1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/DataTypes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 static cl::opt<bool> PrintSlotIndexes( 44 "print-slotindexes", 45 cl::desc("When printing machine IR, annotate instructions and blocks with " 46 "SlotIndexes when available"), 47 cl::init(true), cl::Hidden); 48 49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 50 : BB(B), Number(-1), xParent(&MF) { 51 Insts.Parent = this; 52 if (B) 53 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 54 } 55 56 MachineBasicBlock::~MachineBasicBlock() { 57 } 58 59 /// Return the MCSymbol for this basic block. 60 MCSymbol *MachineBasicBlock::getSymbol() const { 61 if (!CachedMCSymbol) { 62 const MachineFunction *MF = getParent(); 63 MCContext &Ctx = MF->getContext(); 64 65 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 66 // a section (with basic block sections). Otherwise we fall back to use temp 67 // label. 68 if (MF->hasBBSections() && isBeginSection()) { 69 SmallString<5> Suffix; 70 if (SectionID == MBBSectionID::ColdSectionID) { 71 Suffix += ".cold"; 72 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 73 Suffix += ".eh"; 74 } else { 75 // For symbols that represent basic block sections, we add ".__part." to 76 // allow tools like symbolizers to know that this represents a part of 77 // the original function. 78 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 79 } 80 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 81 } else { 82 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 83 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 84 Twine(MF->getFunctionNumber()) + 85 "_" + Twine(getNumber())); 86 } 87 } 88 return CachedMCSymbol; 89 } 90 91 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 92 if (!CachedEHCatchretMCSymbol) { 93 const MachineFunction *MF = getParent(); 94 SmallString<128> SymbolName; 95 raw_svector_ostream(SymbolName) 96 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 97 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 98 } 99 return CachedEHCatchretMCSymbol; 100 } 101 102 MCSymbol *MachineBasicBlock::getEndSymbol() const { 103 if (!CachedEndMCSymbol) { 104 const MachineFunction *MF = getParent(); 105 MCContext &Ctx = MF->getContext(); 106 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 107 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 108 Twine(MF->getFunctionNumber()) + 109 "_" + Twine(getNumber())); 110 } 111 return CachedEndMCSymbol; 112 } 113 114 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 115 MBB.print(OS); 116 return OS; 117 } 118 119 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 120 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 121 } 122 123 /// When an MBB is added to an MF, we need to update the parent pointer of the 124 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 125 /// operand list for registers. 126 /// 127 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 128 /// gets the next available unique MBB number. If it is removed from a 129 /// MachineFunction, it goes back to being #-1. 130 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 131 MachineBasicBlock *N) { 132 MachineFunction &MF = *N->getParent(); 133 N->Number = MF.addToMBBNumbering(N); 134 135 // Make sure the instructions have their operands in the reginfo lists. 136 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 137 for (MachineInstr &MI : N->instrs()) 138 MI.AddRegOperandsToUseLists(RegInfo); 139 } 140 141 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 142 MachineBasicBlock *N) { 143 N->getParent()->removeFromMBBNumbering(N->Number); 144 N->Number = -1; 145 } 146 147 /// When we add an instruction to a basic block list, we update its parent 148 /// pointer and add its operands from reg use/def lists if appropriate. 149 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 150 assert(!N->getParent() && "machine instruction already in a basic block"); 151 N->setParent(Parent); 152 153 // Add the instruction's register operands to their corresponding 154 // use/def lists. 155 MachineFunction *MF = Parent->getParent(); 156 N->AddRegOperandsToUseLists(MF->getRegInfo()); 157 MF->handleInsertion(*N); 158 } 159 160 /// When we remove an instruction from a basic block list, we update its parent 161 /// pointer and remove its operands from reg use/def lists if appropriate. 162 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 163 assert(N->getParent() && "machine instruction not in a basic block"); 164 165 // Remove from the use/def lists. 166 if (MachineFunction *MF = N->getMF()) { 167 MF->handleRemoval(*N); 168 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 169 } 170 171 N->setParent(nullptr); 172 } 173 174 /// When moving a range of instructions from one MBB list to another, we need to 175 /// update the parent pointers and the use/def lists. 176 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 177 instr_iterator First, 178 instr_iterator Last) { 179 assert(Parent->getParent() == FromList.Parent->getParent() && 180 "cannot transfer MachineInstrs between MachineFunctions"); 181 182 // If it's within the same BB, there's nothing to do. 183 if (this == &FromList) 184 return; 185 186 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 187 188 // If splicing between two blocks within the same function, just update the 189 // parent pointers. 190 for (; First != Last; ++First) 191 First->setParent(Parent); 192 } 193 194 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 195 assert(!MI->getParent() && "MI is still in a block!"); 196 Parent->getParent()->deleteMachineInstr(MI); 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 200 instr_iterator I = instr_begin(), E = instr_end(); 201 while (I != E && I->isPHI()) 202 ++I; 203 assert((I == E || !I->isInsideBundle()) && 204 "First non-phi MI cannot be inside a bundle!"); 205 return I; 206 } 207 208 MachineBasicBlock::iterator 209 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 210 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 211 212 iterator E = end(); 213 while (I != E && (I->isPHI() || I->isPosition() || 214 TII->isBasicBlockPrologue(*I))) 215 ++I; 216 // FIXME: This needs to change if we wish to bundle labels 217 // inside the bundle. 218 assert((I == E || !I->isInsideBundle()) && 219 "First non-phi / non-label instruction is inside a bundle!"); 220 return I; 221 } 222 223 MachineBasicBlock::iterator 224 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 225 bool SkipPseudoOp) { 226 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 227 228 iterator E = end(); 229 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 230 (SkipPseudoOp && I->isPseudoProbe()) || 231 TII->isBasicBlockPrologue(*I))) 232 ++I; 233 // FIXME: This needs to change if we wish to bundle labels / dbg_values 234 // inside the bundle. 235 assert((I == E || !I->isInsideBundle()) && 236 "First non-phi / non-label / non-debug " 237 "instruction is inside a bundle!"); 238 return I; 239 } 240 241 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 242 iterator B = begin(), E = end(), I = E; 243 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 244 ; /*noop */ 245 while (I != E && !I->isTerminator()) 246 ++I; 247 return I; 248 } 249 250 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 251 instr_iterator B = instr_begin(), E = instr_end(), I = E; 252 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 253 ; /*noop */ 254 while (I != E && !I->isTerminator()) 255 ++I; 256 return I; 257 } 258 259 MachineBasicBlock::iterator 260 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 261 // Skip over begin-of-block dbg_value instructions. 262 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 263 } 264 265 MachineBasicBlock::iterator 266 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 267 // Skip over end-of-block dbg_value instructions. 268 instr_iterator B = instr_begin(), I = instr_end(); 269 while (I != B) { 270 --I; 271 // Return instruction that starts a bundle. 272 if (I->isDebugInstr() || I->isInsideBundle()) 273 continue; 274 if (SkipPseudoOp && I->isPseudoProbe()) 275 continue; 276 return I; 277 } 278 // The block is all debug values. 279 return end(); 280 } 281 282 bool MachineBasicBlock::hasEHPadSuccessor() const { 283 for (const MachineBasicBlock *Succ : successors()) 284 if (Succ->isEHPad()) 285 return true; 286 return false; 287 } 288 289 bool MachineBasicBlock::isEntryBlock() const { 290 return getParent()->begin() == getIterator(); 291 } 292 293 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 294 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 295 print(dbgs()); 296 } 297 #endif 298 299 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 300 for (const MachineBasicBlock *Succ : successors()) { 301 if (Succ->isInlineAsmBrIndirectTarget()) 302 return true; 303 } 304 return false; 305 } 306 307 bool MachineBasicBlock::isLegalToHoistInto() const { 308 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 309 return false; 310 return true; 311 } 312 313 StringRef MachineBasicBlock::getName() const { 314 if (const BasicBlock *LBB = getBasicBlock()) 315 return LBB->getName(); 316 else 317 return StringRef("", 0); 318 } 319 320 /// Return a hopefully unique identifier for this block. 321 std::string MachineBasicBlock::getFullName() const { 322 std::string Name; 323 if (getParent()) 324 Name = (getParent()->getName() + ":").str(); 325 if (getBasicBlock()) 326 Name += getBasicBlock()->getName(); 327 else 328 Name += ("BB" + Twine(getNumber())).str(); 329 return Name; 330 } 331 332 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 333 bool IsStandalone) const { 334 const MachineFunction *MF = getParent(); 335 if (!MF) { 336 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 337 << " is null\n"; 338 return; 339 } 340 const Function &F = MF->getFunction(); 341 const Module *M = F.getParent(); 342 ModuleSlotTracker MST(M); 343 MST.incorporateFunction(F); 344 print(OS, MST, Indexes, IsStandalone); 345 } 346 347 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 348 const SlotIndexes *Indexes, 349 bool IsStandalone) const { 350 const MachineFunction *MF = getParent(); 351 if (!MF) { 352 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 353 << " is null\n"; 354 return; 355 } 356 357 if (Indexes && PrintSlotIndexes) 358 OS << Indexes->getMBBStartIdx(this) << '\t'; 359 360 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 361 OS << ":\n"; 362 363 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 364 const MachineRegisterInfo &MRI = MF->getRegInfo(); 365 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 366 bool HasLineAttributes = false; 367 368 // Print the preds of this block according to the CFG. 369 if (!pred_empty() && IsStandalone) { 370 if (Indexes) OS << '\t'; 371 // Don't indent(2), align with previous line attributes. 372 OS << "; predecessors: "; 373 ListSeparator LS; 374 for (auto *Pred : predecessors()) 375 OS << LS << printMBBReference(*Pred); 376 OS << '\n'; 377 HasLineAttributes = true; 378 } 379 380 if (!succ_empty()) { 381 if (Indexes) OS << '\t'; 382 // Print the successors 383 OS.indent(2) << "successors: "; 384 ListSeparator LS; 385 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 386 OS << LS << printMBBReference(**I); 387 if (!Probs.empty()) 388 OS << '(' 389 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 390 << ')'; 391 } 392 if (!Probs.empty() && IsStandalone) { 393 // Print human readable probabilities as comments. 394 OS << "; "; 395 ListSeparator LS; 396 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 397 const BranchProbability &BP = getSuccProbability(I); 398 OS << LS << printMBBReference(**I) << '(' 399 << format("%.2f%%", 400 rint(((double)BP.getNumerator() / BP.getDenominator()) * 401 100.0 * 100.0) / 402 100.0) 403 << ')'; 404 } 405 } 406 407 OS << '\n'; 408 HasLineAttributes = true; 409 } 410 411 if (!livein_empty() && MRI.tracksLiveness()) { 412 if (Indexes) OS << '\t'; 413 OS.indent(2) << "liveins: "; 414 415 ListSeparator LS; 416 for (const auto &LI : liveins()) { 417 OS << LS << printReg(LI.PhysReg, TRI); 418 if (!LI.LaneMask.all()) 419 OS << ":0x" << PrintLaneMask(LI.LaneMask); 420 } 421 HasLineAttributes = true; 422 } 423 424 if (HasLineAttributes) 425 OS << '\n'; 426 427 bool IsInBundle = false; 428 for (const MachineInstr &MI : instrs()) { 429 if (Indexes && PrintSlotIndexes) { 430 if (Indexes->hasIndex(MI)) 431 OS << Indexes->getInstructionIndex(MI); 432 OS << '\t'; 433 } 434 435 if (IsInBundle && !MI.isInsideBundle()) { 436 OS.indent(2) << "}\n"; 437 IsInBundle = false; 438 } 439 440 OS.indent(IsInBundle ? 4 : 2); 441 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 442 /*AddNewLine=*/false, &TII); 443 444 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 445 OS << " {"; 446 IsInBundle = true; 447 } 448 OS << '\n'; 449 } 450 451 if (IsInBundle) 452 OS.indent(2) << "}\n"; 453 454 if (IrrLoopHeaderWeight && IsStandalone) { 455 if (Indexes) OS << '\t'; 456 OS.indent(2) << "; Irreducible loop header weight: " 457 << IrrLoopHeaderWeight.getValue() << '\n'; 458 } 459 } 460 461 /// Print the basic block's name as: 462 /// 463 /// bb.{number}[.{ir-name}] [(attributes...)] 464 /// 465 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 466 /// (which is the default). If the IR block has no name, it is identified 467 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 468 /// 469 /// When the \ref PrintNameAttributes flag is passed, additional attributes 470 /// of the block are printed when set. 471 /// 472 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 473 /// the parts to print. 474 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 475 /// incorporate its own tracker when necessary to 476 /// determine the block's IR name. 477 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 478 ModuleSlotTracker *moduleSlotTracker) const { 479 os << "bb." << getNumber(); 480 bool hasAttributes = false; 481 482 if (printNameFlags & PrintNameIr) { 483 if (const auto *bb = getBasicBlock()) { 484 if (bb->hasName()) { 485 os << '.' << bb->getName(); 486 } else { 487 hasAttributes = true; 488 os << " ("; 489 490 int slot = -1; 491 492 if (moduleSlotTracker) { 493 slot = moduleSlotTracker->getLocalSlot(bb); 494 } else if (bb->getParent()) { 495 ModuleSlotTracker tmpTracker(bb->getModule(), false); 496 tmpTracker.incorporateFunction(*bb->getParent()); 497 slot = tmpTracker.getLocalSlot(bb); 498 } 499 500 if (slot == -1) 501 os << "<ir-block badref>"; 502 else 503 os << (Twine("%ir-block.") + Twine(slot)).str(); 504 } 505 } 506 } 507 508 if (printNameFlags & PrintNameAttributes) { 509 if (hasAddressTaken()) { 510 os << (hasAttributes ? ", " : " ("); 511 os << "address-taken"; 512 hasAttributes = true; 513 } 514 if (isEHPad()) { 515 os << (hasAttributes ? ", " : " ("); 516 os << "landing-pad"; 517 hasAttributes = true; 518 } 519 if (isInlineAsmBrIndirectTarget()) { 520 os << (hasAttributes ? ", " : " ("); 521 os << "inlineasm-br-indirect-target"; 522 hasAttributes = true; 523 } 524 if (isEHFuncletEntry()) { 525 os << (hasAttributes ? ", " : " ("); 526 os << "ehfunclet-entry"; 527 hasAttributes = true; 528 } 529 if (getAlignment() != Align(1)) { 530 os << (hasAttributes ? ", " : " ("); 531 os << "align " << getAlignment().value(); 532 hasAttributes = true; 533 } 534 if (getSectionID() != MBBSectionID(0)) { 535 os << (hasAttributes ? ", " : " ("); 536 os << "bbsections "; 537 switch (getSectionID().Type) { 538 case MBBSectionID::SectionType::Exception: 539 os << "Exception"; 540 break; 541 case MBBSectionID::SectionType::Cold: 542 os << "Cold"; 543 break; 544 default: 545 os << getSectionID().Number; 546 } 547 hasAttributes = true; 548 } 549 } 550 551 if (hasAttributes) 552 os << ')'; 553 } 554 555 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 556 bool /*PrintType*/) const { 557 OS << '%'; 558 printName(OS, 0); 559 } 560 561 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 562 LiveInVector::iterator I = find_if( 563 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 564 if (I == LiveIns.end()) 565 return; 566 567 I->LaneMask &= ~LaneMask; 568 if (I->LaneMask.none()) 569 LiveIns.erase(I); 570 } 571 572 MachineBasicBlock::livein_iterator 573 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 574 // Get non-const version of iterator. 575 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 576 return LiveIns.erase(LI); 577 } 578 579 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 580 livein_iterator I = find_if( 581 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 582 return I != livein_end() && (I->LaneMask & LaneMask).any(); 583 } 584 585 void MachineBasicBlock::sortUniqueLiveIns() { 586 llvm::sort(LiveIns, 587 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 588 return LI0.PhysReg < LI1.PhysReg; 589 }); 590 // Liveins are sorted by physreg now we can merge their lanemasks. 591 LiveInVector::const_iterator I = LiveIns.begin(); 592 LiveInVector::const_iterator J; 593 LiveInVector::iterator Out = LiveIns.begin(); 594 for (; I != LiveIns.end(); ++Out, I = J) { 595 MCRegister PhysReg = I->PhysReg; 596 LaneBitmask LaneMask = I->LaneMask; 597 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 598 LaneMask |= J->LaneMask; 599 Out->PhysReg = PhysReg; 600 Out->LaneMask = LaneMask; 601 } 602 LiveIns.erase(Out, LiveIns.end()); 603 } 604 605 Register 606 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 607 assert(getParent() && "MBB must be inserted in function"); 608 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 609 assert(RC && "Register class is required"); 610 assert((isEHPad() || this == &getParent()->front()) && 611 "Only the entry block and landing pads can have physreg live ins"); 612 613 bool LiveIn = isLiveIn(PhysReg); 614 iterator I = SkipPHIsAndLabels(begin()), E = end(); 615 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 616 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 617 618 // Look for an existing copy. 619 if (LiveIn) 620 for (;I != E && I->isCopy(); ++I) 621 if (I->getOperand(1).getReg() == PhysReg) { 622 Register VirtReg = I->getOperand(0).getReg(); 623 if (!MRI.constrainRegClass(VirtReg, RC)) 624 llvm_unreachable("Incompatible live-in register class."); 625 return VirtReg; 626 } 627 628 // No luck, create a virtual register. 629 Register VirtReg = MRI.createVirtualRegister(RC); 630 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 631 .addReg(PhysReg, RegState::Kill); 632 if (!LiveIn) 633 addLiveIn(PhysReg); 634 return VirtReg; 635 } 636 637 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 638 getParent()->splice(NewAfter->getIterator(), getIterator()); 639 } 640 641 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 642 getParent()->splice(++NewBefore->getIterator(), getIterator()); 643 } 644 645 void MachineBasicBlock::updateTerminator( 646 MachineBasicBlock *PreviousLayoutSuccessor) { 647 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 648 << "\n"); 649 650 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 651 // A block with no successors has no concerns with fall-through edges. 652 if (this->succ_empty()) 653 return; 654 655 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 656 SmallVector<MachineOperand, 4> Cond; 657 DebugLoc DL = findBranchDebugLoc(); 658 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 659 (void) B; 660 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 661 if (Cond.empty()) { 662 if (TBB) { 663 // The block has an unconditional branch. If its successor is now its 664 // layout successor, delete the branch. 665 if (isLayoutSuccessor(TBB)) 666 TII->removeBranch(*this); 667 } else { 668 // The block has an unconditional fallthrough, or the end of the block is 669 // unreachable. 670 671 // Unfortunately, whether the end of the block is unreachable is not 672 // immediately obvious; we must fall back to checking the successor list, 673 // and assuming that if the passed in block is in the succesor list and 674 // not an EHPad, it must be the intended target. 675 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 676 PreviousLayoutSuccessor->isEHPad()) 677 return; 678 679 // If the unconditional successor block is not the current layout 680 // successor, insert a branch to jump to it. 681 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 682 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 683 } 684 return; 685 } 686 687 if (FBB) { 688 // The block has a non-fallthrough conditional branch. If one of its 689 // successors is its layout successor, rewrite it to a fallthrough 690 // conditional branch. 691 if (isLayoutSuccessor(TBB)) { 692 if (TII->reverseBranchCondition(Cond)) 693 return; 694 TII->removeBranch(*this); 695 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 696 } else if (isLayoutSuccessor(FBB)) { 697 TII->removeBranch(*this); 698 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 699 } 700 return; 701 } 702 703 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 704 assert(PreviousLayoutSuccessor); 705 assert(!PreviousLayoutSuccessor->isEHPad()); 706 assert(isSuccessor(PreviousLayoutSuccessor)); 707 708 if (PreviousLayoutSuccessor == TBB) { 709 // We had a fallthrough to the same basic block as the conditional jump 710 // targets. Remove the conditional jump, leaving an unconditional 711 // fallthrough or an unconditional jump. 712 TII->removeBranch(*this); 713 if (!isLayoutSuccessor(TBB)) { 714 Cond.clear(); 715 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 716 } 717 return; 718 } 719 720 // The block has a fallthrough conditional branch. 721 if (isLayoutSuccessor(TBB)) { 722 if (TII->reverseBranchCondition(Cond)) { 723 // We can't reverse the condition, add an unconditional branch. 724 Cond.clear(); 725 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 726 return; 727 } 728 TII->removeBranch(*this); 729 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 730 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 731 TII->removeBranch(*this); 732 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 733 } 734 } 735 736 void MachineBasicBlock::validateSuccProbs() const { 737 #ifndef NDEBUG 738 int64_t Sum = 0; 739 for (auto Prob : Probs) 740 Sum += Prob.getNumerator(); 741 // Due to precision issue, we assume that the sum of probabilities is one if 742 // the difference between the sum of their numerators and the denominator is 743 // no greater than the number of successors. 744 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 745 Probs.size() && 746 "The sum of successors's probabilities exceeds one."); 747 #endif // NDEBUG 748 } 749 750 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 751 BranchProbability Prob) { 752 // Probability list is either empty (if successor list isn't empty, this means 753 // disabled optimization) or has the same size as successor list. 754 if (!(Probs.empty() && !Successors.empty())) 755 Probs.push_back(Prob); 756 Successors.push_back(Succ); 757 Succ->addPredecessor(this); 758 } 759 760 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 761 // We need to make sure probability list is either empty or has the same size 762 // of successor list. When this function is called, we can safely delete all 763 // probability in the list. 764 Probs.clear(); 765 Successors.push_back(Succ); 766 Succ->addPredecessor(this); 767 } 768 769 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 770 MachineBasicBlock *New, 771 bool NormalizeSuccProbs) { 772 succ_iterator OldI = llvm::find(successors(), Old); 773 assert(OldI != succ_end() && "Old is not a successor of this block!"); 774 assert(!llvm::is_contained(successors(), New) && 775 "New is already a successor of this block!"); 776 777 // Add a new successor with equal probability as the original one. Note 778 // that we directly copy the probability using the iterator rather than 779 // getting a potentially synthetic probability computed when unknown. This 780 // preserves the probabilities as-is and then we can renormalize them and 781 // query them effectively afterward. 782 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 783 : *getProbabilityIterator(OldI)); 784 if (NormalizeSuccProbs) 785 normalizeSuccProbs(); 786 } 787 788 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 789 bool NormalizeSuccProbs) { 790 succ_iterator I = find(Successors, Succ); 791 removeSuccessor(I, NormalizeSuccProbs); 792 } 793 794 MachineBasicBlock::succ_iterator 795 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 796 assert(I != Successors.end() && "Not a current successor!"); 797 798 // If probability list is empty it means we don't use it (disabled 799 // optimization). 800 if (!Probs.empty()) { 801 probability_iterator WI = getProbabilityIterator(I); 802 Probs.erase(WI); 803 if (NormalizeSuccProbs) 804 normalizeSuccProbs(); 805 } 806 807 (*I)->removePredecessor(this); 808 return Successors.erase(I); 809 } 810 811 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 812 MachineBasicBlock *New) { 813 if (Old == New) 814 return; 815 816 succ_iterator E = succ_end(); 817 succ_iterator NewI = E; 818 succ_iterator OldI = E; 819 for (succ_iterator I = succ_begin(); I != E; ++I) { 820 if (*I == Old) { 821 OldI = I; 822 if (NewI != E) 823 break; 824 } 825 if (*I == New) { 826 NewI = I; 827 if (OldI != E) 828 break; 829 } 830 } 831 assert(OldI != E && "Old is not a successor of this block"); 832 833 // If New isn't already a successor, let it take Old's place. 834 if (NewI == E) { 835 Old->removePredecessor(this); 836 New->addPredecessor(this); 837 *OldI = New; 838 return; 839 } 840 841 // New is already a successor. 842 // Update its probability instead of adding a duplicate edge. 843 if (!Probs.empty()) { 844 auto ProbIter = getProbabilityIterator(NewI); 845 if (!ProbIter->isUnknown()) 846 *ProbIter += *getProbabilityIterator(OldI); 847 } 848 removeSuccessor(OldI); 849 } 850 851 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 852 succ_iterator I) { 853 if (!Orig->Probs.empty()) 854 addSuccessor(*I, Orig->getSuccProbability(I)); 855 else 856 addSuccessorWithoutProb(*I); 857 } 858 859 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 860 Predecessors.push_back(Pred); 861 } 862 863 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 864 pred_iterator I = find(Predecessors, Pred); 865 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 866 Predecessors.erase(I); 867 } 868 869 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 870 if (this == FromMBB) 871 return; 872 873 while (!FromMBB->succ_empty()) { 874 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 875 876 // If probability list is empty it means we don't use it (disabled 877 // optimization). 878 if (!FromMBB->Probs.empty()) { 879 auto Prob = *FromMBB->Probs.begin(); 880 addSuccessor(Succ, Prob); 881 } else 882 addSuccessorWithoutProb(Succ); 883 884 FromMBB->removeSuccessor(Succ); 885 } 886 } 887 888 void 889 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 890 if (this == FromMBB) 891 return; 892 893 while (!FromMBB->succ_empty()) { 894 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 895 if (!FromMBB->Probs.empty()) { 896 auto Prob = *FromMBB->Probs.begin(); 897 addSuccessor(Succ, Prob); 898 } else 899 addSuccessorWithoutProb(Succ); 900 FromMBB->removeSuccessor(Succ); 901 902 // Fix up any PHI nodes in the successor. 903 Succ->replacePhiUsesWith(FromMBB, this); 904 } 905 normalizeSuccProbs(); 906 } 907 908 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 909 return is_contained(predecessors(), MBB); 910 } 911 912 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 913 return is_contained(successors(), MBB); 914 } 915 916 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 917 MachineFunction::const_iterator I(this); 918 return std::next(I) == MachineFunction::const_iterator(MBB); 919 } 920 921 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 922 MachineFunction::iterator Fallthrough = getIterator(); 923 ++Fallthrough; 924 // If FallthroughBlock is off the end of the function, it can't fall through. 925 if (Fallthrough == getParent()->end()) 926 return nullptr; 927 928 // If FallthroughBlock isn't a successor, no fallthrough is possible. 929 if (!isSuccessor(&*Fallthrough)) 930 return nullptr; 931 932 // Analyze the branches, if any, at the end of the block. 933 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 934 SmallVector<MachineOperand, 4> Cond; 935 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 936 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 937 // If we couldn't analyze the branch, examine the last instruction. 938 // If the block doesn't end in a known control barrier, assume fallthrough 939 // is possible. The isPredicated check is needed because this code can be 940 // called during IfConversion, where an instruction which is normally a 941 // Barrier is predicated and thus no longer an actual control barrier. 942 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 943 ? &*Fallthrough 944 : nullptr; 945 } 946 947 // If there is no branch, control always falls through. 948 if (!TBB) return &*Fallthrough; 949 950 // If there is some explicit branch to the fallthrough block, it can obviously 951 // reach, even though the branch should get folded to fall through implicitly. 952 if (MachineFunction::iterator(TBB) == Fallthrough || 953 MachineFunction::iterator(FBB) == Fallthrough) 954 return &*Fallthrough; 955 956 // If it's an unconditional branch to some block not the fall through, it 957 // doesn't fall through. 958 if (Cond.empty()) return nullptr; 959 960 // Otherwise, if it is conditional and has no explicit false block, it falls 961 // through. 962 return (FBB == nullptr) ? &*Fallthrough : nullptr; 963 } 964 965 bool MachineBasicBlock::canFallThrough() { 966 return getFallThrough() != nullptr; 967 } 968 969 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 970 bool UpdateLiveIns, 971 LiveIntervals *LIS) { 972 MachineBasicBlock::iterator SplitPoint(&MI); 973 ++SplitPoint; 974 975 if (SplitPoint == end()) { 976 // Don't bother with a new block. 977 return this; 978 } 979 980 MachineFunction *MF = getParent(); 981 982 LivePhysRegs LiveRegs; 983 if (UpdateLiveIns) { 984 // Make sure we add any physregs we define in the block as liveins to the 985 // new block. 986 MachineBasicBlock::iterator Prev(&MI); 987 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 988 LiveRegs.addLiveOuts(*this); 989 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 990 LiveRegs.stepBackward(*I); 991 } 992 993 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 994 995 MF->insert(++MachineFunction::iterator(this), SplitBB); 996 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 997 998 SplitBB->transferSuccessorsAndUpdatePHIs(this); 999 addSuccessor(SplitBB); 1000 1001 if (UpdateLiveIns) 1002 addLiveIns(*SplitBB, LiveRegs); 1003 1004 if (LIS) 1005 LIS->insertMBBInMaps(SplitBB); 1006 1007 return SplitBB; 1008 } 1009 1010 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1011 MachineBasicBlock *Succ, Pass &P, 1012 std::vector<SparseBitVector<>> *LiveInSets) { 1013 if (!canSplitCriticalEdge(Succ)) 1014 return nullptr; 1015 1016 MachineFunction *MF = getParent(); 1017 MachineBasicBlock *PrevFallthrough = getNextNode(); 1018 DebugLoc DL; // FIXME: this is nowhere 1019 1020 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1021 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1022 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1023 << " -- " << printMBBReference(*NMBB) << " -- " 1024 << printMBBReference(*Succ) << '\n'); 1025 1026 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1027 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1028 if (LIS) 1029 LIS->insertMBBInMaps(NMBB); 1030 else if (Indexes) 1031 Indexes->insertMBBInMaps(NMBB); 1032 1033 // On some targets like Mips, branches may kill virtual registers. Make sure 1034 // that LiveVariables is properly updated after updateTerminator replaces the 1035 // terminators. 1036 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1037 1038 // Collect a list of virtual registers killed by the terminators. 1039 SmallVector<Register, 4> KilledRegs; 1040 if (LV) 1041 for (MachineInstr &MI : 1042 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1043 for (MachineOperand &MO : MI.operands()) { 1044 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() || 1045 MO.isUndef()) 1046 continue; 1047 Register Reg = MO.getReg(); 1048 if (Register::isPhysicalRegister(Reg) || 1049 LV->getVarInfo(Reg).removeKill(MI)) { 1050 KilledRegs.push_back(Reg); 1051 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1052 MO.setIsKill(false); 1053 } 1054 } 1055 } 1056 1057 SmallVector<Register, 4> UsedRegs; 1058 if (LIS) { 1059 for (MachineInstr &MI : 1060 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1061 for (const MachineOperand &MO : MI.operands()) { 1062 if (!MO.isReg() || MO.getReg() == 0) 1063 continue; 1064 1065 Register Reg = MO.getReg(); 1066 if (!is_contained(UsedRegs, Reg)) 1067 UsedRegs.push_back(Reg); 1068 } 1069 } 1070 } 1071 1072 ReplaceUsesOfBlockWith(Succ, NMBB); 1073 1074 // If updateTerminator() removes instructions, we need to remove them from 1075 // SlotIndexes. 1076 SmallVector<MachineInstr*, 4> Terminators; 1077 if (Indexes) { 1078 for (MachineInstr &MI : 1079 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1080 Terminators.push_back(&MI); 1081 } 1082 1083 // Since we replaced all uses of Succ with NMBB, that should also be treated 1084 // as the fallthrough successor 1085 if (Succ == PrevFallthrough) 1086 PrevFallthrough = NMBB; 1087 updateTerminator(PrevFallthrough); 1088 1089 if (Indexes) { 1090 SmallVector<MachineInstr*, 4> NewTerminators; 1091 for (MachineInstr &MI : 1092 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1093 NewTerminators.push_back(&MI); 1094 1095 for (MachineInstr *Terminator : Terminators) { 1096 if (!is_contained(NewTerminators, Terminator)) 1097 Indexes->removeMachineInstrFromMaps(*Terminator); 1098 } 1099 } 1100 1101 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1102 NMBB->addSuccessor(Succ); 1103 if (!NMBB->isLayoutSuccessor(Succ)) { 1104 SmallVector<MachineOperand, 4> Cond; 1105 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1106 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1107 1108 if (Indexes) { 1109 for (MachineInstr &MI : NMBB->instrs()) { 1110 // Some instructions may have been moved to NMBB by updateTerminator(), 1111 // so we first remove any instruction that already has an index. 1112 if (Indexes->hasIndex(MI)) 1113 Indexes->removeMachineInstrFromMaps(MI); 1114 Indexes->insertMachineInstrInMaps(MI); 1115 } 1116 } 1117 } 1118 1119 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1120 Succ->replacePhiUsesWith(this, NMBB); 1121 1122 // Inherit live-ins from the successor 1123 for (const auto &LI : Succ->liveins()) 1124 NMBB->addLiveIn(LI); 1125 1126 // Update LiveVariables. 1127 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1128 if (LV) { 1129 // Restore kills of virtual registers that were killed by the terminators. 1130 while (!KilledRegs.empty()) { 1131 Register Reg = KilledRegs.pop_back_val(); 1132 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1133 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1134 continue; 1135 if (Register::isVirtualRegister(Reg)) 1136 LV->getVarInfo(Reg).Kills.push_back(&*I); 1137 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1138 break; 1139 } 1140 } 1141 // Update relevant live-through information. 1142 if (LiveInSets != nullptr) 1143 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1144 else 1145 LV->addNewBlock(NMBB, this, Succ); 1146 } 1147 1148 if (LIS) { 1149 // After splitting the edge and updating SlotIndexes, live intervals may be 1150 // in one of two situations, depending on whether this block was the last in 1151 // the function. If the original block was the last in the function, all 1152 // live intervals will end prior to the beginning of the new split block. If 1153 // the original block was not at the end of the function, all live intervals 1154 // will extend to the end of the new split block. 1155 1156 bool isLastMBB = 1157 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1158 1159 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1160 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1161 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1162 1163 // Find the registers used from NMBB in PHIs in Succ. 1164 SmallSet<Register, 8> PHISrcRegs; 1165 for (MachineBasicBlock::instr_iterator 1166 I = Succ->instr_begin(), E = Succ->instr_end(); 1167 I != E && I->isPHI(); ++I) { 1168 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1169 if (I->getOperand(ni+1).getMBB() == NMBB) { 1170 MachineOperand &MO = I->getOperand(ni); 1171 Register Reg = MO.getReg(); 1172 PHISrcRegs.insert(Reg); 1173 if (MO.isUndef()) 1174 continue; 1175 1176 LiveInterval &LI = LIS->getInterval(Reg); 1177 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1178 assert(VNI && 1179 "PHI sources should be live out of their predecessors."); 1180 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1181 } 1182 } 1183 } 1184 1185 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1186 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1187 Register Reg = Register::index2VirtReg(i); 1188 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1189 continue; 1190 1191 LiveInterval &LI = LIS->getInterval(Reg); 1192 if (!LI.liveAt(PrevIndex)) 1193 continue; 1194 1195 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1196 if (isLiveOut && isLastMBB) { 1197 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1198 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1199 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1200 } else if (!isLiveOut && !isLastMBB) { 1201 LI.removeSegment(StartIndex, EndIndex); 1202 } 1203 } 1204 1205 // Update all intervals for registers whose uses may have been modified by 1206 // updateTerminator(). 1207 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1208 } 1209 1210 if (MachineDominatorTree *MDT = 1211 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1212 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1213 1214 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1215 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1216 // If one or the other blocks were not in a loop, the new block is not 1217 // either, and thus LI doesn't need to be updated. 1218 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1219 if (TIL == DestLoop) { 1220 // Both in the same loop, the NMBB joins loop. 1221 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1222 } else if (TIL->contains(DestLoop)) { 1223 // Edge from an outer loop to an inner loop. Add to the outer loop. 1224 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1225 } else if (DestLoop->contains(TIL)) { 1226 // Edge from an inner loop to an outer loop. Add to the outer loop. 1227 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1228 } else { 1229 // Edge from two loops with no containment relation. Because these 1230 // are natural loops, we know that the destination block must be the 1231 // header of its loop (adding a branch into a loop elsewhere would 1232 // create an irreducible loop). 1233 assert(DestLoop->getHeader() == Succ && 1234 "Should not create irreducible loops!"); 1235 if (MachineLoop *P = DestLoop->getParentLoop()) 1236 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1237 } 1238 } 1239 } 1240 1241 return NMBB; 1242 } 1243 1244 bool MachineBasicBlock::canSplitCriticalEdge( 1245 const MachineBasicBlock *Succ) const { 1246 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1247 // it in this generic function. 1248 if (Succ->isEHPad()) 1249 return false; 1250 1251 // Splitting the critical edge to a callbr's indirect block isn't advised. 1252 // Don't do it in this generic function. 1253 if (Succ->isInlineAsmBrIndirectTarget()) 1254 return false; 1255 1256 const MachineFunction *MF = getParent(); 1257 // Performance might be harmed on HW that implements branching using exec mask 1258 // where both sides of the branches are always executed. 1259 if (MF->getTarget().requiresStructuredCFG()) 1260 return false; 1261 1262 // We may need to update this's terminator, but we can't do that if 1263 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1264 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1265 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1266 SmallVector<MachineOperand, 4> Cond; 1267 // AnalyzeBanch should modify this, since we did not allow modification. 1268 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1269 /*AllowModify*/ false)) 1270 return false; 1271 1272 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1273 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1274 // case that we can't handle. Since this never happens in properly optimized 1275 // code, just skip those edges. 1276 if (TBB && TBB == FBB) { 1277 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1278 << printMBBReference(*this) << '\n'); 1279 return false; 1280 } 1281 return true; 1282 } 1283 1284 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1285 /// neighboring instructions so the bundle won't be broken by removing MI. 1286 static void unbundleSingleMI(MachineInstr *MI) { 1287 // Removing the first instruction in a bundle. 1288 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1289 MI->unbundleFromSucc(); 1290 // Removing the last instruction in a bundle. 1291 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1292 MI->unbundleFromPred(); 1293 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1294 // are already fine. 1295 } 1296 1297 MachineBasicBlock::instr_iterator 1298 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1299 unbundleSingleMI(&*I); 1300 return Insts.erase(I); 1301 } 1302 1303 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1304 unbundleSingleMI(MI); 1305 MI->clearFlag(MachineInstr::BundledPred); 1306 MI->clearFlag(MachineInstr::BundledSucc); 1307 return Insts.remove(MI); 1308 } 1309 1310 MachineBasicBlock::instr_iterator 1311 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1312 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1313 "Cannot insert instruction with bundle flags"); 1314 // Set the bundle flags when inserting inside a bundle. 1315 if (I != instr_end() && I->isBundledWithPred()) { 1316 MI->setFlag(MachineInstr::BundledPred); 1317 MI->setFlag(MachineInstr::BundledSucc); 1318 } 1319 return Insts.insert(I, MI); 1320 } 1321 1322 /// This method unlinks 'this' from the containing function, and returns it, but 1323 /// does not delete it. 1324 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1325 assert(getParent() && "Not embedded in a function!"); 1326 getParent()->remove(this); 1327 return this; 1328 } 1329 1330 /// This method unlinks 'this' from the containing function, and deletes it. 1331 void MachineBasicBlock::eraseFromParent() { 1332 assert(getParent() && "Not embedded in a function!"); 1333 getParent()->erase(this); 1334 } 1335 1336 /// Given a machine basic block that branched to 'Old', change the code and CFG 1337 /// so that it branches to 'New' instead. 1338 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1339 MachineBasicBlock *New) { 1340 assert(Old != New && "Cannot replace self with self!"); 1341 1342 MachineBasicBlock::instr_iterator I = instr_end(); 1343 while (I != instr_begin()) { 1344 --I; 1345 if (!I->isTerminator()) break; 1346 1347 // Scan the operands of this machine instruction, replacing any uses of Old 1348 // with New. 1349 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1350 if (I->getOperand(i).isMBB() && 1351 I->getOperand(i).getMBB() == Old) 1352 I->getOperand(i).setMBB(New); 1353 } 1354 1355 // Update the successor information. 1356 replaceSuccessor(Old, New); 1357 } 1358 1359 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1360 MachineBasicBlock *New) { 1361 for (MachineInstr &MI : phis()) 1362 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1363 MachineOperand &MO = MI.getOperand(i); 1364 if (MO.getMBB() == Old) 1365 MO.setMBB(New); 1366 } 1367 } 1368 1369 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1370 /// instructions. Return UnknownLoc if there is none. 1371 DebugLoc 1372 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1373 // Skip debug declarations, we don't want a DebugLoc from them. 1374 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1375 if (MBBI != instr_end()) 1376 return MBBI->getDebugLoc(); 1377 return {}; 1378 } 1379 1380 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1381 // Skip debug declarations, we don't want a DebugLoc from them. 1382 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1383 if (!MBBI->isDebugInstr()) 1384 return MBBI->getDebugLoc(); 1385 return {}; 1386 } 1387 1388 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1389 /// instructions. Return UnknownLoc if there is none. 1390 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1391 if (MBBI == instr_begin()) return {}; 1392 // Skip debug instructions, we don't want a DebugLoc from them. 1393 MBBI = prev_nodbg(MBBI, instr_begin()); 1394 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1395 return {}; 1396 } 1397 1398 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1399 if (MBBI == instr_rend()) 1400 return {}; 1401 // Skip debug declarations, we don't want a DebugLoc from them. 1402 MBBI = next_nodbg(MBBI, instr_rend()); 1403 if (MBBI != instr_rend()) 1404 return MBBI->getDebugLoc(); 1405 return {}; 1406 } 1407 1408 /// Find and return the merged DebugLoc of the branch instructions of the block. 1409 /// Return UnknownLoc if there is none. 1410 DebugLoc 1411 MachineBasicBlock::findBranchDebugLoc() { 1412 DebugLoc DL; 1413 auto TI = getFirstTerminator(); 1414 while (TI != end() && !TI->isBranch()) 1415 ++TI; 1416 1417 if (TI != end()) { 1418 DL = TI->getDebugLoc(); 1419 for (++TI ; TI != end() ; ++TI) 1420 if (TI->isBranch()) 1421 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1422 } 1423 return DL; 1424 } 1425 1426 /// Return probability of the edge from this block to MBB. 1427 BranchProbability 1428 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1429 if (Probs.empty()) 1430 return BranchProbability(1, succ_size()); 1431 1432 const auto &Prob = *getProbabilityIterator(Succ); 1433 if (Prob.isUnknown()) { 1434 // For unknown probabilities, collect the sum of all known ones, and evenly 1435 // ditribute the complemental of the sum to each unknown probability. 1436 unsigned KnownProbNum = 0; 1437 auto Sum = BranchProbability::getZero(); 1438 for (auto &P : Probs) { 1439 if (!P.isUnknown()) { 1440 Sum += P; 1441 KnownProbNum++; 1442 } 1443 } 1444 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1445 } else 1446 return Prob; 1447 } 1448 1449 /// Set successor probability of a given iterator. 1450 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1451 BranchProbability Prob) { 1452 assert(!Prob.isUnknown()); 1453 if (Probs.empty()) 1454 return; 1455 *getProbabilityIterator(I) = Prob; 1456 } 1457 1458 /// Return probability iterator corresonding to the I successor iterator 1459 MachineBasicBlock::const_probability_iterator 1460 MachineBasicBlock::getProbabilityIterator( 1461 MachineBasicBlock::const_succ_iterator I) const { 1462 assert(Probs.size() == Successors.size() && "Async probability list!"); 1463 const size_t index = std::distance(Successors.begin(), I); 1464 assert(index < Probs.size() && "Not a current successor!"); 1465 return Probs.begin() + index; 1466 } 1467 1468 /// Return probability iterator corresonding to the I successor iterator. 1469 MachineBasicBlock::probability_iterator 1470 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1471 assert(Probs.size() == Successors.size() && "Async probability list!"); 1472 const size_t index = std::distance(Successors.begin(), I); 1473 assert(index < Probs.size() && "Not a current successor!"); 1474 return Probs.begin() + index; 1475 } 1476 1477 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1478 /// as of just before "MI". 1479 /// 1480 /// Search is localised to a neighborhood of 1481 /// Neighborhood instructions before (searching for defs or kills) and N 1482 /// instructions after (searching just for defs) MI. 1483 MachineBasicBlock::LivenessQueryResult 1484 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1485 MCRegister Reg, const_iterator Before, 1486 unsigned Neighborhood) const { 1487 unsigned N = Neighborhood; 1488 1489 // Try searching forwards from Before, looking for reads or defs. 1490 const_iterator I(Before); 1491 for (; I != end() && N > 0; ++I) { 1492 if (I->isDebugOrPseudoInstr()) 1493 continue; 1494 1495 --N; 1496 1497 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1498 1499 // Register is live when we read it here. 1500 if (Info.Read) 1501 return LQR_Live; 1502 // Register is dead if we can fully overwrite or clobber it here. 1503 if (Info.FullyDefined || Info.Clobbered) 1504 return LQR_Dead; 1505 } 1506 1507 // If we reached the end, it is safe to clobber Reg at the end of a block of 1508 // no successor has it live in. 1509 if (I == end()) { 1510 for (MachineBasicBlock *S : successors()) { 1511 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1512 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1513 return LQR_Live; 1514 } 1515 } 1516 1517 return LQR_Dead; 1518 } 1519 1520 1521 N = Neighborhood; 1522 1523 // Start by searching backwards from Before, looking for kills, reads or defs. 1524 I = const_iterator(Before); 1525 // If this is the first insn in the block, don't search backwards. 1526 if (I != begin()) { 1527 do { 1528 --I; 1529 1530 if (I->isDebugOrPseudoInstr()) 1531 continue; 1532 1533 --N; 1534 1535 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1536 1537 // Defs happen after uses so they take precedence if both are present. 1538 1539 // Register is dead after a dead def of the full register. 1540 if (Info.DeadDef) 1541 return LQR_Dead; 1542 // Register is (at least partially) live after a def. 1543 if (Info.Defined) { 1544 if (!Info.PartialDeadDef) 1545 return LQR_Live; 1546 // As soon as we saw a partial definition (dead or not), 1547 // we cannot tell if the value is partial live without 1548 // tracking the lanemasks. We are not going to do this, 1549 // so fall back on the remaining of the analysis. 1550 break; 1551 } 1552 // Register is dead after a full kill or clobber and no def. 1553 if (Info.Killed || Info.Clobbered) 1554 return LQR_Dead; 1555 // Register must be live if we read it. 1556 if (Info.Read) 1557 return LQR_Live; 1558 1559 } while (I != begin() && N > 0); 1560 } 1561 1562 // If all the instructions before this in the block are debug instructions, 1563 // skip over them. 1564 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1565 --I; 1566 1567 // Did we get to the start of the block? 1568 if (I == begin()) { 1569 // If so, the register's state is definitely defined by the live-in state. 1570 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1571 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1572 return LQR_Live; 1573 1574 return LQR_Dead; 1575 } 1576 1577 // At this point we have no idea of the liveness of the register. 1578 return LQR_Unknown; 1579 } 1580 1581 const uint32_t * 1582 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1583 // EH funclet entry does not preserve any registers. 1584 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1585 } 1586 1587 const uint32_t * 1588 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1589 // If we see a return block with successors, this must be a funclet return, 1590 // which does not preserve any registers. If there are no successors, we don't 1591 // care what kind of return it is, putting a mask after it is a no-op. 1592 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1593 } 1594 1595 void MachineBasicBlock::clearLiveIns() { 1596 LiveIns.clear(); 1597 } 1598 1599 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1600 assert(getParent()->getProperties().hasProperty( 1601 MachineFunctionProperties::Property::TracksLiveness) && 1602 "Liveness information is accurate"); 1603 return LiveIns.begin(); 1604 } 1605 1606 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1607 const MachineFunction &MF = *getParent(); 1608 assert(MF.getProperties().hasProperty( 1609 MachineFunctionProperties::Property::TracksLiveness) && 1610 "Liveness information is accurate"); 1611 1612 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1613 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1614 if (MF.getFunction().hasPersonalityFn()) { 1615 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1616 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1617 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1618 } 1619 1620 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1621 } 1622 1623 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1624 const MBBSectionID 1625 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1626