xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112   MF->handleInsertion(*N);
113 }
114 
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118   assert(N->getParent() && "machine instruction not in a basic block");
119 
120   // Remove from the use/def lists.
121   if (MachineFunction *MF = N->getMF()) {
122     MF->handleRemoval(*N);
123     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
124   }
125 
126   N->setParent(nullptr);
127 }
128 
129 /// When moving a range of instructions from one MBB list to another, we need to
130 /// update the parent pointers and the use/def lists.
131 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
132                                                        instr_iterator First,
133                                                        instr_iterator Last) {
134   assert(Parent->getParent() == FromList.Parent->getParent() &&
135          "cannot transfer MachineInstrs between MachineFunctions");
136 
137   // If it's within the same BB, there's nothing to do.
138   if (this == &FromList)
139     return;
140 
141   assert(Parent != FromList.Parent && "Two lists have the same parent?");
142 
143   // If splicing between two blocks within the same function, just update the
144   // parent pointers.
145   for (; First != Last; ++First)
146     First->setParent(Parent);
147 }
148 
149 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
150   assert(!MI->getParent() && "MI is still in a block!");
151   Parent->getParent()->DeleteMachineInstr(MI);
152 }
153 
154 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
155   instr_iterator I = instr_begin(), E = instr_end();
156   while (I != E && I->isPHI())
157     ++I;
158   assert((I == E || !I->isInsideBundle()) &&
159          "First non-phi MI cannot be inside a bundle!");
160   return I;
161 }
162 
163 MachineBasicBlock::iterator
164 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
165   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
166 
167   iterator E = end();
168   while (I != E && (I->isPHI() || I->isPosition() ||
169                     TII->isBasicBlockPrologue(*I)))
170     ++I;
171   // FIXME: This needs to change if we wish to bundle labels
172   // inside the bundle.
173   assert((I == E || !I->isInsideBundle()) &&
174          "First non-phi / non-label instruction is inside a bundle!");
175   return I;
176 }
177 
178 MachineBasicBlock::iterator
179 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
180   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
181 
182   iterator E = end();
183   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
184                     TII->isBasicBlockPrologue(*I)))
185     ++I;
186   // FIXME: This needs to change if we wish to bundle labels / dbg_values
187   // inside the bundle.
188   assert((I == E || !I->isInsideBundle()) &&
189          "First non-phi / non-label / non-debug "
190          "instruction is inside a bundle!");
191   return I;
192 }
193 
194 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
195   iterator B = begin(), E = end(), I = E;
196   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
197     ; /*noop */
198   while (I != E && !I->isTerminator())
199     ++I;
200   return I;
201 }
202 
203 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
204   instr_iterator B = instr_begin(), E = instr_end(), I = E;
205   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
206     ; /*noop */
207   while (I != E && !I->isTerminator())
208     ++I;
209   return I;
210 }
211 
212 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
213   // Skip over begin-of-block dbg_value instructions.
214   return skipDebugInstructionsForward(begin(), end());
215 }
216 
217 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
218   // Skip over end-of-block dbg_value instructions.
219   instr_iterator B = instr_begin(), I = instr_end();
220   while (I != B) {
221     --I;
222     // Return instruction that starts a bundle.
223     if (I->isDebugInstr() || I->isInsideBundle())
224       continue;
225     return I;
226   }
227   // The block is all debug values.
228   return end();
229 }
230 
231 bool MachineBasicBlock::hasEHPadSuccessor() const {
232   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
233     if ((*I)->isEHPad())
234       return true;
235   return false;
236 }
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
240   print(dbgs());
241 }
242 #endif
243 
244 bool MachineBasicBlock::isLegalToHoistInto() const {
245   if (isReturnBlock() || hasEHPadSuccessor())
246     return false;
247   return true;
248 }
249 
250 StringRef MachineBasicBlock::getName() const {
251   if (const BasicBlock *LBB = getBasicBlock())
252     return LBB->getName();
253   else
254     return StringRef("", 0);
255 }
256 
257 /// Return a hopefully unique identifier for this block.
258 std::string MachineBasicBlock::getFullName() const {
259   std::string Name;
260   if (getParent())
261     Name = (getParent()->getName() + ":").str();
262   if (getBasicBlock())
263     Name += getBasicBlock()->getName();
264   else
265     Name += ("BB" + Twine(getNumber())).str();
266   return Name;
267 }
268 
269 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
270                               bool IsStandalone) const {
271   const MachineFunction *MF = getParent();
272   if (!MF) {
273     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
274        << " is null\n";
275     return;
276   }
277   const Function &F = MF->getFunction();
278   const Module *M = F.getParent();
279   ModuleSlotTracker MST(M);
280   MST.incorporateFunction(F);
281   print(OS, MST, Indexes, IsStandalone);
282 }
283 
284 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
285                               const SlotIndexes *Indexes,
286                               bool IsStandalone) const {
287   const MachineFunction *MF = getParent();
288   if (!MF) {
289     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
290        << " is null\n";
291     return;
292   }
293 
294   if (Indexes)
295     OS << Indexes->getMBBStartIdx(this) << '\t';
296 
297   OS << "bb." << getNumber();
298   bool HasAttributes = false;
299   if (const auto *BB = getBasicBlock()) {
300     if (BB->hasName()) {
301       OS << "." << BB->getName();
302     } else {
303       HasAttributes = true;
304       OS << " (";
305       int Slot = MST.getLocalSlot(BB);
306       if (Slot == -1)
307         OS << "<ir-block badref>";
308       else
309         OS << (Twine("%ir-block.") + Twine(Slot)).str();
310     }
311   }
312 
313   if (hasAddressTaken()) {
314     OS << (HasAttributes ? ", " : " (");
315     OS << "address-taken";
316     HasAttributes = true;
317   }
318   if (isEHPad()) {
319     OS << (HasAttributes ? ", " : " (");
320     OS << "landing-pad";
321     HasAttributes = true;
322   }
323   if (getAlignment()) {
324     OS << (HasAttributes ? ", " : " (");
325     OS << "align " << getAlignment();
326     HasAttributes = true;
327   }
328   if (HasAttributes)
329     OS << ")";
330   OS << ":\n";
331 
332   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
333   const MachineRegisterInfo &MRI = MF->getRegInfo();
334   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
335   bool HasLineAttributes = false;
336 
337   // Print the preds of this block according to the CFG.
338   if (!pred_empty() && IsStandalone) {
339     if (Indexes) OS << '\t';
340     // Don't indent(2), align with previous line attributes.
341     OS << "; predecessors: ";
342     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
343       if (I != pred_begin())
344         OS << ", ";
345       OS << printMBBReference(**I);
346     }
347     OS << '\n';
348     HasLineAttributes = true;
349   }
350 
351   if (!succ_empty()) {
352     if (Indexes) OS << '\t';
353     // Print the successors
354     OS.indent(2) << "successors: ";
355     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
356       if (I != succ_begin())
357         OS << ", ";
358       OS << printMBBReference(**I);
359       if (!Probs.empty())
360         OS << '('
361            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
362            << ')';
363     }
364     if (!Probs.empty() && IsStandalone) {
365       // Print human readable probabilities as comments.
366       OS << "; ";
367       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
368         const BranchProbability &BP = getSuccProbability(I);
369         if (I != succ_begin())
370           OS << ", ";
371         OS << printMBBReference(**I) << '('
372            << format("%.2f%%",
373                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
374                           100.0 * 100.0) /
375                          100.0)
376            << ')';
377       }
378     }
379 
380     OS << '\n';
381     HasLineAttributes = true;
382   }
383 
384   if (!livein_empty() && MRI.tracksLiveness()) {
385     if (Indexes) OS << '\t';
386     OS.indent(2) << "liveins: ";
387 
388     bool First = true;
389     for (const auto &LI : liveins()) {
390       if (!First)
391         OS << ", ";
392       First = false;
393       OS << printReg(LI.PhysReg, TRI);
394       if (!LI.LaneMask.all())
395         OS << ":0x" << PrintLaneMask(LI.LaneMask);
396     }
397     HasLineAttributes = true;
398   }
399 
400   if (HasLineAttributes)
401     OS << '\n';
402 
403   bool IsInBundle = false;
404   for (const MachineInstr &MI : instrs()) {
405     if (Indexes) {
406       if (Indexes->hasIndex(MI))
407         OS << Indexes->getInstructionIndex(MI);
408       OS << '\t';
409     }
410 
411     if (IsInBundle && !MI.isInsideBundle()) {
412       OS.indent(2) << "}\n";
413       IsInBundle = false;
414     }
415 
416     OS.indent(IsInBundle ? 4 : 2);
417     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
418              /*AddNewLine=*/false, &TII);
419 
420     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
421       OS << " {";
422       IsInBundle = true;
423     }
424     OS << '\n';
425   }
426 
427   if (IsInBundle)
428     OS.indent(2) << "}\n";
429 
430   if (IrrLoopHeaderWeight && IsStandalone) {
431     if (Indexes) OS << '\t';
432     OS.indent(2) << "; Irreducible loop header weight: "
433                  << IrrLoopHeaderWeight.getValue() << '\n';
434   }
435 }
436 
437 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
438                                        bool /*PrintType*/) const {
439   OS << "%bb." << getNumber();
440 }
441 
442 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
443   LiveInVector::iterator I = find_if(
444       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
445   if (I == LiveIns.end())
446     return;
447 
448   I->LaneMask &= ~LaneMask;
449   if (I->LaneMask.none())
450     LiveIns.erase(I);
451 }
452 
453 MachineBasicBlock::livein_iterator
454 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
455   // Get non-const version of iterator.
456   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
457   return LiveIns.erase(LI);
458 }
459 
460 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
461   livein_iterator I = find_if(
462       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
463   return I != livein_end() && (I->LaneMask & LaneMask).any();
464 }
465 
466 void MachineBasicBlock::sortUniqueLiveIns() {
467   llvm::sort(LiveIns,
468              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
469                return LI0.PhysReg < LI1.PhysReg;
470              });
471   // Liveins are sorted by physreg now we can merge their lanemasks.
472   LiveInVector::const_iterator I = LiveIns.begin();
473   LiveInVector::const_iterator J;
474   LiveInVector::iterator Out = LiveIns.begin();
475   for (; I != LiveIns.end(); ++Out, I = J) {
476     unsigned PhysReg = I->PhysReg;
477     LaneBitmask LaneMask = I->LaneMask;
478     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
479       LaneMask |= J->LaneMask;
480     Out->PhysReg = PhysReg;
481     Out->LaneMask = LaneMask;
482   }
483   LiveIns.erase(Out, LiveIns.end());
484 }
485 
486 unsigned
487 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
488   assert(getParent() && "MBB must be inserted in function");
489   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
490   assert(RC && "Register class is required");
491   assert((isEHPad() || this == &getParent()->front()) &&
492          "Only the entry block and landing pads can have physreg live ins");
493 
494   bool LiveIn = isLiveIn(PhysReg);
495   iterator I = SkipPHIsAndLabels(begin()), E = end();
496   MachineRegisterInfo &MRI = getParent()->getRegInfo();
497   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
498 
499   // Look for an existing copy.
500   if (LiveIn)
501     for (;I != E && I->isCopy(); ++I)
502       if (I->getOperand(1).getReg() == PhysReg) {
503         unsigned VirtReg = I->getOperand(0).getReg();
504         if (!MRI.constrainRegClass(VirtReg, RC))
505           llvm_unreachable("Incompatible live-in register class.");
506         return VirtReg;
507       }
508 
509   // No luck, create a virtual register.
510   unsigned VirtReg = MRI.createVirtualRegister(RC);
511   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
512     .addReg(PhysReg, RegState::Kill);
513   if (!LiveIn)
514     addLiveIn(PhysReg);
515   return VirtReg;
516 }
517 
518 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
519   getParent()->splice(NewAfter->getIterator(), getIterator());
520 }
521 
522 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
523   getParent()->splice(++NewBefore->getIterator(), getIterator());
524 }
525 
526 void MachineBasicBlock::updateTerminator() {
527   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
528   // A block with no successors has no concerns with fall-through edges.
529   if (this->succ_empty())
530     return;
531 
532   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
533   SmallVector<MachineOperand, 4> Cond;
534   DebugLoc DL = findBranchDebugLoc();
535   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
536   (void) B;
537   assert(!B && "UpdateTerminators requires analyzable predecessors!");
538   if (Cond.empty()) {
539     if (TBB) {
540       // The block has an unconditional branch. If its successor is now its
541       // layout successor, delete the branch.
542       if (isLayoutSuccessor(TBB))
543         TII->removeBranch(*this);
544     } else {
545       // The block has an unconditional fallthrough. If its successor is not its
546       // layout successor, insert a branch. First we have to locate the only
547       // non-landing-pad successor, as that is the fallthrough block.
548       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
549         if ((*SI)->isEHPad())
550           continue;
551         assert(!TBB && "Found more than one non-landing-pad successor!");
552         TBB = *SI;
553       }
554 
555       // If there is no non-landing-pad successor, the block has no fall-through
556       // edges to be concerned with.
557       if (!TBB)
558         return;
559 
560       // Finally update the unconditional successor to be reached via a branch
561       // if it would not be reached by fallthrough.
562       if (!isLayoutSuccessor(TBB))
563         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
564     }
565     return;
566   }
567 
568   if (FBB) {
569     // The block has a non-fallthrough conditional branch. If one of its
570     // successors is its layout successor, rewrite it to a fallthrough
571     // conditional branch.
572     if (isLayoutSuccessor(TBB)) {
573       if (TII->reverseBranchCondition(Cond))
574         return;
575       TII->removeBranch(*this);
576       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
577     } else if (isLayoutSuccessor(FBB)) {
578       TII->removeBranch(*this);
579       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
580     }
581     return;
582   }
583 
584   // Walk through the successors and find the successor which is not a landing
585   // pad and is not the conditional branch destination (in TBB) as the
586   // fallthrough successor.
587   MachineBasicBlock *FallthroughBB = nullptr;
588   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
589     if ((*SI)->isEHPad() || *SI == TBB)
590       continue;
591     assert(!FallthroughBB && "Found more than one fallthrough successor.");
592     FallthroughBB = *SI;
593   }
594 
595   if (!FallthroughBB) {
596     if (canFallThrough()) {
597       // We fallthrough to the same basic block as the conditional jump targets.
598       // Remove the conditional jump, leaving unconditional fallthrough.
599       // FIXME: This does not seem like a reasonable pattern to support, but it
600       // has been seen in the wild coming out of degenerate ARM test cases.
601       TII->removeBranch(*this);
602 
603       // Finally update the unconditional successor to be reached via a branch if
604       // it would not be reached by fallthrough.
605       if (!isLayoutSuccessor(TBB))
606         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
607       return;
608     }
609 
610     // We enter here iff exactly one successor is TBB which cannot fallthrough
611     // and the rest successors if any are EHPads.  In this case, we need to
612     // change the conditional branch into unconditional branch.
613     TII->removeBranch(*this);
614     Cond.clear();
615     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
616     return;
617   }
618 
619   // The block has a fallthrough conditional branch.
620   if (isLayoutSuccessor(TBB)) {
621     if (TII->reverseBranchCondition(Cond)) {
622       // We can't reverse the condition, add an unconditional branch.
623       Cond.clear();
624       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
625       return;
626     }
627     TII->removeBranch(*this);
628     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
629   } else if (!isLayoutSuccessor(FallthroughBB)) {
630     TII->removeBranch(*this);
631     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
632   }
633 }
634 
635 void MachineBasicBlock::validateSuccProbs() const {
636 #ifndef NDEBUG
637   int64_t Sum = 0;
638   for (auto Prob : Probs)
639     Sum += Prob.getNumerator();
640   // Due to precision issue, we assume that the sum of probabilities is one if
641   // the difference between the sum of their numerators and the denominator is
642   // no greater than the number of successors.
643   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
644              Probs.size() &&
645          "The sum of successors's probabilities exceeds one.");
646 #endif // NDEBUG
647 }
648 
649 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
650                                      BranchProbability Prob) {
651   // Probability list is either empty (if successor list isn't empty, this means
652   // disabled optimization) or has the same size as successor list.
653   if (!(Probs.empty() && !Successors.empty()))
654     Probs.push_back(Prob);
655   Successors.push_back(Succ);
656   Succ->addPredecessor(this);
657 }
658 
659 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
660   // We need to make sure probability list is either empty or has the same size
661   // of successor list. When this function is called, we can safely delete all
662   // probability in the list.
663   Probs.clear();
664   Successors.push_back(Succ);
665   Succ->addPredecessor(this);
666 }
667 
668 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
669                                        MachineBasicBlock *New,
670                                        bool NormalizeSuccProbs) {
671   succ_iterator OldI = llvm::find(successors(), Old);
672   assert(OldI != succ_end() && "Old is not a successor of this block!");
673   assert(llvm::find(successors(), New) == succ_end() &&
674          "New is already a successor of this block!");
675 
676   // Add a new successor with equal probability as the original one. Note
677   // that we directly copy the probability using the iterator rather than
678   // getting a potentially synthetic probability computed when unknown. This
679   // preserves the probabilities as-is and then we can renormalize them and
680   // query them effectively afterward.
681   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
682                                   : *getProbabilityIterator(OldI));
683   if (NormalizeSuccProbs)
684     normalizeSuccProbs();
685 }
686 
687 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
688                                         bool NormalizeSuccProbs) {
689   succ_iterator I = find(Successors, Succ);
690   removeSuccessor(I, NormalizeSuccProbs);
691 }
692 
693 MachineBasicBlock::succ_iterator
694 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
695   assert(I != Successors.end() && "Not a current successor!");
696 
697   // If probability list is empty it means we don't use it (disabled
698   // optimization).
699   if (!Probs.empty()) {
700     probability_iterator WI = getProbabilityIterator(I);
701     Probs.erase(WI);
702     if (NormalizeSuccProbs)
703       normalizeSuccProbs();
704   }
705 
706   (*I)->removePredecessor(this);
707   return Successors.erase(I);
708 }
709 
710 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
711                                          MachineBasicBlock *New) {
712   if (Old == New)
713     return;
714 
715   succ_iterator E = succ_end();
716   succ_iterator NewI = E;
717   succ_iterator OldI = E;
718   for (succ_iterator I = succ_begin(); I != E; ++I) {
719     if (*I == Old) {
720       OldI = I;
721       if (NewI != E)
722         break;
723     }
724     if (*I == New) {
725       NewI = I;
726       if (OldI != E)
727         break;
728     }
729   }
730   assert(OldI != E && "Old is not a successor of this block");
731 
732   // If New isn't already a successor, let it take Old's place.
733   if (NewI == E) {
734     Old->removePredecessor(this);
735     New->addPredecessor(this);
736     *OldI = New;
737     return;
738   }
739 
740   // New is already a successor.
741   // Update its probability instead of adding a duplicate edge.
742   if (!Probs.empty()) {
743     auto ProbIter = getProbabilityIterator(NewI);
744     if (!ProbIter->isUnknown())
745       *ProbIter += *getProbabilityIterator(OldI);
746   }
747   removeSuccessor(OldI);
748 }
749 
750 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
751                                       succ_iterator I) {
752   if (Orig->Probs.empty())
753     addSuccessor(*I, Orig->getSuccProbability(I));
754   else
755     addSuccessorWithoutProb(*I);
756 }
757 
758 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
759   Predecessors.push_back(Pred);
760 }
761 
762 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
763   pred_iterator I = find(Predecessors, Pred);
764   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
765   Predecessors.erase(I);
766 }
767 
768 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
769   if (this == FromMBB)
770     return;
771 
772   while (!FromMBB->succ_empty()) {
773     MachineBasicBlock *Succ = *FromMBB->succ_begin();
774 
775     // If probability list is empty it means we don't use it (disabled optimization).
776     if (!FromMBB->Probs.empty()) {
777       auto Prob = *FromMBB->Probs.begin();
778       addSuccessor(Succ, Prob);
779     } else
780       addSuccessorWithoutProb(Succ);
781 
782     FromMBB->removeSuccessor(Succ);
783   }
784 }
785 
786 void
787 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
788   if (this == FromMBB)
789     return;
790 
791   while (!FromMBB->succ_empty()) {
792     MachineBasicBlock *Succ = *FromMBB->succ_begin();
793     if (!FromMBB->Probs.empty()) {
794       auto Prob = *FromMBB->Probs.begin();
795       addSuccessor(Succ, Prob);
796     } else
797       addSuccessorWithoutProb(Succ);
798     FromMBB->removeSuccessor(Succ);
799 
800     // Fix up any PHI nodes in the successor.
801     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
802            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
803       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
804         MachineOperand &MO = MI->getOperand(i);
805         if (MO.getMBB() == FromMBB)
806           MO.setMBB(this);
807       }
808   }
809   normalizeSuccProbs();
810 }
811 
812 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
813   return is_contained(predecessors(), MBB);
814 }
815 
816 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
817   return is_contained(successors(), MBB);
818 }
819 
820 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
821   MachineFunction::const_iterator I(this);
822   return std::next(I) == MachineFunction::const_iterator(MBB);
823 }
824 
825 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
826   MachineFunction::iterator Fallthrough = getIterator();
827   ++Fallthrough;
828   // If FallthroughBlock is off the end of the function, it can't fall through.
829   if (Fallthrough == getParent()->end())
830     return nullptr;
831 
832   // If FallthroughBlock isn't a successor, no fallthrough is possible.
833   if (!isSuccessor(&*Fallthrough))
834     return nullptr;
835 
836   // Analyze the branches, if any, at the end of the block.
837   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
838   SmallVector<MachineOperand, 4> Cond;
839   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
840   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
841     // If we couldn't analyze the branch, examine the last instruction.
842     // If the block doesn't end in a known control barrier, assume fallthrough
843     // is possible. The isPredicated check is needed because this code can be
844     // called during IfConversion, where an instruction which is normally a
845     // Barrier is predicated and thus no longer an actual control barrier.
846     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
847                ? &*Fallthrough
848                : nullptr;
849   }
850 
851   // If there is no branch, control always falls through.
852   if (!TBB) return &*Fallthrough;
853 
854   // If there is some explicit branch to the fallthrough block, it can obviously
855   // reach, even though the branch should get folded to fall through implicitly.
856   if (MachineFunction::iterator(TBB) == Fallthrough ||
857       MachineFunction::iterator(FBB) == Fallthrough)
858     return &*Fallthrough;
859 
860   // If it's an unconditional branch to some block not the fall through, it
861   // doesn't fall through.
862   if (Cond.empty()) return nullptr;
863 
864   // Otherwise, if it is conditional and has no explicit false block, it falls
865   // through.
866   return (FBB == nullptr) ? &*Fallthrough : nullptr;
867 }
868 
869 bool MachineBasicBlock::canFallThrough() {
870   return getFallThrough() != nullptr;
871 }
872 
873 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
874                                                         Pass &P) {
875   if (!canSplitCriticalEdge(Succ))
876     return nullptr;
877 
878   MachineFunction *MF = getParent();
879   DebugLoc DL;  // FIXME: this is nowhere
880 
881   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
882   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
883   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
884                     << " -- " << printMBBReference(*NMBB) << " -- "
885                     << printMBBReference(*Succ) << '\n');
886 
887   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
888   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
889   if (LIS)
890     LIS->insertMBBInMaps(NMBB);
891   else if (Indexes)
892     Indexes->insertMBBInMaps(NMBB);
893 
894   // On some targets like Mips, branches may kill virtual registers. Make sure
895   // that LiveVariables is properly updated after updateTerminator replaces the
896   // terminators.
897   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
898 
899   // Collect a list of virtual registers killed by the terminators.
900   SmallVector<unsigned, 4> KilledRegs;
901   if (LV)
902     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
903          I != E; ++I) {
904       MachineInstr *MI = &*I;
905       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
906            OE = MI->operands_end(); OI != OE; ++OI) {
907         if (!OI->isReg() || OI->getReg() == 0 ||
908             !OI->isUse() || !OI->isKill() || OI->isUndef())
909           continue;
910         unsigned Reg = OI->getReg();
911         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
912             LV->getVarInfo(Reg).removeKill(*MI)) {
913           KilledRegs.push_back(Reg);
914           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
915           OI->setIsKill(false);
916         }
917       }
918     }
919 
920   SmallVector<unsigned, 4> UsedRegs;
921   if (LIS) {
922     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
923          I != E; ++I) {
924       MachineInstr *MI = &*I;
925 
926       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
927            OE = MI->operands_end(); OI != OE; ++OI) {
928         if (!OI->isReg() || OI->getReg() == 0)
929           continue;
930 
931         unsigned Reg = OI->getReg();
932         if (!is_contained(UsedRegs, Reg))
933           UsedRegs.push_back(Reg);
934       }
935     }
936   }
937 
938   ReplaceUsesOfBlockWith(Succ, NMBB);
939 
940   // If updateTerminator() removes instructions, we need to remove them from
941   // SlotIndexes.
942   SmallVector<MachineInstr*, 4> Terminators;
943   if (Indexes) {
944     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
945          I != E; ++I)
946       Terminators.push_back(&*I);
947   }
948 
949   updateTerminator();
950 
951   if (Indexes) {
952     SmallVector<MachineInstr*, 4> NewTerminators;
953     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
954          I != E; ++I)
955       NewTerminators.push_back(&*I);
956 
957     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
958         E = Terminators.end(); I != E; ++I) {
959       if (!is_contained(NewTerminators, *I))
960         Indexes->removeMachineInstrFromMaps(**I);
961     }
962   }
963 
964   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
965   NMBB->addSuccessor(Succ);
966   if (!NMBB->isLayoutSuccessor(Succ)) {
967     SmallVector<MachineOperand, 4> Cond;
968     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
969     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
970 
971     if (Indexes) {
972       for (MachineInstr &MI : NMBB->instrs()) {
973         // Some instructions may have been moved to NMBB by updateTerminator(),
974         // so we first remove any instruction that already has an index.
975         if (Indexes->hasIndex(MI))
976           Indexes->removeMachineInstrFromMaps(MI);
977         Indexes->insertMachineInstrInMaps(MI);
978       }
979     }
980   }
981 
982   // Fix PHI nodes in Succ so they refer to NMBB instead of this
983   for (MachineBasicBlock::instr_iterator
984          i = Succ->instr_begin(),e = Succ->instr_end();
985        i != e && i->isPHI(); ++i)
986     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
987       if (i->getOperand(ni+1).getMBB() == this)
988         i->getOperand(ni+1).setMBB(NMBB);
989 
990   // Inherit live-ins from the successor
991   for (const auto &LI : Succ->liveins())
992     NMBB->addLiveIn(LI);
993 
994   // Update LiveVariables.
995   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
996   if (LV) {
997     // Restore kills of virtual registers that were killed by the terminators.
998     while (!KilledRegs.empty()) {
999       unsigned Reg = KilledRegs.pop_back_val();
1000       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1001         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1002           continue;
1003         if (TargetRegisterInfo::isVirtualRegister(Reg))
1004           LV->getVarInfo(Reg).Kills.push_back(&*I);
1005         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1006         break;
1007       }
1008     }
1009     // Update relevant live-through information.
1010     LV->addNewBlock(NMBB, this, Succ);
1011   }
1012 
1013   if (LIS) {
1014     // After splitting the edge and updating SlotIndexes, live intervals may be
1015     // in one of two situations, depending on whether this block was the last in
1016     // the function. If the original block was the last in the function, all
1017     // live intervals will end prior to the beginning of the new split block. If
1018     // the original block was not at the end of the function, all live intervals
1019     // will extend to the end of the new split block.
1020 
1021     bool isLastMBB =
1022       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1023 
1024     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1025     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1026     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1027 
1028     // Find the registers used from NMBB in PHIs in Succ.
1029     SmallSet<unsigned, 8> PHISrcRegs;
1030     for (MachineBasicBlock::instr_iterator
1031          I = Succ->instr_begin(), E = Succ->instr_end();
1032          I != E && I->isPHI(); ++I) {
1033       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1034         if (I->getOperand(ni+1).getMBB() == NMBB) {
1035           MachineOperand &MO = I->getOperand(ni);
1036           unsigned Reg = MO.getReg();
1037           PHISrcRegs.insert(Reg);
1038           if (MO.isUndef())
1039             continue;
1040 
1041           LiveInterval &LI = LIS->getInterval(Reg);
1042           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1043           assert(VNI &&
1044                  "PHI sources should be live out of their predecessors.");
1045           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1046         }
1047       }
1048     }
1049 
1050     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1051     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1052       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1053       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1054         continue;
1055 
1056       LiveInterval &LI = LIS->getInterval(Reg);
1057       if (!LI.liveAt(PrevIndex))
1058         continue;
1059 
1060       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1061       if (isLiveOut && isLastMBB) {
1062         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1063         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1064         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1065       } else if (!isLiveOut && !isLastMBB) {
1066         LI.removeSegment(StartIndex, EndIndex);
1067       }
1068     }
1069 
1070     // Update all intervals for registers whose uses may have been modified by
1071     // updateTerminator().
1072     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1073   }
1074 
1075   if (MachineDominatorTree *MDT =
1076           P.getAnalysisIfAvailable<MachineDominatorTree>())
1077     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1078 
1079   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1080     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1081       // If one or the other blocks were not in a loop, the new block is not
1082       // either, and thus LI doesn't need to be updated.
1083       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1084         if (TIL == DestLoop) {
1085           // Both in the same loop, the NMBB joins loop.
1086           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1087         } else if (TIL->contains(DestLoop)) {
1088           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1089           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1090         } else if (DestLoop->contains(TIL)) {
1091           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1092           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1093         } else {
1094           // Edge from two loops with no containment relation.  Because these
1095           // are natural loops, we know that the destination block must be the
1096           // header of its loop (adding a branch into a loop elsewhere would
1097           // create an irreducible loop).
1098           assert(DestLoop->getHeader() == Succ &&
1099                  "Should not create irreducible loops!");
1100           if (MachineLoop *P = DestLoop->getParentLoop())
1101             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1102         }
1103       }
1104     }
1105 
1106   return NMBB;
1107 }
1108 
1109 bool MachineBasicBlock::canSplitCriticalEdge(
1110     const MachineBasicBlock *Succ) const {
1111   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1112   // it in this generic function.
1113   if (Succ->isEHPad())
1114     return false;
1115 
1116   const MachineFunction *MF = getParent();
1117 
1118   // Performance might be harmed on HW that implements branching using exec mask
1119   // where both sides of the branches are always executed.
1120   if (MF->getTarget().requiresStructuredCFG())
1121     return false;
1122 
1123   // We may need to update this's terminator, but we can't do that if
1124   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1125   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1126   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1127   SmallVector<MachineOperand, 4> Cond;
1128   // AnalyzeBanch should modify this, since we did not allow modification.
1129   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1130                          /*AllowModify*/ false))
1131     return false;
1132 
1133   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1134   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1135   // case that we can't handle. Since this never happens in properly optimized
1136   // code, just skip those edges.
1137   if (TBB && TBB == FBB) {
1138     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1139                       << printMBBReference(*this) << '\n');
1140     return false;
1141   }
1142   return true;
1143 }
1144 
1145 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1146 /// neighboring instructions so the bundle won't be broken by removing MI.
1147 static void unbundleSingleMI(MachineInstr *MI) {
1148   // Removing the first instruction in a bundle.
1149   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1150     MI->unbundleFromSucc();
1151   // Removing the last instruction in a bundle.
1152   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1153     MI->unbundleFromPred();
1154   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1155   // are already fine.
1156 }
1157 
1158 MachineBasicBlock::instr_iterator
1159 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1160   unbundleSingleMI(&*I);
1161   return Insts.erase(I);
1162 }
1163 
1164 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1165   unbundleSingleMI(MI);
1166   MI->clearFlag(MachineInstr::BundledPred);
1167   MI->clearFlag(MachineInstr::BundledSucc);
1168   return Insts.remove(MI);
1169 }
1170 
1171 MachineBasicBlock::instr_iterator
1172 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1173   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1174          "Cannot insert instruction with bundle flags");
1175   // Set the bundle flags when inserting inside a bundle.
1176   if (I != instr_end() && I->isBundledWithPred()) {
1177     MI->setFlag(MachineInstr::BundledPred);
1178     MI->setFlag(MachineInstr::BundledSucc);
1179   }
1180   return Insts.insert(I, MI);
1181 }
1182 
1183 /// This method unlinks 'this' from the containing function, and returns it, but
1184 /// does not delete it.
1185 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1186   assert(getParent() && "Not embedded in a function!");
1187   getParent()->remove(this);
1188   return this;
1189 }
1190 
1191 /// This method unlinks 'this' from the containing function, and deletes it.
1192 void MachineBasicBlock::eraseFromParent() {
1193   assert(getParent() && "Not embedded in a function!");
1194   getParent()->erase(this);
1195 }
1196 
1197 /// Given a machine basic block that branched to 'Old', change the code and CFG
1198 /// so that it branches to 'New' instead.
1199 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1200                                                MachineBasicBlock *New) {
1201   assert(Old != New && "Cannot replace self with self!");
1202 
1203   MachineBasicBlock::instr_iterator I = instr_end();
1204   while (I != instr_begin()) {
1205     --I;
1206     if (!I->isTerminator()) break;
1207 
1208     // Scan the operands of this machine instruction, replacing any uses of Old
1209     // with New.
1210     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1211       if (I->getOperand(i).isMBB() &&
1212           I->getOperand(i).getMBB() == Old)
1213         I->getOperand(i).setMBB(New);
1214   }
1215 
1216   // Update the successor information.
1217   replaceSuccessor(Old, New);
1218 }
1219 
1220 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1221 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1222 /// MBB successors from the CFG.  DestA and DestB can be null.
1223 ///
1224 /// Besides DestA and DestB, retain other edges leading to LandingPads
1225 /// (currently there can be only one; we don't check or require that here).
1226 /// Note it is possible that DestA and/or DestB are LandingPads.
1227 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1228                                              MachineBasicBlock *DestB,
1229                                              bool IsCond) {
1230   // The values of DestA and DestB frequently come from a call to the
1231   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1232   // values from there.
1233   //
1234   // 1. If both DestA and DestB are null, then the block ends with no branches
1235   //    (it falls through to its successor).
1236   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1237   //    with only an unconditional branch.
1238   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1239   //    with a conditional branch that falls through to a successor (DestB).
1240   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1241   //    conditional branch followed by an unconditional branch. DestA is the
1242   //    'true' destination and DestB is the 'false' destination.
1243 
1244   bool Changed = false;
1245 
1246   MachineBasicBlock *FallThru = getNextNode();
1247 
1248   if (!DestA && !DestB) {
1249     // Block falls through to successor.
1250     DestA = FallThru;
1251     DestB = FallThru;
1252   } else if (DestA && !DestB) {
1253     if (IsCond)
1254       // Block ends in conditional jump that falls through to successor.
1255       DestB = FallThru;
1256   } else {
1257     assert(DestA && DestB && IsCond &&
1258            "CFG in a bad state. Cannot correct CFG edges");
1259   }
1260 
1261   // Remove superfluous edges. I.e., those which aren't destinations of this
1262   // basic block, duplicate edges, or landing pads.
1263   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1264   MachineBasicBlock::succ_iterator SI = succ_begin();
1265   while (SI != succ_end()) {
1266     const MachineBasicBlock *MBB = *SI;
1267     if (!SeenMBBs.insert(MBB).second ||
1268         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1269       // This is a superfluous edge, remove it.
1270       SI = removeSuccessor(SI);
1271       Changed = true;
1272     } else {
1273       ++SI;
1274     }
1275   }
1276 
1277   if (Changed)
1278     normalizeSuccProbs();
1279   return Changed;
1280 }
1281 
1282 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1283 /// instructions.  Return UnknownLoc if there is none.
1284 DebugLoc
1285 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1286   // Skip debug declarations, we don't want a DebugLoc from them.
1287   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1288   if (MBBI != instr_end())
1289     return MBBI->getDebugLoc();
1290   return {};
1291 }
1292 
1293 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1294 /// instructions.  Return UnknownLoc if there is none.
1295 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1296   if (MBBI == instr_begin()) return {};
1297   // Skip debug declarations, we don't want a DebugLoc from them.
1298   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1299   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1300   return {};
1301 }
1302 
1303 /// Find and return the merged DebugLoc of the branch instructions of the block.
1304 /// Return UnknownLoc if there is none.
1305 DebugLoc
1306 MachineBasicBlock::findBranchDebugLoc() {
1307   DebugLoc DL;
1308   auto TI = getFirstTerminator();
1309   while (TI != end() && !TI->isBranch())
1310     ++TI;
1311 
1312   if (TI != end()) {
1313     DL = TI->getDebugLoc();
1314     for (++TI ; TI != end() ; ++TI)
1315       if (TI->isBranch())
1316         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1317   }
1318   return DL;
1319 }
1320 
1321 /// Return probability of the edge from this block to MBB.
1322 BranchProbability
1323 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1324   if (Probs.empty())
1325     return BranchProbability(1, succ_size());
1326 
1327   const auto &Prob = *getProbabilityIterator(Succ);
1328   if (Prob.isUnknown()) {
1329     // For unknown probabilities, collect the sum of all known ones, and evenly
1330     // ditribute the complemental of the sum to each unknown probability.
1331     unsigned KnownProbNum = 0;
1332     auto Sum = BranchProbability::getZero();
1333     for (auto &P : Probs) {
1334       if (!P.isUnknown()) {
1335         Sum += P;
1336         KnownProbNum++;
1337       }
1338     }
1339     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1340   } else
1341     return Prob;
1342 }
1343 
1344 /// Set successor probability of a given iterator.
1345 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1346                                            BranchProbability Prob) {
1347   assert(!Prob.isUnknown());
1348   if (Probs.empty())
1349     return;
1350   *getProbabilityIterator(I) = Prob;
1351 }
1352 
1353 /// Return probability iterator corresonding to the I successor iterator
1354 MachineBasicBlock::const_probability_iterator
1355 MachineBasicBlock::getProbabilityIterator(
1356     MachineBasicBlock::const_succ_iterator I) const {
1357   assert(Probs.size() == Successors.size() && "Async probability list!");
1358   const size_t index = std::distance(Successors.begin(), I);
1359   assert(index < Probs.size() && "Not a current successor!");
1360   return Probs.begin() + index;
1361 }
1362 
1363 /// Return probability iterator corresonding to the I successor iterator.
1364 MachineBasicBlock::probability_iterator
1365 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1366   assert(Probs.size() == Successors.size() && "Async probability list!");
1367   const size_t index = std::distance(Successors.begin(), I);
1368   assert(index < Probs.size() && "Not a current successor!");
1369   return Probs.begin() + index;
1370 }
1371 
1372 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1373 /// as of just before "MI".
1374 ///
1375 /// Search is localised to a neighborhood of
1376 /// Neighborhood instructions before (searching for defs or kills) and N
1377 /// instructions after (searching just for defs) MI.
1378 MachineBasicBlock::LivenessQueryResult
1379 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1380                                            unsigned Reg, const_iterator Before,
1381                                            unsigned Neighborhood) const {
1382   unsigned N = Neighborhood;
1383 
1384   // Try searching forwards from Before, looking for reads or defs.
1385   const_iterator I(Before);
1386   for (; I != end() && N > 0; ++I) {
1387     if (I->isDebugInstr())
1388       continue;
1389 
1390     --N;
1391 
1392     MachineOperandIteratorBase::PhysRegInfo Info =
1393         ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1394 
1395     // Register is live when we read it here.
1396     if (Info.Read)
1397       return LQR_Live;
1398     // Register is dead if we can fully overwrite or clobber it here.
1399     if (Info.FullyDefined || Info.Clobbered)
1400       return LQR_Dead;
1401   }
1402 
1403   // If we reached the end, it is safe to clobber Reg at the end of a block of
1404   // no successor has it live in.
1405   if (I == end()) {
1406     for (MachineBasicBlock *S : successors()) {
1407       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1408         if (TRI->regsOverlap(LI.PhysReg, Reg))
1409           return LQR_Live;
1410       }
1411     }
1412 
1413     return LQR_Dead;
1414   }
1415 
1416 
1417   N = Neighborhood;
1418 
1419   // Start by searching backwards from Before, looking for kills, reads or defs.
1420   I = const_iterator(Before);
1421   // If this is the first insn in the block, don't search backwards.
1422   if (I != begin()) {
1423     do {
1424       --I;
1425 
1426       if (I->isDebugInstr())
1427         continue;
1428 
1429       --N;
1430 
1431       MachineOperandIteratorBase::PhysRegInfo Info =
1432           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1433 
1434       // Defs happen after uses so they take precedence if both are present.
1435 
1436       // Register is dead after a dead def of the full register.
1437       if (Info.DeadDef)
1438         return LQR_Dead;
1439       // Register is (at least partially) live after a def.
1440       if (Info.Defined) {
1441         if (!Info.PartialDeadDef)
1442           return LQR_Live;
1443         // As soon as we saw a partial definition (dead or not),
1444         // we cannot tell if the value is partial live without
1445         // tracking the lanemasks. We are not going to do this,
1446         // so fall back on the remaining of the analysis.
1447         break;
1448       }
1449       // Register is dead after a full kill or clobber and no def.
1450       if (Info.Killed || Info.Clobbered)
1451         return LQR_Dead;
1452       // Register must be live if we read it.
1453       if (Info.Read)
1454         return LQR_Live;
1455 
1456     } while (I != begin() && N > 0);
1457   }
1458 
1459   // Did we get to the start of the block?
1460   if (I == begin()) {
1461     // If so, the register's state is definitely defined by the live-in state.
1462     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1463       if (TRI->regsOverlap(LI.PhysReg, Reg))
1464         return LQR_Live;
1465 
1466     return LQR_Dead;
1467   }
1468 
1469   // At this point we have no idea of the liveness of the register.
1470   return LQR_Unknown;
1471 }
1472 
1473 const uint32_t *
1474 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1475   // EH funclet entry does not preserve any registers.
1476   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1477 }
1478 
1479 const uint32_t *
1480 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1481   // If we see a return block with successors, this must be a funclet return,
1482   // which does not preserve any registers. If there are no successors, we don't
1483   // care what kind of return it is, putting a mask after it is a no-op.
1484   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1485 }
1486 
1487 void MachineBasicBlock::clearLiveIns() {
1488   LiveIns.clear();
1489 }
1490 
1491 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1492   assert(getParent()->getProperties().hasProperty(
1493       MachineFunctionProperties::Property::TracksLiveness) &&
1494       "Liveness information is accurate");
1495   return LiveIns.begin();
1496 }
1497