1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LivePhysRegs.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SlotIndexes.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/ModuleSlotTracker.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <algorithm> 40 #include <cmath> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "codegen" 44 45 static cl::opt<bool> PrintSlotIndexes( 46 "print-slotindexes", 47 cl::desc("When printing machine IR, annotate instructions and blocks with " 48 "SlotIndexes when available"), 49 cl::init(true), cl::Hidden); 50 51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 52 : BB(B), Number(-1), xParent(&MF) { 53 Insts.Parent = this; 54 if (B) 55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 56 } 57 58 MachineBasicBlock::~MachineBasicBlock() = default; 59 60 /// Return the MCSymbol for this basic block. 61 MCSymbol *MachineBasicBlock::getSymbol() const { 62 if (!CachedMCSymbol) { 63 const MachineFunction *MF = getParent(); 64 MCContext &Ctx = MF->getContext(); 65 66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 67 // a section (with basic block sections). Otherwise we fall back to use temp 68 // label. 69 if (MF->hasBBSections() && isBeginSection()) { 70 SmallString<5> Suffix; 71 if (SectionID == MBBSectionID::ColdSectionID) { 72 Suffix += ".cold"; 73 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 74 Suffix += ".eh"; 75 } else { 76 // For symbols that represent basic block sections, we add ".__part." to 77 // allow tools like symbolizers to know that this represents a part of 78 // the original function. 79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 80 } 81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 82 } else { 83 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 84 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 85 Twine(MF->getFunctionNumber()) + 86 "_" + Twine(getNumber())); 87 } 88 } 89 return CachedMCSymbol; 90 } 91 92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 93 if (!CachedEHCatchretMCSymbol) { 94 const MachineFunction *MF = getParent(); 95 SmallString<128> SymbolName; 96 raw_svector_ostream(SymbolName) 97 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 98 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 99 } 100 return CachedEHCatchretMCSymbol; 101 } 102 103 MCSymbol *MachineBasicBlock::getEndSymbol() const { 104 if (!CachedEndMCSymbol) { 105 const MachineFunction *MF = getParent(); 106 MCContext &Ctx = MF->getContext(); 107 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 108 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 109 Twine(MF->getFunctionNumber()) + 110 "_" + Twine(getNumber())); 111 } 112 return CachedEndMCSymbol; 113 } 114 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 116 MBB.print(OS); 117 return OS; 118 } 119 120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 122 } 123 124 /// When an MBB is added to an MF, we need to update the parent pointer of the 125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 126 /// operand list for registers. 127 /// 128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 129 /// gets the next available unique MBB number. If it is removed from a 130 /// MachineFunction, it goes back to being #-1. 131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 132 MachineBasicBlock *N) { 133 MachineFunction &MF = *N->getParent(); 134 N->Number = MF.addToMBBNumbering(N); 135 136 // Make sure the instructions have their operands in the reginfo lists. 137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 138 for (MachineInstr &MI : N->instrs()) 139 MI.addRegOperandsToUseLists(RegInfo); 140 } 141 142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 143 MachineBasicBlock *N) { 144 N->getParent()->removeFromMBBNumbering(N->Number); 145 N->Number = -1; 146 } 147 148 /// When we add an instruction to a basic block list, we update its parent 149 /// pointer and add its operands from reg use/def lists if appropriate. 150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 151 assert(!N->getParent() && "machine instruction already in a basic block"); 152 N->setParent(Parent); 153 154 // Add the instruction's register operands to their corresponding 155 // use/def lists. 156 MachineFunction *MF = Parent->getParent(); 157 N->addRegOperandsToUseLists(MF->getRegInfo()); 158 MF->handleInsertion(*N); 159 } 160 161 /// When we remove an instruction from a basic block list, we update its parent 162 /// pointer and remove its operands from reg use/def lists if appropriate. 163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 164 assert(N->getParent() && "machine instruction not in a basic block"); 165 166 // Remove from the use/def lists. 167 if (MachineFunction *MF = N->getMF()) { 168 MF->handleRemoval(*N); 169 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 170 } 171 172 N->setParent(nullptr); 173 } 174 175 /// When moving a range of instructions from one MBB list to another, we need to 176 /// update the parent pointers and the use/def lists. 177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 178 instr_iterator First, 179 instr_iterator Last) { 180 assert(Parent->getParent() == FromList.Parent->getParent() && 181 "cannot transfer MachineInstrs between MachineFunctions"); 182 183 // If it's within the same BB, there's nothing to do. 184 if (this == &FromList) 185 return; 186 187 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 188 189 // If splicing between two blocks within the same function, just update the 190 // parent pointers. 191 for (; First != Last; ++First) 192 First->setParent(Parent); 193 } 194 195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 196 assert(!MI->getParent() && "MI is still in a block!"); 197 Parent->getParent()->deleteMachineInstr(MI); 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 201 instr_iterator I = instr_begin(), E = instr_end(); 202 while (I != E && I->isPHI()) 203 ++I; 204 assert((I == E || !I->isInsideBundle()) && 205 "First non-phi MI cannot be inside a bundle!"); 206 return I; 207 } 208 209 MachineBasicBlock::iterator 210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 212 213 iterator E = end(); 214 while (I != E && (I->isPHI() || I->isPosition() || 215 TII->isBasicBlockPrologue(*I))) 216 ++I; 217 // FIXME: This needs to change if we wish to bundle labels 218 // inside the bundle. 219 assert((I == E || !I->isInsideBundle()) && 220 "First non-phi / non-label instruction is inside a bundle!"); 221 return I; 222 } 223 224 MachineBasicBlock::iterator 225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 226 Register Reg, bool SkipPseudoOp) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 (SkipPseudoOp && I->isPseudoProbe()) || 232 TII->isBasicBlockPrologue(*I, Reg))) 233 ++I; 234 // FIXME: This needs to change if we wish to bundle labels / dbg_values 235 // inside the bundle. 236 assert((I == E || !I->isInsideBundle()) && 237 "First non-phi / non-label / non-debug " 238 "instruction is inside a bundle!"); 239 return I; 240 } 241 242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 243 iterator B = begin(), E = end(), I = E; 244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 245 ; /*noop */ 246 while (I != E && !I->isTerminator()) 247 ++I; 248 return I; 249 } 250 251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 252 instr_iterator B = instr_begin(), E = instr_end(), I = E; 253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 254 ; /*noop */ 255 while (I != E && !I->isTerminator()) 256 ++I; 257 return I; 258 } 259 260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 262 } 263 264 MachineBasicBlock::iterator 265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 266 // Skip over begin-of-block dbg_value instructions. 267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 268 } 269 270 MachineBasicBlock::iterator 271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 272 // Skip over end-of-block dbg_value instructions. 273 instr_iterator B = instr_begin(), I = instr_end(); 274 while (I != B) { 275 --I; 276 // Return instruction that starts a bundle. 277 if (I->isDebugInstr() || I->isInsideBundle()) 278 continue; 279 if (SkipPseudoOp && I->isPseudoProbe()) 280 continue; 281 return I; 282 } 283 // The block is all debug values. 284 return end(); 285 } 286 287 bool MachineBasicBlock::hasEHPadSuccessor() const { 288 for (const MachineBasicBlock *Succ : successors()) 289 if (Succ->isEHPad()) 290 return true; 291 return false; 292 } 293 294 bool MachineBasicBlock::isEntryBlock() const { 295 return getParent()->begin() == getIterator(); 296 } 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 300 print(dbgs()); 301 } 302 #endif 303 304 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 305 for (const MachineBasicBlock *Succ : successors()) { 306 if (Succ->isInlineAsmBrIndirectTarget()) 307 return true; 308 } 309 return false; 310 } 311 312 bool MachineBasicBlock::isLegalToHoistInto() const { 313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 314 return false; 315 return true; 316 } 317 318 StringRef MachineBasicBlock::getName() const { 319 if (const BasicBlock *LBB = getBasicBlock()) 320 return LBB->getName(); 321 else 322 return StringRef("", 0); 323 } 324 325 /// Return a hopefully unique identifier for this block. 326 std::string MachineBasicBlock::getFullName() const { 327 std::string Name; 328 if (getParent()) 329 Name = (getParent()->getName() + ":").str(); 330 if (getBasicBlock()) 331 Name += getBasicBlock()->getName(); 332 else 333 Name += ("BB" + Twine(getNumber())).str(); 334 return Name; 335 } 336 337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 338 bool IsStandalone) const { 339 const MachineFunction *MF = getParent(); 340 if (!MF) { 341 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 342 << " is null\n"; 343 return; 344 } 345 const Function &F = MF->getFunction(); 346 const Module *M = F.getParent(); 347 ModuleSlotTracker MST(M); 348 MST.incorporateFunction(F); 349 print(OS, MST, Indexes, IsStandalone); 350 } 351 352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 353 const SlotIndexes *Indexes, 354 bool IsStandalone) const { 355 const MachineFunction *MF = getParent(); 356 if (!MF) { 357 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 358 << " is null\n"; 359 return; 360 } 361 362 if (Indexes && PrintSlotIndexes) 363 OS << Indexes->getMBBStartIdx(this) << '\t'; 364 365 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 366 OS << ":\n"; 367 368 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 369 const MachineRegisterInfo &MRI = MF->getRegInfo(); 370 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 371 bool HasLineAttributes = false; 372 373 // Print the preds of this block according to the CFG. 374 if (!pred_empty() && IsStandalone) { 375 if (Indexes) OS << '\t'; 376 // Don't indent(2), align with previous line attributes. 377 OS << "; predecessors: "; 378 ListSeparator LS; 379 for (auto *Pred : predecessors()) 380 OS << LS << printMBBReference(*Pred); 381 OS << '\n'; 382 HasLineAttributes = true; 383 } 384 385 if (!succ_empty()) { 386 if (Indexes) OS << '\t'; 387 // Print the successors 388 OS.indent(2) << "successors: "; 389 ListSeparator LS; 390 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 391 OS << LS << printMBBReference(**I); 392 if (!Probs.empty()) 393 OS << '(' 394 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 395 << ')'; 396 } 397 if (!Probs.empty() && IsStandalone) { 398 // Print human readable probabilities as comments. 399 OS << "; "; 400 ListSeparator LS; 401 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 402 const BranchProbability &BP = getSuccProbability(I); 403 OS << LS << printMBBReference(**I) << '(' 404 << format("%.2f%%", 405 rint(((double)BP.getNumerator() / BP.getDenominator()) * 406 100.0 * 100.0) / 407 100.0) 408 << ')'; 409 } 410 } 411 412 OS << '\n'; 413 HasLineAttributes = true; 414 } 415 416 if (!livein_empty() && MRI.tracksLiveness()) { 417 if (Indexes) OS << '\t'; 418 OS.indent(2) << "liveins: "; 419 420 ListSeparator LS; 421 for (const auto &LI : liveins()) { 422 OS << LS << printReg(LI.PhysReg, TRI); 423 if (!LI.LaneMask.all()) 424 OS << ":0x" << PrintLaneMask(LI.LaneMask); 425 } 426 HasLineAttributes = true; 427 } 428 429 if (HasLineAttributes) 430 OS << '\n'; 431 432 bool IsInBundle = false; 433 for (const MachineInstr &MI : instrs()) { 434 if (Indexes && PrintSlotIndexes) { 435 if (Indexes->hasIndex(MI)) 436 OS << Indexes->getInstructionIndex(MI); 437 OS << '\t'; 438 } 439 440 if (IsInBundle && !MI.isInsideBundle()) { 441 OS.indent(2) << "}\n"; 442 IsInBundle = false; 443 } 444 445 OS.indent(IsInBundle ? 4 : 2); 446 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 447 /*AddNewLine=*/false, &TII); 448 449 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 450 OS << " {"; 451 IsInBundle = true; 452 } 453 OS << '\n'; 454 } 455 456 if (IsInBundle) 457 OS.indent(2) << "}\n"; 458 459 if (IrrLoopHeaderWeight && IsStandalone) { 460 if (Indexes) OS << '\t'; 461 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 462 << '\n'; 463 } 464 } 465 466 /// Print the basic block's name as: 467 /// 468 /// bb.{number}[.{ir-name}] [(attributes...)] 469 /// 470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 471 /// (which is the default). If the IR block has no name, it is identified 472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 473 /// 474 /// When the \ref PrintNameAttributes flag is passed, additional attributes 475 /// of the block are printed when set. 476 /// 477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 478 /// the parts to print. 479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 480 /// incorporate its own tracker when necessary to 481 /// determine the block's IR name. 482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 483 ModuleSlotTracker *moduleSlotTracker) const { 484 os << "bb." << getNumber(); 485 bool hasAttributes = false; 486 487 auto PrintBBRef = [&](const BasicBlock *bb) { 488 os << "%ir-block."; 489 if (bb->hasName()) { 490 os << bb->getName(); 491 } else { 492 int slot = -1; 493 494 if (moduleSlotTracker) { 495 slot = moduleSlotTracker->getLocalSlot(bb); 496 } else if (bb->getParent()) { 497 ModuleSlotTracker tmpTracker(bb->getModule(), false); 498 tmpTracker.incorporateFunction(*bb->getParent()); 499 slot = tmpTracker.getLocalSlot(bb); 500 } 501 502 if (slot == -1) 503 os << "<ir-block badref>"; 504 else 505 os << slot; 506 } 507 }; 508 509 if (printNameFlags & PrintNameIr) { 510 if (const auto *bb = getBasicBlock()) { 511 if (bb->hasName()) { 512 os << '.' << bb->getName(); 513 } else { 514 hasAttributes = true; 515 os << " ("; 516 PrintBBRef(bb); 517 } 518 } 519 } 520 521 if (printNameFlags & PrintNameAttributes) { 522 if (isMachineBlockAddressTaken()) { 523 os << (hasAttributes ? ", " : " ("); 524 os << "machine-block-address-taken"; 525 hasAttributes = true; 526 } 527 if (isIRBlockAddressTaken()) { 528 os << (hasAttributes ? ", " : " ("); 529 os << "ir-block-address-taken "; 530 PrintBBRef(getAddressTakenIRBlock()); 531 hasAttributes = true; 532 } 533 if (isEHPad()) { 534 os << (hasAttributes ? ", " : " ("); 535 os << "landing-pad"; 536 hasAttributes = true; 537 } 538 if (isInlineAsmBrIndirectTarget()) { 539 os << (hasAttributes ? ", " : " ("); 540 os << "inlineasm-br-indirect-target"; 541 hasAttributes = true; 542 } 543 if (isEHFuncletEntry()) { 544 os << (hasAttributes ? ", " : " ("); 545 os << "ehfunclet-entry"; 546 hasAttributes = true; 547 } 548 if (getAlignment() != Align(1)) { 549 os << (hasAttributes ? ", " : " ("); 550 os << "align " << getAlignment().value(); 551 hasAttributes = true; 552 } 553 if (getSectionID() != MBBSectionID(0)) { 554 os << (hasAttributes ? ", " : " ("); 555 os << "bbsections "; 556 switch (getSectionID().Type) { 557 case MBBSectionID::SectionType::Exception: 558 os << "Exception"; 559 break; 560 case MBBSectionID::SectionType::Cold: 561 os << "Cold"; 562 break; 563 default: 564 os << getSectionID().Number; 565 } 566 hasAttributes = true; 567 } 568 if (getBBID().has_value()) { 569 os << (hasAttributes ? ", " : " ("); 570 os << "bb_id " << getBBID()->BaseID; 571 if (getBBID()->CloneID != 0) 572 os << " " << getBBID()->CloneID; 573 hasAttributes = true; 574 } 575 if (CallFrameSize != 0) { 576 os << (hasAttributes ? ", " : " ("); 577 os << "call-frame-size " << CallFrameSize; 578 hasAttributes = true; 579 } 580 } 581 582 if (hasAttributes) 583 os << ')'; 584 } 585 586 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 587 bool /*PrintType*/) const { 588 OS << '%'; 589 printName(OS, 0); 590 } 591 592 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 593 LiveInVector::iterator I = find_if( 594 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 595 if (I == LiveIns.end()) 596 return; 597 598 I->LaneMask &= ~LaneMask; 599 if (I->LaneMask.none()) 600 LiveIns.erase(I); 601 } 602 603 MachineBasicBlock::livein_iterator 604 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 605 // Get non-const version of iterator. 606 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 607 return LiveIns.erase(LI); 608 } 609 610 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 611 livein_iterator I = find_if( 612 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 613 return I != livein_end() && (I->LaneMask & LaneMask).any(); 614 } 615 616 void MachineBasicBlock::sortUniqueLiveIns() { 617 llvm::sort(LiveIns, 618 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 619 return LI0.PhysReg < LI1.PhysReg; 620 }); 621 // Liveins are sorted by physreg now we can merge their lanemasks. 622 LiveInVector::const_iterator I = LiveIns.begin(); 623 LiveInVector::const_iterator J; 624 LiveInVector::iterator Out = LiveIns.begin(); 625 for (; I != LiveIns.end(); ++Out, I = J) { 626 MCRegister PhysReg = I->PhysReg; 627 LaneBitmask LaneMask = I->LaneMask; 628 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 629 LaneMask |= J->LaneMask; 630 Out->PhysReg = PhysReg; 631 Out->LaneMask = LaneMask; 632 } 633 LiveIns.erase(Out, LiveIns.end()); 634 } 635 636 Register 637 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 638 assert(getParent() && "MBB must be inserted in function"); 639 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 640 assert(RC && "Register class is required"); 641 assert((isEHPad() || this == &getParent()->front()) && 642 "Only the entry block and landing pads can have physreg live ins"); 643 644 bool LiveIn = isLiveIn(PhysReg); 645 iterator I = SkipPHIsAndLabels(begin()), E = end(); 646 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 647 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 648 649 // Look for an existing copy. 650 if (LiveIn) 651 for (;I != E && I->isCopy(); ++I) 652 if (I->getOperand(1).getReg() == PhysReg) { 653 Register VirtReg = I->getOperand(0).getReg(); 654 if (!MRI.constrainRegClass(VirtReg, RC)) 655 llvm_unreachable("Incompatible live-in register class."); 656 return VirtReg; 657 } 658 659 // No luck, create a virtual register. 660 Register VirtReg = MRI.createVirtualRegister(RC); 661 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 662 .addReg(PhysReg, RegState::Kill); 663 if (!LiveIn) 664 addLiveIn(PhysReg); 665 return VirtReg; 666 } 667 668 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 669 getParent()->splice(NewAfter->getIterator(), getIterator()); 670 } 671 672 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 673 getParent()->splice(++NewBefore->getIterator(), getIterator()); 674 } 675 676 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 677 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 678 if (TerminatorI == MBB.end()) 679 return -1; 680 const MachineInstr &Terminator = *TerminatorI; 681 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 682 return TII->getJumpTableIndex(Terminator); 683 } 684 685 void MachineBasicBlock::updateTerminator( 686 MachineBasicBlock *PreviousLayoutSuccessor) { 687 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 688 << "\n"); 689 690 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 691 // A block with no successors has no concerns with fall-through edges. 692 if (this->succ_empty()) 693 return; 694 695 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 696 SmallVector<MachineOperand, 4> Cond; 697 DebugLoc DL = findBranchDebugLoc(); 698 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 699 (void) B; 700 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 701 if (Cond.empty()) { 702 if (TBB) { 703 // The block has an unconditional branch. If its successor is now its 704 // layout successor, delete the branch. 705 if (isLayoutSuccessor(TBB)) 706 TII->removeBranch(*this); 707 } else { 708 // The block has an unconditional fallthrough, or the end of the block is 709 // unreachable. 710 711 // Unfortunately, whether the end of the block is unreachable is not 712 // immediately obvious; we must fall back to checking the successor list, 713 // and assuming that if the passed in block is in the succesor list and 714 // not an EHPad, it must be the intended target. 715 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 716 PreviousLayoutSuccessor->isEHPad()) 717 return; 718 719 // If the unconditional successor block is not the current layout 720 // successor, insert a branch to jump to it. 721 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 722 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 723 } 724 return; 725 } 726 727 if (FBB) { 728 // The block has a non-fallthrough conditional branch. If one of its 729 // successors is its layout successor, rewrite it to a fallthrough 730 // conditional branch. 731 if (isLayoutSuccessor(TBB)) { 732 if (TII->reverseBranchCondition(Cond)) 733 return; 734 TII->removeBranch(*this); 735 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 736 } else if (isLayoutSuccessor(FBB)) { 737 TII->removeBranch(*this); 738 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 739 } 740 return; 741 } 742 743 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 744 assert(PreviousLayoutSuccessor); 745 assert(!PreviousLayoutSuccessor->isEHPad()); 746 assert(isSuccessor(PreviousLayoutSuccessor)); 747 748 if (PreviousLayoutSuccessor == TBB) { 749 // We had a fallthrough to the same basic block as the conditional jump 750 // targets. Remove the conditional jump, leaving an unconditional 751 // fallthrough or an unconditional jump. 752 TII->removeBranch(*this); 753 if (!isLayoutSuccessor(TBB)) { 754 Cond.clear(); 755 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 756 } 757 return; 758 } 759 760 // The block has a fallthrough conditional branch. 761 if (isLayoutSuccessor(TBB)) { 762 if (TII->reverseBranchCondition(Cond)) { 763 // We can't reverse the condition, add an unconditional branch. 764 Cond.clear(); 765 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 766 return; 767 } 768 TII->removeBranch(*this); 769 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 770 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 771 TII->removeBranch(*this); 772 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 773 } 774 } 775 776 void MachineBasicBlock::validateSuccProbs() const { 777 #ifndef NDEBUG 778 int64_t Sum = 0; 779 for (auto Prob : Probs) 780 Sum += Prob.getNumerator(); 781 // Due to precision issue, we assume that the sum of probabilities is one if 782 // the difference between the sum of their numerators and the denominator is 783 // no greater than the number of successors. 784 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 785 Probs.size() && 786 "The sum of successors's probabilities exceeds one."); 787 #endif // NDEBUG 788 } 789 790 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 791 BranchProbability Prob) { 792 // Probability list is either empty (if successor list isn't empty, this means 793 // disabled optimization) or has the same size as successor list. 794 if (!(Probs.empty() && !Successors.empty())) 795 Probs.push_back(Prob); 796 Successors.push_back(Succ); 797 Succ->addPredecessor(this); 798 } 799 800 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 801 // We need to make sure probability list is either empty or has the same size 802 // of successor list. When this function is called, we can safely delete all 803 // probability in the list. 804 Probs.clear(); 805 Successors.push_back(Succ); 806 Succ->addPredecessor(this); 807 } 808 809 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 810 MachineBasicBlock *New, 811 bool NormalizeSuccProbs) { 812 succ_iterator OldI = llvm::find(successors(), Old); 813 assert(OldI != succ_end() && "Old is not a successor of this block!"); 814 assert(!llvm::is_contained(successors(), New) && 815 "New is already a successor of this block!"); 816 817 // Add a new successor with equal probability as the original one. Note 818 // that we directly copy the probability using the iterator rather than 819 // getting a potentially synthetic probability computed when unknown. This 820 // preserves the probabilities as-is and then we can renormalize them and 821 // query them effectively afterward. 822 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 823 : *getProbabilityIterator(OldI)); 824 if (NormalizeSuccProbs) 825 normalizeSuccProbs(); 826 } 827 828 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 829 bool NormalizeSuccProbs) { 830 succ_iterator I = find(Successors, Succ); 831 removeSuccessor(I, NormalizeSuccProbs); 832 } 833 834 MachineBasicBlock::succ_iterator 835 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 836 assert(I != Successors.end() && "Not a current successor!"); 837 838 // If probability list is empty it means we don't use it (disabled 839 // optimization). 840 if (!Probs.empty()) { 841 probability_iterator WI = getProbabilityIterator(I); 842 Probs.erase(WI); 843 if (NormalizeSuccProbs) 844 normalizeSuccProbs(); 845 } 846 847 (*I)->removePredecessor(this); 848 return Successors.erase(I); 849 } 850 851 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 852 MachineBasicBlock *New) { 853 if (Old == New) 854 return; 855 856 succ_iterator E = succ_end(); 857 succ_iterator NewI = E; 858 succ_iterator OldI = E; 859 for (succ_iterator I = succ_begin(); I != E; ++I) { 860 if (*I == Old) { 861 OldI = I; 862 if (NewI != E) 863 break; 864 } 865 if (*I == New) { 866 NewI = I; 867 if (OldI != E) 868 break; 869 } 870 } 871 assert(OldI != E && "Old is not a successor of this block"); 872 873 // If New isn't already a successor, let it take Old's place. 874 if (NewI == E) { 875 Old->removePredecessor(this); 876 New->addPredecessor(this); 877 *OldI = New; 878 return; 879 } 880 881 // New is already a successor. 882 // Update its probability instead of adding a duplicate edge. 883 if (!Probs.empty()) { 884 auto ProbIter = getProbabilityIterator(NewI); 885 if (!ProbIter->isUnknown()) 886 *ProbIter += *getProbabilityIterator(OldI); 887 } 888 removeSuccessor(OldI); 889 } 890 891 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig, 892 succ_iterator I) { 893 if (!Orig->Probs.empty()) 894 addSuccessor(*I, Orig->getSuccProbability(I)); 895 else 896 addSuccessorWithoutProb(*I); 897 } 898 899 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 900 Predecessors.push_back(Pred); 901 } 902 903 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 904 pred_iterator I = find(Predecessors, Pred); 905 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 906 Predecessors.erase(I); 907 } 908 909 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 910 if (this == FromMBB) 911 return; 912 913 while (!FromMBB->succ_empty()) { 914 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 915 916 // If probability list is empty it means we don't use it (disabled 917 // optimization). 918 if (!FromMBB->Probs.empty()) { 919 auto Prob = *FromMBB->Probs.begin(); 920 addSuccessor(Succ, Prob); 921 } else 922 addSuccessorWithoutProb(Succ); 923 924 FromMBB->removeSuccessor(Succ); 925 } 926 } 927 928 void 929 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 930 if (this == FromMBB) 931 return; 932 933 while (!FromMBB->succ_empty()) { 934 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 935 if (!FromMBB->Probs.empty()) { 936 auto Prob = *FromMBB->Probs.begin(); 937 addSuccessor(Succ, Prob); 938 } else 939 addSuccessorWithoutProb(Succ); 940 FromMBB->removeSuccessor(Succ); 941 942 // Fix up any PHI nodes in the successor. 943 Succ->replacePhiUsesWith(FromMBB, this); 944 } 945 normalizeSuccProbs(); 946 } 947 948 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 949 return is_contained(predecessors(), MBB); 950 } 951 952 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 953 return is_contained(successors(), MBB); 954 } 955 956 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 957 MachineFunction::const_iterator I(this); 958 return std::next(I) == MachineFunction::const_iterator(MBB); 959 } 960 961 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 962 return Successors.size() == 1 ? Successors[0] : nullptr; 963 } 964 965 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const { 966 return Predecessors.size() == 1 ? Predecessors[0] : nullptr; 967 } 968 969 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 970 MachineFunction::iterator Fallthrough = getIterator(); 971 ++Fallthrough; 972 // If FallthroughBlock is off the end of the function, it can't fall through. 973 if (Fallthrough == getParent()->end()) 974 return nullptr; 975 976 // If FallthroughBlock isn't a successor, no fallthrough is possible. 977 if (!isSuccessor(&*Fallthrough)) 978 return nullptr; 979 980 // Analyze the branches, if any, at the end of the block. 981 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 982 SmallVector<MachineOperand, 4> Cond; 983 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 984 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 985 // If we couldn't analyze the branch, examine the last instruction. 986 // If the block doesn't end in a known control barrier, assume fallthrough 987 // is possible. The isPredicated check is needed because this code can be 988 // called during IfConversion, where an instruction which is normally a 989 // Barrier is predicated and thus no longer an actual control barrier. 990 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 991 ? &*Fallthrough 992 : nullptr; 993 } 994 995 // If there is no branch, control always falls through. 996 if (!TBB) return &*Fallthrough; 997 998 // If there is some explicit branch to the fallthrough block, it can obviously 999 // reach, even though the branch should get folded to fall through implicitly. 1000 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 1001 MachineFunction::iterator(FBB) == Fallthrough)) 1002 return &*Fallthrough; 1003 1004 // If it's an unconditional branch to some block not the fall through, it 1005 // doesn't fall through. 1006 if (Cond.empty()) return nullptr; 1007 1008 // Otherwise, if it is conditional and has no explicit false block, it falls 1009 // through. 1010 return (FBB == nullptr) ? &*Fallthrough : nullptr; 1011 } 1012 1013 bool MachineBasicBlock::canFallThrough() { 1014 return getFallThrough() != nullptr; 1015 } 1016 1017 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1018 bool UpdateLiveIns, 1019 LiveIntervals *LIS) { 1020 MachineBasicBlock::iterator SplitPoint(&MI); 1021 ++SplitPoint; 1022 1023 if (SplitPoint == end()) { 1024 // Don't bother with a new block. 1025 return this; 1026 } 1027 1028 MachineFunction *MF = getParent(); 1029 1030 LivePhysRegs LiveRegs; 1031 if (UpdateLiveIns) { 1032 // Make sure we add any physregs we define in the block as liveins to the 1033 // new block. 1034 MachineBasicBlock::iterator Prev(&MI); 1035 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1036 LiveRegs.addLiveOuts(*this); 1037 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1038 LiveRegs.stepBackward(*I); 1039 } 1040 1041 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1042 1043 MF->insert(++MachineFunction::iterator(this), SplitBB); 1044 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1045 1046 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1047 addSuccessor(SplitBB); 1048 1049 if (UpdateLiveIns) 1050 addLiveIns(*SplitBB, LiveRegs); 1051 1052 if (LIS) 1053 LIS->insertMBBInMaps(SplitBB); 1054 1055 return SplitBB; 1056 } 1057 1058 // Returns `true` if there are possibly other users of the jump table at 1059 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1060 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1061 const MachineBasicBlock &IgnoreMBB, 1062 int JumpTableIndex) { 1063 assert(JumpTableIndex >= 0 && "need valid index"); 1064 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1065 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1066 // Take any basic block from the table; every user of the jump table must 1067 // show up in the predecessor list. 1068 const MachineBasicBlock *MBB = nullptr; 1069 for (MachineBasicBlock *B : MJTE.MBBs) { 1070 if (B != nullptr) { 1071 MBB = B; 1072 break; 1073 } 1074 } 1075 if (MBB == nullptr) 1076 return true; // can't rule out other users if there isn't any block. 1077 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1078 SmallVector<MachineOperand, 4> Cond; 1079 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1080 if (Pred == &IgnoreMBB) 1081 continue; 1082 MachineBasicBlock *DummyT = nullptr; 1083 MachineBasicBlock *DummyF = nullptr; 1084 Cond.clear(); 1085 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1086 /*AllowModify=*/false)) { 1087 // analyzable direct jump 1088 continue; 1089 } 1090 int PredJTI = findJumpTableIndex(*Pred); 1091 if (PredJTI >= 0) { 1092 if (PredJTI == JumpTableIndex) 1093 return true; 1094 continue; 1095 } 1096 // Be conservative for unanalyzable jumps. 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 class SlotIndexUpdateDelegate : public MachineFunction::Delegate { 1103 private: 1104 MachineFunction &MF; 1105 SlotIndexes *Indexes; 1106 SmallSetVector<MachineInstr *, 2> Insertions; 1107 1108 public: 1109 SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes) 1110 : MF(MF), Indexes(Indexes) { 1111 MF.setDelegate(this); 1112 } 1113 1114 ~SlotIndexUpdateDelegate() { 1115 MF.resetDelegate(this); 1116 for (auto MI : Insertions) 1117 Indexes->insertMachineInstrInMaps(*MI); 1118 } 1119 1120 void MF_HandleInsertion(MachineInstr &MI) override { 1121 // This is called before MI is inserted into block so defer index update. 1122 if (Indexes) 1123 Insertions.insert(&MI); 1124 } 1125 1126 void MF_HandleRemoval(MachineInstr &MI) override { 1127 if (Indexes && !Insertions.remove(&MI)) 1128 Indexes->removeMachineInstrFromMaps(MI); 1129 } 1130 }; 1131 1132 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1133 MachineBasicBlock *Succ, Pass &P, 1134 std::vector<SparseBitVector<>> *LiveInSets) { 1135 if (!canSplitCriticalEdge(Succ)) 1136 return nullptr; 1137 1138 MachineFunction *MF = getParent(); 1139 MachineBasicBlock *PrevFallthrough = getNextNode(); 1140 DebugLoc DL; // FIXME: this is nowhere 1141 1142 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1143 NMBB->setCallFrameSize(Succ->getCallFrameSize()); 1144 1145 // Is there an indirect jump with jump table? 1146 bool ChangedIndirectJump = false; 1147 int JTI = findJumpTableIndex(*this); 1148 if (JTI >= 0) { 1149 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1150 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1151 ChangedIndirectJump = true; 1152 } 1153 1154 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1155 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1156 << " -- " << printMBBReference(*NMBB) << " -- " 1157 << printMBBReference(*Succ) << '\n'); 1158 1159 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1160 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1161 if (LIS) 1162 LIS->insertMBBInMaps(NMBB); 1163 else if (Indexes) 1164 Indexes->insertMBBInMaps(NMBB); 1165 1166 // On some targets like Mips, branches may kill virtual registers. Make sure 1167 // that LiveVariables is properly updated after updateTerminator replaces the 1168 // terminators. 1169 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1170 1171 // Collect a list of virtual registers killed by the terminators. 1172 SmallVector<Register, 4> KilledRegs; 1173 if (LV) 1174 for (MachineInstr &MI : 1175 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1176 for (MachineOperand &MO : MI.all_uses()) { 1177 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1178 continue; 1179 Register Reg = MO.getReg(); 1180 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1181 KilledRegs.push_back(Reg); 1182 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1183 MO.setIsKill(false); 1184 } 1185 } 1186 } 1187 1188 SmallVector<Register, 4> UsedRegs; 1189 if (LIS) { 1190 for (MachineInstr &MI : 1191 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1192 for (const MachineOperand &MO : MI.operands()) { 1193 if (!MO.isReg() || MO.getReg() == 0) 1194 continue; 1195 1196 Register Reg = MO.getReg(); 1197 if (!is_contained(UsedRegs, Reg)) 1198 UsedRegs.push_back(Reg); 1199 } 1200 } 1201 } 1202 1203 ReplaceUsesOfBlockWith(Succ, NMBB); 1204 1205 // Since we replaced all uses of Succ with NMBB, that should also be treated 1206 // as the fallthrough successor 1207 if (Succ == PrevFallthrough) 1208 PrevFallthrough = NMBB; 1209 1210 if (!ChangedIndirectJump) { 1211 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1212 updateTerminator(PrevFallthrough); 1213 } 1214 1215 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1216 NMBB->addSuccessor(Succ); 1217 if (!NMBB->isLayoutSuccessor(Succ)) { 1218 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1219 SmallVector<MachineOperand, 4> Cond; 1220 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1221 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1222 } 1223 1224 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1225 Succ->replacePhiUsesWith(this, NMBB); 1226 1227 // Inherit live-ins from the successor 1228 for (const auto &LI : Succ->liveins()) 1229 NMBB->addLiveIn(LI); 1230 1231 // Update LiveVariables. 1232 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1233 if (LV) { 1234 // Restore kills of virtual registers that were killed by the terminators. 1235 while (!KilledRegs.empty()) { 1236 Register Reg = KilledRegs.pop_back_val(); 1237 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1238 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1239 continue; 1240 if (Reg.isVirtual()) 1241 LV->getVarInfo(Reg).Kills.push_back(&*I); 1242 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1243 break; 1244 } 1245 } 1246 // Update relevant live-through information. 1247 if (LiveInSets != nullptr) 1248 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1249 else 1250 LV->addNewBlock(NMBB, this, Succ); 1251 } 1252 1253 if (LIS) { 1254 // After splitting the edge and updating SlotIndexes, live intervals may be 1255 // in one of two situations, depending on whether this block was the last in 1256 // the function. If the original block was the last in the function, all 1257 // live intervals will end prior to the beginning of the new split block. If 1258 // the original block was not at the end of the function, all live intervals 1259 // will extend to the end of the new split block. 1260 1261 bool isLastMBB = 1262 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1263 1264 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1265 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1266 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1267 1268 // Find the registers used from NMBB in PHIs in Succ. 1269 SmallSet<Register, 8> PHISrcRegs; 1270 for (MachineBasicBlock::instr_iterator 1271 I = Succ->instr_begin(), E = Succ->instr_end(); 1272 I != E && I->isPHI(); ++I) { 1273 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1274 if (I->getOperand(ni+1).getMBB() == NMBB) { 1275 MachineOperand &MO = I->getOperand(ni); 1276 Register Reg = MO.getReg(); 1277 PHISrcRegs.insert(Reg); 1278 if (MO.isUndef()) 1279 continue; 1280 1281 LiveInterval &LI = LIS->getInterval(Reg); 1282 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1283 assert(VNI && 1284 "PHI sources should be live out of their predecessors."); 1285 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1286 for (auto &SR : LI.subranges()) 1287 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1288 } 1289 } 1290 } 1291 1292 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1293 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1294 Register Reg = Register::index2VirtReg(i); 1295 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1296 continue; 1297 1298 LiveInterval &LI = LIS->getInterval(Reg); 1299 if (!LI.liveAt(PrevIndex)) 1300 continue; 1301 1302 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1303 if (isLiveOut && isLastMBB) { 1304 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1305 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1306 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1307 // Update subranges with live values 1308 for (auto &SR : LI.subranges()) { 1309 VNInfo *VNI = SR.getVNInfoAt(PrevIndex); 1310 if (VNI) 1311 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1312 } 1313 } else if (!isLiveOut && !isLastMBB) { 1314 LI.removeSegment(StartIndex, EndIndex); 1315 for (auto &SR : LI.subranges()) 1316 SR.removeSegment(StartIndex, EndIndex); 1317 } 1318 } 1319 1320 // Update all intervals for registers whose uses may have been modified by 1321 // updateTerminator(). 1322 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1323 } 1324 1325 if (MachineDominatorTree *MDT = 1326 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1327 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1328 1329 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1330 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1331 // If one or the other blocks were not in a loop, the new block is not 1332 // either, and thus LI doesn't need to be updated. 1333 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1334 if (TIL == DestLoop) { 1335 // Both in the same loop, the NMBB joins loop. 1336 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1337 } else if (TIL->contains(DestLoop)) { 1338 // Edge from an outer loop to an inner loop. Add to the outer loop. 1339 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1340 } else if (DestLoop->contains(TIL)) { 1341 // Edge from an inner loop to an outer loop. Add to the outer loop. 1342 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1343 } else { 1344 // Edge from two loops with no containment relation. Because these 1345 // are natural loops, we know that the destination block must be the 1346 // header of its loop (adding a branch into a loop elsewhere would 1347 // create an irreducible loop). 1348 assert(DestLoop->getHeader() == Succ && 1349 "Should not create irreducible loops!"); 1350 if (MachineLoop *P = DestLoop->getParentLoop()) 1351 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1352 } 1353 } 1354 } 1355 1356 return NMBB; 1357 } 1358 1359 bool MachineBasicBlock::canSplitCriticalEdge( 1360 const MachineBasicBlock *Succ) const { 1361 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1362 // it in this generic function. 1363 if (Succ->isEHPad()) 1364 return false; 1365 1366 // Splitting the critical edge to a callbr's indirect block isn't advised. 1367 // Don't do it in this generic function. 1368 if (Succ->isInlineAsmBrIndirectTarget()) 1369 return false; 1370 1371 const MachineFunction *MF = getParent(); 1372 // Performance might be harmed on HW that implements branching using exec mask 1373 // where both sides of the branches are always executed. 1374 if (MF->getTarget().requiresStructuredCFG()) 1375 return false; 1376 1377 // Do we have an Indirect jump with a jumptable that we can rewrite? 1378 int JTI = findJumpTableIndex(*this); 1379 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1380 return true; 1381 1382 // We may need to update this's terminator, but we can't do that if 1383 // analyzeBranch fails. 1384 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1385 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1386 SmallVector<MachineOperand, 4> Cond; 1387 // AnalyzeBanch should modify this, since we did not allow modification. 1388 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1389 /*AllowModify*/ false)) 1390 return false; 1391 1392 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1393 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1394 // case that we can't handle. Since this never happens in properly optimized 1395 // code, just skip those edges. 1396 if (TBB && TBB == FBB) { 1397 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1398 << printMBBReference(*this) << '\n'); 1399 return false; 1400 } 1401 return true; 1402 } 1403 1404 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1405 /// neighboring instructions so the bundle won't be broken by removing MI. 1406 static void unbundleSingleMI(MachineInstr *MI) { 1407 // Removing the first instruction in a bundle. 1408 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1409 MI->unbundleFromSucc(); 1410 // Removing the last instruction in a bundle. 1411 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1412 MI->unbundleFromPred(); 1413 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1414 // are already fine. 1415 } 1416 1417 MachineBasicBlock::instr_iterator 1418 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1419 unbundleSingleMI(&*I); 1420 return Insts.erase(I); 1421 } 1422 1423 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1424 unbundleSingleMI(MI); 1425 MI->clearFlag(MachineInstr::BundledPred); 1426 MI->clearFlag(MachineInstr::BundledSucc); 1427 return Insts.remove(MI); 1428 } 1429 1430 MachineBasicBlock::instr_iterator 1431 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1432 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1433 "Cannot insert instruction with bundle flags"); 1434 // Set the bundle flags when inserting inside a bundle. 1435 if (I != instr_end() && I->isBundledWithPred()) { 1436 MI->setFlag(MachineInstr::BundledPred); 1437 MI->setFlag(MachineInstr::BundledSucc); 1438 } 1439 return Insts.insert(I, MI); 1440 } 1441 1442 /// This method unlinks 'this' from the containing function, and returns it, but 1443 /// does not delete it. 1444 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1445 assert(getParent() && "Not embedded in a function!"); 1446 getParent()->remove(this); 1447 return this; 1448 } 1449 1450 /// This method unlinks 'this' from the containing function, and deletes it. 1451 void MachineBasicBlock::eraseFromParent() { 1452 assert(getParent() && "Not embedded in a function!"); 1453 getParent()->erase(this); 1454 } 1455 1456 /// Given a machine basic block that branched to 'Old', change the code and CFG 1457 /// so that it branches to 'New' instead. 1458 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1459 MachineBasicBlock *New) { 1460 assert(Old != New && "Cannot replace self with self!"); 1461 1462 MachineBasicBlock::instr_iterator I = instr_end(); 1463 while (I != instr_begin()) { 1464 --I; 1465 if (!I->isTerminator()) break; 1466 1467 // Scan the operands of this machine instruction, replacing any uses of Old 1468 // with New. 1469 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1470 if (I->getOperand(i).isMBB() && 1471 I->getOperand(i).getMBB() == Old) 1472 I->getOperand(i).setMBB(New); 1473 } 1474 1475 // Update the successor information. 1476 replaceSuccessor(Old, New); 1477 } 1478 1479 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1480 MachineBasicBlock *New) { 1481 for (MachineInstr &MI : phis()) 1482 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1483 MachineOperand &MO = MI.getOperand(i); 1484 if (MO.getMBB() == Old) 1485 MO.setMBB(New); 1486 } 1487 } 1488 1489 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1490 /// instructions. Return UnknownLoc if there is none. 1491 DebugLoc 1492 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1493 // Skip debug declarations, we don't want a DebugLoc from them. 1494 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1495 if (MBBI != instr_end()) 1496 return MBBI->getDebugLoc(); 1497 return {}; 1498 } 1499 1500 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1501 if (MBBI == instr_rend()) 1502 return findDebugLoc(instr_begin()); 1503 // Skip debug declarations, we don't want a DebugLoc from them. 1504 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1505 if (!MBBI->isDebugInstr()) 1506 return MBBI->getDebugLoc(); 1507 return {}; 1508 } 1509 1510 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1511 /// instructions. Return UnknownLoc if there is none. 1512 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1513 if (MBBI == instr_begin()) 1514 return {}; 1515 // Skip debug instructions, we don't want a DebugLoc from them. 1516 MBBI = prev_nodbg(MBBI, instr_begin()); 1517 if (!MBBI->isDebugInstr()) 1518 return MBBI->getDebugLoc(); 1519 return {}; 1520 } 1521 1522 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1523 if (MBBI == instr_rend()) 1524 return {}; 1525 // Skip debug declarations, we don't want a DebugLoc from them. 1526 MBBI = next_nodbg(MBBI, instr_rend()); 1527 if (MBBI != instr_rend()) 1528 return MBBI->getDebugLoc(); 1529 return {}; 1530 } 1531 1532 /// Find and return the merged DebugLoc of the branch instructions of the block. 1533 /// Return UnknownLoc if there is none. 1534 DebugLoc 1535 MachineBasicBlock::findBranchDebugLoc() { 1536 DebugLoc DL; 1537 auto TI = getFirstTerminator(); 1538 while (TI != end() && !TI->isBranch()) 1539 ++TI; 1540 1541 if (TI != end()) { 1542 DL = TI->getDebugLoc(); 1543 for (++TI ; TI != end() ; ++TI) 1544 if (TI->isBranch()) 1545 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1546 } 1547 return DL; 1548 } 1549 1550 /// Return probability of the edge from this block to MBB. 1551 BranchProbability 1552 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1553 if (Probs.empty()) 1554 return BranchProbability(1, succ_size()); 1555 1556 const auto &Prob = *getProbabilityIterator(Succ); 1557 if (Prob.isUnknown()) { 1558 // For unknown probabilities, collect the sum of all known ones, and evenly 1559 // ditribute the complemental of the sum to each unknown probability. 1560 unsigned KnownProbNum = 0; 1561 auto Sum = BranchProbability::getZero(); 1562 for (const auto &P : Probs) { 1563 if (!P.isUnknown()) { 1564 Sum += P; 1565 KnownProbNum++; 1566 } 1567 } 1568 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1569 } else 1570 return Prob; 1571 } 1572 1573 /// Set successor probability of a given iterator. 1574 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1575 BranchProbability Prob) { 1576 assert(!Prob.isUnknown()); 1577 if (Probs.empty()) 1578 return; 1579 *getProbabilityIterator(I) = Prob; 1580 } 1581 1582 /// Return probability iterator corresonding to the I successor iterator 1583 MachineBasicBlock::const_probability_iterator 1584 MachineBasicBlock::getProbabilityIterator( 1585 MachineBasicBlock::const_succ_iterator I) const { 1586 assert(Probs.size() == Successors.size() && "Async probability list!"); 1587 const size_t index = std::distance(Successors.begin(), I); 1588 assert(index < Probs.size() && "Not a current successor!"); 1589 return Probs.begin() + index; 1590 } 1591 1592 /// Return probability iterator corresonding to the I successor iterator. 1593 MachineBasicBlock::probability_iterator 1594 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1595 assert(Probs.size() == Successors.size() && "Async probability list!"); 1596 const size_t index = std::distance(Successors.begin(), I); 1597 assert(index < Probs.size() && "Not a current successor!"); 1598 return Probs.begin() + index; 1599 } 1600 1601 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1602 /// as of just before "MI". 1603 /// 1604 /// Search is localised to a neighborhood of 1605 /// Neighborhood instructions before (searching for defs or kills) and N 1606 /// instructions after (searching just for defs) MI. 1607 MachineBasicBlock::LivenessQueryResult 1608 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1609 MCRegister Reg, const_iterator Before, 1610 unsigned Neighborhood) const { 1611 unsigned N = Neighborhood; 1612 1613 // Try searching forwards from Before, looking for reads or defs. 1614 const_iterator I(Before); 1615 for (; I != end() && N > 0; ++I) { 1616 if (I->isDebugOrPseudoInstr()) 1617 continue; 1618 1619 --N; 1620 1621 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1622 1623 // Register is live when we read it here. 1624 if (Info.Read) 1625 return LQR_Live; 1626 // Register is dead if we can fully overwrite or clobber it here. 1627 if (Info.FullyDefined || Info.Clobbered) 1628 return LQR_Dead; 1629 } 1630 1631 // If we reached the end, it is safe to clobber Reg at the end of a block of 1632 // no successor has it live in. 1633 if (I == end()) { 1634 for (MachineBasicBlock *S : successors()) { 1635 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1636 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1637 return LQR_Live; 1638 } 1639 } 1640 1641 return LQR_Dead; 1642 } 1643 1644 1645 N = Neighborhood; 1646 1647 // Start by searching backwards from Before, looking for kills, reads or defs. 1648 I = const_iterator(Before); 1649 // If this is the first insn in the block, don't search backwards. 1650 if (I != begin()) { 1651 do { 1652 --I; 1653 1654 if (I->isDebugOrPseudoInstr()) 1655 continue; 1656 1657 --N; 1658 1659 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1660 1661 // Defs happen after uses so they take precedence if both are present. 1662 1663 // Register is dead after a dead def of the full register. 1664 if (Info.DeadDef) 1665 return LQR_Dead; 1666 // Register is (at least partially) live after a def. 1667 if (Info.Defined) { 1668 if (!Info.PartialDeadDef) 1669 return LQR_Live; 1670 // As soon as we saw a partial definition (dead or not), 1671 // we cannot tell if the value is partial live without 1672 // tracking the lanemasks. We are not going to do this, 1673 // so fall back on the remaining of the analysis. 1674 break; 1675 } 1676 // Register is dead after a full kill or clobber and no def. 1677 if (Info.Killed || Info.Clobbered) 1678 return LQR_Dead; 1679 // Register must be live if we read it. 1680 if (Info.Read) 1681 return LQR_Live; 1682 1683 } while (I != begin() && N > 0); 1684 } 1685 1686 // If all the instructions before this in the block are debug instructions, 1687 // skip over them. 1688 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1689 --I; 1690 1691 // Did we get to the start of the block? 1692 if (I == begin()) { 1693 // If so, the register's state is definitely defined by the live-in state. 1694 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1695 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1696 return LQR_Live; 1697 1698 return LQR_Dead; 1699 } 1700 1701 // At this point we have no idea of the liveness of the register. 1702 return LQR_Unknown; 1703 } 1704 1705 const uint32_t * 1706 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1707 // EH funclet entry does not preserve any registers. 1708 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1709 } 1710 1711 const uint32_t * 1712 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1713 // If we see a return block with successors, this must be a funclet return, 1714 // which does not preserve any registers. If there are no successors, we don't 1715 // care what kind of return it is, putting a mask after it is a no-op. 1716 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1717 } 1718 1719 void MachineBasicBlock::clearLiveIns() { 1720 LiveIns.clear(); 1721 } 1722 1723 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1724 assert(getParent()->getProperties().hasProperty( 1725 MachineFunctionProperties::Property::TracksLiveness) && 1726 "Liveness information is accurate"); 1727 return LiveIns.begin(); 1728 } 1729 1730 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1731 const MachineFunction &MF = *getParent(); 1732 assert(MF.getProperties().hasProperty( 1733 MachineFunctionProperties::Property::TracksLiveness) && 1734 "Liveness information is accurate"); 1735 1736 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1737 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1738 if (MF.getFunction().hasPersonalityFn()) { 1739 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1740 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1741 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1742 } 1743 1744 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1745 } 1746 1747 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1748 unsigned Cntr = 0; 1749 auto R = instructionsWithoutDebug(begin(), end()); 1750 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1751 if (++Cntr > Limit) 1752 return true; 1753 } 1754 return false; 1755 } 1756 1757 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1758 const MBBSectionID 1759 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1760