DebugLoc DL = findBranchDebugLoc(); 541 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 542 (void) B; 543 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 544 if (Cond.empty()) { 545 if (TBB) { 546 // The block has an unconditional branch. If its successor is now its 547 // layout successor, delete the branch. 548 if (isLayoutSuccessor(TBB)) 549 TII->removeBranch(*this); 550 } else { 551 // The block has an unconditional fallthrough. If its successor is not its 552 // layout successor, insert a branch. First we have to locate the only 553 // non-landing-pad successor, as that is the fallthrough block. 554 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 555 if ((*SI)->isEHPad()) 556 continue; 557 assert(!TBB && "Found more than one non-landing-pad successor!"); 558 TBB = *SI; 559 } 560 561 // If there is no non-landing-pad successor, the block has no fall-through 562 // edges to be concerned with. 563 if (!TBB) 564 return; 565 566 // Finally update the unconditional successor to be reached via a branch 567 // if it would not be reached by fallthrough. 568 if (!isLayoutSuccessor(TBB)) 569 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 570 } 571 return; 572 } 573 574 if (FBB) { 575 // The block has a non-fallthrough conditional branch. If one of its 576 // successors is its layout successor, rewrite it to a fallthrough 577 // conditional branch. 578 if (isLayoutSuccessor(TBB)) { 579 if (TII->reverseBranchCondition(Cond)) 580 return; 581 TII->removeBranch(*this); 582 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 583 } else if (isLayoutSuccessor(FBB)) { 584 TII->removeBranch(*this); 585 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 586 } 587 return; 588 } 589 590 // Walk through the successors and find the successor which is not a landing 591 // pad and is not the conditional branch destination (in TBB) as the 592 // fallthrough successor. 593 MachineBasicBlock *FallthroughBB = nullptr; 594 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 595 if ((*SI)->isEHPad() || *SI == TBB) 596 continue; 597 assert(!FallthroughBB && "Found more than one fallthrough successor."); 598 FallthroughBB = *SI; 599 } 600 601 if (!FallthroughBB) { 602 if (canFallThrough()) { 603 // We fallthrough to the same basic block as the conditional jump targets. 604 // Remove the conditional jump, leaving unconditional fallthrough. 605 // FIXME: This does not seem like a reasonable pattern to support, but it 606 // has been seen in the wild coming out of degenerate ARM test cases. 607 TII->removeBranch(*this); 608 609 // Finally update the unconditional successor to be reached via a branch if 610 // it would not be reached by fallthrough. 611 if (!isLayoutSuccessor(TBB)) 612 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 613 return; 614 } 615 616 // We enter here iff exactly one successor is TBB which cannot fallthrough 617 // and the rest successors if any are EHPads. In this case, we need to 618 // change the conditional branch into unconditional branch. 619 TII->removeBranch(*this); 620 Cond.clear(); 621 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 622 return; 623 } 624 625 // The block has a fallthrough conditional branch. 626 if (isLayoutSuccessor(TBB)) { 627 if (TII->reverseBranchCondition(Cond)) { 628 // We can't reverse the condition, add an unconditional branch. 629 Cond.clear(); 630 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 631 return; 632 } 633 TII->removeBranch(*this); 634 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 635 } else if (!isLayoutSuccessor(FallthroughBB)) { 636 TII->removeBranch(*this); 637 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 638 } 639 } 640 641 void MachineBasicBlock::validateSuccProbs() const { 642 #ifndef NDEBUG 643 int64_t Sum = 0; 644 for (auto Prob : Probs) 645 Sum += Prob.getNumerator(); 646 // Due to precision issue, we assume that the sum of probabilities is one if 647 // the difference between the sum of their numerators and the denominator is 648 // no greater than the number of successors. 649 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 650 Probs.size() && 651 "The sum of successors's probabilities exceeds one."); 652 #endif // NDEBUG 653 } 654 655 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 656 BranchProbability Prob) { 657 // Probability list is either empty (if successor list isn't empty, this means 658 // disabled optimization) or has the same size as successor list. 659 if (!(Probs.empty() && !Successors.empty())) 660 Probs.push_back(Prob); 661 Successors.push_back(Succ); 662 Succ->addPredecessor(this); 663 } 664 665 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 666 // We need to make sure probability list is either empty or has the same size 667 // of successor list. When this function is called, we can safely delete all 668 // probability in the list. 669 Probs.clear(); 670 Successors.push_back(Succ); 671 Succ->addPredecessor(this); 672 } 673 674 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 675 MachineBasicBlock *New, 676 bool NormalizeSuccProbs) { 677 succ_iterator OldI = llvm::find(successors(), Old); 678 assert(OldI != succ_end() && "Old is not a successor of this block!"); 679 assert(llvm::find(successors(), New) == succ_end() && 680 "New is already a successor of this block!"); 681 682 // Add a new successor with equal probability as the original one. Note 683 // that we directly copy the probability using the iterator rather than 684 // getting a potentially synthetic probability computed when unknown. This 685 // preserves the probabilities as-is and then we can renormalize them and 686 // query them effectively afterward. 687 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 688 : *getProbabilityIterator(OldI)); 689 if (NormalizeSuccProbs) 690 normalizeSuccProbs(); 691 } 692 693 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 694 bool NormalizeSuccProbs) { 695 succ_iterator I = find(Successors, Succ); 696 removeSuccessor(I, NormalizeSuccProbs); 697 } 698 699 MachineBasicBlock::succ_iterator 700 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 701 assert(I != Successors.end() && "Not a current successor!"); 702 703 // If probability list is empty it means we don't use it (disabled 704 // optimization). 705 if (!Probs.empty()) { 706 probability_iterator WI = getProbabilityIterator(I); 707 Probs.erase(WI); 708 if (NormalizeSuccProbs) 709 normalizeSuccProbs(); 710 } 711 712 (*I)->removePredecessor(this); 713 return Successors.erase(I); 714 } 715 716 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 717 MachineBasicBlock *New) { 718 if (Old == New) 719 return; 720 721 succ_iterator E = succ_end(); 722 succ_iterator NewI = E; 723 succ_iterator OldI = E; 724 for (succ_iterator I = succ_begin(); I != E; ++I) { 725 if (*I == Old) { 726 OldI = I; 727 if (NewI != E) 728 break; 729 } 730 if (*I == New) { 731 NewI = I; 732 if (OldI != E) 733 break; 734 } 735 } 736 assert(OldI != E && "Old is not a successor of this block"); 737 738 // If New isn't already a successor, let it take Old's place. 739 if (NewI == E) { 740 Old->removePredecessor(this); 741 New->addPredecessor(this); 742 *OldI = New; 743 return; 744 } 745 746 // New is already a successor. 747 // Update its probability instead of adding a duplicate edge. 748 if (!Probs.empty()) { 749 auto ProbIter = getProbabilityIterator(NewI); 750 if (!ProbIter->isUnknown()) 751 *ProbIter += *getProbabilityIterator(OldI); 752 } 753 removeSuccessor(OldI); 754 } 755 756 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 757 succ_iterator I) { 758 if (Orig->Probs.empty()) 759 addSuccessor(*I, Orig->getSuccProbability(I)); 760 else 761 addSuccessorWithoutProb(*I); 762 } 763 764 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 765 Predecessors.push_back(Pred); 766 } 767 768 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 769 pred_iterator I = find(Predecessors, Pred); 770 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 771 Predecessors.erase(I); 772 } 773 774 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 775 if (this == FromMBB) 776 return; 777 778 while (!FromMBB->succ_empty()) { 779 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 780 781 // If probability list is empty it means we don't use it (disabled 782 // optimization). 783 if (!FromMBB->Probs.empty()) { 784 auto Prob = *FromMBB->Probs.begin(); 785 addSuccessor(Succ, Prob); 786 } else 787 addSuccessorWithoutProb(Succ); 788 789 FromMBB->removeSuccessor(Succ); 790 } 791 } 792 793 void 794 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 795 if (this == FromMBB) 796 return; 797 798 while (!FromMBB->succ_empty()) { 799 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 800 if (!FromMBB->Probs.empty()) { 801 auto Prob = *FromMBB->Probs.begin(); 802 addSuccessor(Succ, Prob); 803 } else 804 addSuccessorWithoutProb(Succ); 805 FromMBB->removeSuccessor(Succ); 806 807 // Fix up any PHI nodes in the successor. 808 Succ->replacePhiUsesWith(FromMBB, this); 809 } 810 normalizeSuccProbs(); 811 } 812 813 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 814 return is_contained(predecessors(), MBB); 815 } 816 817 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 818 return is_contained(successors(), MBB); 819 } 820 821 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 822 MachineFunction::const_iterator I(this); 823 return std::next(I) == MachineFunction::const_iterator(MBB); 824 } 825 826 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 827 MachineFunction::iterator Fallthrough = getIterator(); 828 ++Fallthrough; 829 // If FallthroughBlock is off the end of the function, it can't fall through. 830 if (Fallthrough == getParent()->end()) 831 return nullptr; 832 833 // If FallthroughBlock isn't a successor, no fallthrough is possible. 834 if (!isSuccessor(&*Fallthrough)) 835 return nullptr; 836 837 // Analyze the branches, if any, at the end of the block. 838 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 839 SmallVector<MachineOperand, 4> Cond; 840 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 841 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 842 // If we couldn't analyze the branch, examine the last instruction. 843 // If the block doesn't end in a known control barrier, assume fallthrough 844 // is possible. The isPredicated check is needed because this code can be 845 // called during IfConversion, where an instruction which is normally a 846 // Barrier is predicated and thus no longer an actual control barrier. 847 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 848 ? &*Fallthrough 849 : nullptr; 850 } 851 852 // If there is no branch, control always falls through. 853 if (!TBB) return &*Fallthrough; 854 855 // If there is some explicit branch to the fallthrough block, it can obviously 856 // reach, even though the branch should get folded to fall through implicitly. 857 if (MachineFunction::iterator(TBB) == Fallthrough || 858 MachineFunction::iterator(FBB) == Fallthrough) 859 return &*Fallthrough; 860 861 // If it's an unconditional branch to some block not the fall through, it 862 // doesn't fall through. 863 if (Cond.empty()) return nullptr; 864 865 // Otherwise, if it is conditional and has no explicit false block, it falls 866 // through. 867 return (FBB == nullptr) ? &*Fallthrough : nullptr; 868 } 869 870 bool MachineBasicBlock::canFallThrough() { 871 return getFallThrough() != nullptr; 872 } 873 874 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 875 Pass &P) { 876 if (!canSplitCriticalEdge(Succ)) 877 return nullptr; 878 879 MachineFunction *MF = getParent(); 880 DebugLoc DL; // FIXME: this is nowhere 881 882 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 883 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 884 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 885 << " -- " << printMBBReference(*NMBB) << " -- " 886 << printMBBReference(*Succ) << '\n'); 887 888 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 889 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 890 if (LIS) 891 LIS->insertMBBInMaps(NMBB); 892 else if (Indexes) 893 Indexes->insertMBBInMaps(NMBB); 894 895 // On some targets like Mips, branches may kill virtual registers. Make sure 896 // that LiveVariables is properly updated after updateTerminator replaces the 897 // terminators. 898 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 899 900 // Collect a list of virtual registers killed by the terminators. 901 SmallVector<unsigned, 4> KilledRegs; 902 if (LV) 903 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 904 I != E; ++I) { 905 MachineInstr *MI = &*I; 906 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 907 OE = MI->operands_end(); OI != OE; ++OI) { 908 if (!OI->isReg() || OI->getReg() == 0 || 909 !OI->isUse() || !OI->isKill() || OI->isUndef()) 910 continue; 911 Register Reg = OI->getReg(); 912 if (Register::isPhysicalRegister(Reg) || 913 LV->getVarInfo(Reg).removeKill(*MI)) { 914 KilledRegs.push_back(Reg); 915 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 916 OI->setIsKill(false); 917 } 918 } 919 } 920 921 SmallVector<unsigned, 4> UsedRegs; 922 if (LIS) { 923 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 924 I != E; ++I) { 925 MachineInstr *MI = &*I; 926 927 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 928 OE = MI->operands_end(); OI != OE; ++OI) { 929 if (!OI->isReg() || OI->getReg() == 0) 930 continue; 931 932 Register Reg = OI->getReg(); 933 if (!is_contained(UsedRegs, Reg)) 934 UsedRegs.push_back(Reg); 935 } 936 } 937 } 938 939 ReplaceUsesOfBlockWith(Succ, NMBB); 940 941 // If updateTerminator() removes instructions, we need to remove them from 942 // SlotIndexes. 943 SmallVector<MachineInstr*, 4> Terminators; 944 if (Indexes) { 945 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 946 I != E; ++I) 947 Terminators.push_back(&*I); 948 } 949 950 updateTerminator(); 951 952 if (Indexes) { 953 SmallVector<MachineInstr*, 4> NewTerminators; 954 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 955 I != E; ++I) 956 NewTerminators.push_back(&*I); 957 958 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 959 E = Terminators.end(); I != E; ++I) { 960 if (!is_contained(NewTerminators, *I)) 961 Indexes->removeMachineInstrFromMaps(**I); 962 } 963 } 964 965 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 966 NMBB->addSuccessor(Succ); 967 if (!NMBB->isLayoutSuccessor(Succ)) { 968 SmallVector<MachineOperand, 4> Cond; 969 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 970 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 971 972 if (Indexes) { 973 for (MachineInstr &MI : NMBB->instrs()) { 974 // Some instructions may have been moved to NMBB by updateTerminator(), 975 // so we first remove any instruction that already has an index. 976 if (Indexes->hasIndex(MI)) 977 Indexes->removeMachineInstrFromMaps(MI); 978 Indexes->insertMachineInstrInMaps(MI); 979 } 980 } 981 } 982 983 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 984 Succ->replacePhiUsesWith(this, NMBB); 985 986 // Inherit live-ins from the successor 987 for (const auto &LI : Succ->liveins()) 988 NMBB->addLiveIn(LI); 989 990 // Update LiveVariables. 991 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 992 if (LV) { 993 // Restore kills of virtual registers that were killed by the terminators. 994 while (!KilledRegs.empty()) { 995 unsigned Reg = KilledRegs.pop_back_val(); 996 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 997 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 998 continue; 999 if (Register::isVirtualRegister(Reg)) 1000 LV->getVarInfo(Reg).Kills.push_back(&*I); 1001 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1002 break; 1003 } 1004 } 1005 // Update relevant live-through information. 1006 LV->addNewBlock(NMBB, this, Succ); 1007 } 1008 1009 if (LIS) { 1010 // After splitting the edge and updating SlotIndexes, live intervals may be 1011 // in one of two situations, depending on whether this block was the last in 1012 // the function. If the original block was the last in the function, all 1013 // live intervals will end prior to the beginning of the new split block. If 1014 // the original block was not at the end of the function, all live intervals 1015 // will extend to the end of the new split block. 1016 1017 bool isLastMBB = 1018 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1019 1020 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1021 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1022 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1023 1024 // Find the registers used from NMBB in PHIs in Succ. 1025 SmallSet<unsigned, 8> PHISrcRegs; 1026 for (MachineBasicBlock::instr_iterator 1027 I = Succ->instr_begin(), E = Succ->instr_end(); 1028 I != E && I->isPHI(); ++I) { 1029 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1030 if (I->getOperand(ni+1).getMBB() == NMBB) { 1031 MachineOperand &MO = I->getOperand(ni); 1032 Register Reg = MO.getReg(); 1033 PHISrcRegs.insert(Reg); 1034 if (MO.isUndef()) 1035 continue; 1036 1037 LiveInterval &LI = LIS->getInterval(Reg); 1038 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1039 assert(VNI && 1040 "PHI sources should be live out of their predecessors."); 1041 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1042 } 1043 } 1044 } 1045 1046 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1047 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1048 unsigned Reg = Register::index2VirtReg(i); 1049 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1050 continue; 1051 1052 LiveInterval &LI = LIS->getInterval(Reg); 1053 if (!LI.liveAt(PrevIndex)) 1054 continue; 1055 1056 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1057 if (isLiveOut && isLastMBB) { 1058 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1059 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1060 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1061 } else if (!isLiveOut && !isLastMBB) { 1062 LI.removeSegment(StartIndex, EndIndex); 1063 } 1064 } 1065 1066 // Update all intervals for registers whose uses may have been modified by 1067 // updateTerminator(). 1068 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1069 } 1070 1071 if (MachineDominatorTree *MDT = 1072 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1073 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1074 1075 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1076 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1077 // If one or the other blocks were not in a loop, the new block is not 1078 // either, and thus LI doesn't need to be updated. 1079 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1080 if (TIL == DestLoop) { 1081 // Both in the same loop, the NMBB joins loop. 1082 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1083 } else if (TIL->contains(DestLoop)) { 1084 // Edge from an outer loop to an inner loop. Add to the outer loop. 1085 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1086 } else if (DestLoop->contains(TIL)) { 1087 // Edge from an inner loop to an outer loop. Add to the outer loop. 1088 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1089 } else { 1090 // Edge from two loops with no containment relation. Because these 1091 // are natural loops, we know that the destination block must be the 1092 // header of its loop (adding a branch into a loop elsewhere would 1093 // create an irreducible loop). 1094 assert(DestLoop->getHeader() == Succ && 1095 "Should not create irreducible loops!"); 1096 if (MachineLoop *P = DestLoop->getParentLoop()) 1097 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1098 } 1099 } 1100 } 1101 1102 return NMBB; 1103 } 1104 1105 bool MachineBasicBlock::canSplitCriticalEdge( 1106 const MachineBasicBlock *Succ) const { 1107 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1108 // it in this generic function. 1109 if (Succ->isEHPad()) 1110 return false; 1111 1112 const MachineFunction *MF = getParent(); 1113 1114 // Performance might be harmed on HW that implements branching using exec mask 1115 // where both sides of the branches are always executed. 1116 if (MF->getTarget().requiresStructuredCFG()) 1117 return false; 1118 1119 // We may need to update this's terminator, but we can't do that if 1120 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1121 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1122 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1123 SmallVector<MachineOperand, 4> Cond; 1124 // AnalyzeBanch should modify this, since we did not allow modification. 1125 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1126 /*AllowModify*/ false)) 1127 return false; 1128 1129 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1130 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1131 // case that we can't handle. Since this never happens in properly optimized 1132 // code, just skip those edges. 1133 if (TBB && TBB == FBB) { 1134 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1135 << printMBBReference(*this) << '\n'); 1136 return false; 1137 } 1138 return true; 1139 } 1140 1141 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1142 /// neighboring instructions so the bundle won't be broken by removing MI. 1143 static void unbundleSingleMI(MachineInstr *MI) { 1144 // Removing the first instruction in a bundle. 1145 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1146 MI->unbundleFromSucc(); 1147 // Removing the last instruction in a bundle. 1148 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1149 MI->unbundleFromPred(); 1150 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1151 // are already fine. 1152 } 1153 1154 MachineBasicBlock::instr_iterator 1155 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1156 unbundleSingleMI(&*I); 1157 return Insts.erase(I); 1158 } 1159 1160 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1161 unbundleSingleMI(MI); 1162 MI->clearFlag(MachineInstr::BundledPred); 1163 MI->clearFlag(MachineInstr::BundledSucc); 1164 return Insts.remove(MI); 1165 } 1166 1167 MachineBasicBlock::instr_iterator 1168 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1169 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1170 "Cannot insert instruction with bundle flags"); 1171 // Set the bundle flags when inserting inside a bundle. 1172 if (I != instr_end() && I->isBundledWithPred()) { 1173 MI->setFlag(MachineInstr::BundledPred); 1174 MI->setFlag(MachineInstr::BundledSucc); 1175 } 1176 return Insts.insert(I, MI); 1177 } 1178 1179 /// This method unlinks 'this' from the containing function, and returns it, but 1180 /// does not delete it. 1181 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1182 assert(getParent() && "Not embedded in a function!"); 1183 getParent()->remove(this); 1184 return this; 1185 } 1186 1187 /// This method unlinks 'this' from the containing function, and deletes it. 1188 void MachineBasicBlock::eraseFromParent() { 1189 assert(getParent() && "Not embedded in a function!"); 1190 getParent()->erase(this); 1191 } 1192 1193 /// Given a machine basic block that branched to 'Old', change the code and CFG 1194 /// so that it branches to 'New' instead. 1195 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1196 MachineBasicBlock *New) { 1197 assert(Old != New && "Cannot replace self with self!"); 1198 1199 MachineBasicBlock::instr_iterator I = instr_end(); 1200 while (I != instr_begin()) { 1201 --I; 1202 if (!I->isTerminator()) break; 1203 1204 // Scan the operands of this machine instruction, replacing any uses of Old 1205 // with New. 1206 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1207 if (I->getOperand(i).isMBB() && 1208 I->getOperand(i).getMBB() == Old) 1209 I->getOperand(i).setMBB(New); 1210 } 1211 1212 // Update the successor information. 1213 replaceSuccessor(Old, New); 1214 } 1215 1216 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1217 MachineBasicBlock *New) { 1218 for (MachineInstr &MI : phis()) 1219 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1220 MachineOperand &MO = MI.getOperand(i); 1221 if (MO.getMBB() == Old) 1222 MO.setMBB(New); 1223 } 1224 } 1225 1226 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1227 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1228 /// MBB successors from the CFG. DestA and DestB can be null. 1229 /// 1230 /// Besides DestA and DestB, retain other edges leading to LandingPads 1231 /// (currently there can be only one; we don't check or require that here). 1232 /// Note it is possible that DestA and/or DestB are LandingPads. 1233 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1234 MachineBasicBlock *DestB, 1235 bool IsCond) { 1236 // The values of DestA and DestB frequently come from a call to the 1237 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1238 // values from there. 1239 // 1240 // 1. If both DestA and DestB are null, then the block ends with no branches 1241 // (it falls through to its successor). 1242 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1243 // with only an unconditional branch. 1244 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1245 // with a conditional branch that falls through to a successor (DestB). 1246 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1247 // conditional branch followed by an unconditional branch. DestA is the 1248 // 'true' destination and DestB is the 'false' destination. 1249 1250 bool Changed = false; 1251 1252 MachineBasicBlock *FallThru = getNextNode(); 1253 1254 if (!DestA && !DestB) { 1255 // Block falls through to successor. 1256 DestA = FallThru; 1257 DestB = FallThru; 1258 } else if (DestA && !DestB) { 1259 if (IsCond) 1260 // Block ends in conditional jump that falls through to successor. 1261 DestB = FallThru; 1262 } else { 1263 assert(DestA && DestB && IsCond && 1264 "CFG in a bad state. Cannot correct CFG edges"); 1265 } 1266 1267 // Remove superfluous edges. I.e., those which aren't destinations of this 1268 // basic block, duplicate edges, or landing pads. 1269 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1270 MachineBasicBlock::succ_iterator SI = succ_begin(); 1271 while (SI != succ_end()) { 1272 const MachineBasicBlock *MBB = *SI; 1273 if (!SeenMBBs.insert(MBB).second || 1274 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1275 // This is a superfluous edge, remove it. 1276 SI = removeSuccessor(SI); 1277 Changed = true; 1278 } else { 1279 ++SI; 1280 } 1281 } 1282 1283 if (Changed) 1284 normalizeSuccProbs(); 1285 return Changed; 1286 } 1287 1288 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1289 /// instructions. Return UnknownLoc if there is none. 1290 DebugLoc 1291 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1292 // Skip debug declarations, we don't want a DebugLoc from them. 1293 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1294 if (MBBI != instr_end()) 1295 return MBBI->getDebugLoc(); 1296 return {}; 1297 } 1298 1299 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1300 /// instructions. Return UnknownLoc if there is none. 1301 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1302 if (MBBI == instr_begin()) return {}; 1303 // Skip debug declarations, we don't want a DebugLoc from them. 1304 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); 1305 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1306 return {}; 1307 } 1308 1309 /// Find and return the merged DebugLoc of the branch instructions of the block. 1310 /// Return UnknownLoc if there is none. 1311 DebugLoc 1312 MachineBasicBlock::findBranchDebugLoc() { 1313 DebugLoc DL; 1314 auto TI = getFirstTerminator(); 1315 while (TI != end() && !TI->isBranch()) 1316 ++TI; 1317 1318 if (TI != end()) { 1319 DL = TI->getDebugLoc(); 1320 for (++TI ; TI != end() ; ++TI) 1321 if (TI->isBranch()) 1322 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1323 } 1324 return DL; 1325 } 1326 1327 /// Return probability of the edge from this block to MBB. 1328 BranchProbability 1329 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1330 if (Probs.empty()) 1331 return BranchProbability(1, succ_size()); 1332 1333 const auto &Prob = *getProbabilityIterator(Succ); 1334 if (Prob.isUnknown()) { 1335 // For unknown probabilities, collect the sum of all known ones, and evenly 1336 // ditribute the complemental of the sum to each unknown probability. 1337 unsigned KnownProbNum = 0; 1338 auto Sum = BranchProbability::getZero(); 1339 for (auto &P : Probs) { 1340 if (!P.isUnknown()) { 1341 Sum += P; 1342 KnownProbNum++; 1343 } 1344 } 1345 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1346 } else 1347 return Prob; 1348 } 1349 1350 /// Set successor probability of a given iterator. 1351 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1352 BranchProbability Prob) { 1353 assert(!Prob.isUnknown()); 1354 if (Probs.empty()) 1355 return; 1356 *getProbabilityIterator(I) = Prob; 1357 } 1358 1359 /// Return probability iterator corresonding to the I successor iterator 1360 MachineBasicBlock::const_probability_iterator 1361 MachineBasicBlock::getProbabilityIterator( 1362 MachineBasicBlock::const_succ_iterator I) const { 1363 assert(Probs.size() == Successors.size() && "Async probability list!"); 1364 const size_t index = std::distance(Successors.begin(), I); 1365 assert(index < Probs.size() && "Not a current successor!"); 1366 return Probs.begin() + index; 1367 } 1368 1369 /// Return probability iterator corresonding to the I successor iterator. 1370 MachineBasicBlock::probability_iterator 1371 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1372 assert(Probs.size() == Successors.size() && "Async probability list!"); 1373 const size_t index = std::distance(Successors.begin(), I); 1374 assert(index < Probs.size() && "Not a current successor!"); 1375 return Probs.begin() + index; 1376 } 1377 1378 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1379 /// as of just before "MI". 1380 /// 1381 /// Search is localised to a neighborhood of 1382 /// Neighborhood instructions before (searching for defs or kills) and N 1383 /// instructions after (searching just for defs) MI. 1384 MachineBasicBlock::LivenessQueryResult 1385 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1386 unsigned Reg, const_iterator Before, 1387 unsigned Neighborhood) const { 1388 unsigned N = Neighborhood; 1389 1390 // Try searching forwards from Before, looking for reads or defs. 1391 const_iterator I(Before); 1392 for (; I != end() && N > 0; ++I) { 1393 if (I->isDebugInstr()) 1394 continue; 1395 1396 --N; 1397 1398 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1399 1400 // Register is live when we read it here. 1401 if (Info.Read) 1402 return LQR_Live; 1403 // Register is dead if we can fully overwrite or clobber it here. 1404 if (Info.FullyDefined || Info.Clobbered) 1405 return LQR_Dead; 1406 } 1407 1408 // If we reached the end, it is safe to clobber Reg at the end of a block of 1409 // no successor has it live in. 1410 if (I == end()) { 1411 for (MachineBasicBlock *S : successors()) { 1412 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1413 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1414 return LQR_Live; 1415 } 1416 } 1417 1418 return LQR_Dead; 1419 } 1420 1421 1422 N = Neighborhood; 1423 1424 // Start by searching backwards from Before, looking for kills, reads or defs. 1425 I = const_iterator(Before); 1426 // If this is the first insn in the block, don't search backwards. 1427 if (I != begin()) { 1428 do { 1429 --I; 1430 1431 if (I->isDebugInstr()) 1432 continue; 1433 1434 --N; 1435 1436 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1437 1438 // Defs happen after uses so they take precedence if both are present. 1439 1440 // Register is dead after a dead def of the full register. 1441 if (Info.DeadDef) 1442 return LQR_Dead; 1443 // Register is (at least partially) live after a def. 1444 if (Info.Defined) { 1445 if (!Info.PartialDeadDef) 1446 return LQR_Live; 1447 // As soon as we saw a partial definition (dead or not), 1448 // we cannot tell if the value is partial live without 1449 // tracking the lanemasks. We are not going to do this, 1450 // so fall back on the remaining of the analysis. 1451 break; 1452 } 1453 // Register is dead after a full kill or clobber and no def. 1454 if (Info.Killed || Info.Clobbered) 1455 return LQR_Dead; 1456 // Register must be live if we read it. 1457 if (Info.Read) 1458 return LQR_Live; 1459 1460 } while (I != begin() && N > 0); 1461 } 1462 1463 // If all the instructions before this in the block are debug instructions, 1464 // skip over them. 1465 while (I != begin() && std::prev(I)->isDebugInstr()) 1466 --I; 1467 1468 // Did we get to the start of the block? 1469 if (I == begin()) { 1470 // If so, the register's state is definitely defined by the live-in state. 1471 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1472 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1473 return LQR_Live; 1474 1475 return LQR_Dead; 1476 } 1477 1478 // At this point we have no idea of the liveness of the register. 1479 return LQR_Unknown; 1480 } 1481 1482 const uint32_t * 1483 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1484 // EH funclet entry does not preserve any registers. 1485 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1486 } 1487 1488 const uint32_t * 1489 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1490 // If we see a return block with successors, this must be a funclet return, 1491 // which does not preserve any registers. If there are no successors, we don't 1492 // care what kind of return it is, putting a mask after it is a no-op. 1493 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1494 } 1495 1496 void MachineBasicBlock::clearLiveIns() { 1497 LiveIns.clear(); 1498 } 1499 1500 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1501 assert(getParent()->getProperties().hasProperty( 1502 MachineFunctionProperties::Property::TracksLiveness) && 1503 "Liveness information is accurate"); 1504 return LiveIns.begin(); 1505 } 1506