xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
43 static cl::opt<bool> PrintSlotIndexes(
44     "print-slotindexes",
45     cl::desc("When printing machine IR, annotate instructions and blocks with "
46              "SlotIndexes when available"),
47     cl::init(true), cl::Hidden);
48 
49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50     : BB(B), Number(-1), xParent(&MF) {
51   Insts.Parent = this;
52   if (B)
53     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55 
56 MachineBasicBlock::~MachineBasicBlock() {
57 }
58 
59 /// Return the MCSymbol for this basic block.
60 MCSymbol *MachineBasicBlock::getSymbol() const {
61   if (!CachedMCSymbol) {
62     const MachineFunction *MF = getParent();
63     MCContext &Ctx = MF->getContext();
64 
65     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
66     // a section (with basic block sections). Otherwise we fall back to use temp
67     // label.
68     if (MF->hasBBSections() && isBeginSection()) {
69       SmallString<5> Suffix;
70       if (SectionID == MBBSectionID::ColdSectionID) {
71         Suffix += ".cold";
72       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
73         Suffix += ".eh";
74       } else {
75         // For symbols that represent basic block sections, we add ".__part." to
76         // allow tools like symbolizers to know that this represents a part of
77         // the original function.
78         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
79       }
80       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
81     } else {
82       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
83       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
84                                              Twine(MF->getFunctionNumber()) +
85                                              "_" + Twine(getNumber()));
86     }
87   }
88   return CachedMCSymbol;
89 }
90 
91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
92   if (!CachedEHCatchretMCSymbol) {
93     const MachineFunction *MF = getParent();
94     SmallString<128> SymbolName;
95     raw_svector_ostream(SymbolName)
96         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
97     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
98   }
99   return CachedEHCatchretMCSymbol;
100 }
101 
102 MCSymbol *MachineBasicBlock::getEndSymbol() const {
103   if (!CachedEndMCSymbol) {
104     const MachineFunction *MF = getParent();
105     MCContext &Ctx = MF->getContext();
106     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
107     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
108                                               Twine(MF->getFunctionNumber()) +
109                                               "_" + Twine(getNumber()));
110   }
111   return CachedEndMCSymbol;
112 }
113 
114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
115   MBB.print(OS);
116   return OS;
117 }
118 
119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
120   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
121 }
122 
123 /// When an MBB is added to an MF, we need to update the parent pointer of the
124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
125 /// operand list for registers.
126 ///
127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
128 /// gets the next available unique MBB number. If it is removed from a
129 /// MachineFunction, it goes back to being #-1.
130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
131     MachineBasicBlock *N) {
132   MachineFunction &MF = *N->getParent();
133   N->Number = MF.addToMBBNumbering(N);
134 
135   // Make sure the instructions have their operands in the reginfo lists.
136   MachineRegisterInfo &RegInfo = MF.getRegInfo();
137   for (MachineBasicBlock::instr_iterator
138          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
139     I->AddRegOperandsToUseLists(RegInfo);
140 }
141 
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143     MachineBasicBlock *N) {
144   N->getParent()->removeFromMBBNumbering(N->Number);
145   N->Number = -1;
146 }
147 
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151   assert(!N->getParent() && "machine instruction already in a basic block");
152   N->setParent(Parent);
153 
154   // Add the instruction's register operands to their corresponding
155   // use/def lists.
156   MachineFunction *MF = Parent->getParent();
157   N->AddRegOperandsToUseLists(MF->getRegInfo());
158   MF->handleInsertion(*N);
159 }
160 
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164   assert(N->getParent() && "machine instruction not in a basic block");
165 
166   // Remove from the use/def lists.
167   if (MachineFunction *MF = N->getMF()) {
168     MF->handleRemoval(*N);
169     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
170   }
171 
172   N->setParent(nullptr);
173 }
174 
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178                                                        instr_iterator First,
179                                                        instr_iterator Last) {
180   assert(Parent->getParent() == FromList.Parent->getParent() &&
181          "cannot transfer MachineInstrs between MachineFunctions");
182 
183   // If it's within the same BB, there's nothing to do.
184   if (this == &FromList)
185     return;
186 
187   assert(Parent != FromList.Parent && "Two lists have the same parent?");
188 
189   // If splicing between two blocks within the same function, just update the
190   // parent pointers.
191   for (; First != Last; ++First)
192     First->setParent(Parent);
193 }
194 
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196   assert(!MI->getParent() && "MI is still in a block!");
197   Parent->getParent()->DeleteMachineInstr(MI);
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201   instr_iterator I = instr_begin(), E = instr_end();
202   while (I != E && I->isPHI())
203     ++I;
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi MI cannot be inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label instruction is inside a bundle!");
221   return I;
222 }
223 
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226                                           bool SkipPseudoOp) {
227   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228 
229   iterator E = end();
230   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231                     (SkipPseudoOp && I->isPseudoProbe()) ||
232                     TII->isBasicBlockPrologue(*I)))
233     ++I;
234   // FIXME: This needs to change if we wish to bundle labels / dbg_values
235   // inside the bundle.
236   assert((I == E || !I->isInsideBundle()) &&
237          "First non-phi / non-label / non-debug "
238          "instruction is inside a bundle!");
239   return I;
240 }
241 
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243   iterator B = begin(), E = end(), I = E;
244   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245     ; /*noop */
246   while (I != E && !I->isTerminator())
247     ++I;
248   return I;
249 }
250 
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252   instr_iterator B = instr_begin(), E = instr_end(), I = E;
253   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254     ; /*noop */
255   while (I != E && !I->isTerminator())
256     ++I;
257   return I;
258 }
259 
260 MachineBasicBlock::iterator
261 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
262   // Skip over begin-of-block dbg_value instructions.
263   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
264 }
265 
266 MachineBasicBlock::iterator
267 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
268   // Skip over end-of-block dbg_value instructions.
269   instr_iterator B = instr_begin(), I = instr_end();
270   while (I != B) {
271     --I;
272     // Return instruction that starts a bundle.
273     if (I->isDebugInstr() || I->isInsideBundle())
274       continue;
275     if (SkipPseudoOp && I->isPseudoProbe())
276       continue;
277     return I;
278   }
279   // The block is all debug values.
280   return end();
281 }
282 
283 bool MachineBasicBlock::hasEHPadSuccessor() const {
284   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
285     if ((*I)->isEHPad())
286       return true;
287   return false;
288 }
289 
290 bool MachineBasicBlock::isEntryBlock() const {
291   return getParent()->begin() == getIterator();
292 }
293 
294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
295 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
296   print(dbgs());
297 }
298 #endif
299 
300 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
301   for (const MachineBasicBlock *Succ : successors()) {
302     if (Succ->isInlineAsmBrIndirectTarget())
303       return true;
304   }
305   return false;
306 }
307 
308 bool MachineBasicBlock::isLegalToHoistInto() const {
309   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
310     return false;
311   return true;
312 }
313 
314 StringRef MachineBasicBlock::getName() const {
315   if (const BasicBlock *LBB = getBasicBlock())
316     return LBB->getName();
317   else
318     return StringRef("", 0);
319 }
320 
321 /// Return a hopefully unique identifier for this block.
322 std::string MachineBasicBlock::getFullName() const {
323   std::string Name;
324   if (getParent())
325     Name = (getParent()->getName() + ":").str();
326   if (getBasicBlock())
327     Name += getBasicBlock()->getName();
328   else
329     Name += ("BB" + Twine(getNumber())).str();
330   return Name;
331 }
332 
333 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
334                               bool IsStandalone) const {
335   const MachineFunction *MF = getParent();
336   if (!MF) {
337     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
338        << " is null\n";
339     return;
340   }
341   const Function &F = MF->getFunction();
342   const Module *M = F.getParent();
343   ModuleSlotTracker MST(M);
344   MST.incorporateFunction(F);
345   print(OS, MST, Indexes, IsStandalone);
346 }
347 
348 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
349                               const SlotIndexes *Indexes,
350                               bool IsStandalone) const {
351   const MachineFunction *MF = getParent();
352   if (!MF) {
353     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
354        << " is null\n";
355     return;
356   }
357 
358   if (Indexes && PrintSlotIndexes)
359     OS << Indexes->getMBBStartIdx(this) << '\t';
360 
361   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
362   OS << ":\n";
363 
364   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
365   const MachineRegisterInfo &MRI = MF->getRegInfo();
366   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
367   bool HasLineAttributes = false;
368 
369   // Print the preds of this block according to the CFG.
370   if (!pred_empty() && IsStandalone) {
371     if (Indexes) OS << '\t';
372     // Don't indent(2), align with previous line attributes.
373     OS << "; predecessors: ";
374     ListSeparator LS;
375     for (auto *Pred : predecessors())
376       OS << LS << printMBBReference(*Pred);
377     OS << '\n';
378     HasLineAttributes = true;
379   }
380 
381   if (!succ_empty()) {
382     if (Indexes) OS << '\t';
383     // Print the successors
384     OS.indent(2) << "successors: ";
385     ListSeparator LS;
386     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
387       OS << LS << printMBBReference(**I);
388       if (!Probs.empty())
389         OS << '('
390            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
391            << ')';
392     }
393     if (!Probs.empty() && IsStandalone) {
394       // Print human readable probabilities as comments.
395       OS << "; ";
396       ListSeparator LS;
397       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
398         const BranchProbability &BP = getSuccProbability(I);
399         OS << LS << printMBBReference(**I) << '('
400            << format("%.2f%%",
401                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
402                           100.0 * 100.0) /
403                          100.0)
404            << ')';
405       }
406     }
407 
408     OS << '\n';
409     HasLineAttributes = true;
410   }
411 
412   if (!livein_empty() && MRI.tracksLiveness()) {
413     if (Indexes) OS << '\t';
414     OS.indent(2) << "liveins: ";
415 
416     ListSeparator LS;
417     for (const auto &LI : liveins()) {
418       OS << LS << printReg(LI.PhysReg, TRI);
419       if (!LI.LaneMask.all())
420         OS << ":0x" << PrintLaneMask(LI.LaneMask);
421     }
422     HasLineAttributes = true;
423   }
424 
425   if (HasLineAttributes)
426     OS << '\n';
427 
428   bool IsInBundle = false;
429   for (const MachineInstr &MI : instrs()) {
430     if (Indexes && PrintSlotIndexes) {
431       if (Indexes->hasIndex(MI))
432         OS << Indexes->getInstructionIndex(MI);
433       OS << '\t';
434     }
435 
436     if (IsInBundle && !MI.isInsideBundle()) {
437       OS.indent(2) << "}\n";
438       IsInBundle = false;
439     }
440 
441     OS.indent(IsInBundle ? 4 : 2);
442     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
443              /*AddNewLine=*/false, &TII);
444 
445     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
446       OS << " {";
447       IsInBundle = true;
448     }
449     OS << '\n';
450   }
451 
452   if (IsInBundle)
453     OS.indent(2) << "}\n";
454 
455   if (IrrLoopHeaderWeight && IsStandalone) {
456     if (Indexes) OS << '\t';
457     OS.indent(2) << "; Irreducible loop header weight: "
458                  << IrrLoopHeaderWeight.getValue() << '\n';
459   }
460 }
461 
462 /// Print the basic block's name as:
463 ///
464 ///    bb.{number}[.{ir-name}] [(attributes...)]
465 ///
466 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
467 /// (which is the default). If the IR block has no name, it is identified
468 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
469 ///
470 /// When the \ref PrintNameAttributes flag is passed, additional attributes
471 /// of the block are printed when set.
472 ///
473 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
474 ///                       the parts to print.
475 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
476 ///                          incorporate its own tracker when necessary to
477 ///                          determine the block's IR name.
478 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
479                                   ModuleSlotTracker *moduleSlotTracker) const {
480   os << "bb." << getNumber();
481   bool hasAttributes = false;
482 
483   if (printNameFlags & PrintNameIr) {
484     if (const auto *bb = getBasicBlock()) {
485       if (bb->hasName()) {
486         os << '.' << bb->getName();
487       } else {
488         hasAttributes = true;
489         os << " (";
490 
491         int slot = -1;
492 
493         if (moduleSlotTracker) {
494           slot = moduleSlotTracker->getLocalSlot(bb);
495         } else if (bb->getParent()) {
496           ModuleSlotTracker tmpTracker(bb->getModule(), false);
497           tmpTracker.incorporateFunction(*bb->getParent());
498           slot = tmpTracker.getLocalSlot(bb);
499         }
500 
501         if (slot == -1)
502           os << "<ir-block badref>";
503         else
504           os << (Twine("%ir-block.") + Twine(slot)).str();
505       }
506     }
507   }
508 
509   if (printNameFlags & PrintNameAttributes) {
510     if (hasAddressTaken()) {
511       os << (hasAttributes ? ", " : " (");
512       os << "address-taken";
513       hasAttributes = true;
514     }
515     if (isEHPad()) {
516       os << (hasAttributes ? ", " : " (");
517       os << "landing-pad";
518       hasAttributes = true;
519     }
520     if (isEHFuncletEntry()) {
521       os << (hasAttributes ? ", " : " (");
522       os << "ehfunclet-entry";
523       hasAttributes = true;
524     }
525     if (getAlignment() != Align(1)) {
526       os << (hasAttributes ? ", " : " (");
527       os << "align " << getAlignment().value();
528       hasAttributes = true;
529     }
530     if (getSectionID() != MBBSectionID(0)) {
531       os << (hasAttributes ? ", " : " (");
532       os << "bbsections ";
533       switch (getSectionID().Type) {
534       case MBBSectionID::SectionType::Exception:
535         os << "Exception";
536         break;
537       case MBBSectionID::SectionType::Cold:
538         os << "Cold";
539         break;
540       default:
541         os << getSectionID().Number;
542       }
543       hasAttributes = true;
544     }
545   }
546 
547   if (hasAttributes)
548     os << ')';
549 }
550 
551 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
552                                        bool /*PrintType*/) const {
553   OS << '%';
554   printName(OS, 0);
555 }
556 
557 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
558   LiveInVector::iterator I = find_if(
559       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
560   if (I == LiveIns.end())
561     return;
562 
563   I->LaneMask &= ~LaneMask;
564   if (I->LaneMask.none())
565     LiveIns.erase(I);
566 }
567 
568 MachineBasicBlock::livein_iterator
569 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
570   // Get non-const version of iterator.
571   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
572   return LiveIns.erase(LI);
573 }
574 
575 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
576   livein_iterator I = find_if(
577       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
578   return I != livein_end() && (I->LaneMask & LaneMask).any();
579 }
580 
581 void MachineBasicBlock::sortUniqueLiveIns() {
582   llvm::sort(LiveIns,
583              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
584                return LI0.PhysReg < LI1.PhysReg;
585              });
586   // Liveins are sorted by physreg now we can merge their lanemasks.
587   LiveInVector::const_iterator I = LiveIns.begin();
588   LiveInVector::const_iterator J;
589   LiveInVector::iterator Out = LiveIns.begin();
590   for (; I != LiveIns.end(); ++Out, I = J) {
591     MCRegister PhysReg = I->PhysReg;
592     LaneBitmask LaneMask = I->LaneMask;
593     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
594       LaneMask |= J->LaneMask;
595     Out->PhysReg = PhysReg;
596     Out->LaneMask = LaneMask;
597   }
598   LiveIns.erase(Out, LiveIns.end());
599 }
600 
601 Register
602 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
603   assert(getParent() && "MBB must be inserted in function");
604   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
605   assert(RC && "Register class is required");
606   assert((isEHPad() || this == &getParent()->front()) &&
607          "Only the entry block and landing pads can have physreg live ins");
608 
609   bool LiveIn = isLiveIn(PhysReg);
610   iterator I = SkipPHIsAndLabels(begin()), E = end();
611   MachineRegisterInfo &MRI = getParent()->getRegInfo();
612   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
613 
614   // Look for an existing copy.
615   if (LiveIn)
616     for (;I != E && I->isCopy(); ++I)
617       if (I->getOperand(1).getReg() == PhysReg) {
618         Register VirtReg = I->getOperand(0).getReg();
619         if (!MRI.constrainRegClass(VirtReg, RC))
620           llvm_unreachable("Incompatible live-in register class.");
621         return VirtReg;
622       }
623 
624   // No luck, create a virtual register.
625   Register VirtReg = MRI.createVirtualRegister(RC);
626   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
627     .addReg(PhysReg, RegState::Kill);
628   if (!LiveIn)
629     addLiveIn(PhysReg);
630   return VirtReg;
631 }
632 
633 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
634   getParent()->splice(NewAfter->getIterator(), getIterator());
635 }
636 
637 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
638   getParent()->splice(++NewBefore->getIterator(), getIterator());
639 }
640 
641 void MachineBasicBlock::updateTerminator(
642     MachineBasicBlock *PreviousLayoutSuccessor) {
643   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
644                     << "\n");
645 
646   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
647   // A block with no successors has no concerns with fall-through edges.
648   if (this->succ_empty())
649     return;
650 
651   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
652   SmallVector<MachineOperand, 4> Cond;
653   DebugLoc DL = findBranchDebugLoc();
654   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
655   (void) B;
656   assert(!B && "UpdateTerminators requires analyzable predecessors!");
657   if (Cond.empty()) {
658     if (TBB) {
659       // The block has an unconditional branch. If its successor is now its
660       // layout successor, delete the branch.
661       if (isLayoutSuccessor(TBB))
662         TII->removeBranch(*this);
663     } else {
664       // The block has an unconditional fallthrough, or the end of the block is
665       // unreachable.
666 
667       // Unfortunately, whether the end of the block is unreachable is not
668       // immediately obvious; we must fall back to checking the successor list,
669       // and assuming that if the passed in block is in the succesor list and
670       // not an EHPad, it must be the intended target.
671       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
672           PreviousLayoutSuccessor->isEHPad())
673         return;
674 
675       // If the unconditional successor block is not the current layout
676       // successor, insert a branch to jump to it.
677       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
678         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
679     }
680     return;
681   }
682 
683   if (FBB) {
684     // The block has a non-fallthrough conditional branch. If one of its
685     // successors is its layout successor, rewrite it to a fallthrough
686     // conditional branch.
687     if (isLayoutSuccessor(TBB)) {
688       if (TII->reverseBranchCondition(Cond))
689         return;
690       TII->removeBranch(*this);
691       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
692     } else if (isLayoutSuccessor(FBB)) {
693       TII->removeBranch(*this);
694       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
695     }
696     return;
697   }
698 
699   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
700   assert(PreviousLayoutSuccessor);
701   assert(!PreviousLayoutSuccessor->isEHPad());
702   assert(isSuccessor(PreviousLayoutSuccessor));
703 
704   if (PreviousLayoutSuccessor == TBB) {
705     // We had a fallthrough to the same basic block as the conditional jump
706     // targets.  Remove the conditional jump, leaving an unconditional
707     // fallthrough or an unconditional jump.
708     TII->removeBranch(*this);
709     if (!isLayoutSuccessor(TBB)) {
710       Cond.clear();
711       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
712     }
713     return;
714   }
715 
716   // The block has a fallthrough conditional branch.
717   if (isLayoutSuccessor(TBB)) {
718     if (TII->reverseBranchCondition(Cond)) {
719       // We can't reverse the condition, add an unconditional branch.
720       Cond.clear();
721       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
722       return;
723     }
724     TII->removeBranch(*this);
725     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
726   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
727     TII->removeBranch(*this);
728     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
729   }
730 }
731 
732 void MachineBasicBlock::validateSuccProbs() const {
733 #ifndef NDEBUG
734   int64_t Sum = 0;
735   for (auto Prob : Probs)
736     Sum += Prob.getNumerator();
737   // Due to precision issue, we assume that the sum of probabilities is one if
738   // the difference between the sum of their numerators and the denominator is
739   // no greater than the number of successors.
740   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
741              Probs.size() &&
742          "The sum of successors's probabilities exceeds one.");
743 #endif // NDEBUG
744 }
745 
746 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
747                                      BranchProbability Prob) {
748   // Probability list is either empty (if successor list isn't empty, this means
749   // disabled optimization) or has the same size as successor list.
750   if (!(Probs.empty() && !Successors.empty()))
751     Probs.push_back(Prob);
752   Successors.push_back(Succ);
753   Succ->addPredecessor(this);
754 }
755 
756 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
757   // We need to make sure probability list is either empty or has the same size
758   // of successor list. When this function is called, we can safely delete all
759   // probability in the list.
760   Probs.clear();
761   Successors.push_back(Succ);
762   Succ->addPredecessor(this);
763 }
764 
765 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
766                                        MachineBasicBlock *New,
767                                        bool NormalizeSuccProbs) {
768   succ_iterator OldI = llvm::find(successors(), Old);
769   assert(OldI != succ_end() && "Old is not a successor of this block!");
770   assert(!llvm::is_contained(successors(), New) &&
771          "New is already a successor of this block!");
772 
773   // Add a new successor with equal probability as the original one. Note
774   // that we directly copy the probability using the iterator rather than
775   // getting a potentially synthetic probability computed when unknown. This
776   // preserves the probabilities as-is and then we can renormalize them and
777   // query them effectively afterward.
778   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
779                                   : *getProbabilityIterator(OldI));
780   if (NormalizeSuccProbs)
781     normalizeSuccProbs();
782 }
783 
784 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
785                                         bool NormalizeSuccProbs) {
786   succ_iterator I = find(Successors, Succ);
787   removeSuccessor(I, NormalizeSuccProbs);
788 }
789 
790 MachineBasicBlock::succ_iterator
791 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
792   assert(I != Successors.end() && "Not a current successor!");
793 
794   // If probability list is empty it means we don't use it (disabled
795   // optimization).
796   if (!Probs.empty()) {
797     probability_iterator WI = getProbabilityIterator(I);
798     Probs.erase(WI);
799     if (NormalizeSuccProbs)
800       normalizeSuccProbs();
801   }
802 
803   (*I)->removePredecessor(this);
804   return Successors.erase(I);
805 }
806 
807 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
808                                          MachineBasicBlock *New) {
809   if (Old == New)
810     return;
811 
812   succ_iterator E = succ_end();
813   succ_iterator NewI = E;
814   succ_iterator OldI = E;
815   for (succ_iterator I = succ_begin(); I != E; ++I) {
816     if (*I == Old) {
817       OldI = I;
818       if (NewI != E)
819         break;
820     }
821     if (*I == New) {
822       NewI = I;
823       if (OldI != E)
824         break;
825     }
826   }
827   assert(OldI != E && "Old is not a successor of this block");
828 
829   // If New isn't already a successor, let it take Old's place.
830   if (NewI == E) {
831     Old->removePredecessor(this);
832     New->addPredecessor(this);
833     *OldI = New;
834     return;
835   }
836 
837   // New is already a successor.
838   // Update its probability instead of adding a duplicate edge.
839   if (!Probs.empty()) {
840     auto ProbIter = getProbabilityIterator(NewI);
841     if (!ProbIter->isUnknown())
842       *ProbIter += *getProbabilityIterator(OldI);
843   }
844   removeSuccessor(OldI);
845 }
846 
847 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
848                                       succ_iterator I) {
849   if (!Orig->Probs.empty())
850     addSuccessor(*I, Orig->getSuccProbability(I));
851   else
852     addSuccessorWithoutProb(*I);
853 }
854 
855 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
856   Predecessors.push_back(Pred);
857 }
858 
859 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
860   pred_iterator I = find(Predecessors, Pred);
861   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
862   Predecessors.erase(I);
863 }
864 
865 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
866   if (this == FromMBB)
867     return;
868 
869   while (!FromMBB->succ_empty()) {
870     MachineBasicBlock *Succ = *FromMBB->succ_begin();
871 
872     // If probability list is empty it means we don't use it (disabled
873     // optimization).
874     if (!FromMBB->Probs.empty()) {
875       auto Prob = *FromMBB->Probs.begin();
876       addSuccessor(Succ, Prob);
877     } else
878       addSuccessorWithoutProb(Succ);
879 
880     FromMBB->removeSuccessor(Succ);
881   }
882 }
883 
884 void
885 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
886   if (this == FromMBB)
887     return;
888 
889   while (!FromMBB->succ_empty()) {
890     MachineBasicBlock *Succ = *FromMBB->succ_begin();
891     if (!FromMBB->Probs.empty()) {
892       auto Prob = *FromMBB->Probs.begin();
893       addSuccessor(Succ, Prob);
894     } else
895       addSuccessorWithoutProb(Succ);
896     FromMBB->removeSuccessor(Succ);
897 
898     // Fix up any PHI nodes in the successor.
899     Succ->replacePhiUsesWith(FromMBB, this);
900   }
901   normalizeSuccProbs();
902 }
903 
904 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
905   return is_contained(predecessors(), MBB);
906 }
907 
908 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
909   return is_contained(successors(), MBB);
910 }
911 
912 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
913   MachineFunction::const_iterator I(this);
914   return std::next(I) == MachineFunction::const_iterator(MBB);
915 }
916 
917 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
918   MachineFunction::iterator Fallthrough = getIterator();
919   ++Fallthrough;
920   // If FallthroughBlock is off the end of the function, it can't fall through.
921   if (Fallthrough == getParent()->end())
922     return nullptr;
923 
924   // If FallthroughBlock isn't a successor, no fallthrough is possible.
925   if (!isSuccessor(&*Fallthrough))
926     return nullptr;
927 
928   // Analyze the branches, if any, at the end of the block.
929   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
930   SmallVector<MachineOperand, 4> Cond;
931   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
932   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
933     // If we couldn't analyze the branch, examine the last instruction.
934     // If the block doesn't end in a known control barrier, assume fallthrough
935     // is possible. The isPredicated check is needed because this code can be
936     // called during IfConversion, where an instruction which is normally a
937     // Barrier is predicated and thus no longer an actual control barrier.
938     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
939                ? &*Fallthrough
940                : nullptr;
941   }
942 
943   // If there is no branch, control always falls through.
944   if (!TBB) return &*Fallthrough;
945 
946   // If there is some explicit branch to the fallthrough block, it can obviously
947   // reach, even though the branch should get folded to fall through implicitly.
948   if (MachineFunction::iterator(TBB) == Fallthrough ||
949       MachineFunction::iterator(FBB) == Fallthrough)
950     return &*Fallthrough;
951 
952   // If it's an unconditional branch to some block not the fall through, it
953   // doesn't fall through.
954   if (Cond.empty()) return nullptr;
955 
956   // Otherwise, if it is conditional and has no explicit false block, it falls
957   // through.
958   return (FBB == nullptr) ? &*Fallthrough : nullptr;
959 }
960 
961 bool MachineBasicBlock::canFallThrough() {
962   return getFallThrough() != nullptr;
963 }
964 
965 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
966                                               bool UpdateLiveIns,
967                                               LiveIntervals *LIS) {
968   MachineBasicBlock::iterator SplitPoint(&MI);
969   ++SplitPoint;
970 
971   if (SplitPoint == end()) {
972     // Don't bother with a new block.
973     return this;
974   }
975 
976   MachineFunction *MF = getParent();
977 
978   LivePhysRegs LiveRegs;
979   if (UpdateLiveIns) {
980     // Make sure we add any physregs we define in the block as liveins to the
981     // new block.
982     MachineBasicBlock::iterator Prev(&MI);
983     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
984     LiveRegs.addLiveOuts(*this);
985     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
986       LiveRegs.stepBackward(*I);
987   }
988 
989   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
990 
991   MF->insert(++MachineFunction::iterator(this), SplitBB);
992   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
993 
994   SplitBB->transferSuccessorsAndUpdatePHIs(this);
995   addSuccessor(SplitBB);
996 
997   if (UpdateLiveIns)
998     addLiveIns(*SplitBB, LiveRegs);
999 
1000   if (LIS)
1001     LIS->insertMBBInMaps(SplitBB);
1002 
1003   return SplitBB;
1004 }
1005 
1006 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1007     MachineBasicBlock *Succ, Pass &P,
1008     std::vector<SparseBitVector<>> *LiveInSets) {
1009   if (!canSplitCriticalEdge(Succ))
1010     return nullptr;
1011 
1012   MachineFunction *MF = getParent();
1013   MachineBasicBlock *PrevFallthrough = getNextNode();
1014   DebugLoc DL;  // FIXME: this is nowhere
1015 
1016   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1017   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1018   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1019                     << " -- " << printMBBReference(*NMBB) << " -- "
1020                     << printMBBReference(*Succ) << '\n');
1021 
1022   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1023   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1024   if (LIS)
1025     LIS->insertMBBInMaps(NMBB);
1026   else if (Indexes)
1027     Indexes->insertMBBInMaps(NMBB);
1028 
1029   // On some targets like Mips, branches may kill virtual registers. Make sure
1030   // that LiveVariables is properly updated after updateTerminator replaces the
1031   // terminators.
1032   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1033 
1034   // Collect a list of virtual registers killed by the terminators.
1035   SmallVector<Register, 4> KilledRegs;
1036   if (LV)
1037     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1038          I != E; ++I) {
1039       MachineInstr *MI = &*I;
1040       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1041            OE = MI->operands_end(); OI != OE; ++OI) {
1042         if (!OI->isReg() || OI->getReg() == 0 ||
1043             !OI->isUse() || !OI->isKill() || OI->isUndef())
1044           continue;
1045         Register Reg = OI->getReg();
1046         if (Register::isPhysicalRegister(Reg) ||
1047             LV->getVarInfo(Reg).removeKill(*MI)) {
1048           KilledRegs.push_back(Reg);
1049           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1050           OI->setIsKill(false);
1051         }
1052       }
1053     }
1054 
1055   SmallVector<Register, 4> UsedRegs;
1056   if (LIS) {
1057     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1058          I != E; ++I) {
1059       MachineInstr *MI = &*I;
1060 
1061       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1062            OE = MI->operands_end(); OI != OE; ++OI) {
1063         if (!OI->isReg() || OI->getReg() == 0)
1064           continue;
1065 
1066         Register Reg = OI->getReg();
1067         if (!is_contained(UsedRegs, Reg))
1068           UsedRegs.push_back(Reg);
1069       }
1070     }
1071   }
1072 
1073   ReplaceUsesOfBlockWith(Succ, NMBB);
1074 
1075   // If updateTerminator() removes instructions, we need to remove them from
1076   // SlotIndexes.
1077   SmallVector<MachineInstr*, 4> Terminators;
1078   if (Indexes) {
1079     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1080          I != E; ++I)
1081       Terminators.push_back(&*I);
1082   }
1083 
1084   // Since we replaced all uses of Succ with NMBB, that should also be treated
1085   // as the fallthrough successor
1086   if (Succ == PrevFallthrough)
1087     PrevFallthrough = NMBB;
1088   updateTerminator(PrevFallthrough);
1089 
1090   if (Indexes) {
1091     SmallVector<MachineInstr*, 4> NewTerminators;
1092     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1093          I != E; ++I)
1094       NewTerminators.push_back(&*I);
1095 
1096     for (MachineInstr *Terminator : Terminators) {
1097       if (!is_contained(NewTerminators, Terminator))
1098         Indexes->removeMachineInstrFromMaps(*Terminator);
1099     }
1100   }
1101 
1102   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1103   NMBB->addSuccessor(Succ);
1104   if (!NMBB->isLayoutSuccessor(Succ)) {
1105     SmallVector<MachineOperand, 4> Cond;
1106     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1107     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1108 
1109     if (Indexes) {
1110       for (MachineInstr &MI : NMBB->instrs()) {
1111         // Some instructions may have been moved to NMBB by updateTerminator(),
1112         // so we first remove any instruction that already has an index.
1113         if (Indexes->hasIndex(MI))
1114           Indexes->removeMachineInstrFromMaps(MI);
1115         Indexes->insertMachineInstrInMaps(MI);
1116       }
1117     }
1118   }
1119 
1120   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1121   Succ->replacePhiUsesWith(this, NMBB);
1122 
1123   // Inherit live-ins from the successor
1124   for (const auto &LI : Succ->liveins())
1125     NMBB->addLiveIn(LI);
1126 
1127   // Update LiveVariables.
1128   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1129   if (LV) {
1130     // Restore kills of virtual registers that were killed by the terminators.
1131     while (!KilledRegs.empty()) {
1132       Register Reg = KilledRegs.pop_back_val();
1133       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1134         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1135           continue;
1136         if (Register::isVirtualRegister(Reg))
1137           LV->getVarInfo(Reg).Kills.push_back(&*I);
1138         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1139         break;
1140       }
1141     }
1142     // Update relevant live-through information.
1143     if (LiveInSets != nullptr)
1144       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1145     else
1146       LV->addNewBlock(NMBB, this, Succ);
1147   }
1148 
1149   if (LIS) {
1150     // After splitting the edge and updating SlotIndexes, live intervals may be
1151     // in one of two situations, depending on whether this block was the last in
1152     // the function. If the original block was the last in the function, all
1153     // live intervals will end prior to the beginning of the new split block. If
1154     // the original block was not at the end of the function, all live intervals
1155     // will extend to the end of the new split block.
1156 
1157     bool isLastMBB =
1158       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1159 
1160     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1161     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1162     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1163 
1164     // Find the registers used from NMBB in PHIs in Succ.
1165     SmallSet<Register, 8> PHISrcRegs;
1166     for (MachineBasicBlock::instr_iterator
1167          I = Succ->instr_begin(), E = Succ->instr_end();
1168          I != E && I->isPHI(); ++I) {
1169       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1170         if (I->getOperand(ni+1).getMBB() == NMBB) {
1171           MachineOperand &MO = I->getOperand(ni);
1172           Register Reg = MO.getReg();
1173           PHISrcRegs.insert(Reg);
1174           if (MO.isUndef())
1175             continue;
1176 
1177           LiveInterval &LI = LIS->getInterval(Reg);
1178           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1179           assert(VNI &&
1180                  "PHI sources should be live out of their predecessors.");
1181           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1182         }
1183       }
1184     }
1185 
1186     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1187     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1188       Register Reg = Register::index2VirtReg(i);
1189       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1190         continue;
1191 
1192       LiveInterval &LI = LIS->getInterval(Reg);
1193       if (!LI.liveAt(PrevIndex))
1194         continue;
1195 
1196       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1197       if (isLiveOut && isLastMBB) {
1198         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1199         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1200         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1201       } else if (!isLiveOut && !isLastMBB) {
1202         LI.removeSegment(StartIndex, EndIndex);
1203       }
1204     }
1205 
1206     // Update all intervals for registers whose uses may have been modified by
1207     // updateTerminator().
1208     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1209   }
1210 
1211   if (MachineDominatorTree *MDT =
1212           P.getAnalysisIfAvailable<MachineDominatorTree>())
1213     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1214 
1215   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1216     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1217       // If one or the other blocks were not in a loop, the new block is not
1218       // either, and thus LI doesn't need to be updated.
1219       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1220         if (TIL == DestLoop) {
1221           // Both in the same loop, the NMBB joins loop.
1222           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1223         } else if (TIL->contains(DestLoop)) {
1224           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1225           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1226         } else if (DestLoop->contains(TIL)) {
1227           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1228           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1229         } else {
1230           // Edge from two loops with no containment relation.  Because these
1231           // are natural loops, we know that the destination block must be the
1232           // header of its loop (adding a branch into a loop elsewhere would
1233           // create an irreducible loop).
1234           assert(DestLoop->getHeader() == Succ &&
1235                  "Should not create irreducible loops!");
1236           if (MachineLoop *P = DestLoop->getParentLoop())
1237             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1238         }
1239       }
1240     }
1241 
1242   return NMBB;
1243 }
1244 
1245 bool MachineBasicBlock::canSplitCriticalEdge(
1246     const MachineBasicBlock *Succ) const {
1247   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1248   // it in this generic function.
1249   if (Succ->isEHPad())
1250     return false;
1251 
1252   // Splitting the critical edge to a callbr's indirect block isn't advised.
1253   // Don't do it in this generic function.
1254   if (Succ->isInlineAsmBrIndirectTarget())
1255     return false;
1256 
1257   const MachineFunction *MF = getParent();
1258   // Performance might be harmed on HW that implements branching using exec mask
1259   // where both sides of the branches are always executed.
1260   if (MF->getTarget().requiresStructuredCFG())
1261     return false;
1262 
1263   // We may need to update this's terminator, but we can't do that if
1264   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1265   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1266   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1267   SmallVector<MachineOperand, 4> Cond;
1268   // AnalyzeBanch should modify this, since we did not allow modification.
1269   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1270                          /*AllowModify*/ false))
1271     return false;
1272 
1273   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1274   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1275   // case that we can't handle. Since this never happens in properly optimized
1276   // code, just skip those edges.
1277   if (TBB && TBB == FBB) {
1278     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1279                       << printMBBReference(*this) << '\n');
1280     return false;
1281   }
1282   return true;
1283 }
1284 
1285 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1286 /// neighboring instructions so the bundle won't be broken by removing MI.
1287 static void unbundleSingleMI(MachineInstr *MI) {
1288   // Removing the first instruction in a bundle.
1289   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1290     MI->unbundleFromSucc();
1291   // Removing the last instruction in a bundle.
1292   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1293     MI->unbundleFromPred();
1294   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1295   // are already fine.
1296 }
1297 
1298 MachineBasicBlock::instr_iterator
1299 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1300   unbundleSingleMI(&*I);
1301   return Insts.erase(I);
1302 }
1303 
1304 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1305   unbundleSingleMI(MI);
1306   MI->clearFlag(MachineInstr::BundledPred);
1307   MI->clearFlag(MachineInstr::BundledSucc);
1308   return Insts.remove(MI);
1309 }
1310 
1311 MachineBasicBlock::instr_iterator
1312 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1313   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1314          "Cannot insert instruction with bundle flags");
1315   // Set the bundle flags when inserting inside a bundle.
1316   if (I != instr_end() && I->isBundledWithPred()) {
1317     MI->setFlag(MachineInstr::BundledPred);
1318     MI->setFlag(MachineInstr::BundledSucc);
1319   }
1320   return Insts.insert(I, MI);
1321 }
1322 
1323 /// This method unlinks 'this' from the containing function, and returns it, but
1324 /// does not delete it.
1325 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1326   assert(getParent() && "Not embedded in a function!");
1327   getParent()->remove(this);
1328   return this;
1329 }
1330 
1331 /// This method unlinks 'this' from the containing function, and deletes it.
1332 void MachineBasicBlock::eraseFromParent() {
1333   assert(getParent() && "Not embedded in a function!");
1334   getParent()->erase(this);
1335 }
1336 
1337 /// Given a machine basic block that branched to 'Old', change the code and CFG
1338 /// so that it branches to 'New' instead.
1339 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1340                                                MachineBasicBlock *New) {
1341   assert(Old != New && "Cannot replace self with self!");
1342 
1343   MachineBasicBlock::instr_iterator I = instr_end();
1344   while (I != instr_begin()) {
1345     --I;
1346     if (!I->isTerminator()) break;
1347 
1348     // Scan the operands of this machine instruction, replacing any uses of Old
1349     // with New.
1350     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1351       if (I->getOperand(i).isMBB() &&
1352           I->getOperand(i).getMBB() == Old)
1353         I->getOperand(i).setMBB(New);
1354   }
1355 
1356   // Update the successor information.
1357   replaceSuccessor(Old, New);
1358 }
1359 
1360 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1361                                            MachineBasicBlock *New) {
1362   for (MachineInstr &MI : phis())
1363     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1364       MachineOperand &MO = MI.getOperand(i);
1365       if (MO.getMBB() == Old)
1366         MO.setMBB(New);
1367     }
1368 }
1369 
1370 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1371 /// instructions.  Return UnknownLoc if there is none.
1372 DebugLoc
1373 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1374   // Skip debug declarations, we don't want a DebugLoc from them.
1375   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1376   if (MBBI != instr_end())
1377     return MBBI->getDebugLoc();
1378   return {};
1379 }
1380 
1381 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1382   // Skip debug declarations, we don't want a DebugLoc from them.
1383   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1384   if (!MBBI->isDebugInstr())
1385     return MBBI->getDebugLoc();
1386   return {};
1387 }
1388 
1389 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1390 /// instructions.  Return UnknownLoc if there is none.
1391 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1392   if (MBBI == instr_begin()) return {};
1393   // Skip debug instructions, we don't want a DebugLoc from them.
1394   MBBI = prev_nodbg(MBBI, instr_begin());
1395   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1396   return {};
1397 }
1398 
1399 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1400   if (MBBI == instr_rend())
1401     return {};
1402   // Skip debug declarations, we don't want a DebugLoc from them.
1403   MBBI = next_nodbg(MBBI, instr_rend());
1404   if (MBBI != instr_rend())
1405     return MBBI->getDebugLoc();
1406   return {};
1407 }
1408 
1409 /// Find and return the merged DebugLoc of the branch instructions of the block.
1410 /// Return UnknownLoc if there is none.
1411 DebugLoc
1412 MachineBasicBlock::findBranchDebugLoc() {
1413   DebugLoc DL;
1414   auto TI = getFirstTerminator();
1415   while (TI != end() && !TI->isBranch())
1416     ++TI;
1417 
1418   if (TI != end()) {
1419     DL = TI->getDebugLoc();
1420     for (++TI ; TI != end() ; ++TI)
1421       if (TI->isBranch())
1422         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1423   }
1424   return DL;
1425 }
1426 
1427 /// Return probability of the edge from this block to MBB.
1428 BranchProbability
1429 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1430   if (Probs.empty())
1431     return BranchProbability(1, succ_size());
1432 
1433   const auto &Prob = *getProbabilityIterator(Succ);
1434   if (Prob.isUnknown()) {
1435     // For unknown probabilities, collect the sum of all known ones, and evenly
1436     // ditribute the complemental of the sum to each unknown probability.
1437     unsigned KnownProbNum = 0;
1438     auto Sum = BranchProbability::getZero();
1439     for (auto &P : Probs) {
1440       if (!P.isUnknown()) {
1441         Sum += P;
1442         KnownProbNum++;
1443       }
1444     }
1445     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1446   } else
1447     return Prob;
1448 }
1449 
1450 /// Set successor probability of a given iterator.
1451 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1452                                            BranchProbability Prob) {
1453   assert(!Prob.isUnknown());
1454   if (Probs.empty())
1455     return;
1456   *getProbabilityIterator(I) = Prob;
1457 }
1458 
1459 /// Return probability iterator corresonding to the I successor iterator
1460 MachineBasicBlock::const_probability_iterator
1461 MachineBasicBlock::getProbabilityIterator(
1462     MachineBasicBlock::const_succ_iterator I) const {
1463   assert(Probs.size() == Successors.size() && "Async probability list!");
1464   const size_t index = std::distance(Successors.begin(), I);
1465   assert(index < Probs.size() && "Not a current successor!");
1466   return Probs.begin() + index;
1467 }
1468 
1469 /// Return probability iterator corresonding to the I successor iterator.
1470 MachineBasicBlock::probability_iterator
1471 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1472   assert(Probs.size() == Successors.size() && "Async probability list!");
1473   const size_t index = std::distance(Successors.begin(), I);
1474   assert(index < Probs.size() && "Not a current successor!");
1475   return Probs.begin() + index;
1476 }
1477 
1478 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1479 /// as of just before "MI".
1480 ///
1481 /// Search is localised to a neighborhood of
1482 /// Neighborhood instructions before (searching for defs or kills) and N
1483 /// instructions after (searching just for defs) MI.
1484 MachineBasicBlock::LivenessQueryResult
1485 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1486                                            MCRegister Reg, const_iterator Before,
1487                                            unsigned Neighborhood) const {
1488   unsigned N = Neighborhood;
1489 
1490   // Try searching forwards from Before, looking for reads or defs.
1491   const_iterator I(Before);
1492   for (; I != end() && N > 0; ++I) {
1493     if (I->isDebugOrPseudoInstr())
1494       continue;
1495 
1496     --N;
1497 
1498     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1499 
1500     // Register is live when we read it here.
1501     if (Info.Read)
1502       return LQR_Live;
1503     // Register is dead if we can fully overwrite or clobber it here.
1504     if (Info.FullyDefined || Info.Clobbered)
1505       return LQR_Dead;
1506   }
1507 
1508   // If we reached the end, it is safe to clobber Reg at the end of a block of
1509   // no successor has it live in.
1510   if (I == end()) {
1511     for (MachineBasicBlock *S : successors()) {
1512       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1513         if (TRI->regsOverlap(LI.PhysReg, Reg))
1514           return LQR_Live;
1515       }
1516     }
1517 
1518     return LQR_Dead;
1519   }
1520 
1521 
1522   N = Neighborhood;
1523 
1524   // Start by searching backwards from Before, looking for kills, reads or defs.
1525   I = const_iterator(Before);
1526   // If this is the first insn in the block, don't search backwards.
1527   if (I != begin()) {
1528     do {
1529       --I;
1530 
1531       if (I->isDebugOrPseudoInstr())
1532         continue;
1533 
1534       --N;
1535 
1536       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1537 
1538       // Defs happen after uses so they take precedence if both are present.
1539 
1540       // Register is dead after a dead def of the full register.
1541       if (Info.DeadDef)
1542         return LQR_Dead;
1543       // Register is (at least partially) live after a def.
1544       if (Info.Defined) {
1545         if (!Info.PartialDeadDef)
1546           return LQR_Live;
1547         // As soon as we saw a partial definition (dead or not),
1548         // we cannot tell if the value is partial live without
1549         // tracking the lanemasks. We are not going to do this,
1550         // so fall back on the remaining of the analysis.
1551         break;
1552       }
1553       // Register is dead after a full kill or clobber and no def.
1554       if (Info.Killed || Info.Clobbered)
1555         return LQR_Dead;
1556       // Register must be live if we read it.
1557       if (Info.Read)
1558         return LQR_Live;
1559 
1560     } while (I != begin() && N > 0);
1561   }
1562 
1563   // If all the instructions before this in the block are debug instructions,
1564   // skip over them.
1565   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1566     --I;
1567 
1568   // Did we get to the start of the block?
1569   if (I == begin()) {
1570     // If so, the register's state is definitely defined by the live-in state.
1571     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1572       if (TRI->regsOverlap(LI.PhysReg, Reg))
1573         return LQR_Live;
1574 
1575     return LQR_Dead;
1576   }
1577 
1578   // At this point we have no idea of the liveness of the register.
1579   return LQR_Unknown;
1580 }
1581 
1582 const uint32_t *
1583 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1584   // EH funclet entry does not preserve any registers.
1585   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1586 }
1587 
1588 const uint32_t *
1589 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1590   // If we see a return block with successors, this must be a funclet return,
1591   // which does not preserve any registers. If there are no successors, we don't
1592   // care what kind of return it is, putting a mask after it is a no-op.
1593   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1594 }
1595 
1596 void MachineBasicBlock::clearLiveIns() {
1597   LiveIns.clear();
1598 }
1599 
1600 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1601   assert(getParent()->getProperties().hasProperty(
1602       MachineFunctionProperties::Property::TracksLiveness) &&
1603       "Liveness information is accurate");
1604   return LiveIns.begin();
1605 }
1606 
1607 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1608   const MachineFunction &MF = *getParent();
1609   assert(MF.getProperties().hasProperty(
1610       MachineFunctionProperties::Property::TracksLiveness) &&
1611       "Liveness information is accurate");
1612 
1613   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1614   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1615   if (MF.getFunction().hasPersonalityFn()) {
1616     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1617     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1618     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1619   }
1620 
1621   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1622 }
1623 
1624 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1625 const MBBSectionID
1626     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1627