1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LivePhysRegs.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SlotIndexes.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <algorithm> 40 #include <cmath> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "codegen" 44 45 static cl::opt<bool> PrintSlotIndexes( 46 "print-slotindexes", 47 cl::desc("When printing machine IR, annotate instructions and blocks with " 48 "SlotIndexes when available"), 49 cl::init(true), cl::Hidden); 50 51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 52 : BB(B), Number(-1), xParent(&MF) { 53 Insts.Parent = this; 54 if (B) 55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 56 } 57 58 MachineBasicBlock::~MachineBasicBlock() = default; 59 60 /// Return the MCSymbol for this basic block. 61 MCSymbol *MachineBasicBlock::getSymbol() const { 62 if (!CachedMCSymbol) { 63 const MachineFunction *MF = getParent(); 64 MCContext &Ctx = MF->getContext(); 65 66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 67 // a section (with basic block sections). Otherwise we fall back to use temp 68 // label. 69 if (MF->hasBBSections() && isBeginSection()) { 70 SmallString<5> Suffix; 71 if (SectionID == MBBSectionID::ColdSectionID) { 72 Suffix += ".cold"; 73 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 74 Suffix += ".eh"; 75 } else { 76 // For symbols that represent basic block sections, we add ".__part." to 77 // allow tools like symbolizers to know that this represents a part of 78 // the original function. 79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 80 } 81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 82 } else { 83 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 84 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 85 Twine(MF->getFunctionNumber()) + 86 "_" + Twine(getNumber())); 87 } 88 } 89 return CachedMCSymbol; 90 } 91 92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 93 if (!CachedEHCatchretMCSymbol) { 94 const MachineFunction *MF = getParent(); 95 SmallString<128> SymbolName; 96 raw_svector_ostream(SymbolName) 97 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 98 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 99 } 100 return CachedEHCatchretMCSymbol; 101 } 102 103 MCSymbol *MachineBasicBlock::getEndSymbol() const { 104 if (!CachedEndMCSymbol) { 105 const MachineFunction *MF = getParent(); 106 MCContext &Ctx = MF->getContext(); 107 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 108 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 109 Twine(MF->getFunctionNumber()) + 110 "_" + Twine(getNumber())); 111 } 112 return CachedEndMCSymbol; 113 } 114 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 116 MBB.print(OS); 117 return OS; 118 } 119 120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 122 } 123 124 /// When an MBB is added to an MF, we need to update the parent pointer of the 125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 126 /// operand list for registers. 127 /// 128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 129 /// gets the next available unique MBB number. If it is removed from a 130 /// MachineFunction, it goes back to being #-1. 131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 132 MachineBasicBlock *N) { 133 MachineFunction &MF = *N->getParent(); 134 N->Number = MF.addToMBBNumbering(N); 135 136 // Make sure the instructions have their operands in the reginfo lists. 137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 138 for (MachineInstr &MI : N->instrs()) 139 MI.addRegOperandsToUseLists(RegInfo); 140 } 141 142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 143 MachineBasicBlock *N) { 144 N->getParent()->removeFromMBBNumbering(N->Number); 145 N->Number = -1; 146 } 147 148 /// When we add an instruction to a basic block list, we update its parent 149 /// pointer and add its operands from reg use/def lists if appropriate. 150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 151 assert(!N->getParent() && "machine instruction already in a basic block"); 152 N->setParent(Parent); 153 154 // Add the instruction's register operands to their corresponding 155 // use/def lists. 156 MachineFunction *MF = Parent->getParent(); 157 N->addRegOperandsToUseLists(MF->getRegInfo()); 158 MF->handleInsertion(*N); 159 } 160 161 /// When we remove an instruction from a basic block list, we update its parent 162 /// pointer and remove its operands from reg use/def lists if appropriate. 163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 164 assert(N->getParent() && "machine instruction not in a basic block"); 165 166 // Remove from the use/def lists. 167 if (MachineFunction *MF = N->getMF()) { 168 MF->handleRemoval(*N); 169 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 170 } 171 172 N->setParent(nullptr); 173 } 174 175 /// When moving a range of instructions from one MBB list to another, we need to 176 /// update the parent pointers and the use/def lists. 177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 178 instr_iterator First, 179 instr_iterator Last) { 180 assert(Parent->getParent() == FromList.Parent->getParent() && 181 "cannot transfer MachineInstrs between MachineFunctions"); 182 183 // If it's within the same BB, there's nothing to do. 184 if (this == &FromList) 185 return; 186 187 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 188 189 // If splicing between two blocks within the same function, just update the 190 // parent pointers. 191 for (; First != Last; ++First) 192 First->setParent(Parent); 193 } 194 195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 196 assert(!MI->getParent() && "MI is still in a block!"); 197 Parent->getParent()->deleteMachineInstr(MI); 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 201 instr_iterator I = instr_begin(), E = instr_end(); 202 while (I != E && I->isPHI()) 203 ++I; 204 assert((I == E || !I->isInsideBundle()) && 205 "First non-phi MI cannot be inside a bundle!"); 206 return I; 207 } 208 209 MachineBasicBlock::iterator 210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 212 213 iterator E = end(); 214 while (I != E && (I->isPHI() || I->isPosition() || 215 TII->isBasicBlockPrologue(*I))) 216 ++I; 217 // FIXME: This needs to change if we wish to bundle labels 218 // inside the bundle. 219 assert((I == E || !I->isInsideBundle()) && 220 "First non-phi / non-label instruction is inside a bundle!"); 221 return I; 222 } 223 224 MachineBasicBlock::iterator 225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 226 bool SkipPseudoOp) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 (SkipPseudoOp && I->isPseudoProbe()) || 232 TII->isBasicBlockPrologue(*I))) 233 ++I; 234 // FIXME: This needs to change if we wish to bundle labels / dbg_values 235 // inside the bundle. 236 assert((I == E || !I->isInsideBundle()) && 237 "First non-phi / non-label / non-debug " 238 "instruction is inside a bundle!"); 239 return I; 240 } 241 242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 243 iterator B = begin(), E = end(), I = E; 244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 245 ; /*noop */ 246 while (I != E && !I->isTerminator()) 247 ++I; 248 return I; 249 } 250 251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 252 instr_iterator B = instr_begin(), E = instr_end(), I = E; 253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 254 ; /*noop */ 255 while (I != E && !I->isTerminator()) 256 ++I; 257 return I; 258 } 259 260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 262 } 263 264 MachineBasicBlock::iterator 265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 266 // Skip over begin-of-block dbg_value instructions. 267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 268 } 269 270 MachineBasicBlock::iterator 271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 272 // Skip over end-of-block dbg_value instructions. 273 instr_iterator B = instr_begin(), I = instr_end(); 274 while (I != B) { 275 --I; 276 // Return instruction that starts a bundle. 277 if (I->isDebugInstr() || I->isInsideBundle()) 278 continue; 279 if (SkipPseudoOp && I->isPseudoProbe()) 280 continue; 281 return I; 282 } 283 // The block is all debug values. 284 return end(); 285 } 286 287 bool MachineBasicBlock::hasEHPadSuccessor() const { 288 for (const MachineBasicBlock *Succ : successors()) 289 if (Succ->isEHPad()) 290 return true; 291 return false; 292 } 293 294 bool MachineBasicBlock::isEntryBlock() const { 295 return getParent()->begin() == getIterator(); 296 } 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 300 print(dbgs()); 301 } 302 #endif 303 304 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 305 for (const MachineBasicBlock *Succ : successors()) { 306 if (Succ->isInlineAsmBrIndirectTarget()) 307 return true; 308 } 309 return false; 310 } 311 312 bool MachineBasicBlock::isLegalToHoistInto() const { 313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 314 return false; 315 return true; 316 } 317 318 StringRef MachineBasicBlock::getName() const { 319 if (const BasicBlock *LBB = getBasicBlock()) 320 return LBB->getName(); 321 else 322 return StringRef("", 0); 323 } 324 325 /// Return a hopefully unique identifier for this block. 326 std::string MachineBasicBlock::getFullName() const { 327 std::string Name; 328 if (getParent()) 329 Name = (getParent()->getName() + ":").str(); 330 if (getBasicBlock()) 331 Name += getBasicBlock()->getName(); 332 else 333 Name += ("BB" + Twine(getNumber())).str(); 334 return Name; 335 } 336 337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 338 bool IsStandalone) const { 339 const MachineFunction *MF = getParent(); 340 if (!MF) { 341 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 342 << " is null\n"; 343 return; 344 } 345 const Function &F = MF->getFunction(); 346 const Module *M = F.getParent(); 347 ModuleSlotTracker MST(M); 348 MST.incorporateFunction(F); 349 print(OS, MST, Indexes, IsStandalone); 350 } 351 352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 353 const SlotIndexes *Indexes, 354 bool IsStandalone) const { 355 const MachineFunction *MF = getParent(); 356 if (!MF) { 357 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 358 << " is null\n"; 359 return; 360 } 361 362 if (Indexes && PrintSlotIndexes) 363 OS << Indexes->getMBBStartIdx(this) << '\t'; 364 365 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 366 OS << ":\n"; 367 368 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 369 const MachineRegisterInfo &MRI = MF->getRegInfo(); 370 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 371 bool HasLineAttributes = false; 372 373 // Print the preds of this block according to the CFG. 374 if (!pred_empty() && IsStandalone) { 375 if (Indexes) OS << '\t'; 376 // Don't indent(2), align with previous line attributes. 377 OS << "; predecessors: "; 378 ListSeparator LS; 379 for (auto *Pred : predecessors()) 380 OS << LS << printMBBReference(*Pred); 381 OS << '\n'; 382 HasLineAttributes = true; 383 } 384 385 if (!succ_empty()) { 386 if (Indexes) OS << '\t'; 387 // Print the successors 388 OS.indent(2) << "successors: "; 389 ListSeparator LS; 390 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 391 OS << LS << printMBBReference(**I); 392 if (!Probs.empty()) 393 OS << '(' 394 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 395 << ')'; 396 } 397 if (!Probs.empty() && IsStandalone) { 398 // Print human readable probabilities as comments. 399 OS << "; "; 400 ListSeparator LS; 401 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 402 const BranchProbability &BP = getSuccProbability(I); 403 OS << LS << printMBBReference(**I) << '(' 404 << format("%.2f%%", 405 rint(((double)BP.getNumerator() / BP.getDenominator()) * 406 100.0 * 100.0) / 407 100.0) 408 << ')'; 409 } 410 } 411 412 OS << '\n'; 413 HasLineAttributes = true; 414 } 415 416 if (!livein_empty() && MRI.tracksLiveness()) { 417 if (Indexes) OS << '\t'; 418 OS.indent(2) << "liveins: "; 419 420 ListSeparator LS; 421 for (const auto &LI : liveins()) { 422 OS << LS << printReg(LI.PhysReg, TRI); 423 if (!LI.LaneMask.all()) 424 OS << ":0x" << PrintLaneMask(LI.LaneMask); 425 } 426 HasLineAttributes = true; 427 } 428 429 if (HasLineAttributes) 430 OS << '\n'; 431 432 bool IsInBundle = false; 433 for (const MachineInstr &MI : instrs()) { 434 if (Indexes && PrintSlotIndexes) { 435 if (Indexes->hasIndex(MI)) 436 OS << Indexes->getInstructionIndex(MI); 437 OS << '\t'; 438 } 439 440 if (IsInBundle && !MI.isInsideBundle()) { 441 OS.indent(2) << "}\n"; 442 IsInBundle = false; 443 } 444 445 OS.indent(IsInBundle ? 4 : 2); 446 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 447 /*AddNewLine=*/false, &TII); 448 449 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 450 OS << " {"; 451 IsInBundle = true; 452 } 453 OS << '\n'; 454 } 455 456 if (IsInBundle) 457 OS.indent(2) << "}\n"; 458 459 if (IrrLoopHeaderWeight && IsStandalone) { 460 if (Indexes) OS << '\t'; 461 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 462 << '\n'; 463 } 464 } 465 466 /// Print the basic block's name as: 467 /// 468 /// bb.{number}[.{ir-name}] [(attributes...)] 469 /// 470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 471 /// (which is the default). If the IR block has no name, it is identified 472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 473 /// 474 /// When the \ref PrintNameAttributes flag is passed, additional attributes 475 /// of the block are printed when set. 476 /// 477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 478 /// the parts to print. 479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 480 /// incorporate its own tracker when necessary to 481 /// determine the block's IR name. 482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 483 ModuleSlotTracker *moduleSlotTracker) const { 484 os << "bb." << getNumber(); 485 bool hasAttributes = false; 486 487 auto PrintBBRef = [&](const BasicBlock *bb) { 488 os << "%ir-block."; 489 if (bb->hasName()) { 490 os << bb->getName(); 491 } else { 492 int slot = -1; 493 494 if (moduleSlotTracker) { 495 slot = moduleSlotTracker->getLocalSlot(bb); 496 } else if (bb->getParent()) { 497 ModuleSlotTracker tmpTracker(bb->getModule(), false); 498 tmpTracker.incorporateFunction(*bb->getParent()); 499 slot = tmpTracker.getLocalSlot(bb); 500 } 501 502 if (slot == -1) 503 os << "<ir-block badref>"; 504 else 505 os << slot; 506 } 507 }; 508 509 if (printNameFlags & PrintNameIr) { 510 if (const auto *bb = getBasicBlock()) { 511 if (bb->hasName()) { 512 os << '.' << bb->getName(); 513 } else { 514 hasAttributes = true; 515 os << " ("; 516 PrintBBRef(bb); 517 } 518 } 519 } 520 521 if (printNameFlags & PrintNameAttributes) { 522 if (isMachineBlockAddressTaken()) { 523 os << (hasAttributes ? ", " : " ("); 524 os << "machine-block-address-taken"; 525 hasAttributes = true; 526 } 527 if (isIRBlockAddressTaken()) { 528 os << (hasAttributes ? ", " : " ("); 529 os << "ir-block-address-taken "; 530 PrintBBRef(getAddressTakenIRBlock()); 531 hasAttributes = true; 532 } 533 if (isEHPad()) { 534 os << (hasAttributes ? ", " : " ("); 535 os << "landing-pad"; 536 hasAttributes = true; 537 } 538 if (isInlineAsmBrIndirectTarget()) { 539 os << (hasAttributes ? ", " : " ("); 540 os << "inlineasm-br-indirect-target"; 541 hasAttributes = true; 542 } 543 if (isEHFuncletEntry()) { 544 os << (hasAttributes ? ", " : " ("); 545 os << "ehfunclet-entry"; 546 hasAttributes = true; 547 } 548 if (getAlignment() != Align(1)) { 549 os << (hasAttributes ? ", " : " ("); 550 os << "align " << getAlignment().value(); 551 hasAttributes = true; 552 } 553 if (getSectionID() != MBBSectionID(0)) { 554 os << (hasAttributes ? ", " : " ("); 555 os << "bbsections "; 556 switch (getSectionID().Type) { 557 case MBBSectionID::SectionType::Exception: 558 os << "Exception"; 559 break; 560 case MBBSectionID::SectionType::Cold: 561 os << "Cold"; 562 break; 563 default: 564 os << getSectionID().Number; 565 } 566 hasAttributes = true; 567 } 568 if (getBBID().has_value()) { 569 os << (hasAttributes ? ", " : " ("); 570 os << "bb_id " << *getBBID(); 571 hasAttributes = true; 572 } 573 } 574 575 if (hasAttributes) 576 os << ')'; 577 } 578 579 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 580 bool /*PrintType*/) const { 581 OS << '%'; 582 printName(OS, 0); 583 } 584 585 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 586 LiveInVector::iterator I = find_if( 587 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 588 if (I == LiveIns.end()) 589 return; 590 591 I->LaneMask &= ~LaneMask; 592 if (I->LaneMask.none()) 593 LiveIns.erase(I); 594 } 595 596 MachineBasicBlock::livein_iterator 597 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 598 // Get non-const version of iterator. 599 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 600 return LiveIns.erase(LI); 601 } 602 603 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 604 livein_iterator I = find_if( 605 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 606 return I != livein_end() && (I->LaneMask & LaneMask).any(); 607 } 608 609 void MachineBasicBlock::sortUniqueLiveIns() { 610 llvm::sort(LiveIns, 611 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 612 return LI0.PhysReg < LI1.PhysReg; 613 }); 614 // Liveins are sorted by physreg now we can merge their lanemasks. 615 LiveInVector::const_iterator I = LiveIns.begin(); 616 LiveInVector::const_iterator J; 617 LiveInVector::iterator Out = LiveIns.begin(); 618 for (; I != LiveIns.end(); ++Out, I = J) { 619 MCRegister PhysReg = I->PhysReg; 620 LaneBitmask LaneMask = I->LaneMask; 621 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 622 LaneMask |= J->LaneMask; 623 Out->PhysReg = PhysReg; 624 Out->LaneMask = LaneMask; 625 } 626 LiveIns.erase(Out, LiveIns.end()); 627 } 628 629 Register 630 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 631 assert(getParent() && "MBB must be inserted in function"); 632 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 633 assert(RC && "Register class is required"); 634 assert((isEHPad() || this == &getParent()->front()) && 635 "Only the entry block and landing pads can have physreg live ins"); 636 637 bool LiveIn = isLiveIn(PhysReg); 638 iterator I = SkipPHIsAndLabels(begin()), E = end(); 639 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 640 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 641 642 // Look for an existing copy. 643 if (LiveIn) 644 for (;I != E && I->isCopy(); ++I) 645 if (I->getOperand(1).getReg() == PhysReg) { 646 Register VirtReg = I->getOperand(0).getReg(); 647 if (!MRI.constrainRegClass(VirtReg, RC)) 648 llvm_unreachable("Incompatible live-in register class."); 649 return VirtReg; 650 } 651 652 // No luck, create a virtual register. 653 Register VirtReg = MRI.createVirtualRegister(RC); 654 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 655 .addReg(PhysReg, RegState::Kill); 656 if (!LiveIn) 657 addLiveIn(PhysReg); 658 return VirtReg; 659 } 660 661 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 662 getParent()->splice(NewAfter->getIterator(), getIterator()); 663 } 664 665 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 666 getParent()->splice(++NewBefore->getIterator(), getIterator()); 667 } 668 669 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 670 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 671 if (TerminatorI == MBB.end()) 672 return -1; 673 const MachineInstr &Terminator = *TerminatorI; 674 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 675 return TII->getJumpTableIndex(Terminator); 676 } 677 678 void MachineBasicBlock::updateTerminator( 679 MachineBasicBlock *PreviousLayoutSuccessor) { 680 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 681 << "\n"); 682 683 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 684 // A block with no successors has no concerns with fall-through edges. 685 if (this->succ_empty()) 686 return; 687 688 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 689 SmallVector<MachineOperand, 4> Cond; 690 DebugLoc DL = findBranchDebugLoc(); 691 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 692 (void) B; 693 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 694 if (Cond.empty()) { 695 if (TBB) { 696 // The block has an unconditional branch. If its successor is now its 697 // layout successor, delete the branch. 698 if (isLayoutSuccessor(TBB)) 699 TII->removeBranch(*this); 700 } else { 701 // The block has an unconditional fallthrough, or the end of the block is 702 // unreachable. 703 704 // Unfortunately, whether the end of the block is unreachable is not 705 // immediately obvious; we must fall back to checking the successor list, 706 // and assuming that if the passed in block is in the succesor list and 707 // not an EHPad, it must be the intended target. 708 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 709 PreviousLayoutSuccessor->isEHPad()) 710 return; 711 712 // If the unconditional successor block is not the current layout 713 // successor, insert a branch to jump to it. 714 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 715 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 716 } 717 return; 718 } 719 720 if (FBB) { 721 // The block has a non-fallthrough conditional branch. If one of its 722 // successors is its layout successor, rewrite it to a fallthrough 723 // conditional branch. 724 if (isLayoutSuccessor(TBB)) { 725 if (TII->reverseBranchCondition(Cond)) 726 return; 727 TII->removeBranch(*this); 728 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 729 } else if (isLayoutSuccessor(FBB)) { 730 TII->removeBranch(*this); 731 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 732 } 733 return; 734 } 735 736 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 737 assert(PreviousLayoutSuccessor); 738 assert(!PreviousLayoutSuccessor->isEHPad()); 739 assert(isSuccessor(PreviousLayoutSuccessor)); 740 741 if (PreviousLayoutSuccessor == TBB) { 742 // We had a fallthrough to the same basic block as the conditional jump 743 // targets. Remove the conditional jump, leaving an unconditional 744 // fallthrough or an unconditional jump. 745 TII->removeBranch(*this); 746 if (!isLayoutSuccessor(TBB)) { 747 Cond.clear(); 748 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 749 } 750 return; 751 } 752 753 // The block has a fallthrough conditional branch. 754 if (isLayoutSuccessor(TBB)) { 755 if (TII->reverseBranchCondition(Cond)) { 756 // We can't reverse the condition, add an unconditional branch. 757 Cond.clear(); 758 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 759 return; 760 } 761 TII->removeBranch(*this); 762 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 763 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 764 TII->removeBranch(*this); 765 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 766 } 767 } 768 769 void MachineBasicBlock::validateSuccProbs() const { 770 #ifndef NDEBUG 771 int64_t Sum = 0; 772 for (auto Prob : Probs) 773 Sum += Prob.getNumerator(); 774 // Due to precision issue, we assume that the sum of probabilities is one if 775 // the difference between the sum of their numerators and the denominator is 776 // no greater than the number of successors. 777 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 778 Probs.size() && 779 "The sum of successors's probabilities exceeds one."); 780 #endif // NDEBUG 781 } 782 783 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 784 BranchProbability Prob) { 785 // Probability list is either empty (if successor list isn't empty, this means 786 // disabled optimization) or has the same size as successor list. 787 if (!(Probs.empty() && !Successors.empty())) 788 Probs.push_back(Prob); 789 Successors.push_back(Succ); 790 Succ->addPredecessor(this); 791 } 792 793 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 794 // We need to make sure probability list is either empty or has the same size 795 // of successor list. When this function is called, we can safely delete all 796 // probability in the list. 797 Probs.clear(); 798 Successors.push_back(Succ); 799 Succ->addPredecessor(this); 800 } 801 802 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 803 MachineBasicBlock *New, 804 bool NormalizeSuccProbs) { 805 succ_iterator OldI = llvm::find(successors(), Old); 806 assert(OldI != succ_end() && "Old is not a successor of this block!"); 807 assert(!llvm::is_contained(successors(), New) && 808 "New is already a successor of this block!"); 809 810 // Add a new successor with equal probability as the original one. Note 811 // that we directly copy the probability using the iterator rather than 812 // getting a potentially synthetic probability computed when unknown. This 813 // preserves the probabilities as-is and then we can renormalize them and 814 // query them effectively afterward. 815 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 816 : *getProbabilityIterator(OldI)); 817 if (NormalizeSuccProbs) 818 normalizeSuccProbs(); 819 } 820 821 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 822 bool NormalizeSuccProbs) { 823 succ_iterator I = find(Successors, Succ); 824 removeSuccessor(I, NormalizeSuccProbs); 825 } 826 827 MachineBasicBlock::succ_iterator 828 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 829 assert(I != Successors.end() && "Not a current successor!"); 830 831 // If probability list is empty it means we don't use it (disabled 832 // optimization). 833 if (!Probs.empty()) { 834 probability_iterator WI = getProbabilityIterator(I); 835 Probs.erase(WI); 836 if (NormalizeSuccProbs) 837 normalizeSuccProbs(); 838 } 839 840 (*I)->removePredecessor(this); 841 return Successors.erase(I); 842 } 843 844 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 845 MachineBasicBlock *New) { 846 if (Old == New) 847 return; 848 849 succ_iterator E = succ_end(); 850 succ_iterator NewI = E; 851 succ_iterator OldI = E; 852 for (succ_iterator I = succ_begin(); I != E; ++I) { 853 if (*I == Old) { 854 OldI = I; 855 if (NewI != E) 856 break; 857 } 858 if (*I == New) { 859 NewI = I; 860 if (OldI != E) 861 break; 862 } 863 } 864 assert(OldI != E && "Old is not a successor of this block"); 865 866 // If New isn't already a successor, let it take Old's place. 867 if (NewI == E) { 868 Old->removePredecessor(this); 869 New->addPredecessor(this); 870 *OldI = New; 871 return; 872 } 873 874 // New is already a successor. 875 // Update its probability instead of adding a duplicate edge. 876 if (!Probs.empty()) { 877 auto ProbIter = getProbabilityIterator(NewI); 878 if (!ProbIter->isUnknown()) 879 *ProbIter += *getProbabilityIterator(OldI); 880 } 881 removeSuccessor(OldI); 882 } 883 884 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 885 succ_iterator I) { 886 if (!Orig->Probs.empty()) 887 addSuccessor(*I, Orig->getSuccProbability(I)); 888 else 889 addSuccessorWithoutProb(*I); 890 } 891 892 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 893 Predecessors.push_back(Pred); 894 } 895 896 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 897 pred_iterator I = find(Predecessors, Pred); 898 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 899 Predecessors.erase(I); 900 } 901 902 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 903 if (this == FromMBB) 904 return; 905 906 while (!FromMBB->succ_empty()) { 907 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 908 909 // If probability list is empty it means we don't use it (disabled 910 // optimization). 911 if (!FromMBB->Probs.empty()) { 912 auto Prob = *FromMBB->Probs.begin(); 913 addSuccessor(Succ, Prob); 914 } else 915 addSuccessorWithoutProb(Succ); 916 917 FromMBB->removeSuccessor(Succ); 918 } 919 } 920 921 void 922 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 923 if (this == FromMBB) 924 return; 925 926 while (!FromMBB->succ_empty()) { 927 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 928 if (!FromMBB->Probs.empty()) { 929 auto Prob = *FromMBB->Probs.begin(); 930 addSuccessor(Succ, Prob); 931 } else 932 addSuccessorWithoutProb(Succ); 933 FromMBB->removeSuccessor(Succ); 934 935 // Fix up any PHI nodes in the successor. 936 Succ->replacePhiUsesWith(FromMBB, this); 937 } 938 normalizeSuccProbs(); 939 } 940 941 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 942 return is_contained(predecessors(), MBB); 943 } 944 945 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 946 return is_contained(successors(), MBB); 947 } 948 949 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 950 MachineFunction::const_iterator I(this); 951 return std::next(I) == MachineFunction::const_iterator(MBB); 952 } 953 954 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 955 return Successors.size() == 1 ? Successors[0] : nullptr; 956 } 957 958 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 959 MachineFunction::iterator Fallthrough = getIterator(); 960 ++Fallthrough; 961 // If FallthroughBlock is off the end of the function, it can't fall through. 962 if (Fallthrough == getParent()->end()) 963 return nullptr; 964 965 // If FallthroughBlock isn't a successor, no fallthrough is possible. 966 if (!isSuccessor(&*Fallthrough)) 967 return nullptr; 968 969 // Analyze the branches, if any, at the end of the block. 970 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 971 SmallVector<MachineOperand, 4> Cond; 972 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 973 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 974 // If we couldn't analyze the branch, examine the last instruction. 975 // If the block doesn't end in a known control barrier, assume fallthrough 976 // is possible. The isPredicated check is needed because this code can be 977 // called during IfConversion, where an instruction which is normally a 978 // Barrier is predicated and thus no longer an actual control barrier. 979 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 980 ? &*Fallthrough 981 : nullptr; 982 } 983 984 // If there is no branch, control always falls through. 985 if (!TBB) return &*Fallthrough; 986 987 // If there is some explicit branch to the fallthrough block, it can obviously 988 // reach, even though the branch should get folded to fall through implicitly. 989 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 990 MachineFunction::iterator(FBB) == Fallthrough)) 991 return &*Fallthrough; 992 993 // If it's an unconditional branch to some block not the fall through, it 994 // doesn't fall through. 995 if (Cond.empty()) return nullptr; 996 997 // Otherwise, if it is conditional and has no explicit false block, it falls 998 // through. 999 return (FBB == nullptr) ? &*Fallthrough : nullptr; 1000 } 1001 1002 bool MachineBasicBlock::canFallThrough() { 1003 return getFallThrough() != nullptr; 1004 } 1005 1006 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1007 bool UpdateLiveIns, 1008 LiveIntervals *LIS) { 1009 MachineBasicBlock::iterator SplitPoint(&MI); 1010 ++SplitPoint; 1011 1012 if (SplitPoint == end()) { 1013 // Don't bother with a new block. 1014 return this; 1015 } 1016 1017 MachineFunction *MF = getParent(); 1018 1019 LivePhysRegs LiveRegs; 1020 if (UpdateLiveIns) { 1021 // Make sure we add any physregs we define in the block as liveins to the 1022 // new block. 1023 MachineBasicBlock::iterator Prev(&MI); 1024 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1025 LiveRegs.addLiveOuts(*this); 1026 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1027 LiveRegs.stepBackward(*I); 1028 } 1029 1030 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1031 1032 MF->insert(++MachineFunction::iterator(this), SplitBB); 1033 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1034 1035 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1036 addSuccessor(SplitBB); 1037 1038 if (UpdateLiveIns) 1039 addLiveIns(*SplitBB, LiveRegs); 1040 1041 if (LIS) 1042 LIS->insertMBBInMaps(SplitBB); 1043 1044 return SplitBB; 1045 } 1046 1047 // Returns `true` if there are possibly other users of the jump table at 1048 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1049 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1050 const MachineBasicBlock &IgnoreMBB, 1051 int JumpTableIndex) { 1052 assert(JumpTableIndex >= 0 && "need valid index"); 1053 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1054 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1055 // Take any basic block from the table; every user of the jump table must 1056 // show up in the predecessor list. 1057 const MachineBasicBlock *MBB = nullptr; 1058 for (MachineBasicBlock *B : MJTE.MBBs) { 1059 if (B != nullptr) { 1060 MBB = B; 1061 break; 1062 } 1063 } 1064 if (MBB == nullptr) 1065 return true; // can't rule out other users if there isn't any block. 1066 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1067 SmallVector<MachineOperand, 4> Cond; 1068 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1069 if (Pred == &IgnoreMBB) 1070 continue; 1071 MachineBasicBlock *DummyT = nullptr; 1072 MachineBasicBlock *DummyF = nullptr; 1073 Cond.clear(); 1074 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1075 /*AllowModify=*/false)) { 1076 // analyzable direct jump 1077 continue; 1078 } 1079 int PredJTI = findJumpTableIndex(*Pred); 1080 if (PredJTI >= 0) { 1081 if (PredJTI == JumpTableIndex) 1082 return true; 1083 continue; 1084 } 1085 // Be conservative for unanalyzable jumps. 1086 return true; 1087 } 1088 return false; 1089 } 1090 1091 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1092 MachineBasicBlock *Succ, Pass &P, 1093 std::vector<SparseBitVector<>> *LiveInSets) { 1094 if (!canSplitCriticalEdge(Succ)) 1095 return nullptr; 1096 1097 MachineFunction *MF = getParent(); 1098 MachineBasicBlock *PrevFallthrough = getNextNode(); 1099 DebugLoc DL; // FIXME: this is nowhere 1100 1101 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1102 1103 // Is there an indirect jump with jump table? 1104 bool ChangedIndirectJump = false; 1105 int JTI = findJumpTableIndex(*this); 1106 if (JTI >= 0) { 1107 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1108 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1109 ChangedIndirectJump = true; 1110 } 1111 1112 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1113 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1114 << " -- " << printMBBReference(*NMBB) << " -- " 1115 << printMBBReference(*Succ) << '\n'); 1116 1117 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1118 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1119 if (LIS) 1120 LIS->insertMBBInMaps(NMBB); 1121 else if (Indexes) 1122 Indexes->insertMBBInMaps(NMBB); 1123 1124 // On some targets like Mips, branches may kill virtual registers. Make sure 1125 // that LiveVariables is properly updated after updateTerminator replaces the 1126 // terminators. 1127 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1128 1129 // Collect a list of virtual registers killed by the terminators. 1130 SmallVector<Register, 4> KilledRegs; 1131 if (LV) 1132 for (MachineInstr &MI : 1133 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1134 for (MachineOperand &MO : MI.all_uses()) { 1135 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1136 continue; 1137 Register Reg = MO.getReg(); 1138 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1139 KilledRegs.push_back(Reg); 1140 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1141 MO.setIsKill(false); 1142 } 1143 } 1144 } 1145 1146 SmallVector<Register, 4> UsedRegs; 1147 if (LIS) { 1148 for (MachineInstr &MI : 1149 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1150 for (const MachineOperand &MO : MI.operands()) { 1151 if (!MO.isReg() || MO.getReg() == 0) 1152 continue; 1153 1154 Register Reg = MO.getReg(); 1155 if (!is_contained(UsedRegs, Reg)) 1156 UsedRegs.push_back(Reg); 1157 } 1158 } 1159 } 1160 1161 ReplaceUsesOfBlockWith(Succ, NMBB); 1162 1163 // If updateTerminator() removes instructions, we need to remove them from 1164 // SlotIndexes. 1165 SmallVector<MachineInstr*, 4> Terminators; 1166 if (Indexes) { 1167 for (MachineInstr &MI : 1168 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1169 Terminators.push_back(&MI); 1170 } 1171 1172 // Since we replaced all uses of Succ with NMBB, that should also be treated 1173 // as the fallthrough successor 1174 if (Succ == PrevFallthrough) 1175 PrevFallthrough = NMBB; 1176 1177 if (!ChangedIndirectJump) 1178 updateTerminator(PrevFallthrough); 1179 1180 if (Indexes) { 1181 SmallVector<MachineInstr*, 4> NewTerminators; 1182 for (MachineInstr &MI : 1183 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1184 NewTerminators.push_back(&MI); 1185 1186 for (MachineInstr *Terminator : Terminators) { 1187 if (!is_contained(NewTerminators, Terminator)) 1188 Indexes->removeMachineInstrFromMaps(*Terminator); 1189 } 1190 } 1191 1192 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1193 NMBB->addSuccessor(Succ); 1194 if (!NMBB->isLayoutSuccessor(Succ)) { 1195 SmallVector<MachineOperand, 4> Cond; 1196 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1197 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1198 1199 if (Indexes) { 1200 for (MachineInstr &MI : NMBB->instrs()) { 1201 // Some instructions may have been moved to NMBB by updateTerminator(), 1202 // so we first remove any instruction that already has an index. 1203 if (Indexes->hasIndex(MI)) 1204 Indexes->removeMachineInstrFromMaps(MI); 1205 Indexes->insertMachineInstrInMaps(MI); 1206 } 1207 } 1208 } 1209 1210 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1211 Succ->replacePhiUsesWith(this, NMBB); 1212 1213 // Inherit live-ins from the successor 1214 for (const auto &LI : Succ->liveins()) 1215 NMBB->addLiveIn(LI); 1216 1217 // Update LiveVariables. 1218 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1219 if (LV) { 1220 // Restore kills of virtual registers that were killed by the terminators. 1221 while (!KilledRegs.empty()) { 1222 Register Reg = KilledRegs.pop_back_val(); 1223 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1224 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1225 continue; 1226 if (Reg.isVirtual()) 1227 LV->getVarInfo(Reg).Kills.push_back(&*I); 1228 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1229 break; 1230 } 1231 } 1232 // Update relevant live-through information. 1233 if (LiveInSets != nullptr) 1234 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1235 else 1236 LV->addNewBlock(NMBB, this, Succ); 1237 } 1238 1239 if (LIS) { 1240 // After splitting the edge and updating SlotIndexes, live intervals may be 1241 // in one of two situations, depending on whether this block was the last in 1242 // the function. If the original block was the last in the function, all 1243 // live intervals will end prior to the beginning of the new split block. If 1244 // the original block was not at the end of the function, all live intervals 1245 // will extend to the end of the new split block. 1246 1247 bool isLastMBB = 1248 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1249 1250 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1251 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1252 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1253 1254 // Find the registers used from NMBB in PHIs in Succ. 1255 SmallSet<Register, 8> PHISrcRegs; 1256 for (MachineBasicBlock::instr_iterator 1257 I = Succ->instr_begin(), E = Succ->instr_end(); 1258 I != E && I->isPHI(); ++I) { 1259 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1260 if (I->getOperand(ni+1).getMBB() == NMBB) { 1261 MachineOperand &MO = I->getOperand(ni); 1262 Register Reg = MO.getReg(); 1263 PHISrcRegs.insert(Reg); 1264 if (MO.isUndef()) 1265 continue; 1266 1267 LiveInterval &LI = LIS->getInterval(Reg); 1268 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1269 assert(VNI && 1270 "PHI sources should be live out of their predecessors."); 1271 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1272 } 1273 } 1274 } 1275 1276 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1277 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1278 Register Reg = Register::index2VirtReg(i); 1279 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1280 continue; 1281 1282 LiveInterval &LI = LIS->getInterval(Reg); 1283 if (!LI.liveAt(PrevIndex)) 1284 continue; 1285 1286 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1287 if (isLiveOut && isLastMBB) { 1288 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1289 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1290 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1291 } else if (!isLiveOut && !isLastMBB) { 1292 LI.removeSegment(StartIndex, EndIndex); 1293 } 1294 } 1295 1296 // Update all intervals for registers whose uses may have been modified by 1297 // updateTerminator(). 1298 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1299 } 1300 1301 if (MachineDominatorTree *MDT = 1302 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1303 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1304 1305 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1306 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1307 // If one or the other blocks were not in a loop, the new block is not 1308 // either, and thus LI doesn't need to be updated. 1309 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1310 if (TIL == DestLoop) { 1311 // Both in the same loop, the NMBB joins loop. 1312 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1313 } else if (TIL->contains(DestLoop)) { 1314 // Edge from an outer loop to an inner loop. Add to the outer loop. 1315 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1316 } else if (DestLoop->contains(TIL)) { 1317 // Edge from an inner loop to an outer loop. Add to the outer loop. 1318 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1319 } else { 1320 // Edge from two loops with no containment relation. Because these 1321 // are natural loops, we know that the destination block must be the 1322 // header of its loop (adding a branch into a loop elsewhere would 1323 // create an irreducible loop). 1324 assert(DestLoop->getHeader() == Succ && 1325 "Should not create irreducible loops!"); 1326 if (MachineLoop *P = DestLoop->getParentLoop()) 1327 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1328 } 1329 } 1330 } 1331 1332 return NMBB; 1333 } 1334 1335 bool MachineBasicBlock::canSplitCriticalEdge( 1336 const MachineBasicBlock *Succ) const { 1337 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1338 // it in this generic function. 1339 if (Succ->isEHPad()) 1340 return false; 1341 1342 // Splitting the critical edge to a callbr's indirect block isn't advised. 1343 // Don't do it in this generic function. 1344 if (Succ->isInlineAsmBrIndirectTarget()) 1345 return false; 1346 1347 const MachineFunction *MF = getParent(); 1348 // Performance might be harmed on HW that implements branching using exec mask 1349 // where both sides of the branches are always executed. 1350 if (MF->getTarget().requiresStructuredCFG()) 1351 return false; 1352 1353 // Do we have an Indirect jump with a jumptable that we can rewrite? 1354 int JTI = findJumpTableIndex(*this); 1355 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1356 return true; 1357 1358 // We may need to update this's terminator, but we can't do that if 1359 // analyzeBranch fails. 1360 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1361 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1362 SmallVector<MachineOperand, 4> Cond; 1363 // AnalyzeBanch should modify this, since we did not allow modification. 1364 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1365 /*AllowModify*/ false)) 1366 return false; 1367 1368 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1369 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1370 // case that we can't handle. Since this never happens in properly optimized 1371 // code, just skip those edges. 1372 if (TBB && TBB == FBB) { 1373 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1374 << printMBBReference(*this) << '\n'); 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1381 /// neighboring instructions so the bundle won't be broken by removing MI. 1382 static void unbundleSingleMI(MachineInstr *MI) { 1383 // Removing the first instruction in a bundle. 1384 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1385 MI->unbundleFromSucc(); 1386 // Removing the last instruction in a bundle. 1387 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1388 MI->unbundleFromPred(); 1389 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1390 // are already fine. 1391 } 1392 1393 MachineBasicBlock::instr_iterator 1394 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1395 unbundleSingleMI(&*I); 1396 return Insts.erase(I); 1397 } 1398 1399 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1400 unbundleSingleMI(MI); 1401 MI->clearFlag(MachineInstr::BundledPred); 1402 MI->clearFlag(MachineInstr::BundledSucc); 1403 return Insts.remove(MI); 1404 } 1405 1406 MachineBasicBlock::instr_iterator 1407 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1408 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1409 "Cannot insert instruction with bundle flags"); 1410 // Set the bundle flags when inserting inside a bundle. 1411 if (I != instr_end() && I->isBundledWithPred()) { 1412 MI->setFlag(MachineInstr::BundledPred); 1413 MI->setFlag(MachineInstr::BundledSucc); 1414 } 1415 return Insts.insert(I, MI); 1416 } 1417 1418 /// This method unlinks 'this' from the containing function, and returns it, but 1419 /// does not delete it. 1420 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1421 assert(getParent() && "Not embedded in a function!"); 1422 getParent()->remove(this); 1423 return this; 1424 } 1425 1426 /// This method unlinks 'this' from the containing function, and deletes it. 1427 void MachineBasicBlock::eraseFromParent() { 1428 assert(getParent() && "Not embedded in a function!"); 1429 getParent()->erase(this); 1430 } 1431 1432 /// Given a machine basic block that branched to 'Old', change the code and CFG 1433 /// so that it branches to 'New' instead. 1434 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1435 MachineBasicBlock *New) { 1436 assert(Old != New && "Cannot replace self with self!"); 1437 1438 MachineBasicBlock::instr_iterator I = instr_end(); 1439 while (I != instr_begin()) { 1440 --I; 1441 if (!I->isTerminator()) break; 1442 1443 // Scan the operands of this machine instruction, replacing any uses of Old 1444 // with New. 1445 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1446 if (I->getOperand(i).isMBB() && 1447 I->getOperand(i).getMBB() == Old) 1448 I->getOperand(i).setMBB(New); 1449 } 1450 1451 // Update the successor information. 1452 replaceSuccessor(Old, New); 1453 } 1454 1455 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1456 MachineBasicBlock *New) { 1457 for (MachineInstr &MI : phis()) 1458 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1459 MachineOperand &MO = MI.getOperand(i); 1460 if (MO.getMBB() == Old) 1461 MO.setMBB(New); 1462 } 1463 } 1464 1465 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1466 /// instructions. Return UnknownLoc if there is none. 1467 DebugLoc 1468 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1469 // Skip debug declarations, we don't want a DebugLoc from them. 1470 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1471 if (MBBI != instr_end()) 1472 return MBBI->getDebugLoc(); 1473 return {}; 1474 } 1475 1476 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1477 if (MBBI == instr_rend()) 1478 return findDebugLoc(instr_begin()); 1479 // Skip debug declarations, we don't want a DebugLoc from them. 1480 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1481 if (!MBBI->isDebugInstr()) 1482 return MBBI->getDebugLoc(); 1483 return {}; 1484 } 1485 1486 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1487 /// instructions. Return UnknownLoc if there is none. 1488 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1489 if (MBBI == instr_begin()) 1490 return {}; 1491 // Skip debug instructions, we don't want a DebugLoc from them. 1492 MBBI = prev_nodbg(MBBI, instr_begin()); 1493 if (!MBBI->isDebugInstr()) 1494 return MBBI->getDebugLoc(); 1495 return {}; 1496 } 1497 1498 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1499 if (MBBI == instr_rend()) 1500 return {}; 1501 // Skip debug declarations, we don't want a DebugLoc from them. 1502 MBBI = next_nodbg(MBBI, instr_rend()); 1503 if (MBBI != instr_rend()) 1504 return MBBI->getDebugLoc(); 1505 return {}; 1506 } 1507 1508 /// Find and return the merged DebugLoc of the branch instructions of the block. 1509 /// Return UnknownLoc if there is none. 1510 DebugLoc 1511 MachineBasicBlock::findBranchDebugLoc() { 1512 DebugLoc DL; 1513 auto TI = getFirstTerminator(); 1514 while (TI != end() && !TI->isBranch()) 1515 ++TI; 1516 1517 if (TI != end()) { 1518 DL = TI->getDebugLoc(); 1519 for (++TI ; TI != end() ; ++TI) 1520 if (TI->isBranch()) 1521 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1522 } 1523 return DL; 1524 } 1525 1526 /// Return probability of the edge from this block to MBB. 1527 BranchProbability 1528 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1529 if (Probs.empty()) 1530 return BranchProbability(1, succ_size()); 1531 1532 const auto &Prob = *getProbabilityIterator(Succ); 1533 if (Prob.isUnknown()) { 1534 // For unknown probabilities, collect the sum of all known ones, and evenly 1535 // ditribute the complemental of the sum to each unknown probability. 1536 unsigned KnownProbNum = 0; 1537 auto Sum = BranchProbability::getZero(); 1538 for (const auto &P : Probs) { 1539 if (!P.isUnknown()) { 1540 Sum += P; 1541 KnownProbNum++; 1542 } 1543 } 1544 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1545 } else 1546 return Prob; 1547 } 1548 1549 /// Set successor probability of a given iterator. 1550 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1551 BranchProbability Prob) { 1552 assert(!Prob.isUnknown()); 1553 if (Probs.empty()) 1554 return; 1555 *getProbabilityIterator(I) = Prob; 1556 } 1557 1558 /// Return probability iterator corresonding to the I successor iterator 1559 MachineBasicBlock::const_probability_iterator 1560 MachineBasicBlock::getProbabilityIterator( 1561 MachineBasicBlock::const_succ_iterator I) const { 1562 assert(Probs.size() == Successors.size() && "Async probability list!"); 1563 const size_t index = std::distance(Successors.begin(), I); 1564 assert(index < Probs.size() && "Not a current successor!"); 1565 return Probs.begin() + index; 1566 } 1567 1568 /// Return probability iterator corresonding to the I successor iterator. 1569 MachineBasicBlock::probability_iterator 1570 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1571 assert(Probs.size() == Successors.size() && "Async probability list!"); 1572 const size_t index = std::distance(Successors.begin(), I); 1573 assert(index < Probs.size() && "Not a current successor!"); 1574 return Probs.begin() + index; 1575 } 1576 1577 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1578 /// as of just before "MI". 1579 /// 1580 /// Search is localised to a neighborhood of 1581 /// Neighborhood instructions before (searching for defs or kills) and N 1582 /// instructions after (searching just for defs) MI. 1583 MachineBasicBlock::LivenessQueryResult 1584 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1585 MCRegister Reg, const_iterator Before, 1586 unsigned Neighborhood) const { 1587 unsigned N = Neighborhood; 1588 1589 // Try searching forwards from Before, looking for reads or defs. 1590 const_iterator I(Before); 1591 for (; I != end() && N > 0; ++I) { 1592 if (I->isDebugOrPseudoInstr()) 1593 continue; 1594 1595 --N; 1596 1597 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1598 1599 // Register is live when we read it here. 1600 if (Info.Read) 1601 return LQR_Live; 1602 // Register is dead if we can fully overwrite or clobber it here. 1603 if (Info.FullyDefined || Info.Clobbered) 1604 return LQR_Dead; 1605 } 1606 1607 // If we reached the end, it is safe to clobber Reg at the end of a block of 1608 // no successor has it live in. 1609 if (I == end()) { 1610 for (MachineBasicBlock *S : successors()) { 1611 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1612 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1613 return LQR_Live; 1614 } 1615 } 1616 1617 return LQR_Dead; 1618 } 1619 1620 1621 N = Neighborhood; 1622 1623 // Start by searching backwards from Before, looking for kills, reads or defs. 1624 I = const_iterator(Before); 1625 // If this is the first insn in the block, don't search backwards. 1626 if (I != begin()) { 1627 do { 1628 --I; 1629 1630 if (I->isDebugOrPseudoInstr()) 1631 continue; 1632 1633 --N; 1634 1635 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1636 1637 // Defs happen after uses so they take precedence if both are present. 1638 1639 // Register is dead after a dead def of the full register. 1640 if (Info.DeadDef) 1641 return LQR_Dead; 1642 // Register is (at least partially) live after a def. 1643 if (Info.Defined) { 1644 if (!Info.PartialDeadDef) 1645 return LQR_Live; 1646 // As soon as we saw a partial definition (dead or not), 1647 // we cannot tell if the value is partial live without 1648 // tracking the lanemasks. We are not going to do this, 1649 // so fall back on the remaining of the analysis. 1650 break; 1651 } 1652 // Register is dead after a full kill or clobber and no def. 1653 if (Info.Killed || Info.Clobbered) 1654 return LQR_Dead; 1655 // Register must be live if we read it. 1656 if (Info.Read) 1657 return LQR_Live; 1658 1659 } while (I != begin() && N > 0); 1660 } 1661 1662 // If all the instructions before this in the block are debug instructions, 1663 // skip over them. 1664 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1665 --I; 1666 1667 // Did we get to the start of the block? 1668 if (I == begin()) { 1669 // If so, the register's state is definitely defined by the live-in state. 1670 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1671 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1672 return LQR_Live; 1673 1674 return LQR_Dead; 1675 } 1676 1677 // At this point we have no idea of the liveness of the register. 1678 return LQR_Unknown; 1679 } 1680 1681 const uint32_t * 1682 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1683 // EH funclet entry does not preserve any registers. 1684 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1685 } 1686 1687 const uint32_t * 1688 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1689 // If we see a return block with successors, this must be a funclet return, 1690 // which does not preserve any registers. If there are no successors, we don't 1691 // care what kind of return it is, putting a mask after it is a no-op. 1692 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1693 } 1694 1695 void MachineBasicBlock::clearLiveIns() { 1696 LiveIns.clear(); 1697 } 1698 1699 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1700 assert(getParent()->getProperties().hasProperty( 1701 MachineFunctionProperties::Property::TracksLiveness) && 1702 "Liveness information is accurate"); 1703 return LiveIns.begin(); 1704 } 1705 1706 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1707 const MachineFunction &MF = *getParent(); 1708 assert(MF.getProperties().hasProperty( 1709 MachineFunctionProperties::Property::TracksLiveness) && 1710 "Liveness information is accurate"); 1711 1712 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1713 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1714 if (MF.getFunction().hasPersonalityFn()) { 1715 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1716 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1717 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1718 } 1719 1720 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1721 } 1722 1723 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1724 unsigned Cntr = 0; 1725 auto R = instructionsWithoutDebug(begin(), end()); 1726 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1727 if (++Cntr > Limit) 1728 return true; 1729 } 1730 return false; 1731 } 1732 1733 unsigned MachineBasicBlock::getBBIDOrNumber() const { 1734 uint8_t BBAddrMapVersion = getParent()->getContext().getBBAddrMapVersion(); 1735 return BBAddrMapVersion < 2 ? getNumber() : *getBBID(); 1736 } 1737 1738 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1739 const MBBSectionID 1740 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1741