1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/DataTypes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 static cl::opt<bool> PrintSlotIndexes( 44 "print-slotindexes", 45 cl::desc("When printing machine IR, annotate instructions and blocks with " 46 "SlotIndexes when available"), 47 cl::init(true), cl::Hidden); 48 49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 50 : BB(B), Number(-1), xParent(&MF) { 51 Insts.Parent = this; 52 if (B) 53 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 54 } 55 56 MachineBasicBlock::~MachineBasicBlock() { 57 } 58 59 /// Return the MCSymbol for this basic block. 60 MCSymbol *MachineBasicBlock::getSymbol() const { 61 if (!CachedMCSymbol) { 62 const MachineFunction *MF = getParent(); 63 MCContext &Ctx = MF->getContext(); 64 65 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 66 // a section (with basic block sections). Otherwise we fall back to use temp 67 // label. 68 if (MF->hasBBSections() && isBeginSection()) { 69 SmallString<5> Suffix; 70 if (SectionID == MBBSectionID::ColdSectionID) { 71 Suffix += ".cold"; 72 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 73 Suffix += ".eh"; 74 } else { 75 // For symbols that represent basic block sections, we add ".__part." to 76 // allow tools like symbolizers to know that this represents a part of 77 // the original function. 78 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 79 } 80 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 81 } else { 82 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 83 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 84 Twine(MF->getFunctionNumber()) + 85 "_" + Twine(getNumber())); 86 } 87 } 88 return CachedMCSymbol; 89 } 90 91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 92 if (!CachedEHCatchretMCSymbol) { 93 const MachineFunction *MF = getParent(); 94 SmallString<128> SymbolName; 95 raw_svector_ostream(SymbolName) 96 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 97 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 98 } 99 return CachedEHCatchretMCSymbol; 100 } 101 102 MCSymbol *MachineBasicBlock::getEndSymbol() const { 103 if (!CachedEndMCSymbol) { 104 const MachineFunction *MF = getParent(); 105 MCContext &Ctx = MF->getContext(); 106 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 107 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 108 Twine(MF->getFunctionNumber()) + 109 "_" + Twine(getNumber())); 110 } 111 return CachedEndMCSymbol; 112 } 113 114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 115 MBB.print(OS); 116 return OS; 117 } 118 119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 120 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 121 } 122 123 /// When an MBB is added to an MF, we need to update the parent pointer of the 124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 125 /// operand list for registers. 126 /// 127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 128 /// gets the next available unique MBB number. If it is removed from a 129 /// MachineFunction, it goes back to being #-1. 130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 131 MachineBasicBlock *N) { 132 MachineFunction &MF = *N->getParent(); 133 N->Number = MF.addToMBBNumbering(N); 134 135 // Make sure the instructions have their operands in the reginfo lists. 136 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 137 for (MachineBasicBlock::instr_iterator 138 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 139 I->AddRegOperandsToUseLists(RegInfo); 140 } 141 142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 143 MachineBasicBlock *N) { 144 N->getParent()->removeFromMBBNumbering(N->Number); 145 N->Number = -1; 146 } 147 148 /// When we add an instruction to a basic block list, we update its parent 149 /// pointer and add its operands from reg use/def lists if appropriate. 150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 151 assert(!N->getParent() && "machine instruction already in a basic block"); 152 N->setParent(Parent); 153 154 // Add the instruction's register operands to their corresponding 155 // use/def lists. 156 MachineFunction *MF = Parent->getParent(); 157 N->AddRegOperandsToUseLists(MF->getRegInfo()); 158 MF->handleInsertion(*N); 159 } 160 161 /// When we remove an instruction from a basic block list, we update its parent 162 /// pointer and remove its operands from reg use/def lists if appropriate. 163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 164 assert(N->getParent() && "machine instruction not in a basic block"); 165 166 // Remove from the use/def lists. 167 if (MachineFunction *MF = N->getMF()) { 168 MF->handleRemoval(*N); 169 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 170 } 171 172 N->setParent(nullptr); 173 } 174 175 /// When moving a range of instructions from one MBB list to another, we need to 176 /// update the parent pointers and the use/def lists. 177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 178 instr_iterator First, 179 instr_iterator Last) { 180 assert(Parent->getParent() == FromList.Parent->getParent() && 181 "cannot transfer MachineInstrs between MachineFunctions"); 182 183 // If it's within the same BB, there's nothing to do. 184 if (this == &FromList) 185 return; 186 187 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 188 189 // If splicing between two blocks within the same function, just update the 190 // parent pointers. 191 for (; First != Last; ++First) 192 First->setParent(Parent); 193 } 194 195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 196 assert(!MI->getParent() && "MI is still in a block!"); 197 Parent->getParent()->DeleteMachineInstr(MI); 198 } 199 200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 201 instr_iterator I = instr_begin(), E = instr_end(); 202 while (I != E && I->isPHI()) 203 ++I; 204 assert((I == E || !I->isInsideBundle()) && 205 "First non-phi MI cannot be inside a bundle!"); 206 return I; 207 } 208 209 MachineBasicBlock::iterator 210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 212 213 iterator E = end(); 214 while (I != E && (I->isPHI() || I->isPosition() || 215 TII->isBasicBlockPrologue(*I))) 216 ++I; 217 // FIXME: This needs to change if we wish to bundle labels 218 // inside the bundle. 219 assert((I == E || !I->isInsideBundle()) && 220 "First non-phi / non-label instruction is inside a bundle!"); 221 return I; 222 } 223 224 MachineBasicBlock::iterator 225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 226 bool SkipPseudoOp) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 (SkipPseudoOp && I->isPseudoProbe()) || 232 TII->isBasicBlockPrologue(*I))) 233 ++I; 234 // FIXME: This needs to change if we wish to bundle labels / dbg_values 235 // inside the bundle. 236 assert((I == E || !I->isInsideBundle()) && 237 "First non-phi / non-label / non-debug " 238 "instruction is inside a bundle!"); 239 return I; 240 } 241 242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 243 iterator B = begin(), E = end(), I = E; 244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 245 ; /*noop */ 246 while (I != E && !I->isTerminator()) 247 ++I; 248 return I; 249 } 250 251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 252 instr_iterator B = instr_begin(), E = instr_end(), I = E; 253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 254 ; /*noop */ 255 while (I != E && !I->isTerminator()) 256 ++I; 257 return I; 258 } 259 260 MachineBasicBlock::iterator 261 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 262 // Skip over begin-of-block dbg_value instructions. 263 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 264 } 265 266 MachineBasicBlock::iterator 267 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 268 // Skip over end-of-block dbg_value instructions. 269 instr_iterator B = instr_begin(), I = instr_end(); 270 while (I != B) { 271 --I; 272 // Return instruction that starts a bundle. 273 if (I->isDebugInstr() || I->isInsideBundle()) 274 continue; 275 if (SkipPseudoOp && I->isPseudoProbe()) 276 continue; 277 return I; 278 } 279 // The block is all debug values. 280 return end(); 281 } 282 283 bool MachineBasicBlock::hasEHPadSuccessor() const { 284 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 285 if ((*I)->isEHPad()) 286 return true; 287 return false; 288 } 289 290 bool MachineBasicBlock::isEntryBlock() const { 291 return getParent()->begin() == getIterator(); 292 } 293 294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 295 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 296 print(dbgs()); 297 } 298 #endif 299 300 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 301 for (const MachineBasicBlock *Succ : successors()) { 302 if (Succ->isInlineAsmBrIndirectTarget()) 303 return true; 304 } 305 return false; 306 } 307 308 bool MachineBasicBlock::isLegalToHoistInto() const { 309 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 310 return false; 311 return true; 312 } 313 314 StringRef MachineBasicBlock::getName() const { 315 if (const BasicBlock *LBB = getBasicBlock()) 316 return LBB->getName(); 317 else 318 return StringRef("", 0); 319 } 320 321 /// Return a hopefully unique identifier for this block. 322 std::string MachineBasicBlock::getFullName() const { 323 std::string Name; 324 if (getParent()) 325 Name = (getParent()->getName() + ":").str(); 326 if (getBasicBlock()) 327 Name += getBasicBlock()->getName(); 328 else 329 Name += ("BB" + Twine(getNumber())).str(); 330 return Name; 331 } 332 333 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 334 bool IsStandalone) const { 335 const MachineFunction *MF = getParent(); 336 if (!MF) { 337 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 338 << " is null\n"; 339 return; 340 } 341 const Function &F = MF->getFunction(); 342 const Module *M = F.getParent(); 343 ModuleSlotTracker MST(M); 344 MST.incorporateFunction(F); 345 print(OS, MST, Indexes, IsStandalone); 346 } 347 348 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 349 const SlotIndexes *Indexes, 350 bool IsStandalone) const { 351 const MachineFunction *MF = getParent(); 352 if (!MF) { 353 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 354 << " is null\n"; 355 return; 356 } 357 358 if (Indexes && PrintSlotIndexes) 359 OS << Indexes->getMBBStartIdx(this) << '\t'; 360 361 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 362 OS << ":\n"; 363 364 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 365 const MachineRegisterInfo &MRI = MF->getRegInfo(); 366 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 367 bool HasLineAttributes = false; 368 369 // Print the preds of this block according to the CFG. 370 if (!pred_empty() && IsStandalone) { 371 if (Indexes) OS << '\t'; 372 // Don't indent(2), align with previous line attributes. 373 OS << "; predecessors: "; 374 ListSeparator LS; 375 for (auto *Pred : predecessors()) 376 OS << LS << printMBBReference(*Pred); 377 OS << '\n'; 378 HasLineAttributes = true; 379 } 380 381 if (!succ_empty()) { 382 if (Indexes) OS << '\t'; 383 // Print the successors 384 OS.indent(2) << "successors: "; 385 ListSeparator LS; 386 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 387 OS << LS << printMBBReference(**I); 388 if (!Probs.empty()) 389 OS << '(' 390 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 391 << ')'; 392 } 393 if (!Probs.empty() && IsStandalone) { 394 // Print human readable probabilities as comments. 395 OS << "; "; 396 ListSeparator LS; 397 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 398 const BranchProbability &BP = getSuccProbability(I); 399 OS << LS << printMBBReference(**I) << '(' 400 << format("%.2f%%", 401 rint(((double)BP.getNumerator() / BP.getDenominator()) * 402 100.0 * 100.0) / 403 100.0) 404 << ')'; 405 } 406 } 407 408 OS << '\n'; 409 HasLineAttributes = true; 410 } 411 412 if (!livein_empty() && MRI.tracksLiveness()) { 413 if (Indexes) OS << '\t'; 414 OS.indent(2) << "liveins: "; 415 416 ListSeparator LS; 417 for (const auto &LI : liveins()) { 418 OS << LS << printReg(LI.PhysReg, TRI); 419 if (!LI.LaneMask.all()) 420 OS << ":0x" << PrintLaneMask(LI.LaneMask); 421 } 422 HasLineAttributes = true; 423 } 424 425 if (HasLineAttributes) 426 OS << '\n'; 427 428 bool IsInBundle = false; 429 for (const MachineInstr &MI : instrs()) { 430 if (Indexes && PrintSlotIndexes) { 431 if (Indexes->hasIndex(MI)) 432 OS << Indexes->getInstructionIndex(MI); 433 OS << '\t'; 434 } 435 436 if (IsInBundle && !MI.isInsideBundle()) { 437 OS.indent(2) << "}\n"; 438 IsInBundle = false; 439 } 440 441 OS.indent(IsInBundle ? 4 : 2); 442 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 443 /*AddNewLine=*/false, &TII); 444 445 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 446 OS << " {"; 447 IsInBundle = true; 448 } 449 OS << '\n'; 450 } 451 452 if (IsInBundle) 453 OS.indent(2) << "}\n"; 454 455 if (IrrLoopHeaderWeight && IsStandalone) { 456 if (Indexes) OS << '\t'; 457 OS.indent(2) << "; Irreducible loop header weight: " 458 << IrrLoopHeaderWeight.getValue() << '\n'; 459 } 460 } 461 462 /// Print the basic block's name as: 463 /// 464 /// bb.{number}[.{ir-name}] [(attributes...)] 465 /// 466 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 467 /// (which is the default). If the IR block has no name, it is identified 468 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 469 /// 470 /// When the \ref PrintNameAttributes flag is passed, additional attributes 471 /// of the block are printed when set. 472 /// 473 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 474 /// the parts to print. 475 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 476 /// incorporate its own tracker when necessary to 477 /// determine the block's IR name. 478 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 479 ModuleSlotTracker *moduleSlotTracker) const { 480 os << "bb." << getNumber(); 481 bool hasAttributes = false; 482 483 if (printNameFlags & PrintNameIr) { 484 if (const auto *bb = getBasicBlock()) { 485 if (bb->hasName()) { 486 os << '.' << bb->getName(); 487 } else { 488 hasAttributes = true; 489 os << " ("; 490 491 int slot = -1; 492 493 if (moduleSlotTracker) { 494 slot = moduleSlotTracker->getLocalSlot(bb); 495 } else if (bb->getParent()) { 496 ModuleSlotTracker tmpTracker(bb->getModule(), false); 497 tmpTracker.incorporateFunction(*bb->getParent()); 498 slot = tmpTracker.getLocalSlot(bb); 499 } 500 501 if (slot == -1) 502 os << "<ir-block badref>"; 503 else 504 os << (Twine("%ir-block.") + Twine(slot)).str(); 505 } 506 } 507 } 508 509 if (printNameFlags & PrintNameAttributes) { 510 if (hasAddressTaken()) { 511 os << (hasAttributes ? ", " : " ("); 512 os << "address-taken"; 513 hasAttributes = true; 514 } 515 if (isEHPad()) { 516 os << (hasAttributes ? ", " : " ("); 517 os << "landing-pad"; 518 hasAttributes = true; 519 } 520 if (isEHFuncletEntry()) { 521 os << (hasAttributes ? ", " : " ("); 522 os << "ehfunclet-entry"; 523 hasAttributes = true; 524 } 525 if (getAlignment() != Align(1)) { 526 os << (hasAttributes ? ", " : " ("); 527 os << "align " << getAlignment().value(); 528 hasAttributes = true; 529 } 530 if (getSectionID() != MBBSectionID(0)) { 531 os << (hasAttributes ? ", " : " ("); 532 os << "bbsections "; 533 switch (getSectionID().Type) { 534 case MBBSectionID::SectionType::Exception: 535 os << "Exception"; 536 break; 537 case MBBSectionID::SectionType::Cold: 538 os << "Cold"; 539 break; 540 default: 541 os << getSectionID().Number; 542 } 543 hasAttributes = true; 544 } 545 } 546 547 if (hasAttributes) 548 os << ')'; 549 } 550 551 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 552 bool /*PrintType*/) const { 553 OS << '%'; 554 printName(OS, 0); 555 } 556 557 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 558 LiveInVector::iterator I = find_if( 559 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 560 if (I == LiveIns.end()) 561 return; 562 563 I->LaneMask &= ~LaneMask; 564 if (I->LaneMask.none()) 565 LiveIns.erase(I); 566 } 567 568 MachineBasicBlock::livein_iterator 569 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 570 // Get non-const version of iterator. 571 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 572 return LiveIns.erase(LI); 573 } 574 575 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 576 livein_iterator I = find_if( 577 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 578 return I != livein_end() && (I->LaneMask & LaneMask).any(); 579 } 580 581 void MachineBasicBlock::sortUniqueLiveIns() { 582 llvm::sort(LiveIns, 583 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 584 return LI0.PhysReg < LI1.PhysReg; 585 }); 586 // Liveins are sorted by physreg now we can merge their lanemasks. 587 LiveInVector::const_iterator I = LiveIns.begin(); 588 LiveInVector::const_iterator J; 589 LiveInVector::iterator Out = LiveIns.begin(); 590 for (; I != LiveIns.end(); ++Out, I = J) { 591 MCRegister PhysReg = I->PhysReg; 592 LaneBitmask LaneMask = I->LaneMask; 593 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 594 LaneMask |= J->LaneMask; 595 Out->PhysReg = PhysReg; 596 Out->LaneMask = LaneMask; 597 } 598 LiveIns.erase(Out, LiveIns.end()); 599 } 600 601 Register 602 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 603 assert(getParent() && "MBB must be inserted in function"); 604 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 605 assert(RC && "Register class is required"); 606 assert((isEHPad() || this == &getParent()->front()) && 607 "Only the entry block and landing pads can have physreg live ins"); 608 609 bool LiveIn = isLiveIn(PhysReg); 610 iterator I = SkipPHIsAndLabels(begin()), E = end(); 611 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 612 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 613 614 // Look for an existing copy. 615 if (LiveIn) 616 for (;I != E && I->isCopy(); ++I) 617 if (I->getOperand(1).getReg() == PhysReg) { 618 Register VirtReg = I->getOperand(0).getReg(); 619 if (!MRI.constrainRegClass(VirtReg, RC)) 620 llvm_unreachable("Incompatible live-in register class."); 621 return VirtReg; 622 } 623 624 // No luck, create a virtual register. 625 Register VirtReg = MRI.createVirtualRegister(RC); 626 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 627 .addReg(PhysReg, RegState::Kill); 628 if (!LiveIn) 629 addLiveIn(PhysReg); 630 return VirtReg; 631 } 632 633 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 634 getParent()->splice(NewAfter->getIterator(), getIterator()); 635 } 636 637 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 638 getParent()->splice(++NewBefore->getIterator(), getIterator()); 639 } 640 641 void MachineBasicBlock::updateTerminator( 642 MachineBasicBlock *PreviousLayoutSuccessor) { 643 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 644 << "\n"); 645 646 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 647 // A block with no successors has no concerns with fall-through edges. 648 if (this->succ_empty()) 649 return; 650 651 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 652 SmallVector<MachineOperand, 4> Cond; 653 DebugLoc DL = findBranchDebugLoc(); 654 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 655 (void) B; 656 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 657 if (Cond.empty()) { 658 if (TBB) { 659 // The block has an unconditional branch. If its successor is now its 660 // layout successor, delete the branch. 661 if (isLayoutSuccessor(TBB)) 662 TII->removeBranch(*this); 663 } else { 664 // The block has an unconditional fallthrough, or the end of the block is 665 // unreachable. 666 667 // Unfortunately, whether the end of the block is unreachable is not 668 // immediately obvious; we must fall back to checking the successor list, 669 // and assuming that if the passed in block is in the succesor list and 670 // not an EHPad, it must be the intended target. 671 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 672 PreviousLayoutSuccessor->isEHPad()) 673 return; 674 675 // If the unconditional successor block is not the current layout 676 // successor, insert a branch to jump to it. 677 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 678 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 679 } 680 return; 681 } 682 683 if (FBB) { 684 // The block has a non-fallthrough conditional branch. If one of its 685 // successors is its layout successor, rewrite it to a fallthrough 686 // conditional branch. 687 if (isLayoutSuccessor(TBB)) { 688 if (TII->reverseBranchCondition(Cond)) 689 return; 690 TII->removeBranch(*this); 691 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 692 } else if (isLayoutSuccessor(FBB)) { 693 TII->removeBranch(*this); 694 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 695 } 696 return; 697 } 698 699 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 700 assert(PreviousLayoutSuccessor); 701 assert(!PreviousLayoutSuccessor->isEHPad()); 702 assert(isSuccessor(PreviousLayoutSuccessor)); 703 704 if (PreviousLayoutSuccessor == TBB) { 705 // We had a fallthrough to the same basic block as the conditional jump 706 // targets. Remove the conditional jump, leaving an unconditional 707 // fallthrough or an unconditional jump. 708 TII->removeBranch(*this); 709 if (!isLayoutSuccessor(TBB)) { 710 Cond.clear(); 711 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 712 } 713 return; 714 } 715 716 // The block has a fallthrough conditional branch. 717 if (isLayoutSuccessor(TBB)) { 718 if (TII->reverseBranchCondition(Cond)) { 719 // We can't reverse the condition, add an unconditional branch. 720 Cond.clear(); 721 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 722 return; 723 } 724 TII->removeBranch(*this); 725 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 726 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 727 TII->removeBranch(*this); 728 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 729 } 730 } 731 732 void MachineBasicBlock::validateSuccProbs() const { 733 #ifndef NDEBUG 734 int64_t Sum = 0; 735 for (auto Prob : Probs) 736 Sum += Prob.getNumerator(); 737 // Due to precision issue, we assume that the sum of probabilities is one if 738 // the difference between the sum of their numerators and the denominator is 739 // no greater than the number of successors. 740 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 741 Probs.size() && 742 "The sum of successors's probabilities exceeds one."); 743 #endif // NDEBUG 744 } 745 746 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 747 BranchProbability Prob) { 748 // Probability list is either empty (if successor list isn't empty, this means 749 // disabled optimization) or has the same size as successor list. 750 if (!(Probs.empty() && !Successors.empty())) 751 Probs.push_back(Prob); 752 Successors.push_back(Succ); 753 Succ->addPredecessor(this); 754 } 755 756 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 757 // We need to make sure probability list is either empty or has the same size 758 // of successor list. When this function is called, we can safely delete all 759 // probability in the list. 760 Probs.clear(); 761 Successors.push_back(Succ); 762 Succ->addPredecessor(this); 763 } 764 765 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 766 MachineBasicBlock *New, 767 bool NormalizeSuccProbs) { 768 succ_iterator OldI = llvm::find(successors(), Old); 769 assert(OldI != succ_end() && "Old is not a successor of this block!"); 770 assert(!llvm::is_contained(successors(), New) && 771 "New is already a successor of this block!"); 772 773 // Add a new successor with equal probability as the original one. Note 774 // that we directly copy the probability using the iterator rather than 775 // getting a potentially synthetic probability computed when unknown. This 776 // preserves the probabilities as-is and then we can renormalize them and 777 // query them effectively afterward. 778 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 779 : *getProbabilityIterator(OldI)); 780 if (NormalizeSuccProbs) 781 normalizeSuccProbs(); 782 } 783 784 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 785 bool NormalizeSuccProbs) { 786 succ_iterator I = find(Successors, Succ); 787 removeSuccessor(I, NormalizeSuccProbs); 788 } 789 790 MachineBasicBlock::succ_iterator 791 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 792 assert(I != Successors.end() && "Not a current successor!"); 793 794 // If probability list is empty it means we don't use it (disabled 795 // optimization). 796 if (!Probs.empty()) { 797 probability_iterator WI = getProbabilityIterator(I); 798 Probs.erase(WI); 799 if (NormalizeSuccProbs) 800 normalizeSuccProbs(); 801 } 802 803 (*I)->removePredecessor(this); 804 return Successors.erase(I); 805 } 806 807 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 808 MachineBasicBlock *New) { 809 if (Old == New) 810 return; 811 812 succ_iterator E = succ_end(); 813 succ_iterator NewI = E; 814 succ_iterator OldI = E; 815 for (succ_iterator I = succ_begin(); I != E; ++I) { 816 if (*I == Old) { 817 OldI = I; 818 if (NewI != E) 819 break; 820 } 821 if (*I == New) { 822 NewI = I; 823 if (OldI != E) 824 break; 825 } 826 } 827 assert(OldI != E && "Old is not a successor of this block"); 828 829 // If New isn't already a successor, let it take Old's place. 830 if (NewI == E) { 831 Old->removePredecessor(this); 832 New->addPredecessor(this); 833 *OldI = New; 834 return; 835 } 836 837 // New is already a successor. 838 // Update its probability instead of adding a duplicate edge. 839 if (!Probs.empty()) { 840 auto ProbIter = getProbabilityIterator(NewI); 841 if (!ProbIter->isUnknown()) 842 *ProbIter += *getProbabilityIterator(OldI); 843 } 844 removeSuccessor(OldI); 845 } 846 847 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 848 succ_iterator I) { 849 if (!Orig->Probs.empty()) 850 addSuccessor(*I, Orig->getSuccProbability(I)); 851 else 852 addSuccessorWithoutProb(*I); 853 } 854 855 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 856 Predecessors.push_back(Pred); 857 } 858 859 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 860 pred_iterator I = find(Predecessors, Pred); 861 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 862 Predecessors.erase(I); 863 } 864 865 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 866 if (this == FromMBB) 867 return; 868 869 while (!FromMBB->succ_empty()) { 870 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 871 872 // If probability list is empty it means we don't use it (disabled 873 // optimization). 874 if (!FromMBB->Probs.empty()) { 875 auto Prob = *FromMBB->Probs.begin(); 876 addSuccessor(Succ, Prob); 877 } else 878 addSuccessorWithoutProb(Succ); 879 880 FromMBB->removeSuccessor(Succ); 881 } 882 } 883 884 void 885 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 886 if (this == FromMBB) 887 return; 888 889 while (!FromMBB->succ_empty()) { 890 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 891 if (!FromMBB->Probs.empty()) { 892 auto Prob = *FromMBB->Probs.begin(); 893 addSuccessor(Succ, Prob); 894 } else 895 addSuccessorWithoutProb(Succ); 896 FromMBB->removeSuccessor(Succ); 897 898 // Fix up any PHI nodes in the successor. 899 Succ->replacePhiUsesWith(FromMBB, this); 900 } 901 normalizeSuccProbs(); 902 } 903 904 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 905 return is_contained(predecessors(), MBB); 906 } 907 908 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 909 return is_contained(successors(), MBB); 910 } 911 912 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 913 MachineFunction::const_iterator I(this); 914 return std::next(I) == MachineFunction::const_iterator(MBB); 915 } 916 917 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 918 MachineFunction::iterator Fallthrough = getIterator(); 919 ++Fallthrough; 920 // If FallthroughBlock is off the end of the function, it can't fall through. 921 if (Fallthrough == getParent()->end()) 922 return nullptr; 923 924 // If FallthroughBlock isn't a successor, no fallthrough is possible. 925 if (!isSuccessor(&*Fallthrough)) 926 return nullptr; 927 928 // Analyze the branches, if any, at the end of the block. 929 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 930 SmallVector<MachineOperand, 4> Cond; 931 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 932 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 933 // If we couldn't analyze the branch, examine the last instruction. 934 // If the block doesn't end in a known control barrier, assume fallthrough 935 // is possible. The isPredicated check is needed because this code can be 936 // called during IfConversion, where an instruction which is normally a 937 // Barrier is predicated and thus no longer an actual control barrier. 938 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 939 ? &*Fallthrough 940 : nullptr; 941 } 942 943 // If there is no branch, control always falls through. 944 if (!TBB) return &*Fallthrough; 945 946 // If there is some explicit branch to the fallthrough block, it can obviously 947 // reach, even though the branch should get folded to fall through implicitly. 948 if (MachineFunction::iterator(TBB) == Fallthrough || 949 MachineFunction::iterator(FBB) == Fallthrough) 950 return &*Fallthrough; 951 952 // If it's an unconditional branch to some block not the fall through, it 953 // doesn't fall through. 954 if (Cond.empty()) return nullptr; 955 956 // Otherwise, if it is conditional and has no explicit false block, it falls 957 // through. 958 return (FBB == nullptr) ? &*Fallthrough : nullptr; 959 } 960 961 bool MachineBasicBlock::canFallThrough() { 962 return getFallThrough() != nullptr; 963 } 964 965 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 966 bool UpdateLiveIns, 967 LiveIntervals *LIS) { 968 MachineBasicBlock::iterator SplitPoint(&MI); 969 ++SplitPoint; 970 971 if (SplitPoint == end()) { 972 // Don't bother with a new block. 973 return this; 974 } 975 976 MachineFunction *MF = getParent(); 977 978 LivePhysRegs LiveRegs; 979 if (UpdateLiveIns) { 980 // Make sure we add any physregs we define in the block as liveins to the 981 // new block. 982 MachineBasicBlock::iterator Prev(&MI); 983 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 984 LiveRegs.addLiveOuts(*this); 985 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 986 LiveRegs.stepBackward(*I); 987 } 988 989 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 990 991 MF->insert(++MachineFunction::iterator(this), SplitBB); 992 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 993 994 SplitBB->transferSuccessorsAndUpdatePHIs(this); 995 addSuccessor(SplitBB); 996 997 if (UpdateLiveIns) 998 addLiveIns(*SplitBB, LiveRegs); 999 1000 if (LIS) 1001 LIS->insertMBBInMaps(SplitBB); 1002 1003 return SplitBB; 1004 } 1005 1006 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1007 MachineBasicBlock *Succ, Pass &P, 1008 std::vector<SparseBitVector<>> *LiveInSets) { 1009 if (!canSplitCriticalEdge(Succ)) 1010 return nullptr; 1011 1012 MachineFunction *MF = getParent(); 1013 MachineBasicBlock *PrevFallthrough = getNextNode(); 1014 DebugLoc DL; // FIXME: this is nowhere 1015 1016 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1017 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1018 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1019 << " -- " << printMBBReference(*NMBB) << " -- " 1020 << printMBBReference(*Succ) << '\n'); 1021 1022 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1023 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1024 if (LIS) 1025 LIS->insertMBBInMaps(NMBB); 1026 else if (Indexes) 1027 Indexes->insertMBBInMaps(NMBB); 1028 1029 // On some targets like Mips, branches may kill virtual registers. Make sure 1030 // that LiveVariables is properly updated after updateTerminator replaces the 1031 // terminators. 1032 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1033 1034 // Collect a list of virtual registers killed by the terminators. 1035 SmallVector<Register, 4> KilledRegs; 1036 if (LV) 1037 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1038 I != E; ++I) { 1039 MachineInstr *MI = &*I; 1040 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 1041 OE = MI->operands_end(); OI != OE; ++OI) { 1042 if (!OI->isReg() || OI->getReg() == 0 || 1043 !OI->isUse() || !OI->isKill() || OI->isUndef()) 1044 continue; 1045 Register Reg = OI->getReg(); 1046 if (Register::isPhysicalRegister(Reg) || 1047 LV->getVarInfo(Reg).removeKill(*MI)) { 1048 KilledRegs.push_back(Reg); 1049 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 1050 OI->setIsKill(false); 1051 } 1052 } 1053 } 1054 1055 SmallVector<Register, 4> UsedRegs; 1056 if (LIS) { 1057 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1058 I != E; ++I) { 1059 MachineInstr *MI = &*I; 1060 1061 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 1062 OE = MI->operands_end(); OI != OE; ++OI) { 1063 if (!OI->isReg() || OI->getReg() == 0) 1064 continue; 1065 1066 Register Reg = OI->getReg(); 1067 if (!is_contained(UsedRegs, Reg)) 1068 UsedRegs.push_back(Reg); 1069 } 1070 } 1071 } 1072 1073 ReplaceUsesOfBlockWith(Succ, NMBB); 1074 1075 // If updateTerminator() removes instructions, we need to remove them from 1076 // SlotIndexes. 1077 SmallVector<MachineInstr*, 4> Terminators; 1078 if (Indexes) { 1079 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1080 I != E; ++I) 1081 Terminators.push_back(&*I); 1082 } 1083 1084 // Since we replaced all uses of Succ with NMBB, that should also be treated 1085 // as the fallthrough successor 1086 if (Succ == PrevFallthrough) 1087 PrevFallthrough = NMBB; 1088 updateTerminator(PrevFallthrough); 1089 1090 if (Indexes) { 1091 SmallVector<MachineInstr*, 4> NewTerminators; 1092 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1093 I != E; ++I) 1094 NewTerminators.push_back(&*I); 1095 1096 for (MachineInstr *Terminator : Terminators) { 1097 if (!is_contained(NewTerminators, Terminator)) 1098 Indexes->removeMachineInstrFromMaps(*Terminator); 1099 } 1100 } 1101 1102 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1103 NMBB->addSuccessor(Succ); 1104 if (!NMBB->isLayoutSuccessor(Succ)) { 1105 SmallVector<MachineOperand, 4> Cond; 1106 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1107 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1108 1109 if (Indexes) { 1110 for (MachineInstr &MI : NMBB->instrs()) { 1111 // Some instructions may have been moved to NMBB by updateTerminator(), 1112 // so we first remove any instruction that already has an index. 1113 if (Indexes->hasIndex(MI)) 1114 Indexes->removeMachineInstrFromMaps(MI); 1115 Indexes->insertMachineInstrInMaps(MI); 1116 } 1117 } 1118 } 1119 1120 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1121 Succ->replacePhiUsesWith(this, NMBB); 1122 1123 // Inherit live-ins from the successor 1124 for (const auto &LI : Succ->liveins()) 1125 NMBB->addLiveIn(LI); 1126 1127 // Update LiveVariables. 1128 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1129 if (LV) { 1130 // Restore kills of virtual registers that were killed by the terminators. 1131 while (!KilledRegs.empty()) { 1132 Register Reg = KilledRegs.pop_back_val(); 1133 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1134 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1135 continue; 1136 if (Register::isVirtualRegister(Reg)) 1137 LV->getVarInfo(Reg).Kills.push_back(&*I); 1138 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1139 break; 1140 } 1141 } 1142 // Update relevant live-through information. 1143 if (LiveInSets != nullptr) 1144 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1145 else 1146 LV->addNewBlock(NMBB, this, Succ); 1147 } 1148 1149 if (LIS) { 1150 // After splitting the edge and updating SlotIndexes, live intervals may be 1151 // in one of two situations, depending on whether this block was the last in 1152 // the function. If the original block was the last in the function, all 1153 // live intervals will end prior to the beginning of the new split block. If 1154 // the original block was not at the end of the function, all live intervals 1155 // will extend to the end of the new split block. 1156 1157 bool isLastMBB = 1158 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1159 1160 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1161 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1162 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1163 1164 // Find the registers used from NMBB in PHIs in Succ. 1165 SmallSet<Register, 8> PHISrcRegs; 1166 for (MachineBasicBlock::instr_iterator 1167 I = Succ->instr_begin(), E = Succ->instr_end(); 1168 I != E && I->isPHI(); ++I) { 1169 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1170 if (I->getOperand(ni+1).getMBB() == NMBB) { 1171 MachineOperand &MO = I->getOperand(ni); 1172 Register Reg = MO.getReg(); 1173 PHISrcRegs.insert(Reg); 1174 if (MO.isUndef()) 1175 continue; 1176 1177 LiveInterval &LI = LIS->getInterval(Reg); 1178 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1179 assert(VNI && 1180 "PHI sources should be live out of their predecessors."); 1181 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1182 } 1183 } 1184 } 1185 1186 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1187 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1188 Register Reg = Register::index2VirtReg(i); 1189 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1190 continue; 1191 1192 LiveInterval &LI = LIS->getInterval(Reg); 1193 if (!LI.liveAt(PrevIndex)) 1194 continue; 1195 1196 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1197 if (isLiveOut && isLastMBB) { 1198 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1199 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1200 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1201 } else if (!isLiveOut && !isLastMBB) { 1202 LI.removeSegment(StartIndex, EndIndex); 1203 } 1204 } 1205 1206 // Update all intervals for registers whose uses may have been modified by 1207 // updateTerminator(). 1208 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1209 } 1210 1211 if (MachineDominatorTree *MDT = 1212 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1213 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1214 1215 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1216 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1217 // If one or the other blocks were not in a loop, the new block is not 1218 // either, and thus LI doesn't need to be updated. 1219 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1220 if (TIL == DestLoop) { 1221 // Both in the same loop, the NMBB joins loop. 1222 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1223 } else if (TIL->contains(DestLoop)) { 1224 // Edge from an outer loop to an inner loop. Add to the outer loop. 1225 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1226 } else if (DestLoop->contains(TIL)) { 1227 // Edge from an inner loop to an outer loop. Add to the outer loop. 1228 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1229 } else { 1230 // Edge from two loops with no containment relation. Because these 1231 // are natural loops, we know that the destination block must be the 1232 // header of its loop (adding a branch into a loop elsewhere would 1233 // create an irreducible loop). 1234 assert(DestLoop->getHeader() == Succ && 1235 "Should not create irreducible loops!"); 1236 if (MachineLoop *P = DestLoop->getParentLoop()) 1237 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1238 } 1239 } 1240 } 1241 1242 return NMBB; 1243 } 1244 1245 bool MachineBasicBlock::canSplitCriticalEdge( 1246 const MachineBasicBlock *Succ) const { 1247 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1248 // it in this generic function. 1249 if (Succ->isEHPad()) 1250 return false; 1251 1252 // Splitting the critical edge to a callbr's indirect block isn't advised. 1253 // Don't do it in this generic function. 1254 if (Succ->isInlineAsmBrIndirectTarget()) 1255 return false; 1256 1257 const MachineFunction *MF = getParent(); 1258 // Performance might be harmed on HW that implements branching using exec mask 1259 // where both sides of the branches are always executed. 1260 if (MF->getTarget().requiresStructuredCFG()) 1261 return false; 1262 1263 // We may need to update this's terminator, but we can't do that if 1264 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1265 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1266 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1267 SmallVector<MachineOperand, 4> Cond; 1268 // AnalyzeBanch should modify this, since we did not allow modification. 1269 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1270 /*AllowModify*/ false)) 1271 return false; 1272 1273 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1274 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1275 // case that we can't handle. Since this never happens in properly optimized 1276 // code, just skip those edges. 1277 if (TBB && TBB == FBB) { 1278 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1279 << printMBBReference(*this) << '\n'); 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1286 /// neighboring instructions so the bundle won't be broken by removing MI. 1287 static void unbundleSingleMI(MachineInstr *MI) { 1288 // Removing the first instruction in a bundle. 1289 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1290 MI->unbundleFromSucc(); 1291 // Removing the last instruction in a bundle. 1292 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1293 MI->unbundleFromPred(); 1294 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1295 // are already fine. 1296 } 1297 1298 MachineBasicBlock::instr_iterator 1299 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1300 unbundleSingleMI(&*I); 1301 return Insts.erase(I); 1302 } 1303 1304 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1305 unbundleSingleMI(MI); 1306 MI->clearFlag(MachineInstr::BundledPred); 1307 MI->clearFlag(MachineInstr::BundledSucc); 1308 return Insts.remove(MI); 1309 } 1310 1311 MachineBasicBlock::instr_iterator 1312 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1313 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1314 "Cannot insert instruction with bundle flags"); 1315 // Set the bundle flags when inserting inside a bundle. 1316 if (I != instr_end() && I->isBundledWithPred()) { 1317 MI->setFlag(MachineInstr::BundledPred); 1318 MI->setFlag(MachineInstr::BundledSucc); 1319 } 1320 return Insts.insert(I, MI); 1321 } 1322 1323 /// This method unlinks 'this' from the containing function, and returns it, but 1324 /// does not delete it. 1325 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1326 assert(getParent() && "Not embedded in a function!"); 1327 getParent()->remove(this); 1328 return this; 1329 } 1330 1331 /// This method unlinks 'this' from the containing function, and deletes it. 1332 void MachineBasicBlock::eraseFromParent() { 1333 assert(getParent() && "Not embedded in a function!"); 1334 getParent()->erase(this); 1335 } 1336 1337 /// Given a machine basic block that branched to 'Old', change the code and CFG 1338 /// so that it branches to 'New' instead. 1339 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1340 MachineBasicBlock *New) { 1341 assert(Old != New && "Cannot replace self with self!"); 1342 1343 MachineBasicBlock::instr_iterator I = instr_end(); 1344 while (I != instr_begin()) { 1345 --I; 1346 if (!I->isTerminator()) break; 1347 1348 // Scan the operands of this machine instruction, replacing any uses of Old 1349 // with New. 1350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1351 if (I->getOperand(i).isMBB() && 1352 I->getOperand(i).getMBB() == Old) 1353 I->getOperand(i).setMBB(New); 1354 } 1355 1356 // Update the successor information. 1357 replaceSuccessor(Old, New); 1358 } 1359 1360 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1361 MachineBasicBlock *New) { 1362 for (MachineInstr &MI : phis()) 1363 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1364 MachineOperand &MO = MI.getOperand(i); 1365 if (MO.getMBB() == Old) 1366 MO.setMBB(New); 1367 } 1368 } 1369 1370 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1371 /// instructions. Return UnknownLoc if there is none. 1372 DebugLoc 1373 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1374 // Skip debug declarations, we don't want a DebugLoc from them. 1375 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1376 if (MBBI != instr_end()) 1377 return MBBI->getDebugLoc(); 1378 return {}; 1379 } 1380 1381 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1382 // Skip debug declarations, we don't want a DebugLoc from them. 1383 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1384 if (!MBBI->isDebugInstr()) 1385 return MBBI->getDebugLoc(); 1386 return {}; 1387 } 1388 1389 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1390 /// instructions. Return UnknownLoc if there is none. 1391 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1392 if (MBBI == instr_begin()) return {}; 1393 // Skip debug instructions, we don't want a DebugLoc from them. 1394 MBBI = prev_nodbg(MBBI, instr_begin()); 1395 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1396 return {}; 1397 } 1398 1399 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1400 if (MBBI == instr_rend()) 1401 return {}; 1402 // Skip debug declarations, we don't want a DebugLoc from them. 1403 MBBI = next_nodbg(MBBI, instr_rend()); 1404 if (MBBI != instr_rend()) 1405 return MBBI->getDebugLoc(); 1406 return {}; 1407 } 1408 1409 /// Find and return the merged DebugLoc of the branch instructions of the block. 1410 /// Return UnknownLoc if there is none. 1411 DebugLoc 1412 MachineBasicBlock::findBranchDebugLoc() { 1413 DebugLoc DL; 1414 auto TI = getFirstTerminator(); 1415 while (TI != end() && !TI->isBranch()) 1416 ++TI; 1417 1418 if (TI != end()) { 1419 DL = TI->getDebugLoc(); 1420 for (++TI ; TI != end() ; ++TI) 1421 if (TI->isBranch()) 1422 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1423 } 1424 return DL; 1425 } 1426 1427 /// Return probability of the edge from this block to MBB. 1428 BranchProbability 1429 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1430 if (Probs.empty()) 1431 return BranchProbability(1, succ_size()); 1432 1433 const auto &Prob = *getProbabilityIterator(Succ); 1434 if (Prob.isUnknown()) { 1435 // For unknown probabilities, collect the sum of all known ones, and evenly 1436 // ditribute the complemental of the sum to each unknown probability. 1437 unsigned KnownProbNum = 0; 1438 auto Sum = BranchProbability::getZero(); 1439 for (auto &P : Probs) { 1440 if (!P.isUnknown()) { 1441 Sum += P; 1442 KnownProbNum++; 1443 } 1444 } 1445 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1446 } else 1447 return Prob; 1448 } 1449 1450 /// Set successor probability of a given iterator. 1451 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1452 BranchProbability Prob) { 1453 assert(!Prob.isUnknown()); 1454 if (Probs.empty()) 1455 return; 1456 *getProbabilityIterator(I) = Prob; 1457 } 1458 1459 /// Return probability iterator corresonding to the I successor iterator 1460 MachineBasicBlock::const_probability_iterator 1461 MachineBasicBlock::getProbabilityIterator( 1462 MachineBasicBlock::const_succ_iterator I) const { 1463 assert(Probs.size() == Successors.size() && "Async probability list!"); 1464 const size_t index = std::distance(Successors.begin(), I); 1465 assert(index < Probs.size() && "Not a current successor!"); 1466 return Probs.begin() + index; 1467 } 1468 1469 /// Return probability iterator corresonding to the I successor iterator. 1470 MachineBasicBlock::probability_iterator 1471 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1472 assert(Probs.size() == Successors.size() && "Async probability list!"); 1473 const size_t index = std::distance(Successors.begin(), I); 1474 assert(index < Probs.size() && "Not a current successor!"); 1475 return Probs.begin() + index; 1476 } 1477 1478 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1479 /// as of just before "MI". 1480 /// 1481 /// Search is localised to a neighborhood of 1482 /// Neighborhood instructions before (searching for defs or kills) and N 1483 /// instructions after (searching just for defs) MI. 1484 MachineBasicBlock::LivenessQueryResult 1485 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1486 MCRegister Reg, const_iterator Before, 1487 unsigned Neighborhood) const { 1488 unsigned N = Neighborhood; 1489 1490 // Try searching forwards from Before, looking for reads or defs. 1491 const_iterator I(Before); 1492 for (; I != end() && N > 0; ++I) { 1493 if (I->isDebugOrPseudoInstr()) 1494 continue; 1495 1496 --N; 1497 1498 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1499 1500 // Register is live when we read it here. 1501 if (Info.Read) 1502 return LQR_Live; 1503 // Register is dead if we can fully overwrite or clobber it here. 1504 if (Info.FullyDefined || Info.Clobbered) 1505 return LQR_Dead; 1506 } 1507 1508 // If we reached the end, it is safe to clobber Reg at the end of a block of 1509 // no successor has it live in. 1510 if (I == end()) { 1511 for (MachineBasicBlock *S : successors()) { 1512 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1513 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1514 return LQR_Live; 1515 } 1516 } 1517 1518 return LQR_Dead; 1519 } 1520 1521 1522 N = Neighborhood; 1523 1524 // Start by searching backwards from Before, looking for kills, reads or defs. 1525 I = const_iterator(Before); 1526 // If this is the first insn in the block, don't search backwards. 1527 if (I != begin()) { 1528 do { 1529 --I; 1530 1531 if (I->isDebugOrPseudoInstr()) 1532 continue; 1533 1534 --N; 1535 1536 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1537 1538 // Defs happen after uses so they take precedence if both are present. 1539 1540 // Register is dead after a dead def of the full register. 1541 if (Info.DeadDef) 1542 return LQR_Dead; 1543 // Register is (at least partially) live after a def. 1544 if (Info.Defined) { 1545 if (!Info.PartialDeadDef) 1546 return LQR_Live; 1547 // As soon as we saw a partial definition (dead or not), 1548 // we cannot tell if the value is partial live without 1549 // tracking the lanemasks. We are not going to do this, 1550 // so fall back on the remaining of the analysis. 1551 break; 1552 } 1553 // Register is dead after a full kill or clobber and no def. 1554 if (Info.Killed || Info.Clobbered) 1555 return LQR_Dead; 1556 // Register must be live if we read it. 1557 if (Info.Read) 1558 return LQR_Live; 1559 1560 } while (I != begin() && N > 0); 1561 } 1562 1563 // If all the instructions before this in the block are debug instructions, 1564 // skip over them. 1565 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1566 --I; 1567 1568 // Did we get to the start of the block? 1569 if (I == begin()) { 1570 // If so, the register's state is definitely defined by the live-in state. 1571 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1572 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1573 return LQR_Live; 1574 1575 return LQR_Dead; 1576 } 1577 1578 // At this point we have no idea of the liveness of the register. 1579 return LQR_Unknown; 1580 } 1581 1582 const uint32_t * 1583 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1584 // EH funclet entry does not preserve any registers. 1585 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1586 } 1587 1588 const uint32_t * 1589 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1590 // If we see a return block with successors, this must be a funclet return, 1591 // which does not preserve any registers. If there are no successors, we don't 1592 // care what kind of return it is, putting a mask after it is a no-op. 1593 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1594 } 1595 1596 void MachineBasicBlock::clearLiveIns() { 1597 LiveIns.clear(); 1598 } 1599 1600 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1601 assert(getParent()->getProperties().hasProperty( 1602 MachineFunctionProperties::Property::TracksLiveness) && 1603 "Liveness information is accurate"); 1604 return LiveIns.begin(); 1605 } 1606 1607 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1608 const MachineFunction &MF = *getParent(); 1609 assert(MF.getProperties().hasProperty( 1610 MachineFunctionProperties::Property::TracksLiveness) && 1611 "Liveness information is accurate"); 1612 1613 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1614 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1615 if (MF.getFunction().hasPersonalityFn()) { 1616 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1617 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1618 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1619 } 1620 1621 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1622 } 1623 1624 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1625 const MBBSectionID 1626 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1627