xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "codegen"
44 
45 static cl::opt<bool> PrintSlotIndexes(
46     "print-slotindexes",
47     cl::desc("When printing machine IR, annotate instructions and blocks with "
48              "SlotIndexes when available"),
49     cl::init(true), cl::Hidden);
50 
51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52     : BB(B), Number(-1), xParent(&MF) {
53   Insts.Parent = this;
54   if (B)
55     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56 }
57 
58 MachineBasicBlock::~MachineBasicBlock() = default;
59 
60 /// Return the MCSymbol for this basic block.
61 MCSymbol *MachineBasicBlock::getSymbol() const {
62   if (!CachedMCSymbol) {
63     const MachineFunction *MF = getParent();
64     MCContext &Ctx = MF->getContext();
65 
66     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67     // a section (with basic block sections). Otherwise we fall back to use temp
68     // label.
69     if (MF->hasBBSections() && isBeginSection()) {
70       SmallString<5> Suffix;
71       if (SectionID == MBBSectionID::ColdSectionID) {
72         Suffix += ".cold";
73       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74         Suffix += ".eh";
75       } else {
76         // For symbols that represent basic block sections, we add ".__part." to
77         // allow tools like symbolizers to know that this represents a part of
78         // the original function.
79         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80       }
81       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82     } else {
83       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
84       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
85                                              Twine(MF->getFunctionNumber()) +
86                                              "_" + Twine(getNumber()));
87     }
88   }
89   return CachedMCSymbol;
90 }
91 
92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
93   if (!CachedEHCatchretMCSymbol) {
94     const MachineFunction *MF = getParent();
95     SmallString<128> SymbolName;
96     raw_svector_ostream(SymbolName)
97         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
98     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
99   }
100   return CachedEHCatchretMCSymbol;
101 }
102 
103 MCSymbol *MachineBasicBlock::getEndSymbol() const {
104   if (!CachedEndMCSymbol) {
105     const MachineFunction *MF = getParent();
106     MCContext &Ctx = MF->getContext();
107     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
108     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
109                                               Twine(MF->getFunctionNumber()) +
110                                               "_" + Twine(getNumber()));
111   }
112   return CachedEndMCSymbol;
113 }
114 
115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116   MBB.print(OS);
117   return OS;
118 }
119 
120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122 }
123 
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
127 ///
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132     MachineBasicBlock *N) {
133   MachineFunction &MF = *N->getParent();
134   N->Number = MF.addToMBBNumbering(N);
135 
136   // Make sure the instructions have their operands in the reginfo lists.
137   MachineRegisterInfo &RegInfo = MF.getRegInfo();
138   for (MachineInstr &MI : N->instrs())
139     MI.addRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->addRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->removeRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->deleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261   return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262 }
263 
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266   // Skip over begin-of-block dbg_value instructions.
267   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268 }
269 
270 MachineBasicBlock::iterator
271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272   // Skip over end-of-block dbg_value instructions.
273   instr_iterator B = instr_begin(), I = instr_end();
274   while (I != B) {
275     --I;
276     // Return instruction that starts a bundle.
277     if (I->isDebugInstr() || I->isInsideBundle())
278       continue;
279     if (SkipPseudoOp && I->isPseudoProbe())
280       continue;
281     return I;
282   }
283   // The block is all debug values.
284   return end();
285 }
286 
287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288   for (const MachineBasicBlock *Succ : successors())
289     if (Succ->isEHPad())
290       return true;
291   return false;
292 }
293 
294 bool MachineBasicBlock::isEntryBlock() const {
295   return getParent()->begin() == getIterator();
296 }
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300   print(dbgs());
301 }
302 #endif
303 
304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305   for (const MachineBasicBlock *Succ : successors()) {
306     if (Succ->isInlineAsmBrIndirectTarget())
307       return true;
308   }
309   return false;
310 }
311 
312 bool MachineBasicBlock::isLegalToHoistInto() const {
313   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314     return false;
315   return true;
316 }
317 
318 StringRef MachineBasicBlock::getName() const {
319   if (const BasicBlock *LBB = getBasicBlock())
320     return LBB->getName();
321   else
322     return StringRef("", 0);
323 }
324 
325 /// Return a hopefully unique identifier for this block.
326 std::string MachineBasicBlock::getFullName() const {
327   std::string Name;
328   if (getParent())
329     Name = (getParent()->getName() + ":").str();
330   if (getBasicBlock())
331     Name += getBasicBlock()->getName();
332   else
333     Name += ("BB" + Twine(getNumber())).str();
334   return Name;
335 }
336 
337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
338                               bool IsStandalone) const {
339   const MachineFunction *MF = getParent();
340   if (!MF) {
341     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
342        << " is null\n";
343     return;
344   }
345   const Function &F = MF->getFunction();
346   const Module *M = F.getParent();
347   ModuleSlotTracker MST(M);
348   MST.incorporateFunction(F);
349   print(OS, MST, Indexes, IsStandalone);
350 }
351 
352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
353                               const SlotIndexes *Indexes,
354                               bool IsStandalone) const {
355   const MachineFunction *MF = getParent();
356   if (!MF) {
357     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
358        << " is null\n";
359     return;
360   }
361 
362   if (Indexes && PrintSlotIndexes)
363     OS << Indexes->getMBBStartIdx(this) << '\t';
364 
365   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
366   OS << ":\n";
367 
368   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
369   const MachineRegisterInfo &MRI = MF->getRegInfo();
370   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
371   bool HasLineAttributes = false;
372 
373   // Print the preds of this block according to the CFG.
374   if (!pred_empty() && IsStandalone) {
375     if (Indexes) OS << '\t';
376     // Don't indent(2), align with previous line attributes.
377     OS << "; predecessors: ";
378     ListSeparator LS;
379     for (auto *Pred : predecessors())
380       OS << LS << printMBBReference(*Pred);
381     OS << '\n';
382     HasLineAttributes = true;
383   }
384 
385   if (!succ_empty()) {
386     if (Indexes) OS << '\t';
387     // Print the successors
388     OS.indent(2) << "successors: ";
389     ListSeparator LS;
390     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
391       OS << LS << printMBBReference(**I);
392       if (!Probs.empty())
393         OS << '('
394            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
395            << ')';
396     }
397     if (!Probs.empty() && IsStandalone) {
398       // Print human readable probabilities as comments.
399       OS << "; ";
400       ListSeparator LS;
401       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
402         const BranchProbability &BP = getSuccProbability(I);
403         OS << LS << printMBBReference(**I) << '('
404            << format("%.2f%%",
405                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
406                           100.0 * 100.0) /
407                          100.0)
408            << ')';
409       }
410     }
411 
412     OS << '\n';
413     HasLineAttributes = true;
414   }
415 
416   if (!livein_empty() && MRI.tracksLiveness()) {
417     if (Indexes) OS << '\t';
418     OS.indent(2) << "liveins: ";
419 
420     ListSeparator LS;
421     for (const auto &LI : liveins()) {
422       OS << LS << printReg(LI.PhysReg, TRI);
423       if (!LI.LaneMask.all())
424         OS << ":0x" << PrintLaneMask(LI.LaneMask);
425     }
426     HasLineAttributes = true;
427   }
428 
429   if (HasLineAttributes)
430     OS << '\n';
431 
432   bool IsInBundle = false;
433   for (const MachineInstr &MI : instrs()) {
434     if (Indexes && PrintSlotIndexes) {
435       if (Indexes->hasIndex(MI))
436         OS << Indexes->getInstructionIndex(MI);
437       OS << '\t';
438     }
439 
440     if (IsInBundle && !MI.isInsideBundle()) {
441       OS.indent(2) << "}\n";
442       IsInBundle = false;
443     }
444 
445     OS.indent(IsInBundle ? 4 : 2);
446     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
447              /*AddNewLine=*/false, &TII);
448 
449     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
450       OS << " {";
451       IsInBundle = true;
452     }
453     OS << '\n';
454   }
455 
456   if (IsInBundle)
457     OS.indent(2) << "}\n";
458 
459   if (IrrLoopHeaderWeight && IsStandalone) {
460     if (Indexes) OS << '\t';
461     OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
462                  << '\n';
463   }
464 }
465 
466 /// Print the basic block's name as:
467 ///
468 ///    bb.{number}[.{ir-name}] [(attributes...)]
469 ///
470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
471 /// (which is the default). If the IR block has no name, it is identified
472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
473 ///
474 /// When the \ref PrintNameAttributes flag is passed, additional attributes
475 /// of the block are printed when set.
476 ///
477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
478 ///                       the parts to print.
479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
480 ///                          incorporate its own tracker when necessary to
481 ///                          determine the block's IR name.
482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
483                                   ModuleSlotTracker *moduleSlotTracker) const {
484   os << "bb." << getNumber();
485   bool hasAttributes = false;
486 
487   auto PrintBBRef = [&](const BasicBlock *bb) {
488     os << "%ir-block.";
489     if (bb->hasName()) {
490       os << bb->getName();
491     } else {
492       int slot = -1;
493 
494       if (moduleSlotTracker) {
495         slot = moduleSlotTracker->getLocalSlot(bb);
496       } else if (bb->getParent()) {
497         ModuleSlotTracker tmpTracker(bb->getModule(), false);
498         tmpTracker.incorporateFunction(*bb->getParent());
499         slot = tmpTracker.getLocalSlot(bb);
500       }
501 
502       if (slot == -1)
503         os << "<ir-block badref>";
504       else
505         os << slot;
506     }
507   };
508 
509   if (printNameFlags & PrintNameIr) {
510     if (const auto *bb = getBasicBlock()) {
511       if (bb->hasName()) {
512         os << '.' << bb->getName();
513       } else {
514         hasAttributes = true;
515         os << " (";
516         PrintBBRef(bb);
517       }
518     }
519   }
520 
521   if (printNameFlags & PrintNameAttributes) {
522     if (isMachineBlockAddressTaken()) {
523       os << (hasAttributes ? ", " : " (");
524       os << "machine-block-address-taken";
525       hasAttributes = true;
526     }
527     if (isIRBlockAddressTaken()) {
528       os << (hasAttributes ? ", " : " (");
529       os << "ir-block-address-taken ";
530       PrintBBRef(getAddressTakenIRBlock());
531       hasAttributes = true;
532     }
533     if (isEHPad()) {
534       os << (hasAttributes ? ", " : " (");
535       os << "landing-pad";
536       hasAttributes = true;
537     }
538     if (isInlineAsmBrIndirectTarget()) {
539       os << (hasAttributes ? ", " : " (");
540       os << "inlineasm-br-indirect-target";
541       hasAttributes = true;
542     }
543     if (isEHFuncletEntry()) {
544       os << (hasAttributes ? ", " : " (");
545       os << "ehfunclet-entry";
546       hasAttributes = true;
547     }
548     if (getAlignment() != Align(1)) {
549       os << (hasAttributes ? ", " : " (");
550       os << "align " << getAlignment().value();
551       hasAttributes = true;
552     }
553     if (getSectionID() != MBBSectionID(0)) {
554       os << (hasAttributes ? ", " : " (");
555       os << "bbsections ";
556       switch (getSectionID().Type) {
557       case MBBSectionID::SectionType::Exception:
558         os << "Exception";
559         break;
560       case MBBSectionID::SectionType::Cold:
561         os << "Cold";
562         break;
563       default:
564         os << getSectionID().Number;
565       }
566       hasAttributes = true;
567     }
568     if (getBBID().has_value()) {
569       os << (hasAttributes ? ", " : " (");
570       os << "bb_id " << *getBBID();
571       hasAttributes = true;
572     }
573   }
574 
575   if (hasAttributes)
576     os << ')';
577 }
578 
579 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
580                                        bool /*PrintType*/) const {
581   OS << '%';
582   printName(OS, 0);
583 }
584 
585 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
586   LiveInVector::iterator I = find_if(
587       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
588   if (I == LiveIns.end())
589     return;
590 
591   I->LaneMask &= ~LaneMask;
592   if (I->LaneMask.none())
593     LiveIns.erase(I);
594 }
595 
596 MachineBasicBlock::livein_iterator
597 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
598   // Get non-const version of iterator.
599   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
600   return LiveIns.erase(LI);
601 }
602 
603 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
604   livein_iterator I = find_if(
605       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
606   return I != livein_end() && (I->LaneMask & LaneMask).any();
607 }
608 
609 void MachineBasicBlock::sortUniqueLiveIns() {
610   llvm::sort(LiveIns,
611              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
612                return LI0.PhysReg < LI1.PhysReg;
613              });
614   // Liveins are sorted by physreg now we can merge their lanemasks.
615   LiveInVector::const_iterator I = LiveIns.begin();
616   LiveInVector::const_iterator J;
617   LiveInVector::iterator Out = LiveIns.begin();
618   for (; I != LiveIns.end(); ++Out, I = J) {
619     MCRegister PhysReg = I->PhysReg;
620     LaneBitmask LaneMask = I->LaneMask;
621     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
622       LaneMask |= J->LaneMask;
623     Out->PhysReg = PhysReg;
624     Out->LaneMask = LaneMask;
625   }
626   LiveIns.erase(Out, LiveIns.end());
627 }
628 
629 Register
630 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
631   assert(getParent() && "MBB must be inserted in function");
632   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
633   assert(RC && "Register class is required");
634   assert((isEHPad() || this == &getParent()->front()) &&
635          "Only the entry block and landing pads can have physreg live ins");
636 
637   bool LiveIn = isLiveIn(PhysReg);
638   iterator I = SkipPHIsAndLabels(begin()), E = end();
639   MachineRegisterInfo &MRI = getParent()->getRegInfo();
640   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
641 
642   // Look for an existing copy.
643   if (LiveIn)
644     for (;I != E && I->isCopy(); ++I)
645       if (I->getOperand(1).getReg() == PhysReg) {
646         Register VirtReg = I->getOperand(0).getReg();
647         if (!MRI.constrainRegClass(VirtReg, RC))
648           llvm_unreachable("Incompatible live-in register class.");
649         return VirtReg;
650       }
651 
652   // No luck, create a virtual register.
653   Register VirtReg = MRI.createVirtualRegister(RC);
654   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
655     .addReg(PhysReg, RegState::Kill);
656   if (!LiveIn)
657     addLiveIn(PhysReg);
658   return VirtReg;
659 }
660 
661 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
662   getParent()->splice(NewAfter->getIterator(), getIterator());
663 }
664 
665 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
666   getParent()->splice(++NewBefore->getIterator(), getIterator());
667 }
668 
669 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
670   MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
671   if (TerminatorI == MBB.end())
672     return -1;
673   const MachineInstr &Terminator = *TerminatorI;
674   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
675   return TII->getJumpTableIndex(Terminator);
676 }
677 
678 void MachineBasicBlock::updateTerminator(
679     MachineBasicBlock *PreviousLayoutSuccessor) {
680   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
681                     << "\n");
682 
683   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
684   // A block with no successors has no concerns with fall-through edges.
685   if (this->succ_empty())
686     return;
687 
688   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
689   SmallVector<MachineOperand, 4> Cond;
690   DebugLoc DL = findBranchDebugLoc();
691   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
692   (void) B;
693   assert(!B && "UpdateTerminators requires analyzable predecessors!");
694   if (Cond.empty()) {
695     if (TBB) {
696       // The block has an unconditional branch. If its successor is now its
697       // layout successor, delete the branch.
698       if (isLayoutSuccessor(TBB))
699         TII->removeBranch(*this);
700     } else {
701       // The block has an unconditional fallthrough, or the end of the block is
702       // unreachable.
703 
704       // Unfortunately, whether the end of the block is unreachable is not
705       // immediately obvious; we must fall back to checking the successor list,
706       // and assuming that if the passed in block is in the succesor list and
707       // not an EHPad, it must be the intended target.
708       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
709           PreviousLayoutSuccessor->isEHPad())
710         return;
711 
712       // If the unconditional successor block is not the current layout
713       // successor, insert a branch to jump to it.
714       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
715         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
716     }
717     return;
718   }
719 
720   if (FBB) {
721     // The block has a non-fallthrough conditional branch. If one of its
722     // successors is its layout successor, rewrite it to a fallthrough
723     // conditional branch.
724     if (isLayoutSuccessor(TBB)) {
725       if (TII->reverseBranchCondition(Cond))
726         return;
727       TII->removeBranch(*this);
728       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
729     } else if (isLayoutSuccessor(FBB)) {
730       TII->removeBranch(*this);
731       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
732     }
733     return;
734   }
735 
736   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
737   assert(PreviousLayoutSuccessor);
738   assert(!PreviousLayoutSuccessor->isEHPad());
739   assert(isSuccessor(PreviousLayoutSuccessor));
740 
741   if (PreviousLayoutSuccessor == TBB) {
742     // We had a fallthrough to the same basic block as the conditional jump
743     // targets.  Remove the conditional jump, leaving an unconditional
744     // fallthrough or an unconditional jump.
745     TII->removeBranch(*this);
746     if (!isLayoutSuccessor(TBB)) {
747       Cond.clear();
748       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
749     }
750     return;
751   }
752 
753   // The block has a fallthrough conditional branch.
754   if (isLayoutSuccessor(TBB)) {
755     if (TII->reverseBranchCondition(Cond)) {
756       // We can't reverse the condition, add an unconditional branch.
757       Cond.clear();
758       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
759       return;
760     }
761     TII->removeBranch(*this);
762     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
763   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
764     TII->removeBranch(*this);
765     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
766   }
767 }
768 
769 void MachineBasicBlock::validateSuccProbs() const {
770 #ifndef NDEBUG
771   int64_t Sum = 0;
772   for (auto Prob : Probs)
773     Sum += Prob.getNumerator();
774   // Due to precision issue, we assume that the sum of probabilities is one if
775   // the difference between the sum of their numerators and the denominator is
776   // no greater than the number of successors.
777   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
778              Probs.size() &&
779          "The sum of successors's probabilities exceeds one.");
780 #endif // NDEBUG
781 }
782 
783 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
784                                      BranchProbability Prob) {
785   // Probability list is either empty (if successor list isn't empty, this means
786   // disabled optimization) or has the same size as successor list.
787   if (!(Probs.empty() && !Successors.empty()))
788     Probs.push_back(Prob);
789   Successors.push_back(Succ);
790   Succ->addPredecessor(this);
791 }
792 
793 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
794   // We need to make sure probability list is either empty or has the same size
795   // of successor list. When this function is called, we can safely delete all
796   // probability in the list.
797   Probs.clear();
798   Successors.push_back(Succ);
799   Succ->addPredecessor(this);
800 }
801 
802 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
803                                        MachineBasicBlock *New,
804                                        bool NormalizeSuccProbs) {
805   succ_iterator OldI = llvm::find(successors(), Old);
806   assert(OldI != succ_end() && "Old is not a successor of this block!");
807   assert(!llvm::is_contained(successors(), New) &&
808          "New is already a successor of this block!");
809 
810   // Add a new successor with equal probability as the original one. Note
811   // that we directly copy the probability using the iterator rather than
812   // getting a potentially synthetic probability computed when unknown. This
813   // preserves the probabilities as-is and then we can renormalize them and
814   // query them effectively afterward.
815   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
816                                   : *getProbabilityIterator(OldI));
817   if (NormalizeSuccProbs)
818     normalizeSuccProbs();
819 }
820 
821 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
822                                         bool NormalizeSuccProbs) {
823   succ_iterator I = find(Successors, Succ);
824   removeSuccessor(I, NormalizeSuccProbs);
825 }
826 
827 MachineBasicBlock::succ_iterator
828 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
829   assert(I != Successors.end() && "Not a current successor!");
830 
831   // If probability list is empty it means we don't use it (disabled
832   // optimization).
833   if (!Probs.empty()) {
834     probability_iterator WI = getProbabilityIterator(I);
835     Probs.erase(WI);
836     if (NormalizeSuccProbs)
837       normalizeSuccProbs();
838   }
839 
840   (*I)->removePredecessor(this);
841   return Successors.erase(I);
842 }
843 
844 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
845                                          MachineBasicBlock *New) {
846   if (Old == New)
847     return;
848 
849   succ_iterator E = succ_end();
850   succ_iterator NewI = E;
851   succ_iterator OldI = E;
852   for (succ_iterator I = succ_begin(); I != E; ++I) {
853     if (*I == Old) {
854       OldI = I;
855       if (NewI != E)
856         break;
857     }
858     if (*I == New) {
859       NewI = I;
860       if (OldI != E)
861         break;
862     }
863   }
864   assert(OldI != E && "Old is not a successor of this block");
865 
866   // If New isn't already a successor, let it take Old's place.
867   if (NewI == E) {
868     Old->removePredecessor(this);
869     New->addPredecessor(this);
870     *OldI = New;
871     return;
872   }
873 
874   // New is already a successor.
875   // Update its probability instead of adding a duplicate edge.
876   if (!Probs.empty()) {
877     auto ProbIter = getProbabilityIterator(NewI);
878     if (!ProbIter->isUnknown())
879       *ProbIter += *getProbabilityIterator(OldI);
880   }
881   removeSuccessor(OldI);
882 }
883 
884 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
885                                       succ_iterator I) {
886   if (!Orig->Probs.empty())
887     addSuccessor(*I, Orig->getSuccProbability(I));
888   else
889     addSuccessorWithoutProb(*I);
890 }
891 
892 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
893   Predecessors.push_back(Pred);
894 }
895 
896 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
897   pred_iterator I = find(Predecessors, Pred);
898   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
899   Predecessors.erase(I);
900 }
901 
902 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
903   if (this == FromMBB)
904     return;
905 
906   while (!FromMBB->succ_empty()) {
907     MachineBasicBlock *Succ = *FromMBB->succ_begin();
908 
909     // If probability list is empty it means we don't use it (disabled
910     // optimization).
911     if (!FromMBB->Probs.empty()) {
912       auto Prob = *FromMBB->Probs.begin();
913       addSuccessor(Succ, Prob);
914     } else
915       addSuccessorWithoutProb(Succ);
916 
917     FromMBB->removeSuccessor(Succ);
918   }
919 }
920 
921 void
922 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
923   if (this == FromMBB)
924     return;
925 
926   while (!FromMBB->succ_empty()) {
927     MachineBasicBlock *Succ = *FromMBB->succ_begin();
928     if (!FromMBB->Probs.empty()) {
929       auto Prob = *FromMBB->Probs.begin();
930       addSuccessor(Succ, Prob);
931     } else
932       addSuccessorWithoutProb(Succ);
933     FromMBB->removeSuccessor(Succ);
934 
935     // Fix up any PHI nodes in the successor.
936     Succ->replacePhiUsesWith(FromMBB, this);
937   }
938   normalizeSuccProbs();
939 }
940 
941 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
942   return is_contained(predecessors(), MBB);
943 }
944 
945 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
946   return is_contained(successors(), MBB);
947 }
948 
949 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
950   MachineFunction::const_iterator I(this);
951   return std::next(I) == MachineFunction::const_iterator(MBB);
952 }
953 
954 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
955   return Successors.size() == 1 ? Successors[0] : nullptr;
956 }
957 
958 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
959   MachineFunction::iterator Fallthrough = getIterator();
960   ++Fallthrough;
961   // If FallthroughBlock is off the end of the function, it can't fall through.
962   if (Fallthrough == getParent()->end())
963     return nullptr;
964 
965   // If FallthroughBlock isn't a successor, no fallthrough is possible.
966   if (!isSuccessor(&*Fallthrough))
967     return nullptr;
968 
969   // Analyze the branches, if any, at the end of the block.
970   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
971   SmallVector<MachineOperand, 4> Cond;
972   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
973   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
974     // If we couldn't analyze the branch, examine the last instruction.
975     // If the block doesn't end in a known control barrier, assume fallthrough
976     // is possible. The isPredicated check is needed because this code can be
977     // called during IfConversion, where an instruction which is normally a
978     // Barrier is predicated and thus no longer an actual control barrier.
979     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
980                ? &*Fallthrough
981                : nullptr;
982   }
983 
984   // If there is no branch, control always falls through.
985   if (!TBB) return &*Fallthrough;
986 
987   // If there is some explicit branch to the fallthrough block, it can obviously
988   // reach, even though the branch should get folded to fall through implicitly.
989   if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
990                             MachineFunction::iterator(FBB) == Fallthrough))
991     return &*Fallthrough;
992 
993   // If it's an unconditional branch to some block not the fall through, it
994   // doesn't fall through.
995   if (Cond.empty()) return nullptr;
996 
997   // Otherwise, if it is conditional and has no explicit false block, it falls
998   // through.
999   return (FBB == nullptr) ? &*Fallthrough : nullptr;
1000 }
1001 
1002 bool MachineBasicBlock::canFallThrough() {
1003   return getFallThrough() != nullptr;
1004 }
1005 
1006 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1007                                               bool UpdateLiveIns,
1008                                               LiveIntervals *LIS) {
1009   MachineBasicBlock::iterator SplitPoint(&MI);
1010   ++SplitPoint;
1011 
1012   if (SplitPoint == end()) {
1013     // Don't bother with a new block.
1014     return this;
1015   }
1016 
1017   MachineFunction *MF = getParent();
1018 
1019   LivePhysRegs LiveRegs;
1020   if (UpdateLiveIns) {
1021     // Make sure we add any physregs we define in the block as liveins to the
1022     // new block.
1023     MachineBasicBlock::iterator Prev(&MI);
1024     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1025     LiveRegs.addLiveOuts(*this);
1026     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1027       LiveRegs.stepBackward(*I);
1028   }
1029 
1030   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1031 
1032   MF->insert(++MachineFunction::iterator(this), SplitBB);
1033   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1034 
1035   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1036   addSuccessor(SplitBB);
1037 
1038   if (UpdateLiveIns)
1039     addLiveIns(*SplitBB, LiveRegs);
1040 
1041   if (LIS)
1042     LIS->insertMBBInMaps(SplitBB);
1043 
1044   return SplitBB;
1045 }
1046 
1047 // Returns `true` if there are possibly other users of the jump table at
1048 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
1049 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1050                                   const MachineBasicBlock &IgnoreMBB,
1051                                   int JumpTableIndex) {
1052   assert(JumpTableIndex >= 0 && "need valid index");
1053   const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1054   const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1055   // Take any basic block from the table; every user of the jump table must
1056   // show up in the predecessor list.
1057   const MachineBasicBlock *MBB = nullptr;
1058   for (MachineBasicBlock *B : MJTE.MBBs) {
1059     if (B != nullptr) {
1060       MBB = B;
1061       break;
1062     }
1063   }
1064   if (MBB == nullptr)
1065     return true; // can't rule out other users if there isn't any block.
1066   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1067   SmallVector<MachineOperand, 4> Cond;
1068   for (MachineBasicBlock *Pred : MBB->predecessors()) {
1069     if (Pred == &IgnoreMBB)
1070       continue;
1071     MachineBasicBlock *DummyT = nullptr;
1072     MachineBasicBlock *DummyF = nullptr;
1073     Cond.clear();
1074     if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1075                            /*AllowModify=*/false)) {
1076       // analyzable direct jump
1077       continue;
1078     }
1079     int PredJTI = findJumpTableIndex(*Pred);
1080     if (PredJTI >= 0) {
1081       if (PredJTI == JumpTableIndex)
1082         return true;
1083       continue;
1084     }
1085     // Be conservative for unanalyzable jumps.
1086     return true;
1087   }
1088   return false;
1089 }
1090 
1091 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1092     MachineBasicBlock *Succ, Pass &P,
1093     std::vector<SparseBitVector<>> *LiveInSets) {
1094   if (!canSplitCriticalEdge(Succ))
1095     return nullptr;
1096 
1097   MachineFunction *MF = getParent();
1098   MachineBasicBlock *PrevFallthrough = getNextNode();
1099   DebugLoc DL;  // FIXME: this is nowhere
1100 
1101   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1102 
1103   // Is there an indirect jump with jump table?
1104   bool ChangedIndirectJump = false;
1105   int JTI = findJumpTableIndex(*this);
1106   if (JTI >= 0) {
1107     MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1108     MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1109     ChangedIndirectJump = true;
1110   }
1111 
1112   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1113   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1114                     << " -- " << printMBBReference(*NMBB) << " -- "
1115                     << printMBBReference(*Succ) << '\n');
1116 
1117   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1118   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1119   if (LIS)
1120     LIS->insertMBBInMaps(NMBB);
1121   else if (Indexes)
1122     Indexes->insertMBBInMaps(NMBB);
1123 
1124   // On some targets like Mips, branches may kill virtual registers. Make sure
1125   // that LiveVariables is properly updated after updateTerminator replaces the
1126   // terminators.
1127   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1128 
1129   // Collect a list of virtual registers killed by the terminators.
1130   SmallVector<Register, 4> KilledRegs;
1131   if (LV)
1132     for (MachineInstr &MI :
1133          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1134       for (MachineOperand &MO : MI.all_uses()) {
1135         if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1136           continue;
1137         Register Reg = MO.getReg();
1138         if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1139           KilledRegs.push_back(Reg);
1140           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1141           MO.setIsKill(false);
1142         }
1143       }
1144     }
1145 
1146   SmallVector<Register, 4> UsedRegs;
1147   if (LIS) {
1148     for (MachineInstr &MI :
1149          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1150       for (const MachineOperand &MO : MI.operands()) {
1151         if (!MO.isReg() || MO.getReg() == 0)
1152           continue;
1153 
1154         Register Reg = MO.getReg();
1155         if (!is_contained(UsedRegs, Reg))
1156           UsedRegs.push_back(Reg);
1157       }
1158     }
1159   }
1160 
1161   ReplaceUsesOfBlockWith(Succ, NMBB);
1162 
1163   // If updateTerminator() removes instructions, we need to remove them from
1164   // SlotIndexes.
1165   SmallVector<MachineInstr*, 4> Terminators;
1166   if (Indexes) {
1167     for (MachineInstr &MI :
1168          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1169       Terminators.push_back(&MI);
1170   }
1171 
1172   // Since we replaced all uses of Succ with NMBB, that should also be treated
1173   // as the fallthrough successor
1174   if (Succ == PrevFallthrough)
1175     PrevFallthrough = NMBB;
1176 
1177   if (!ChangedIndirectJump)
1178     updateTerminator(PrevFallthrough);
1179 
1180   if (Indexes) {
1181     SmallVector<MachineInstr*, 4> NewTerminators;
1182     for (MachineInstr &MI :
1183          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1184       NewTerminators.push_back(&MI);
1185 
1186     for (MachineInstr *Terminator : Terminators) {
1187       if (!is_contained(NewTerminators, Terminator))
1188         Indexes->removeMachineInstrFromMaps(*Terminator);
1189     }
1190   }
1191 
1192   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1193   NMBB->addSuccessor(Succ);
1194   if (!NMBB->isLayoutSuccessor(Succ)) {
1195     SmallVector<MachineOperand, 4> Cond;
1196     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1197     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1198 
1199     if (Indexes) {
1200       for (MachineInstr &MI : NMBB->instrs()) {
1201         // Some instructions may have been moved to NMBB by updateTerminator(),
1202         // so we first remove any instruction that already has an index.
1203         if (Indexes->hasIndex(MI))
1204           Indexes->removeMachineInstrFromMaps(MI);
1205         Indexes->insertMachineInstrInMaps(MI);
1206       }
1207     }
1208   }
1209 
1210   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1211   Succ->replacePhiUsesWith(this, NMBB);
1212 
1213   // Inherit live-ins from the successor
1214   for (const auto &LI : Succ->liveins())
1215     NMBB->addLiveIn(LI);
1216 
1217   // Update LiveVariables.
1218   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1219   if (LV) {
1220     // Restore kills of virtual registers that were killed by the terminators.
1221     while (!KilledRegs.empty()) {
1222       Register Reg = KilledRegs.pop_back_val();
1223       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1224         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1225           continue;
1226         if (Reg.isVirtual())
1227           LV->getVarInfo(Reg).Kills.push_back(&*I);
1228         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1229         break;
1230       }
1231     }
1232     // Update relevant live-through information.
1233     if (LiveInSets != nullptr)
1234       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1235     else
1236       LV->addNewBlock(NMBB, this, Succ);
1237   }
1238 
1239   if (LIS) {
1240     // After splitting the edge and updating SlotIndexes, live intervals may be
1241     // in one of two situations, depending on whether this block was the last in
1242     // the function. If the original block was the last in the function, all
1243     // live intervals will end prior to the beginning of the new split block. If
1244     // the original block was not at the end of the function, all live intervals
1245     // will extend to the end of the new split block.
1246 
1247     bool isLastMBB =
1248       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1249 
1250     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1251     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1252     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1253 
1254     // Find the registers used from NMBB in PHIs in Succ.
1255     SmallSet<Register, 8> PHISrcRegs;
1256     for (MachineBasicBlock::instr_iterator
1257          I = Succ->instr_begin(), E = Succ->instr_end();
1258          I != E && I->isPHI(); ++I) {
1259       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1260         if (I->getOperand(ni+1).getMBB() == NMBB) {
1261           MachineOperand &MO = I->getOperand(ni);
1262           Register Reg = MO.getReg();
1263           PHISrcRegs.insert(Reg);
1264           if (MO.isUndef())
1265             continue;
1266 
1267           LiveInterval &LI = LIS->getInterval(Reg);
1268           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1269           assert(VNI &&
1270                  "PHI sources should be live out of their predecessors.");
1271           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1272         }
1273       }
1274     }
1275 
1276     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1277     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1278       Register Reg = Register::index2VirtReg(i);
1279       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1280         continue;
1281 
1282       LiveInterval &LI = LIS->getInterval(Reg);
1283       if (!LI.liveAt(PrevIndex))
1284         continue;
1285 
1286       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1287       if (isLiveOut && isLastMBB) {
1288         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1289         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1290         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1291       } else if (!isLiveOut && !isLastMBB) {
1292         LI.removeSegment(StartIndex, EndIndex);
1293       }
1294     }
1295 
1296     // Update all intervals for registers whose uses may have been modified by
1297     // updateTerminator().
1298     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1299   }
1300 
1301   if (MachineDominatorTree *MDT =
1302           P.getAnalysisIfAvailable<MachineDominatorTree>())
1303     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1304 
1305   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1306     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1307       // If one or the other blocks were not in a loop, the new block is not
1308       // either, and thus LI doesn't need to be updated.
1309       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1310         if (TIL == DestLoop) {
1311           // Both in the same loop, the NMBB joins loop.
1312           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1313         } else if (TIL->contains(DestLoop)) {
1314           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1315           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1316         } else if (DestLoop->contains(TIL)) {
1317           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1318           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1319         } else {
1320           // Edge from two loops with no containment relation.  Because these
1321           // are natural loops, we know that the destination block must be the
1322           // header of its loop (adding a branch into a loop elsewhere would
1323           // create an irreducible loop).
1324           assert(DestLoop->getHeader() == Succ &&
1325                  "Should not create irreducible loops!");
1326           if (MachineLoop *P = DestLoop->getParentLoop())
1327             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1328         }
1329       }
1330     }
1331 
1332   return NMBB;
1333 }
1334 
1335 bool MachineBasicBlock::canSplitCriticalEdge(
1336     const MachineBasicBlock *Succ) const {
1337   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1338   // it in this generic function.
1339   if (Succ->isEHPad())
1340     return false;
1341 
1342   // Splitting the critical edge to a callbr's indirect block isn't advised.
1343   // Don't do it in this generic function.
1344   if (Succ->isInlineAsmBrIndirectTarget())
1345     return false;
1346 
1347   const MachineFunction *MF = getParent();
1348   // Performance might be harmed on HW that implements branching using exec mask
1349   // where both sides of the branches are always executed.
1350   if (MF->getTarget().requiresStructuredCFG())
1351     return false;
1352 
1353   // Do we have an Indirect jump with a jumptable that we can rewrite?
1354   int JTI = findJumpTableIndex(*this);
1355   if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1356     return true;
1357 
1358   // We may need to update this's terminator, but we can't do that if
1359   // analyzeBranch fails.
1360   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1361   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1362   SmallVector<MachineOperand, 4> Cond;
1363   // AnalyzeBanch should modify this, since we did not allow modification.
1364   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1365                          /*AllowModify*/ false))
1366     return false;
1367 
1368   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1369   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1370   // case that we can't handle. Since this never happens in properly optimized
1371   // code, just skip those edges.
1372   if (TBB && TBB == FBB) {
1373     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1374                       << printMBBReference(*this) << '\n');
1375     return false;
1376   }
1377   return true;
1378 }
1379 
1380 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1381 /// neighboring instructions so the bundle won't be broken by removing MI.
1382 static void unbundleSingleMI(MachineInstr *MI) {
1383   // Removing the first instruction in a bundle.
1384   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1385     MI->unbundleFromSucc();
1386   // Removing the last instruction in a bundle.
1387   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1388     MI->unbundleFromPred();
1389   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1390   // are already fine.
1391 }
1392 
1393 MachineBasicBlock::instr_iterator
1394 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1395   unbundleSingleMI(&*I);
1396   return Insts.erase(I);
1397 }
1398 
1399 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1400   unbundleSingleMI(MI);
1401   MI->clearFlag(MachineInstr::BundledPred);
1402   MI->clearFlag(MachineInstr::BundledSucc);
1403   return Insts.remove(MI);
1404 }
1405 
1406 MachineBasicBlock::instr_iterator
1407 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1408   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1409          "Cannot insert instruction with bundle flags");
1410   // Set the bundle flags when inserting inside a bundle.
1411   if (I != instr_end() && I->isBundledWithPred()) {
1412     MI->setFlag(MachineInstr::BundledPred);
1413     MI->setFlag(MachineInstr::BundledSucc);
1414   }
1415   return Insts.insert(I, MI);
1416 }
1417 
1418 /// This method unlinks 'this' from the containing function, and returns it, but
1419 /// does not delete it.
1420 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1421   assert(getParent() && "Not embedded in a function!");
1422   getParent()->remove(this);
1423   return this;
1424 }
1425 
1426 /// This method unlinks 'this' from the containing function, and deletes it.
1427 void MachineBasicBlock::eraseFromParent() {
1428   assert(getParent() && "Not embedded in a function!");
1429   getParent()->erase(this);
1430 }
1431 
1432 /// Given a machine basic block that branched to 'Old', change the code and CFG
1433 /// so that it branches to 'New' instead.
1434 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1435                                                MachineBasicBlock *New) {
1436   assert(Old != New && "Cannot replace self with self!");
1437 
1438   MachineBasicBlock::instr_iterator I = instr_end();
1439   while (I != instr_begin()) {
1440     --I;
1441     if (!I->isTerminator()) break;
1442 
1443     // Scan the operands of this machine instruction, replacing any uses of Old
1444     // with New.
1445     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1446       if (I->getOperand(i).isMBB() &&
1447           I->getOperand(i).getMBB() == Old)
1448         I->getOperand(i).setMBB(New);
1449   }
1450 
1451   // Update the successor information.
1452   replaceSuccessor(Old, New);
1453 }
1454 
1455 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1456                                            MachineBasicBlock *New) {
1457   for (MachineInstr &MI : phis())
1458     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1459       MachineOperand &MO = MI.getOperand(i);
1460       if (MO.getMBB() == Old)
1461         MO.setMBB(New);
1462     }
1463 }
1464 
1465 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1466 /// instructions.  Return UnknownLoc if there is none.
1467 DebugLoc
1468 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1469   // Skip debug declarations, we don't want a DebugLoc from them.
1470   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1471   if (MBBI != instr_end())
1472     return MBBI->getDebugLoc();
1473   return {};
1474 }
1475 
1476 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1477   if (MBBI == instr_rend())
1478     return findDebugLoc(instr_begin());
1479   // Skip debug declarations, we don't want a DebugLoc from them.
1480   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1481   if (!MBBI->isDebugInstr())
1482     return MBBI->getDebugLoc();
1483   return {};
1484 }
1485 
1486 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1487 /// instructions.  Return UnknownLoc if there is none.
1488 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1489   if (MBBI == instr_begin())
1490     return {};
1491   // Skip debug instructions, we don't want a DebugLoc from them.
1492   MBBI = prev_nodbg(MBBI, instr_begin());
1493   if (!MBBI->isDebugInstr())
1494     return MBBI->getDebugLoc();
1495   return {};
1496 }
1497 
1498 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1499   if (MBBI == instr_rend())
1500     return {};
1501   // Skip debug declarations, we don't want a DebugLoc from them.
1502   MBBI = next_nodbg(MBBI, instr_rend());
1503   if (MBBI != instr_rend())
1504     return MBBI->getDebugLoc();
1505   return {};
1506 }
1507 
1508 /// Find and return the merged DebugLoc of the branch instructions of the block.
1509 /// Return UnknownLoc if there is none.
1510 DebugLoc
1511 MachineBasicBlock::findBranchDebugLoc() {
1512   DebugLoc DL;
1513   auto TI = getFirstTerminator();
1514   while (TI != end() && !TI->isBranch())
1515     ++TI;
1516 
1517   if (TI != end()) {
1518     DL = TI->getDebugLoc();
1519     for (++TI ; TI != end() ; ++TI)
1520       if (TI->isBranch())
1521         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1522   }
1523   return DL;
1524 }
1525 
1526 /// Return probability of the edge from this block to MBB.
1527 BranchProbability
1528 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1529   if (Probs.empty())
1530     return BranchProbability(1, succ_size());
1531 
1532   const auto &Prob = *getProbabilityIterator(Succ);
1533   if (Prob.isUnknown()) {
1534     // For unknown probabilities, collect the sum of all known ones, and evenly
1535     // ditribute the complemental of the sum to each unknown probability.
1536     unsigned KnownProbNum = 0;
1537     auto Sum = BranchProbability::getZero();
1538     for (const auto &P : Probs) {
1539       if (!P.isUnknown()) {
1540         Sum += P;
1541         KnownProbNum++;
1542       }
1543     }
1544     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1545   } else
1546     return Prob;
1547 }
1548 
1549 /// Set successor probability of a given iterator.
1550 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1551                                            BranchProbability Prob) {
1552   assert(!Prob.isUnknown());
1553   if (Probs.empty())
1554     return;
1555   *getProbabilityIterator(I) = Prob;
1556 }
1557 
1558 /// Return probability iterator corresonding to the I successor iterator
1559 MachineBasicBlock::const_probability_iterator
1560 MachineBasicBlock::getProbabilityIterator(
1561     MachineBasicBlock::const_succ_iterator I) const {
1562   assert(Probs.size() == Successors.size() && "Async probability list!");
1563   const size_t index = std::distance(Successors.begin(), I);
1564   assert(index < Probs.size() && "Not a current successor!");
1565   return Probs.begin() + index;
1566 }
1567 
1568 /// Return probability iterator corresonding to the I successor iterator.
1569 MachineBasicBlock::probability_iterator
1570 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1571   assert(Probs.size() == Successors.size() && "Async probability list!");
1572   const size_t index = std::distance(Successors.begin(), I);
1573   assert(index < Probs.size() && "Not a current successor!");
1574   return Probs.begin() + index;
1575 }
1576 
1577 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1578 /// as of just before "MI".
1579 ///
1580 /// Search is localised to a neighborhood of
1581 /// Neighborhood instructions before (searching for defs or kills) and N
1582 /// instructions after (searching just for defs) MI.
1583 MachineBasicBlock::LivenessQueryResult
1584 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1585                                            MCRegister Reg, const_iterator Before,
1586                                            unsigned Neighborhood) const {
1587   unsigned N = Neighborhood;
1588 
1589   // Try searching forwards from Before, looking for reads or defs.
1590   const_iterator I(Before);
1591   for (; I != end() && N > 0; ++I) {
1592     if (I->isDebugOrPseudoInstr())
1593       continue;
1594 
1595     --N;
1596 
1597     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1598 
1599     // Register is live when we read it here.
1600     if (Info.Read)
1601       return LQR_Live;
1602     // Register is dead if we can fully overwrite or clobber it here.
1603     if (Info.FullyDefined || Info.Clobbered)
1604       return LQR_Dead;
1605   }
1606 
1607   // If we reached the end, it is safe to clobber Reg at the end of a block of
1608   // no successor has it live in.
1609   if (I == end()) {
1610     for (MachineBasicBlock *S : successors()) {
1611       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1612         if (TRI->regsOverlap(LI.PhysReg, Reg))
1613           return LQR_Live;
1614       }
1615     }
1616 
1617     return LQR_Dead;
1618   }
1619 
1620 
1621   N = Neighborhood;
1622 
1623   // Start by searching backwards from Before, looking for kills, reads or defs.
1624   I = const_iterator(Before);
1625   // If this is the first insn in the block, don't search backwards.
1626   if (I != begin()) {
1627     do {
1628       --I;
1629 
1630       if (I->isDebugOrPseudoInstr())
1631         continue;
1632 
1633       --N;
1634 
1635       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1636 
1637       // Defs happen after uses so they take precedence if both are present.
1638 
1639       // Register is dead after a dead def of the full register.
1640       if (Info.DeadDef)
1641         return LQR_Dead;
1642       // Register is (at least partially) live after a def.
1643       if (Info.Defined) {
1644         if (!Info.PartialDeadDef)
1645           return LQR_Live;
1646         // As soon as we saw a partial definition (dead or not),
1647         // we cannot tell if the value is partial live without
1648         // tracking the lanemasks. We are not going to do this,
1649         // so fall back on the remaining of the analysis.
1650         break;
1651       }
1652       // Register is dead after a full kill or clobber and no def.
1653       if (Info.Killed || Info.Clobbered)
1654         return LQR_Dead;
1655       // Register must be live if we read it.
1656       if (Info.Read)
1657         return LQR_Live;
1658 
1659     } while (I != begin() && N > 0);
1660   }
1661 
1662   // If all the instructions before this in the block are debug instructions,
1663   // skip over them.
1664   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1665     --I;
1666 
1667   // Did we get to the start of the block?
1668   if (I == begin()) {
1669     // If so, the register's state is definitely defined by the live-in state.
1670     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1671       if (TRI->regsOverlap(LI.PhysReg, Reg))
1672         return LQR_Live;
1673 
1674     return LQR_Dead;
1675   }
1676 
1677   // At this point we have no idea of the liveness of the register.
1678   return LQR_Unknown;
1679 }
1680 
1681 const uint32_t *
1682 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1683   // EH funclet entry does not preserve any registers.
1684   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1685 }
1686 
1687 const uint32_t *
1688 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1689   // If we see a return block with successors, this must be a funclet return,
1690   // which does not preserve any registers. If there are no successors, we don't
1691   // care what kind of return it is, putting a mask after it is a no-op.
1692   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1693 }
1694 
1695 void MachineBasicBlock::clearLiveIns() {
1696   LiveIns.clear();
1697 }
1698 
1699 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1700   assert(getParent()->getProperties().hasProperty(
1701       MachineFunctionProperties::Property::TracksLiveness) &&
1702       "Liveness information is accurate");
1703   return LiveIns.begin();
1704 }
1705 
1706 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1707   const MachineFunction &MF = *getParent();
1708   assert(MF.getProperties().hasProperty(
1709       MachineFunctionProperties::Property::TracksLiveness) &&
1710       "Liveness information is accurate");
1711 
1712   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1713   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1714   if (MF.getFunction().hasPersonalityFn()) {
1715     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1716     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1717     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1718   }
1719 
1720   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1721 }
1722 
1723 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1724   unsigned Cntr = 0;
1725   auto R = instructionsWithoutDebug(begin(), end());
1726   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1727     if (++Cntr > Limit)
1728       return true;
1729   }
1730   return false;
1731 }
1732 
1733 unsigned MachineBasicBlock::getBBIDOrNumber() const {
1734   uint8_t BBAddrMapVersion = getParent()->getContext().getBBAddrMapVersion();
1735   return BBAddrMapVersion < 2 ? getNumber() : *getBBID();
1736 }
1737 
1738 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1739 const MBBSectionID
1740     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1741