1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/LiveIntervals.h" 15 #include "llvm/CodeGen/LivePhysRegs.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 static cl::opt<bool> PrintSlotIndexes( 42 "print-slotindexes", 43 cl::desc("When printing machine IR, annotate instructions and blocks with " 44 "SlotIndexes when available"), 45 cl::init(true), cl::Hidden); 46 47 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 48 : BB(B), Number(-1), xParent(&MF) { 49 Insts.Parent = this; 50 if (B) 51 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 52 } 53 54 MachineBasicBlock::~MachineBasicBlock() = default; 55 56 /// Return the MCSymbol for this basic block. 57 MCSymbol *MachineBasicBlock::getSymbol() const { 58 if (!CachedMCSymbol) { 59 const MachineFunction *MF = getParent(); 60 MCContext &Ctx = MF->getContext(); 61 62 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 63 // a section (with basic block sections). Otherwise we fall back to use temp 64 // label. 65 if (MF->hasBBSections() && isBeginSection()) { 66 SmallString<5> Suffix; 67 if (SectionID == MBBSectionID::ColdSectionID) { 68 Suffix += ".cold"; 69 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 70 Suffix += ".eh"; 71 } else { 72 // For symbols that represent basic block sections, we add ".__part." to 73 // allow tools like symbolizers to know that this represents a part of 74 // the original function. 75 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 76 } 77 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 78 } else { 79 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 80 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 81 Twine(MF->getFunctionNumber()) + 82 "_" + Twine(getNumber())); 83 } 84 } 85 return CachedMCSymbol; 86 } 87 88 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 89 if (!CachedEHCatchretMCSymbol) { 90 const MachineFunction *MF = getParent(); 91 SmallString<128> SymbolName; 92 raw_svector_ostream(SymbolName) 93 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 94 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 95 } 96 return CachedEHCatchretMCSymbol; 97 } 98 99 MCSymbol *MachineBasicBlock::getEndSymbol() const { 100 if (!CachedEndMCSymbol) { 101 const MachineFunction *MF = getParent(); 102 MCContext &Ctx = MF->getContext(); 103 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 104 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 105 Twine(MF->getFunctionNumber()) + 106 "_" + Twine(getNumber())); 107 } 108 return CachedEndMCSymbol; 109 } 110 111 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 112 MBB.print(OS); 113 return OS; 114 } 115 116 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 117 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 118 } 119 120 /// When an MBB is added to an MF, we need to update the parent pointer of the 121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 122 /// operand list for registers. 123 /// 124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 125 /// gets the next available unique MBB number. If it is removed from a 126 /// MachineFunction, it goes back to being #-1. 127 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 128 MachineBasicBlock *N) { 129 MachineFunction &MF = *N->getParent(); 130 N->Number = MF.addToMBBNumbering(N); 131 132 // Make sure the instructions have their operands in the reginfo lists. 133 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 134 for (MachineInstr &MI : N->instrs()) 135 MI.addRegOperandsToUseLists(RegInfo); 136 } 137 138 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 139 MachineBasicBlock *N) { 140 N->getParent()->removeFromMBBNumbering(N->Number); 141 N->Number = -1; 142 } 143 144 /// When we add an instruction to a basic block list, we update its parent 145 /// pointer and add its operands from reg use/def lists if appropriate. 146 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 147 assert(!N->getParent() && "machine instruction already in a basic block"); 148 N->setParent(Parent); 149 150 // Add the instruction's register operands to their corresponding 151 // use/def lists. 152 MachineFunction *MF = Parent->getParent(); 153 N->addRegOperandsToUseLists(MF->getRegInfo()); 154 MF->handleInsertion(*N); 155 } 156 157 /// When we remove an instruction from a basic block list, we update its parent 158 /// pointer and remove its operands from reg use/def lists if appropriate. 159 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 160 assert(N->getParent() && "machine instruction not in a basic block"); 161 162 // Remove from the use/def lists. 163 if (MachineFunction *MF = N->getMF()) { 164 MF->handleRemoval(*N); 165 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 166 } 167 168 N->setParent(nullptr); 169 } 170 171 /// When moving a range of instructions from one MBB list to another, we need to 172 /// update the parent pointers and the use/def lists. 173 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 174 instr_iterator First, 175 instr_iterator Last) { 176 assert(Parent->getParent() == FromList.Parent->getParent() && 177 "cannot transfer MachineInstrs between MachineFunctions"); 178 179 // If it's within the same BB, there's nothing to do. 180 if (this == &FromList) 181 return; 182 183 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 184 185 // If splicing between two blocks within the same function, just update the 186 // parent pointers. 187 for (; First != Last; ++First) 188 First->setParent(Parent); 189 } 190 191 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 192 assert(!MI->getParent() && "MI is still in a block!"); 193 Parent->getParent()->deleteMachineInstr(MI); 194 } 195 196 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 197 instr_iterator I = instr_begin(), E = instr_end(); 198 while (I != E && I->isPHI()) 199 ++I; 200 assert((I == E || !I->isInsideBundle()) && 201 "First non-phi MI cannot be inside a bundle!"); 202 return I; 203 } 204 205 MachineBasicBlock::iterator 206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 207 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 208 209 iterator E = end(); 210 while (I != E && (I->isPHI() || I->isPosition() || 211 TII->isBasicBlockPrologue(*I))) 212 ++I; 213 // FIXME: This needs to change if we wish to bundle labels 214 // inside the bundle. 215 assert((I == E || !I->isInsideBundle()) && 216 "First non-phi / non-label instruction is inside a bundle!"); 217 return I; 218 } 219 220 MachineBasicBlock::iterator 221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 222 bool SkipPseudoOp) { 223 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 224 225 iterator E = end(); 226 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 227 (SkipPseudoOp && I->isPseudoProbe()) || 228 TII->isBasicBlockPrologue(*I))) 229 ++I; 230 // FIXME: This needs to change if we wish to bundle labels / dbg_values 231 // inside the bundle. 232 assert((I == E || !I->isInsideBundle()) && 233 "First non-phi / non-label / non-debug " 234 "instruction is inside a bundle!"); 235 return I; 236 } 237 238 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 239 iterator B = begin(), E = end(), I = E; 240 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 241 ; /*noop */ 242 while (I != E && !I->isTerminator()) 243 ++I; 244 return I; 245 } 246 247 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 248 instr_iterator B = instr_begin(), E = instr_end(), I = E; 249 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 250 ; /*noop */ 251 while (I != E && !I->isTerminator()) 252 ++I; 253 return I; 254 } 255 256 MachineBasicBlock::iterator 257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 258 // Skip over begin-of-block dbg_value instructions. 259 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 260 } 261 262 MachineBasicBlock::iterator 263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 264 // Skip over end-of-block dbg_value instructions. 265 instr_iterator B = instr_begin(), I = instr_end(); 266 while (I != B) { 267 --I; 268 // Return instruction that starts a bundle. 269 if (I->isDebugInstr() || I->isInsideBundle()) 270 continue; 271 if (SkipPseudoOp && I->isPseudoProbe()) 272 continue; 273 return I; 274 } 275 // The block is all debug values. 276 return end(); 277 } 278 279 bool MachineBasicBlock::hasEHPadSuccessor() const { 280 for (const MachineBasicBlock *Succ : successors()) 281 if (Succ->isEHPad()) 282 return true; 283 return false; 284 } 285 286 bool MachineBasicBlock::isEntryBlock() const { 287 return getParent()->begin() == getIterator(); 288 } 289 290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 291 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 292 print(dbgs()); 293 } 294 #endif 295 296 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 297 for (const MachineBasicBlock *Succ : successors()) { 298 if (Succ->isInlineAsmBrIndirectTarget()) 299 return true; 300 } 301 return false; 302 } 303 304 bool MachineBasicBlock::isLegalToHoistInto() const { 305 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 306 return false; 307 return true; 308 } 309 310 StringRef MachineBasicBlock::getName() const { 311 if (const BasicBlock *LBB = getBasicBlock()) 312 return LBB->getName(); 313 else 314 return StringRef("", 0); 315 } 316 317 /// Return a hopefully unique identifier for this block. 318 std::string MachineBasicBlock::getFullName() const { 319 std::string Name; 320 if (getParent()) 321 Name = (getParent()->getName() + ":").str(); 322 if (getBasicBlock()) 323 Name += getBasicBlock()->getName(); 324 else 325 Name += ("BB" + Twine(getNumber())).str(); 326 return Name; 327 } 328 329 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 330 bool IsStandalone) const { 331 const MachineFunction *MF = getParent(); 332 if (!MF) { 333 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 334 << " is null\n"; 335 return; 336 } 337 const Function &F = MF->getFunction(); 338 const Module *M = F.getParent(); 339 ModuleSlotTracker MST(M); 340 MST.incorporateFunction(F); 341 print(OS, MST, Indexes, IsStandalone); 342 } 343 344 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 345 const SlotIndexes *Indexes, 346 bool IsStandalone) const { 347 const MachineFunction *MF = getParent(); 348 if (!MF) { 349 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 350 << " is null\n"; 351 return; 352 } 353 354 if (Indexes && PrintSlotIndexes) 355 OS << Indexes->getMBBStartIdx(this) << '\t'; 356 357 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 358 OS << ":\n"; 359 360 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 361 const MachineRegisterInfo &MRI = MF->getRegInfo(); 362 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 363 bool HasLineAttributes = false; 364 365 // Print the preds of this block according to the CFG. 366 if (!pred_empty() && IsStandalone) { 367 if (Indexes) OS << '\t'; 368 // Don't indent(2), align with previous line attributes. 369 OS << "; predecessors: "; 370 ListSeparator LS; 371 for (auto *Pred : predecessors()) 372 OS << LS << printMBBReference(*Pred); 373 OS << '\n'; 374 HasLineAttributes = true; 375 } 376 377 if (!succ_empty()) { 378 if (Indexes) OS << '\t'; 379 // Print the successors 380 OS.indent(2) << "successors: "; 381 ListSeparator LS; 382 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 383 OS << LS << printMBBReference(**I); 384 if (!Probs.empty()) 385 OS << '(' 386 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 387 << ')'; 388 } 389 if (!Probs.empty() && IsStandalone) { 390 // Print human readable probabilities as comments. 391 OS << "; "; 392 ListSeparator LS; 393 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 394 const BranchProbability &BP = getSuccProbability(I); 395 OS << LS << printMBBReference(**I) << '(' 396 << format("%.2f%%", 397 rint(((double)BP.getNumerator() / BP.getDenominator()) * 398 100.0 * 100.0) / 399 100.0) 400 << ')'; 401 } 402 } 403 404 OS << '\n'; 405 HasLineAttributes = true; 406 } 407 408 if (!livein_empty() && MRI.tracksLiveness()) { 409 if (Indexes) OS << '\t'; 410 OS.indent(2) << "liveins: "; 411 412 ListSeparator LS; 413 for (const auto &LI : liveins()) { 414 OS << LS << printReg(LI.PhysReg, TRI); 415 if (!LI.LaneMask.all()) 416 OS << ":0x" << PrintLaneMask(LI.LaneMask); 417 } 418 HasLineAttributes = true; 419 } 420 421 if (HasLineAttributes) 422 OS << '\n'; 423 424 bool IsInBundle = false; 425 for (const MachineInstr &MI : instrs()) { 426 if (Indexes && PrintSlotIndexes) { 427 if (Indexes->hasIndex(MI)) 428 OS << Indexes->getInstructionIndex(MI); 429 OS << '\t'; 430 } 431 432 if (IsInBundle && !MI.isInsideBundle()) { 433 OS.indent(2) << "}\n"; 434 IsInBundle = false; 435 } 436 437 OS.indent(IsInBundle ? 4 : 2); 438 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 439 /*AddNewLine=*/false, &TII); 440 441 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 442 OS << " {"; 443 IsInBundle = true; 444 } 445 OS << '\n'; 446 } 447 448 if (IsInBundle) 449 OS.indent(2) << "}\n"; 450 451 if (IrrLoopHeaderWeight && IsStandalone) { 452 if (Indexes) OS << '\t'; 453 OS.indent(2) << "; Irreducible loop header weight: " 454 << IrrLoopHeaderWeight.value() << '\n'; 455 } 456 } 457 458 /// Print the basic block's name as: 459 /// 460 /// bb.{number}[.{ir-name}] [(attributes...)] 461 /// 462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 463 /// (which is the default). If the IR block has no name, it is identified 464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 465 /// 466 /// When the \ref PrintNameAttributes flag is passed, additional attributes 467 /// of the block are printed when set. 468 /// 469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 470 /// the parts to print. 471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 472 /// incorporate its own tracker when necessary to 473 /// determine the block's IR name. 474 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 475 ModuleSlotTracker *moduleSlotTracker) const { 476 os << "bb." << getNumber(); 477 bool hasAttributes = false; 478 479 if (printNameFlags & PrintNameIr) { 480 if (const auto *bb = getBasicBlock()) { 481 if (bb->hasName()) { 482 os << '.' << bb->getName(); 483 } else { 484 hasAttributes = true; 485 os << " ("; 486 487 int slot = -1; 488 489 if (moduleSlotTracker) { 490 slot = moduleSlotTracker->getLocalSlot(bb); 491 } else if (bb->getParent()) { 492 ModuleSlotTracker tmpTracker(bb->getModule(), false); 493 tmpTracker.incorporateFunction(*bb->getParent()); 494 slot = tmpTracker.getLocalSlot(bb); 495 } 496 497 if (slot == -1) 498 os << "<ir-block badref>"; 499 else 500 os << (Twine("%ir-block.") + Twine(slot)).str(); 501 } 502 } 503 } 504 505 if (printNameFlags & PrintNameAttributes) { 506 if (hasAddressTaken()) { 507 os << (hasAttributes ? ", " : " ("); 508 os << "address-taken"; 509 hasAttributes = true; 510 } 511 if (isEHPad()) { 512 os << (hasAttributes ? ", " : " ("); 513 os << "landing-pad"; 514 hasAttributes = true; 515 } 516 if (isInlineAsmBrIndirectTarget()) { 517 os << (hasAttributes ? ", " : " ("); 518 os << "inlineasm-br-indirect-target"; 519 hasAttributes = true; 520 } 521 if (isEHFuncletEntry()) { 522 os << (hasAttributes ? ", " : " ("); 523 os << "ehfunclet-entry"; 524 hasAttributes = true; 525 } 526 if (getAlignment() != Align(1)) { 527 os << (hasAttributes ? ", " : " ("); 528 os << "align " << getAlignment().value(); 529 hasAttributes = true; 530 } 531 if (getSectionID() != MBBSectionID(0)) { 532 os << (hasAttributes ? ", " : " ("); 533 os << "bbsections "; 534 switch (getSectionID().Type) { 535 case MBBSectionID::SectionType::Exception: 536 os << "Exception"; 537 break; 538 case MBBSectionID::SectionType::Cold: 539 os << "Cold"; 540 break; 541 default: 542 os << getSectionID().Number; 543 } 544 hasAttributes = true; 545 } 546 } 547 548 if (hasAttributes) 549 os << ')'; 550 } 551 552 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 553 bool /*PrintType*/) const { 554 OS << '%'; 555 printName(OS, 0); 556 } 557 558 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 559 LiveInVector::iterator I = find_if( 560 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 561 if (I == LiveIns.end()) 562 return; 563 564 I->LaneMask &= ~LaneMask; 565 if (I->LaneMask.none()) 566 LiveIns.erase(I); 567 } 568 569 MachineBasicBlock::livein_iterator 570 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 571 // Get non-const version of iterator. 572 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 573 return LiveIns.erase(LI); 574 } 575 576 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 577 livein_iterator I = find_if( 578 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 579 return I != livein_end() && (I->LaneMask & LaneMask).any(); 580 } 581 582 void MachineBasicBlock::sortUniqueLiveIns() { 583 llvm::sort(LiveIns, 584 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 585 return LI0.PhysReg < LI1.PhysReg; 586 }); 587 // Liveins are sorted by physreg now we can merge their lanemasks. 588 LiveInVector::const_iterator I = LiveIns.begin(); 589 LiveInVector::const_iterator J; 590 LiveInVector::iterator Out = LiveIns.begin(); 591 for (; I != LiveIns.end(); ++Out, I = J) { 592 MCRegister PhysReg = I->PhysReg; 593 LaneBitmask LaneMask = I->LaneMask; 594 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 595 LaneMask |= J->LaneMask; 596 Out->PhysReg = PhysReg; 597 Out->LaneMask = LaneMask; 598 } 599 LiveIns.erase(Out, LiveIns.end()); 600 } 601 602 Register 603 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 604 assert(getParent() && "MBB must be inserted in function"); 605 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 606 assert(RC && "Register class is required"); 607 assert((isEHPad() || this == &getParent()->front()) && 608 "Only the entry block and landing pads can have physreg live ins"); 609 610 bool LiveIn = isLiveIn(PhysReg); 611 iterator I = SkipPHIsAndLabels(begin()), E = end(); 612 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 613 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 614 615 // Look for an existing copy. 616 if (LiveIn) 617 for (;I != E && I->isCopy(); ++I) 618 if (I->getOperand(1).getReg() == PhysReg) { 619 Register VirtReg = I->getOperand(0).getReg(); 620 if (!MRI.constrainRegClass(VirtReg, RC)) 621 llvm_unreachable("Incompatible live-in register class."); 622 return VirtReg; 623 } 624 625 // No luck, create a virtual register. 626 Register VirtReg = MRI.createVirtualRegister(RC); 627 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 628 .addReg(PhysReg, RegState::Kill); 629 if (!LiveIn) 630 addLiveIn(PhysReg); 631 return VirtReg; 632 } 633 634 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 635 getParent()->splice(NewAfter->getIterator(), getIterator()); 636 } 637 638 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 639 getParent()->splice(++NewBefore->getIterator(), getIterator()); 640 } 641 642 void MachineBasicBlock::updateTerminator( 643 MachineBasicBlock *PreviousLayoutSuccessor) { 644 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 645 << "\n"); 646 647 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 648 // A block with no successors has no concerns with fall-through edges. 649 if (this->succ_empty()) 650 return; 651 652 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 653 SmallVector<MachineOperand, 4> Cond; 654 DebugLoc DL = findBranchDebugLoc(); 655 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 656 (void) B; 657 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 658 if (Cond.empty()) { 659 if (TBB) { 660 // The block has an unconditional branch. If its successor is now its 661 // layout successor, delete the branch. 662 if (isLayoutSuccessor(TBB)) 663 TII->removeBranch(*this); 664 } else { 665 // The block has an unconditional fallthrough, or the end of the block is 666 // unreachable. 667 668 // Unfortunately, whether the end of the block is unreachable is not 669 // immediately obvious; we must fall back to checking the successor list, 670 // and assuming that if the passed in block is in the succesor list and 671 // not an EHPad, it must be the intended target. 672 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 673 PreviousLayoutSuccessor->isEHPad()) 674 return; 675 676 // If the unconditional successor block is not the current layout 677 // successor, insert a branch to jump to it. 678 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 679 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 680 } 681 return; 682 } 683 684 if (FBB) { 685 // The block has a non-fallthrough conditional branch. If one of its 686 // successors is its layout successor, rewrite it to a fallthrough 687 // conditional branch. 688 if (isLayoutSuccessor(TBB)) { 689 if (TII->reverseBranchCondition(Cond)) 690 return; 691 TII->removeBranch(*this); 692 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 693 } else if (isLayoutSuccessor(FBB)) { 694 TII->removeBranch(*this); 695 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 696 } 697 return; 698 } 699 700 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 701 assert(PreviousLayoutSuccessor); 702 assert(!PreviousLayoutSuccessor->isEHPad()); 703 assert(isSuccessor(PreviousLayoutSuccessor)); 704 705 if (PreviousLayoutSuccessor == TBB) { 706 // We had a fallthrough to the same basic block as the conditional jump 707 // targets. Remove the conditional jump, leaving an unconditional 708 // fallthrough or an unconditional jump. 709 TII->removeBranch(*this); 710 if (!isLayoutSuccessor(TBB)) { 711 Cond.clear(); 712 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 713 } 714 return; 715 } 716 717 // The block has a fallthrough conditional branch. 718 if (isLayoutSuccessor(TBB)) { 719 if (TII->reverseBranchCondition(Cond)) { 720 // We can't reverse the condition, add an unconditional branch. 721 Cond.clear(); 722 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 723 return; 724 } 725 TII->removeBranch(*this); 726 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 727 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 728 TII->removeBranch(*this); 729 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 730 } 731 } 732 733 void MachineBasicBlock::validateSuccProbs() const { 734 #ifndef NDEBUG 735 int64_t Sum = 0; 736 for (auto Prob : Probs) 737 Sum += Prob.getNumerator(); 738 // Due to precision issue, we assume that the sum of probabilities is one if 739 // the difference between the sum of their numerators and the denominator is 740 // no greater than the number of successors. 741 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 742 Probs.size() && 743 "The sum of successors's probabilities exceeds one."); 744 #endif // NDEBUG 745 } 746 747 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 748 BranchProbability Prob) { 749 // Probability list is either empty (if successor list isn't empty, this means 750 // disabled optimization) or has the same size as successor list. 751 if (!(Probs.empty() && !Successors.empty())) 752 Probs.push_back(Prob); 753 Successors.push_back(Succ); 754 Succ->addPredecessor(this); 755 } 756 757 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 758 // We need to make sure probability list is either empty or has the same size 759 // of successor list. When this function is called, we can safely delete all 760 // probability in the list. 761 Probs.clear(); 762 Successors.push_back(Succ); 763 Succ->addPredecessor(this); 764 } 765 766 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 767 MachineBasicBlock *New, 768 bool NormalizeSuccProbs) { 769 succ_iterator OldI = llvm::find(successors(), Old); 770 assert(OldI != succ_end() && "Old is not a successor of this block!"); 771 assert(!llvm::is_contained(successors(), New) && 772 "New is already a successor of this block!"); 773 774 // Add a new successor with equal probability as the original one. Note 775 // that we directly copy the probability using the iterator rather than 776 // getting a potentially synthetic probability computed when unknown. This 777 // preserves the probabilities as-is and then we can renormalize them and 778 // query them effectively afterward. 779 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 780 : *getProbabilityIterator(OldI)); 781 if (NormalizeSuccProbs) 782 normalizeSuccProbs(); 783 } 784 785 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 786 bool NormalizeSuccProbs) { 787 succ_iterator I = find(Successors, Succ); 788 removeSuccessor(I, NormalizeSuccProbs); 789 } 790 791 MachineBasicBlock::succ_iterator 792 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 793 assert(I != Successors.end() && "Not a current successor!"); 794 795 // If probability list is empty it means we don't use it (disabled 796 // optimization). 797 if (!Probs.empty()) { 798 probability_iterator WI = getProbabilityIterator(I); 799 Probs.erase(WI); 800 if (NormalizeSuccProbs) 801 normalizeSuccProbs(); 802 } 803 804 (*I)->removePredecessor(this); 805 return Successors.erase(I); 806 } 807 808 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 809 MachineBasicBlock *New) { 810 if (Old == New) 811 return; 812 813 succ_iterator E = succ_end(); 814 succ_iterator NewI = E; 815 succ_iterator OldI = E; 816 for (succ_iterator I = succ_begin(); I != E; ++I) { 817 if (*I == Old) { 818 OldI = I; 819 if (NewI != E) 820 break; 821 } 822 if (*I == New) { 823 NewI = I; 824 if (OldI != E) 825 break; 826 } 827 } 828 assert(OldI != E && "Old is not a successor of this block"); 829 830 // If New isn't already a successor, let it take Old's place. 831 if (NewI == E) { 832 Old->removePredecessor(this); 833 New->addPredecessor(this); 834 *OldI = New; 835 return; 836 } 837 838 // New is already a successor. 839 // Update its probability instead of adding a duplicate edge. 840 if (!Probs.empty()) { 841 auto ProbIter = getProbabilityIterator(NewI); 842 if (!ProbIter->isUnknown()) 843 *ProbIter += *getProbabilityIterator(OldI); 844 } 845 removeSuccessor(OldI); 846 } 847 848 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 849 succ_iterator I) { 850 if (!Orig->Probs.empty()) 851 addSuccessor(*I, Orig->getSuccProbability(I)); 852 else 853 addSuccessorWithoutProb(*I); 854 } 855 856 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 857 Predecessors.push_back(Pred); 858 } 859 860 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 861 pred_iterator I = find(Predecessors, Pred); 862 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 863 Predecessors.erase(I); 864 } 865 866 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 867 if (this == FromMBB) 868 return; 869 870 while (!FromMBB->succ_empty()) { 871 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 872 873 // If probability list is empty it means we don't use it (disabled 874 // optimization). 875 if (!FromMBB->Probs.empty()) { 876 auto Prob = *FromMBB->Probs.begin(); 877 addSuccessor(Succ, Prob); 878 } else 879 addSuccessorWithoutProb(Succ); 880 881 FromMBB->removeSuccessor(Succ); 882 } 883 } 884 885 void 886 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 887 if (this == FromMBB) 888 return; 889 890 while (!FromMBB->succ_empty()) { 891 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 892 if (!FromMBB->Probs.empty()) { 893 auto Prob = *FromMBB->Probs.begin(); 894 addSuccessor(Succ, Prob); 895 } else 896 addSuccessorWithoutProb(Succ); 897 FromMBB->removeSuccessor(Succ); 898 899 // Fix up any PHI nodes in the successor. 900 Succ->replacePhiUsesWith(FromMBB, this); 901 } 902 normalizeSuccProbs(); 903 } 904 905 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 906 return is_contained(predecessors(), MBB); 907 } 908 909 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 910 return is_contained(successors(), MBB); 911 } 912 913 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 914 MachineFunction::const_iterator I(this); 915 return std::next(I) == MachineFunction::const_iterator(MBB); 916 } 917 918 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 919 return Successors.size() == 1 ? Successors[0] : nullptr; 920 } 921 922 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 923 MachineFunction::iterator Fallthrough = getIterator(); 924 ++Fallthrough; 925 // If FallthroughBlock is off the end of the function, it can't fall through. 926 if (Fallthrough == getParent()->end()) 927 return nullptr; 928 929 // If FallthroughBlock isn't a successor, no fallthrough is possible. 930 if (!isSuccessor(&*Fallthrough)) 931 return nullptr; 932 933 // Analyze the branches, if any, at the end of the block. 934 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 935 SmallVector<MachineOperand, 4> Cond; 936 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 937 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 938 // If we couldn't analyze the branch, examine the last instruction. 939 // If the block doesn't end in a known control barrier, assume fallthrough 940 // is possible. The isPredicated check is needed because this code can be 941 // called during IfConversion, where an instruction which is normally a 942 // Barrier is predicated and thus no longer an actual control barrier. 943 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 944 ? &*Fallthrough 945 : nullptr; 946 } 947 948 // If there is no branch, control always falls through. 949 if (!TBB) return &*Fallthrough; 950 951 // If there is some explicit branch to the fallthrough block, it can obviously 952 // reach, even though the branch should get folded to fall through implicitly. 953 if (MachineFunction::iterator(TBB) == Fallthrough || 954 MachineFunction::iterator(FBB) == Fallthrough) 955 return &*Fallthrough; 956 957 // If it's an unconditional branch to some block not the fall through, it 958 // doesn't fall through. 959 if (Cond.empty()) return nullptr; 960 961 // Otherwise, if it is conditional and has no explicit false block, it falls 962 // through. 963 return (FBB == nullptr) ? &*Fallthrough : nullptr; 964 } 965 966 bool MachineBasicBlock::canFallThrough() { 967 return getFallThrough() != nullptr; 968 } 969 970 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 971 bool UpdateLiveIns, 972 LiveIntervals *LIS) { 973 MachineBasicBlock::iterator SplitPoint(&MI); 974 ++SplitPoint; 975 976 if (SplitPoint == end()) { 977 // Don't bother with a new block. 978 return this; 979 } 980 981 MachineFunction *MF = getParent(); 982 983 LivePhysRegs LiveRegs; 984 if (UpdateLiveIns) { 985 // Make sure we add any physregs we define in the block as liveins to the 986 // new block. 987 MachineBasicBlock::iterator Prev(&MI); 988 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 989 LiveRegs.addLiveOuts(*this); 990 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 991 LiveRegs.stepBackward(*I); 992 } 993 994 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 995 996 MF->insert(++MachineFunction::iterator(this), SplitBB); 997 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 998 999 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1000 addSuccessor(SplitBB); 1001 1002 if (UpdateLiveIns) 1003 addLiveIns(*SplitBB, LiveRegs); 1004 1005 if (LIS) 1006 LIS->insertMBBInMaps(SplitBB); 1007 1008 return SplitBB; 1009 } 1010 1011 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1012 MachineBasicBlock *Succ, Pass &P, 1013 std::vector<SparseBitVector<>> *LiveInSets) { 1014 if (!canSplitCriticalEdge(Succ)) 1015 return nullptr; 1016 1017 MachineFunction *MF = getParent(); 1018 MachineBasicBlock *PrevFallthrough = getNextNode(); 1019 DebugLoc DL; // FIXME: this is nowhere 1020 1021 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1022 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1023 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1024 << " -- " << printMBBReference(*NMBB) << " -- " 1025 << printMBBReference(*Succ) << '\n'); 1026 1027 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1028 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1029 if (LIS) 1030 LIS->insertMBBInMaps(NMBB); 1031 else if (Indexes) 1032 Indexes->insertMBBInMaps(NMBB); 1033 1034 // On some targets like Mips, branches may kill virtual registers. Make sure 1035 // that LiveVariables is properly updated after updateTerminator replaces the 1036 // terminators. 1037 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1038 1039 // Collect a list of virtual registers killed by the terminators. 1040 SmallVector<Register, 4> KilledRegs; 1041 if (LV) 1042 for (MachineInstr &MI : 1043 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1044 for (MachineOperand &MO : MI.operands()) { 1045 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() || 1046 MO.isUndef()) 1047 continue; 1048 Register Reg = MO.getReg(); 1049 if (Register::isPhysicalRegister(Reg) || 1050 LV->getVarInfo(Reg).removeKill(MI)) { 1051 KilledRegs.push_back(Reg); 1052 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1053 MO.setIsKill(false); 1054 } 1055 } 1056 } 1057 1058 SmallVector<Register, 4> UsedRegs; 1059 if (LIS) { 1060 for (MachineInstr &MI : 1061 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1062 for (const MachineOperand &MO : MI.operands()) { 1063 if (!MO.isReg() || MO.getReg() == 0) 1064 continue; 1065 1066 Register Reg = MO.getReg(); 1067 if (!is_contained(UsedRegs, Reg)) 1068 UsedRegs.push_back(Reg); 1069 } 1070 } 1071 } 1072 1073 ReplaceUsesOfBlockWith(Succ, NMBB); 1074 1075 // If updateTerminator() removes instructions, we need to remove them from 1076 // SlotIndexes. 1077 SmallVector<MachineInstr*, 4> Terminators; 1078 if (Indexes) { 1079 for (MachineInstr &MI : 1080 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1081 Terminators.push_back(&MI); 1082 } 1083 1084 // Since we replaced all uses of Succ with NMBB, that should also be treated 1085 // as the fallthrough successor 1086 if (Succ == PrevFallthrough) 1087 PrevFallthrough = NMBB; 1088 updateTerminator(PrevFallthrough); 1089 1090 if (Indexes) { 1091 SmallVector<MachineInstr*, 4> NewTerminators; 1092 for (MachineInstr &MI : 1093 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1094 NewTerminators.push_back(&MI); 1095 1096 for (MachineInstr *Terminator : Terminators) { 1097 if (!is_contained(NewTerminators, Terminator)) 1098 Indexes->removeMachineInstrFromMaps(*Terminator); 1099 } 1100 } 1101 1102 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1103 NMBB->addSuccessor(Succ); 1104 if (!NMBB->isLayoutSuccessor(Succ)) { 1105 SmallVector<MachineOperand, 4> Cond; 1106 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1107 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1108 1109 if (Indexes) { 1110 for (MachineInstr &MI : NMBB->instrs()) { 1111 // Some instructions may have been moved to NMBB by updateTerminator(), 1112 // so we first remove any instruction that already has an index. 1113 if (Indexes->hasIndex(MI)) 1114 Indexes->removeMachineInstrFromMaps(MI); 1115 Indexes->insertMachineInstrInMaps(MI); 1116 } 1117 } 1118 } 1119 1120 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1121 Succ->replacePhiUsesWith(this, NMBB); 1122 1123 // Inherit live-ins from the successor 1124 for (const auto &LI : Succ->liveins()) 1125 NMBB->addLiveIn(LI); 1126 1127 // Update LiveVariables. 1128 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1129 if (LV) { 1130 // Restore kills of virtual registers that were killed by the terminators. 1131 while (!KilledRegs.empty()) { 1132 Register Reg = KilledRegs.pop_back_val(); 1133 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1134 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1135 continue; 1136 if (Register::isVirtualRegister(Reg)) 1137 LV->getVarInfo(Reg).Kills.push_back(&*I); 1138 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1139 break; 1140 } 1141 } 1142 // Update relevant live-through information. 1143 if (LiveInSets != nullptr) 1144 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1145 else 1146 LV->addNewBlock(NMBB, this, Succ); 1147 } 1148 1149 if (LIS) { 1150 // After splitting the edge and updating SlotIndexes, live intervals may be 1151 // in one of two situations, depending on whether this block was the last in 1152 // the function. If the original block was the last in the function, all 1153 // live intervals will end prior to the beginning of the new split block. If 1154 // the original block was not at the end of the function, all live intervals 1155 // will extend to the end of the new split block. 1156 1157 bool isLastMBB = 1158 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1159 1160 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1161 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1162 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1163 1164 // Find the registers used from NMBB in PHIs in Succ. 1165 SmallSet<Register, 8> PHISrcRegs; 1166 for (MachineBasicBlock::instr_iterator 1167 I = Succ->instr_begin(), E = Succ->instr_end(); 1168 I != E && I->isPHI(); ++I) { 1169 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1170 if (I->getOperand(ni+1).getMBB() == NMBB) { 1171 MachineOperand &MO = I->getOperand(ni); 1172 Register Reg = MO.getReg(); 1173 PHISrcRegs.insert(Reg); 1174 if (MO.isUndef()) 1175 continue; 1176 1177 LiveInterval &LI = LIS->getInterval(Reg); 1178 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1179 assert(VNI && 1180 "PHI sources should be live out of their predecessors."); 1181 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1182 } 1183 } 1184 } 1185 1186 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1187 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1188 Register Reg = Register::index2VirtReg(i); 1189 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1190 continue; 1191 1192 LiveInterval &LI = LIS->getInterval(Reg); 1193 if (!LI.liveAt(PrevIndex)) 1194 continue; 1195 1196 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1197 if (isLiveOut && isLastMBB) { 1198 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1199 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1200 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1201 } else if (!isLiveOut && !isLastMBB) { 1202 LI.removeSegment(StartIndex, EndIndex); 1203 } 1204 } 1205 1206 // Update all intervals for registers whose uses may have been modified by 1207 // updateTerminator(). 1208 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1209 } 1210 1211 if (MachineDominatorTree *MDT = 1212 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1213 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1214 1215 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1216 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1217 // If one or the other blocks were not in a loop, the new block is not 1218 // either, and thus LI doesn't need to be updated. 1219 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1220 if (TIL == DestLoop) { 1221 // Both in the same loop, the NMBB joins loop. 1222 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1223 } else if (TIL->contains(DestLoop)) { 1224 // Edge from an outer loop to an inner loop. Add to the outer loop. 1225 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1226 } else if (DestLoop->contains(TIL)) { 1227 // Edge from an inner loop to an outer loop. Add to the outer loop. 1228 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1229 } else { 1230 // Edge from two loops with no containment relation. Because these 1231 // are natural loops, we know that the destination block must be the 1232 // header of its loop (adding a branch into a loop elsewhere would 1233 // create an irreducible loop). 1234 assert(DestLoop->getHeader() == Succ && 1235 "Should not create irreducible loops!"); 1236 if (MachineLoop *P = DestLoop->getParentLoop()) 1237 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1238 } 1239 } 1240 } 1241 1242 return NMBB; 1243 } 1244 1245 bool MachineBasicBlock::canSplitCriticalEdge( 1246 const MachineBasicBlock *Succ) const { 1247 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1248 // it in this generic function. 1249 if (Succ->isEHPad()) 1250 return false; 1251 1252 // Splitting the critical edge to a callbr's indirect block isn't advised. 1253 // Don't do it in this generic function. 1254 if (Succ->isInlineAsmBrIndirectTarget()) 1255 return false; 1256 1257 const MachineFunction *MF = getParent(); 1258 // Performance might be harmed on HW that implements branching using exec mask 1259 // where both sides of the branches are always executed. 1260 if (MF->getTarget().requiresStructuredCFG()) 1261 return false; 1262 1263 // We may need to update this's terminator, but we can't do that if 1264 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1265 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1266 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1267 SmallVector<MachineOperand, 4> Cond; 1268 // AnalyzeBanch should modify this, since we did not allow modification. 1269 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1270 /*AllowModify*/ false)) 1271 return false; 1272 1273 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1274 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1275 // case that we can't handle. Since this never happens in properly optimized 1276 // code, just skip those edges. 1277 if (TBB && TBB == FBB) { 1278 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1279 << printMBBReference(*this) << '\n'); 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1286 /// neighboring instructions so the bundle won't be broken by removing MI. 1287 static void unbundleSingleMI(MachineInstr *MI) { 1288 // Removing the first instruction in a bundle. 1289 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1290 MI->unbundleFromSucc(); 1291 // Removing the last instruction in a bundle. 1292 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1293 MI->unbundleFromPred(); 1294 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1295 // are already fine. 1296 } 1297 1298 MachineBasicBlock::instr_iterator 1299 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1300 unbundleSingleMI(&*I); 1301 return Insts.erase(I); 1302 } 1303 1304 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1305 unbundleSingleMI(MI); 1306 MI->clearFlag(MachineInstr::BundledPred); 1307 MI->clearFlag(MachineInstr::BundledSucc); 1308 return Insts.remove(MI); 1309 } 1310 1311 MachineBasicBlock::instr_iterator 1312 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1313 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1314 "Cannot insert instruction with bundle flags"); 1315 // Set the bundle flags when inserting inside a bundle. 1316 if (I != instr_end() && I->isBundledWithPred()) { 1317 MI->setFlag(MachineInstr::BundledPred); 1318 MI->setFlag(MachineInstr::BundledSucc); 1319 } 1320 return Insts.insert(I, MI); 1321 } 1322 1323 /// This method unlinks 'this' from the containing function, and returns it, but 1324 /// does not delete it. 1325 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1326 assert(getParent() && "Not embedded in a function!"); 1327 getParent()->remove(this); 1328 return this; 1329 } 1330 1331 /// This method unlinks 'this' from the containing function, and deletes it. 1332 void MachineBasicBlock::eraseFromParent() { 1333 assert(getParent() && "Not embedded in a function!"); 1334 getParent()->erase(this); 1335 } 1336 1337 /// Given a machine basic block that branched to 'Old', change the code and CFG 1338 /// so that it branches to 'New' instead. 1339 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1340 MachineBasicBlock *New) { 1341 assert(Old != New && "Cannot replace self with self!"); 1342 1343 MachineBasicBlock::instr_iterator I = instr_end(); 1344 while (I != instr_begin()) { 1345 --I; 1346 if (!I->isTerminator()) break; 1347 1348 // Scan the operands of this machine instruction, replacing any uses of Old 1349 // with New. 1350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1351 if (I->getOperand(i).isMBB() && 1352 I->getOperand(i).getMBB() == Old) 1353 I->getOperand(i).setMBB(New); 1354 } 1355 1356 // Update the successor information. 1357 replaceSuccessor(Old, New); 1358 } 1359 1360 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1361 MachineBasicBlock *New) { 1362 for (MachineInstr &MI : phis()) 1363 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1364 MachineOperand &MO = MI.getOperand(i); 1365 if (MO.getMBB() == Old) 1366 MO.setMBB(New); 1367 } 1368 } 1369 1370 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1371 /// instructions. Return UnknownLoc if there is none. 1372 DebugLoc 1373 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1374 // Skip debug declarations, we don't want a DebugLoc from them. 1375 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1376 if (MBBI != instr_end()) 1377 return MBBI->getDebugLoc(); 1378 return {}; 1379 } 1380 1381 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1382 // Skip debug declarations, we don't want a DebugLoc from them. 1383 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1384 if (!MBBI->isDebugInstr()) 1385 return MBBI->getDebugLoc(); 1386 return {}; 1387 } 1388 1389 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1390 /// instructions. Return UnknownLoc if there is none. 1391 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1392 if (MBBI == instr_begin()) return {}; 1393 // Skip debug instructions, we don't want a DebugLoc from them. 1394 MBBI = prev_nodbg(MBBI, instr_begin()); 1395 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1396 return {}; 1397 } 1398 1399 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1400 if (MBBI == instr_rend()) 1401 return {}; 1402 // Skip debug declarations, we don't want a DebugLoc from them. 1403 MBBI = next_nodbg(MBBI, instr_rend()); 1404 if (MBBI != instr_rend()) 1405 return MBBI->getDebugLoc(); 1406 return {}; 1407 } 1408 1409 /// Find and return the merged DebugLoc of the branch instructions of the block. 1410 /// Return UnknownLoc if there is none. 1411 DebugLoc 1412 MachineBasicBlock::findBranchDebugLoc() { 1413 DebugLoc DL; 1414 auto TI = getFirstTerminator(); 1415 while (TI != end() && !TI->isBranch()) 1416 ++TI; 1417 1418 if (TI != end()) { 1419 DL = TI->getDebugLoc(); 1420 for (++TI ; TI != end() ; ++TI) 1421 if (TI->isBranch()) 1422 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1423 } 1424 return DL; 1425 } 1426 1427 /// Return probability of the edge from this block to MBB. 1428 BranchProbability 1429 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1430 if (Probs.empty()) 1431 return BranchProbability(1, succ_size()); 1432 1433 const auto &Prob = *getProbabilityIterator(Succ); 1434 if (Prob.isUnknown()) { 1435 // For unknown probabilities, collect the sum of all known ones, and evenly 1436 // ditribute the complemental of the sum to each unknown probability. 1437 unsigned KnownProbNum = 0; 1438 auto Sum = BranchProbability::getZero(); 1439 for (const auto &P : Probs) { 1440 if (!P.isUnknown()) { 1441 Sum += P; 1442 KnownProbNum++; 1443 } 1444 } 1445 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1446 } else 1447 return Prob; 1448 } 1449 1450 /// Set successor probability of a given iterator. 1451 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1452 BranchProbability Prob) { 1453 assert(!Prob.isUnknown()); 1454 if (Probs.empty()) 1455 return; 1456 *getProbabilityIterator(I) = Prob; 1457 } 1458 1459 /// Return probability iterator corresonding to the I successor iterator 1460 MachineBasicBlock::const_probability_iterator 1461 MachineBasicBlock::getProbabilityIterator( 1462 MachineBasicBlock::const_succ_iterator I) const { 1463 assert(Probs.size() == Successors.size() && "Async probability list!"); 1464 const size_t index = std::distance(Successors.begin(), I); 1465 assert(index < Probs.size() && "Not a current successor!"); 1466 return Probs.begin() + index; 1467 } 1468 1469 /// Return probability iterator corresonding to the I successor iterator. 1470 MachineBasicBlock::probability_iterator 1471 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1472 assert(Probs.size() == Successors.size() && "Async probability list!"); 1473 const size_t index = std::distance(Successors.begin(), I); 1474 assert(index < Probs.size() && "Not a current successor!"); 1475 return Probs.begin() + index; 1476 } 1477 1478 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1479 /// as of just before "MI". 1480 /// 1481 /// Search is localised to a neighborhood of 1482 /// Neighborhood instructions before (searching for defs or kills) and N 1483 /// instructions after (searching just for defs) MI. 1484 MachineBasicBlock::LivenessQueryResult 1485 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1486 MCRegister Reg, const_iterator Before, 1487 unsigned Neighborhood) const { 1488 unsigned N = Neighborhood; 1489 1490 // Try searching forwards from Before, looking for reads or defs. 1491 const_iterator I(Before); 1492 for (; I != end() && N > 0; ++I) { 1493 if (I->isDebugOrPseudoInstr()) 1494 continue; 1495 1496 --N; 1497 1498 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1499 1500 // Register is live when we read it here. 1501 if (Info.Read) 1502 return LQR_Live; 1503 // Register is dead if we can fully overwrite or clobber it here. 1504 if (Info.FullyDefined || Info.Clobbered) 1505 return LQR_Dead; 1506 } 1507 1508 // If we reached the end, it is safe to clobber Reg at the end of a block of 1509 // no successor has it live in. 1510 if (I == end()) { 1511 for (MachineBasicBlock *S : successors()) { 1512 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1513 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1514 return LQR_Live; 1515 } 1516 } 1517 1518 return LQR_Dead; 1519 } 1520 1521 1522 N = Neighborhood; 1523 1524 // Start by searching backwards from Before, looking for kills, reads or defs. 1525 I = const_iterator(Before); 1526 // If this is the first insn in the block, don't search backwards. 1527 if (I != begin()) { 1528 do { 1529 --I; 1530 1531 if (I->isDebugOrPseudoInstr()) 1532 continue; 1533 1534 --N; 1535 1536 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1537 1538 // Defs happen after uses so they take precedence if both are present. 1539 1540 // Register is dead after a dead def of the full register. 1541 if (Info.DeadDef) 1542 return LQR_Dead; 1543 // Register is (at least partially) live after a def. 1544 if (Info.Defined) { 1545 if (!Info.PartialDeadDef) 1546 return LQR_Live; 1547 // As soon as we saw a partial definition (dead or not), 1548 // we cannot tell if the value is partial live without 1549 // tracking the lanemasks. We are not going to do this, 1550 // so fall back on the remaining of the analysis. 1551 break; 1552 } 1553 // Register is dead after a full kill or clobber and no def. 1554 if (Info.Killed || Info.Clobbered) 1555 return LQR_Dead; 1556 // Register must be live if we read it. 1557 if (Info.Read) 1558 return LQR_Live; 1559 1560 } while (I != begin() && N > 0); 1561 } 1562 1563 // If all the instructions before this in the block are debug instructions, 1564 // skip over them. 1565 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1566 --I; 1567 1568 // Did we get to the start of the block? 1569 if (I == begin()) { 1570 // If so, the register's state is definitely defined by the live-in state. 1571 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1572 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1573 return LQR_Live; 1574 1575 return LQR_Dead; 1576 } 1577 1578 // At this point we have no idea of the liveness of the register. 1579 return LQR_Unknown; 1580 } 1581 1582 const uint32_t * 1583 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1584 // EH funclet entry does not preserve any registers. 1585 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1586 } 1587 1588 const uint32_t * 1589 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1590 // If we see a return block with successors, this must be a funclet return, 1591 // which does not preserve any registers. If there are no successors, we don't 1592 // care what kind of return it is, putting a mask after it is a no-op. 1593 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1594 } 1595 1596 void MachineBasicBlock::clearLiveIns() { 1597 LiveIns.clear(); 1598 } 1599 1600 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1601 assert(getParent()->getProperties().hasProperty( 1602 MachineFunctionProperties::Property::TracksLiveness) && 1603 "Liveness information is accurate"); 1604 return LiveIns.begin(); 1605 } 1606 1607 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1608 const MachineFunction &MF = *getParent(); 1609 assert(MF.getProperties().hasProperty( 1610 MachineFunctionProperties::Property::TracksLiveness) && 1611 "Liveness information is accurate"); 1612 1613 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1614 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1615 if (MF.getFunction().hasPersonalityFn()) { 1616 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1617 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1618 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1619 } 1620 1621 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1622 } 1623 1624 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1625 unsigned Cntr = 0; 1626 auto R = instructionsWithoutDebug(begin(), end()); 1627 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1628 if (++Cntr > Limit) 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1635 const MBBSectionID 1636 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1637