xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 0c59e0b4e5817f139ce28486085b2f196351c7a3)
1  //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Collect the sequence of machine instructions for a basic block.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/CodeGen/MachineBasicBlock.h"
14  #include "llvm/CodeGen/LiveIntervals.h"
15  #include "llvm/CodeGen/LivePhysRegs.h"
16  #include "llvm/CodeGen/LiveVariables.h"
17  #include "llvm/CodeGen/MachineDominators.h"
18  #include "llvm/CodeGen/MachineFunction.h"
19  #include "llvm/CodeGen/MachineInstrBuilder.h"
20  #include "llvm/CodeGen/MachineLoopInfo.h"
21  #include "llvm/CodeGen/MachineRegisterInfo.h"
22  #include "llvm/CodeGen/SlotIndexes.h"
23  #include "llvm/CodeGen/TargetInstrInfo.h"
24  #include "llvm/CodeGen/TargetLowering.h"
25  #include "llvm/CodeGen/TargetRegisterInfo.h"
26  #include "llvm/CodeGen/TargetSubtargetInfo.h"
27  #include "llvm/Config/llvm-config.h"
28  #include "llvm/IR/BasicBlock.h"
29  #include "llvm/IR/DebugInfoMetadata.h"
30  #include "llvm/IR/ModuleSlotTracker.h"
31  #include "llvm/MC/MCAsmInfo.h"
32  #include "llvm/MC/MCContext.h"
33  #include "llvm/Support/Debug.h"
34  #include "llvm/Support/raw_ostream.h"
35  #include "llvm/Target/TargetMachine.h"
36  #include <algorithm>
37  using namespace llvm;
38  
39  #define DEBUG_TYPE "codegen"
40  
41  static cl::opt<bool> PrintSlotIndexes(
42      "print-slotindexes",
43      cl::desc("When printing machine IR, annotate instructions and blocks with "
44               "SlotIndexes when available"),
45      cl::init(true), cl::Hidden);
46  
47  MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
48      : BB(B), Number(-1), xParent(&MF) {
49    Insts.Parent = this;
50    if (B)
51      IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
52  }
53  
54  MachineBasicBlock::~MachineBasicBlock() = default;
55  
56  /// Return the MCSymbol for this basic block.
57  MCSymbol *MachineBasicBlock::getSymbol() const {
58    if (!CachedMCSymbol) {
59      const MachineFunction *MF = getParent();
60      MCContext &Ctx = MF->getContext();
61  
62      // We emit a non-temporary symbol -- with a descriptive name -- if it begins
63      // a section (with basic block sections). Otherwise we fall back to use temp
64      // label.
65      if (MF->hasBBSections() && isBeginSection()) {
66        SmallString<5> Suffix;
67        if (SectionID == MBBSectionID::ColdSectionID) {
68          Suffix += ".cold";
69        } else if (SectionID == MBBSectionID::ExceptionSectionID) {
70          Suffix += ".eh";
71        } else {
72          // For symbols that represent basic block sections, we add ".__part." to
73          // allow tools like symbolizers to know that this represents a part of
74          // the original function.
75          Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
76        }
77        CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
78      } else {
79        const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
80        CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
81                                               Twine(MF->getFunctionNumber()) +
82                                               "_" + Twine(getNumber()));
83      }
84    }
85    return CachedMCSymbol;
86  }
87  
88  MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
89    if (!CachedEHCatchretMCSymbol) {
90      const MachineFunction *MF = getParent();
91      SmallString<128> SymbolName;
92      raw_svector_ostream(SymbolName)
93          << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
94      CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
95    }
96    return CachedEHCatchretMCSymbol;
97  }
98  
99  MCSymbol *MachineBasicBlock::getEndSymbol() const {
100    if (!CachedEndMCSymbol) {
101      const MachineFunction *MF = getParent();
102      MCContext &Ctx = MF->getContext();
103      auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
104      CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
105                                                Twine(MF->getFunctionNumber()) +
106                                                "_" + Twine(getNumber()));
107    }
108    return CachedEndMCSymbol;
109  }
110  
111  raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
112    MBB.print(OS);
113    return OS;
114  }
115  
116  Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
117    return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
118  }
119  
120  /// When an MBB is added to an MF, we need to update the parent pointer of the
121  /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
122  /// operand list for registers.
123  ///
124  /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
125  /// gets the next available unique MBB number. If it is removed from a
126  /// MachineFunction, it goes back to being #-1.
127  void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
128      MachineBasicBlock *N) {
129    MachineFunction &MF = *N->getParent();
130    N->Number = MF.addToMBBNumbering(N);
131  
132    // Make sure the instructions have their operands in the reginfo lists.
133    MachineRegisterInfo &RegInfo = MF.getRegInfo();
134    for (MachineInstr &MI : N->instrs())
135      MI.addRegOperandsToUseLists(RegInfo);
136  }
137  
138  void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
139      MachineBasicBlock *N) {
140    N->getParent()->removeFromMBBNumbering(N->Number);
141    N->Number = -1;
142  }
143  
144  /// When we add an instruction to a basic block list, we update its parent
145  /// pointer and add its operands from reg use/def lists if appropriate.
146  void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
147    assert(!N->getParent() && "machine instruction already in a basic block");
148    N->setParent(Parent);
149  
150    // Add the instruction's register operands to their corresponding
151    // use/def lists.
152    MachineFunction *MF = Parent->getParent();
153    N->addRegOperandsToUseLists(MF->getRegInfo());
154    MF->handleInsertion(*N);
155  }
156  
157  /// When we remove an instruction from a basic block list, we update its parent
158  /// pointer and remove its operands from reg use/def lists if appropriate.
159  void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
160    assert(N->getParent() && "machine instruction not in a basic block");
161  
162    // Remove from the use/def lists.
163    if (MachineFunction *MF = N->getMF()) {
164      MF->handleRemoval(*N);
165      N->removeRegOperandsFromUseLists(MF->getRegInfo());
166    }
167  
168    N->setParent(nullptr);
169  }
170  
171  /// When moving a range of instructions from one MBB list to another, we need to
172  /// update the parent pointers and the use/def lists.
173  void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
174                                                         instr_iterator First,
175                                                         instr_iterator Last) {
176    assert(Parent->getParent() == FromList.Parent->getParent() &&
177           "cannot transfer MachineInstrs between MachineFunctions");
178  
179    // If it's within the same BB, there's nothing to do.
180    if (this == &FromList)
181      return;
182  
183    assert(Parent != FromList.Parent && "Two lists have the same parent?");
184  
185    // If splicing between two blocks within the same function, just update the
186    // parent pointers.
187    for (; First != Last; ++First)
188      First->setParent(Parent);
189  }
190  
191  void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
192    assert(!MI->getParent() && "MI is still in a block!");
193    Parent->getParent()->deleteMachineInstr(MI);
194  }
195  
196  MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
197    instr_iterator I = instr_begin(), E = instr_end();
198    while (I != E && I->isPHI())
199      ++I;
200    assert((I == E || !I->isInsideBundle()) &&
201           "First non-phi MI cannot be inside a bundle!");
202    return I;
203  }
204  
205  MachineBasicBlock::iterator
206  MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
207    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
208  
209    iterator E = end();
210    while (I != E && (I->isPHI() || I->isPosition() ||
211                      TII->isBasicBlockPrologue(*I)))
212      ++I;
213    // FIXME: This needs to change if we wish to bundle labels
214    // inside the bundle.
215    assert((I == E || !I->isInsideBundle()) &&
216           "First non-phi / non-label instruction is inside a bundle!");
217    return I;
218  }
219  
220  MachineBasicBlock::iterator
221  MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
222                                            bool SkipPseudoOp) {
223    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
224  
225    iterator E = end();
226    while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
227                      (SkipPseudoOp && I->isPseudoProbe()) ||
228                      TII->isBasicBlockPrologue(*I)))
229      ++I;
230    // FIXME: This needs to change if we wish to bundle labels / dbg_values
231    // inside the bundle.
232    assert((I == E || !I->isInsideBundle()) &&
233           "First non-phi / non-label / non-debug "
234           "instruction is inside a bundle!");
235    return I;
236  }
237  
238  MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
239    iterator B = begin(), E = end(), I = E;
240    while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
241      ; /*noop */
242    while (I != E && !I->isTerminator())
243      ++I;
244    return I;
245  }
246  
247  MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
248    instr_iterator B = instr_begin(), E = instr_end(), I = E;
249    while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
250      ; /*noop */
251    while (I != E && !I->isTerminator())
252      ++I;
253    return I;
254  }
255  
256  MachineBasicBlock::iterator
257  MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
258    // Skip over begin-of-block dbg_value instructions.
259    return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
260  }
261  
262  MachineBasicBlock::iterator
263  MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
264    // Skip over end-of-block dbg_value instructions.
265    instr_iterator B = instr_begin(), I = instr_end();
266    while (I != B) {
267      --I;
268      // Return instruction that starts a bundle.
269      if (I->isDebugInstr() || I->isInsideBundle())
270        continue;
271      if (SkipPseudoOp && I->isPseudoProbe())
272        continue;
273      return I;
274    }
275    // The block is all debug values.
276    return end();
277  }
278  
279  bool MachineBasicBlock::hasEHPadSuccessor() const {
280    for (const MachineBasicBlock *Succ : successors())
281      if (Succ->isEHPad())
282        return true;
283    return false;
284  }
285  
286  bool MachineBasicBlock::isEntryBlock() const {
287    return getParent()->begin() == getIterator();
288  }
289  
290  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291  LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
292    print(dbgs());
293  }
294  #endif
295  
296  bool MachineBasicBlock::mayHaveInlineAsmBr() const {
297    for (const MachineBasicBlock *Succ : successors()) {
298      if (Succ->isInlineAsmBrIndirectTarget())
299        return true;
300    }
301    return false;
302  }
303  
304  bool MachineBasicBlock::isLegalToHoistInto() const {
305    if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
306      return false;
307    return true;
308  }
309  
310  StringRef MachineBasicBlock::getName() const {
311    if (const BasicBlock *LBB = getBasicBlock())
312      return LBB->getName();
313    else
314      return StringRef("", 0);
315  }
316  
317  /// Return a hopefully unique identifier for this block.
318  std::string MachineBasicBlock::getFullName() const {
319    std::string Name;
320    if (getParent())
321      Name = (getParent()->getName() + ":").str();
322    if (getBasicBlock())
323      Name += getBasicBlock()->getName();
324    else
325      Name += ("BB" + Twine(getNumber())).str();
326    return Name;
327  }
328  
329  void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
330                                bool IsStandalone) const {
331    const MachineFunction *MF = getParent();
332    if (!MF) {
333      OS << "Can't print out MachineBasicBlock because parent MachineFunction"
334         << " is null\n";
335      return;
336    }
337    const Function &F = MF->getFunction();
338    const Module *M = F.getParent();
339    ModuleSlotTracker MST(M);
340    MST.incorporateFunction(F);
341    print(OS, MST, Indexes, IsStandalone);
342  }
343  
344  void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
345                                const SlotIndexes *Indexes,
346                                bool IsStandalone) const {
347    const MachineFunction *MF = getParent();
348    if (!MF) {
349      OS << "Can't print out MachineBasicBlock because parent MachineFunction"
350         << " is null\n";
351      return;
352    }
353  
354    if (Indexes && PrintSlotIndexes)
355      OS << Indexes->getMBBStartIdx(this) << '\t';
356  
357    printName(OS, PrintNameIr | PrintNameAttributes, &MST);
358    OS << ":\n";
359  
360    const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
361    const MachineRegisterInfo &MRI = MF->getRegInfo();
362    const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
363    bool HasLineAttributes = false;
364  
365    // Print the preds of this block according to the CFG.
366    if (!pred_empty() && IsStandalone) {
367      if (Indexes) OS << '\t';
368      // Don't indent(2), align with previous line attributes.
369      OS << "; predecessors: ";
370      ListSeparator LS;
371      for (auto *Pred : predecessors())
372        OS << LS << printMBBReference(*Pred);
373      OS << '\n';
374      HasLineAttributes = true;
375    }
376  
377    if (!succ_empty()) {
378      if (Indexes) OS << '\t';
379      // Print the successors
380      OS.indent(2) << "successors: ";
381      ListSeparator LS;
382      for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
383        OS << LS << printMBBReference(**I);
384        if (!Probs.empty())
385          OS << '('
386             << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
387             << ')';
388      }
389      if (!Probs.empty() && IsStandalone) {
390        // Print human readable probabilities as comments.
391        OS << "; ";
392        ListSeparator LS;
393        for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
394          const BranchProbability &BP = getSuccProbability(I);
395          OS << LS << printMBBReference(**I) << '('
396             << format("%.2f%%",
397                       rint(((double)BP.getNumerator() / BP.getDenominator()) *
398                            100.0 * 100.0) /
399                           100.0)
400             << ')';
401        }
402      }
403  
404      OS << '\n';
405      HasLineAttributes = true;
406    }
407  
408    if (!livein_empty() && MRI.tracksLiveness()) {
409      if (Indexes) OS << '\t';
410      OS.indent(2) << "liveins: ";
411  
412      ListSeparator LS;
413      for (const auto &LI : liveins()) {
414        OS << LS << printReg(LI.PhysReg, TRI);
415        if (!LI.LaneMask.all())
416          OS << ":0x" << PrintLaneMask(LI.LaneMask);
417      }
418      HasLineAttributes = true;
419    }
420  
421    if (HasLineAttributes)
422      OS << '\n';
423  
424    bool IsInBundle = false;
425    for (const MachineInstr &MI : instrs()) {
426      if (Indexes && PrintSlotIndexes) {
427        if (Indexes->hasIndex(MI))
428          OS << Indexes->getInstructionIndex(MI);
429        OS << '\t';
430      }
431  
432      if (IsInBundle && !MI.isInsideBundle()) {
433        OS.indent(2) << "}\n";
434        IsInBundle = false;
435      }
436  
437      OS.indent(IsInBundle ? 4 : 2);
438      MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
439               /*AddNewLine=*/false, &TII);
440  
441      if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
442        OS << " {";
443        IsInBundle = true;
444      }
445      OS << '\n';
446    }
447  
448    if (IsInBundle)
449      OS.indent(2) << "}\n";
450  
451    if (IrrLoopHeaderWeight && IsStandalone) {
452      if (Indexes) OS << '\t';
453      OS.indent(2) << "; Irreducible loop header weight: "
454                   << IrrLoopHeaderWeight.value() << '\n';
455    }
456  }
457  
458  /// Print the basic block's name as:
459  ///
460  ///    bb.{number}[.{ir-name}] [(attributes...)]
461  ///
462  /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
463  /// (which is the default). If the IR block has no name, it is identified
464  /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
465  ///
466  /// When the \ref PrintNameAttributes flag is passed, additional attributes
467  /// of the block are printed when set.
468  ///
469  /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
470  ///                       the parts to print.
471  /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
472  ///                          incorporate its own tracker when necessary to
473  ///                          determine the block's IR name.
474  void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
475                                    ModuleSlotTracker *moduleSlotTracker) const {
476    os << "bb." << getNumber();
477    bool hasAttributes = false;
478  
479    if (printNameFlags & PrintNameIr) {
480      if (const auto *bb = getBasicBlock()) {
481        if (bb->hasName()) {
482          os << '.' << bb->getName();
483        } else {
484          hasAttributes = true;
485          os << " (";
486  
487          int slot = -1;
488  
489          if (moduleSlotTracker) {
490            slot = moduleSlotTracker->getLocalSlot(bb);
491          } else if (bb->getParent()) {
492            ModuleSlotTracker tmpTracker(bb->getModule(), false);
493            tmpTracker.incorporateFunction(*bb->getParent());
494            slot = tmpTracker.getLocalSlot(bb);
495          }
496  
497          if (slot == -1)
498            os << "<ir-block badref>";
499          else
500            os << (Twine("%ir-block.") + Twine(slot)).str();
501        }
502      }
503    }
504  
505    if (printNameFlags & PrintNameAttributes) {
506      if (hasAddressTaken()) {
507        os << (hasAttributes ? ", " : " (");
508        os << "address-taken";
509        hasAttributes = true;
510      }
511      if (isEHPad()) {
512        os << (hasAttributes ? ", " : " (");
513        os << "landing-pad";
514        hasAttributes = true;
515      }
516      if (isInlineAsmBrIndirectTarget()) {
517        os << (hasAttributes ? ", " : " (");
518        os << "inlineasm-br-indirect-target";
519        hasAttributes = true;
520      }
521      if (isEHFuncletEntry()) {
522        os << (hasAttributes ? ", " : " (");
523        os << "ehfunclet-entry";
524        hasAttributes = true;
525      }
526      if (getAlignment() != Align(1)) {
527        os << (hasAttributes ? ", " : " (");
528        os << "align " << getAlignment().value();
529        hasAttributes = true;
530      }
531      if (getSectionID() != MBBSectionID(0)) {
532        os << (hasAttributes ? ", " : " (");
533        os << "bbsections ";
534        switch (getSectionID().Type) {
535        case MBBSectionID::SectionType::Exception:
536          os << "Exception";
537          break;
538        case MBBSectionID::SectionType::Cold:
539          os << "Cold";
540          break;
541        default:
542          os << getSectionID().Number;
543        }
544        hasAttributes = true;
545      }
546    }
547  
548    if (hasAttributes)
549      os << ')';
550  }
551  
552  void MachineBasicBlock::printAsOperand(raw_ostream &OS,
553                                         bool /*PrintType*/) const {
554    OS << '%';
555    printName(OS, 0);
556  }
557  
558  void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
559    LiveInVector::iterator I = find_if(
560        LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
561    if (I == LiveIns.end())
562      return;
563  
564    I->LaneMask &= ~LaneMask;
565    if (I->LaneMask.none())
566      LiveIns.erase(I);
567  }
568  
569  MachineBasicBlock::livein_iterator
570  MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
571    // Get non-const version of iterator.
572    LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
573    return LiveIns.erase(LI);
574  }
575  
576  bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
577    livein_iterator I = find_if(
578        LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
579    return I != livein_end() && (I->LaneMask & LaneMask).any();
580  }
581  
582  void MachineBasicBlock::sortUniqueLiveIns() {
583    llvm::sort(LiveIns,
584               [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
585                 return LI0.PhysReg < LI1.PhysReg;
586               });
587    // Liveins are sorted by physreg now we can merge their lanemasks.
588    LiveInVector::const_iterator I = LiveIns.begin();
589    LiveInVector::const_iterator J;
590    LiveInVector::iterator Out = LiveIns.begin();
591    for (; I != LiveIns.end(); ++Out, I = J) {
592      MCRegister PhysReg = I->PhysReg;
593      LaneBitmask LaneMask = I->LaneMask;
594      for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
595        LaneMask |= J->LaneMask;
596      Out->PhysReg = PhysReg;
597      Out->LaneMask = LaneMask;
598    }
599    LiveIns.erase(Out, LiveIns.end());
600  }
601  
602  Register
603  MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
604    assert(getParent() && "MBB must be inserted in function");
605    assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
606    assert(RC && "Register class is required");
607    assert((isEHPad() || this == &getParent()->front()) &&
608           "Only the entry block and landing pads can have physreg live ins");
609  
610    bool LiveIn = isLiveIn(PhysReg);
611    iterator I = SkipPHIsAndLabels(begin()), E = end();
612    MachineRegisterInfo &MRI = getParent()->getRegInfo();
613    const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
614  
615    // Look for an existing copy.
616    if (LiveIn)
617      for (;I != E && I->isCopy(); ++I)
618        if (I->getOperand(1).getReg() == PhysReg) {
619          Register VirtReg = I->getOperand(0).getReg();
620          if (!MRI.constrainRegClass(VirtReg, RC))
621            llvm_unreachable("Incompatible live-in register class.");
622          return VirtReg;
623        }
624  
625    // No luck, create a virtual register.
626    Register VirtReg = MRI.createVirtualRegister(RC);
627    BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
628      .addReg(PhysReg, RegState::Kill);
629    if (!LiveIn)
630      addLiveIn(PhysReg);
631    return VirtReg;
632  }
633  
634  void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
635    getParent()->splice(NewAfter->getIterator(), getIterator());
636  }
637  
638  void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
639    getParent()->splice(++NewBefore->getIterator(), getIterator());
640  }
641  
642  void MachineBasicBlock::updateTerminator(
643      MachineBasicBlock *PreviousLayoutSuccessor) {
644    LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
645                      << "\n");
646  
647    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
648    // A block with no successors has no concerns with fall-through edges.
649    if (this->succ_empty())
650      return;
651  
652    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
653    SmallVector<MachineOperand, 4> Cond;
654    DebugLoc DL = findBranchDebugLoc();
655    bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
656    (void) B;
657    assert(!B && "UpdateTerminators requires analyzable predecessors!");
658    if (Cond.empty()) {
659      if (TBB) {
660        // The block has an unconditional branch. If its successor is now its
661        // layout successor, delete the branch.
662        if (isLayoutSuccessor(TBB))
663          TII->removeBranch(*this);
664      } else {
665        // The block has an unconditional fallthrough, or the end of the block is
666        // unreachable.
667  
668        // Unfortunately, whether the end of the block is unreachable is not
669        // immediately obvious; we must fall back to checking the successor list,
670        // and assuming that if the passed in block is in the succesor list and
671        // not an EHPad, it must be the intended target.
672        if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
673            PreviousLayoutSuccessor->isEHPad())
674          return;
675  
676        // If the unconditional successor block is not the current layout
677        // successor, insert a branch to jump to it.
678        if (!isLayoutSuccessor(PreviousLayoutSuccessor))
679          TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
680      }
681      return;
682    }
683  
684    if (FBB) {
685      // The block has a non-fallthrough conditional branch. If one of its
686      // successors is its layout successor, rewrite it to a fallthrough
687      // conditional branch.
688      if (isLayoutSuccessor(TBB)) {
689        if (TII->reverseBranchCondition(Cond))
690          return;
691        TII->removeBranch(*this);
692        TII->insertBranch(*this, FBB, nullptr, Cond, DL);
693      } else if (isLayoutSuccessor(FBB)) {
694        TII->removeBranch(*this);
695        TII->insertBranch(*this, TBB, nullptr, Cond, DL);
696      }
697      return;
698    }
699  
700    // We now know we're going to fallthrough to PreviousLayoutSuccessor.
701    assert(PreviousLayoutSuccessor);
702    assert(!PreviousLayoutSuccessor->isEHPad());
703    assert(isSuccessor(PreviousLayoutSuccessor));
704  
705    if (PreviousLayoutSuccessor == TBB) {
706      // We had a fallthrough to the same basic block as the conditional jump
707      // targets.  Remove the conditional jump, leaving an unconditional
708      // fallthrough or an unconditional jump.
709      TII->removeBranch(*this);
710      if (!isLayoutSuccessor(TBB)) {
711        Cond.clear();
712        TII->insertBranch(*this, TBB, nullptr, Cond, DL);
713      }
714      return;
715    }
716  
717    // The block has a fallthrough conditional branch.
718    if (isLayoutSuccessor(TBB)) {
719      if (TII->reverseBranchCondition(Cond)) {
720        // We can't reverse the condition, add an unconditional branch.
721        Cond.clear();
722        TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
723        return;
724      }
725      TII->removeBranch(*this);
726      TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
727    } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
728      TII->removeBranch(*this);
729      TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
730    }
731  }
732  
733  void MachineBasicBlock::validateSuccProbs() const {
734  #ifndef NDEBUG
735    int64_t Sum = 0;
736    for (auto Prob : Probs)
737      Sum += Prob.getNumerator();
738    // Due to precision issue, we assume that the sum of probabilities is one if
739    // the difference between the sum of their numerators and the denominator is
740    // no greater than the number of successors.
741    assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
742               Probs.size() &&
743           "The sum of successors's probabilities exceeds one.");
744  #endif // NDEBUG
745  }
746  
747  void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
748                                       BranchProbability Prob) {
749    // Probability list is either empty (if successor list isn't empty, this means
750    // disabled optimization) or has the same size as successor list.
751    if (!(Probs.empty() && !Successors.empty()))
752      Probs.push_back(Prob);
753    Successors.push_back(Succ);
754    Succ->addPredecessor(this);
755  }
756  
757  void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
758    // We need to make sure probability list is either empty or has the same size
759    // of successor list. When this function is called, we can safely delete all
760    // probability in the list.
761    Probs.clear();
762    Successors.push_back(Succ);
763    Succ->addPredecessor(this);
764  }
765  
766  void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
767                                         MachineBasicBlock *New,
768                                         bool NormalizeSuccProbs) {
769    succ_iterator OldI = llvm::find(successors(), Old);
770    assert(OldI != succ_end() && "Old is not a successor of this block!");
771    assert(!llvm::is_contained(successors(), New) &&
772           "New is already a successor of this block!");
773  
774    // Add a new successor with equal probability as the original one. Note
775    // that we directly copy the probability using the iterator rather than
776    // getting a potentially synthetic probability computed when unknown. This
777    // preserves the probabilities as-is and then we can renormalize them and
778    // query them effectively afterward.
779    addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
780                                    : *getProbabilityIterator(OldI));
781    if (NormalizeSuccProbs)
782      normalizeSuccProbs();
783  }
784  
785  void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
786                                          bool NormalizeSuccProbs) {
787    succ_iterator I = find(Successors, Succ);
788    removeSuccessor(I, NormalizeSuccProbs);
789  }
790  
791  MachineBasicBlock::succ_iterator
792  MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
793    assert(I != Successors.end() && "Not a current successor!");
794  
795    // If probability list is empty it means we don't use it (disabled
796    // optimization).
797    if (!Probs.empty()) {
798      probability_iterator WI = getProbabilityIterator(I);
799      Probs.erase(WI);
800      if (NormalizeSuccProbs)
801        normalizeSuccProbs();
802    }
803  
804    (*I)->removePredecessor(this);
805    return Successors.erase(I);
806  }
807  
808  void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
809                                           MachineBasicBlock *New) {
810    if (Old == New)
811      return;
812  
813    succ_iterator E = succ_end();
814    succ_iterator NewI = E;
815    succ_iterator OldI = E;
816    for (succ_iterator I = succ_begin(); I != E; ++I) {
817      if (*I == Old) {
818        OldI = I;
819        if (NewI != E)
820          break;
821      }
822      if (*I == New) {
823        NewI = I;
824        if (OldI != E)
825          break;
826      }
827    }
828    assert(OldI != E && "Old is not a successor of this block");
829  
830    // If New isn't already a successor, let it take Old's place.
831    if (NewI == E) {
832      Old->removePredecessor(this);
833      New->addPredecessor(this);
834      *OldI = New;
835      return;
836    }
837  
838    // New is already a successor.
839    // Update its probability instead of adding a duplicate edge.
840    if (!Probs.empty()) {
841      auto ProbIter = getProbabilityIterator(NewI);
842      if (!ProbIter->isUnknown())
843        *ProbIter += *getProbabilityIterator(OldI);
844    }
845    removeSuccessor(OldI);
846  }
847  
848  void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
849                                        succ_iterator I) {
850    if (!Orig->Probs.empty())
851      addSuccessor(*I, Orig->getSuccProbability(I));
852    else
853      addSuccessorWithoutProb(*I);
854  }
855  
856  void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
857    Predecessors.push_back(Pred);
858  }
859  
860  void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
861    pred_iterator I = find(Predecessors, Pred);
862    assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
863    Predecessors.erase(I);
864  }
865  
866  void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
867    if (this == FromMBB)
868      return;
869  
870    while (!FromMBB->succ_empty()) {
871      MachineBasicBlock *Succ = *FromMBB->succ_begin();
872  
873      // If probability list is empty it means we don't use it (disabled
874      // optimization).
875      if (!FromMBB->Probs.empty()) {
876        auto Prob = *FromMBB->Probs.begin();
877        addSuccessor(Succ, Prob);
878      } else
879        addSuccessorWithoutProb(Succ);
880  
881      FromMBB->removeSuccessor(Succ);
882    }
883  }
884  
885  void
886  MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
887    if (this == FromMBB)
888      return;
889  
890    while (!FromMBB->succ_empty()) {
891      MachineBasicBlock *Succ = *FromMBB->succ_begin();
892      if (!FromMBB->Probs.empty()) {
893        auto Prob = *FromMBB->Probs.begin();
894        addSuccessor(Succ, Prob);
895      } else
896        addSuccessorWithoutProb(Succ);
897      FromMBB->removeSuccessor(Succ);
898  
899      // Fix up any PHI nodes in the successor.
900      Succ->replacePhiUsesWith(FromMBB, this);
901    }
902    normalizeSuccProbs();
903  }
904  
905  bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
906    return is_contained(predecessors(), MBB);
907  }
908  
909  bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
910    return is_contained(successors(), MBB);
911  }
912  
913  bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
914    MachineFunction::const_iterator I(this);
915    return std::next(I) == MachineFunction::const_iterator(MBB);
916  }
917  
918  const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
919    return Successors.size() == 1 ? Successors[0] : nullptr;
920  }
921  
922  MachineBasicBlock *MachineBasicBlock::getFallThrough() {
923    MachineFunction::iterator Fallthrough = getIterator();
924    ++Fallthrough;
925    // If FallthroughBlock is off the end of the function, it can't fall through.
926    if (Fallthrough == getParent()->end())
927      return nullptr;
928  
929    // If FallthroughBlock isn't a successor, no fallthrough is possible.
930    if (!isSuccessor(&*Fallthrough))
931      return nullptr;
932  
933    // Analyze the branches, if any, at the end of the block.
934    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
935    SmallVector<MachineOperand, 4> Cond;
936    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
937    if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
938      // If we couldn't analyze the branch, examine the last instruction.
939      // If the block doesn't end in a known control barrier, assume fallthrough
940      // is possible. The isPredicated check is needed because this code can be
941      // called during IfConversion, where an instruction which is normally a
942      // Barrier is predicated and thus no longer an actual control barrier.
943      return (empty() || !back().isBarrier() || TII->isPredicated(back()))
944                 ? &*Fallthrough
945                 : nullptr;
946    }
947  
948    // If there is no branch, control always falls through.
949    if (!TBB) return &*Fallthrough;
950  
951    // If there is some explicit branch to the fallthrough block, it can obviously
952    // reach, even though the branch should get folded to fall through implicitly.
953    if (MachineFunction::iterator(TBB) == Fallthrough ||
954        MachineFunction::iterator(FBB) == Fallthrough)
955      return &*Fallthrough;
956  
957    // If it's an unconditional branch to some block not the fall through, it
958    // doesn't fall through.
959    if (Cond.empty()) return nullptr;
960  
961    // Otherwise, if it is conditional and has no explicit false block, it falls
962    // through.
963    return (FBB == nullptr) ? &*Fallthrough : nullptr;
964  }
965  
966  bool MachineBasicBlock::canFallThrough() {
967    return getFallThrough() != nullptr;
968  }
969  
970  MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
971                                                bool UpdateLiveIns,
972                                                LiveIntervals *LIS) {
973    MachineBasicBlock::iterator SplitPoint(&MI);
974    ++SplitPoint;
975  
976    if (SplitPoint == end()) {
977      // Don't bother with a new block.
978      return this;
979    }
980  
981    MachineFunction *MF = getParent();
982  
983    LivePhysRegs LiveRegs;
984    if (UpdateLiveIns) {
985      // Make sure we add any physregs we define in the block as liveins to the
986      // new block.
987      MachineBasicBlock::iterator Prev(&MI);
988      LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
989      LiveRegs.addLiveOuts(*this);
990      for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
991        LiveRegs.stepBackward(*I);
992    }
993  
994    MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
995  
996    MF->insert(++MachineFunction::iterator(this), SplitBB);
997    SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
998  
999    SplitBB->transferSuccessorsAndUpdatePHIs(this);
1000    addSuccessor(SplitBB);
1001  
1002    if (UpdateLiveIns)
1003      addLiveIns(*SplitBB, LiveRegs);
1004  
1005    if (LIS)
1006      LIS->insertMBBInMaps(SplitBB);
1007  
1008    return SplitBB;
1009  }
1010  
1011  MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1012      MachineBasicBlock *Succ, Pass &P,
1013      std::vector<SparseBitVector<>> *LiveInSets) {
1014    if (!canSplitCriticalEdge(Succ))
1015      return nullptr;
1016  
1017    MachineFunction *MF = getParent();
1018    MachineBasicBlock *PrevFallthrough = getNextNode();
1019    DebugLoc DL;  // FIXME: this is nowhere
1020  
1021    MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1022    MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1023    LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1024                      << " -- " << printMBBReference(*NMBB) << " -- "
1025                      << printMBBReference(*Succ) << '\n');
1026  
1027    LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1028    SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1029    if (LIS)
1030      LIS->insertMBBInMaps(NMBB);
1031    else if (Indexes)
1032      Indexes->insertMBBInMaps(NMBB);
1033  
1034    // On some targets like Mips, branches may kill virtual registers. Make sure
1035    // that LiveVariables is properly updated after updateTerminator replaces the
1036    // terminators.
1037    LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1038  
1039    // Collect a list of virtual registers killed by the terminators.
1040    SmallVector<Register, 4> KilledRegs;
1041    if (LV)
1042      for (MachineInstr &MI :
1043           llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1044        for (MachineOperand &MO : MI.operands()) {
1045          if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1046              MO.isUndef())
1047            continue;
1048          Register Reg = MO.getReg();
1049          if (Register::isPhysicalRegister(Reg) ||
1050              LV->getVarInfo(Reg).removeKill(MI)) {
1051            KilledRegs.push_back(Reg);
1052            LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1053            MO.setIsKill(false);
1054          }
1055        }
1056      }
1057  
1058    SmallVector<Register, 4> UsedRegs;
1059    if (LIS) {
1060      for (MachineInstr &MI :
1061           llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1062        for (const MachineOperand &MO : MI.operands()) {
1063          if (!MO.isReg() || MO.getReg() == 0)
1064            continue;
1065  
1066          Register Reg = MO.getReg();
1067          if (!is_contained(UsedRegs, Reg))
1068            UsedRegs.push_back(Reg);
1069        }
1070      }
1071    }
1072  
1073    ReplaceUsesOfBlockWith(Succ, NMBB);
1074  
1075    // If updateTerminator() removes instructions, we need to remove them from
1076    // SlotIndexes.
1077    SmallVector<MachineInstr*, 4> Terminators;
1078    if (Indexes) {
1079      for (MachineInstr &MI :
1080           llvm::make_range(getFirstInstrTerminator(), instr_end()))
1081        Terminators.push_back(&MI);
1082    }
1083  
1084    // Since we replaced all uses of Succ with NMBB, that should also be treated
1085    // as the fallthrough successor
1086    if (Succ == PrevFallthrough)
1087      PrevFallthrough = NMBB;
1088    updateTerminator(PrevFallthrough);
1089  
1090    if (Indexes) {
1091      SmallVector<MachineInstr*, 4> NewTerminators;
1092      for (MachineInstr &MI :
1093           llvm::make_range(getFirstInstrTerminator(), instr_end()))
1094        NewTerminators.push_back(&MI);
1095  
1096      for (MachineInstr *Terminator : Terminators) {
1097        if (!is_contained(NewTerminators, Terminator))
1098          Indexes->removeMachineInstrFromMaps(*Terminator);
1099      }
1100    }
1101  
1102    // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1103    NMBB->addSuccessor(Succ);
1104    if (!NMBB->isLayoutSuccessor(Succ)) {
1105      SmallVector<MachineOperand, 4> Cond;
1106      const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1107      TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1108  
1109      if (Indexes) {
1110        for (MachineInstr &MI : NMBB->instrs()) {
1111          // Some instructions may have been moved to NMBB by updateTerminator(),
1112          // so we first remove any instruction that already has an index.
1113          if (Indexes->hasIndex(MI))
1114            Indexes->removeMachineInstrFromMaps(MI);
1115          Indexes->insertMachineInstrInMaps(MI);
1116        }
1117      }
1118    }
1119  
1120    // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1121    Succ->replacePhiUsesWith(this, NMBB);
1122  
1123    // Inherit live-ins from the successor
1124    for (const auto &LI : Succ->liveins())
1125      NMBB->addLiveIn(LI);
1126  
1127    // Update LiveVariables.
1128    const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1129    if (LV) {
1130      // Restore kills of virtual registers that were killed by the terminators.
1131      while (!KilledRegs.empty()) {
1132        Register Reg = KilledRegs.pop_back_val();
1133        for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1134          if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1135            continue;
1136          if (Register::isVirtualRegister(Reg))
1137            LV->getVarInfo(Reg).Kills.push_back(&*I);
1138          LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1139          break;
1140        }
1141      }
1142      // Update relevant live-through information.
1143      if (LiveInSets != nullptr)
1144        LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1145      else
1146        LV->addNewBlock(NMBB, this, Succ);
1147    }
1148  
1149    if (LIS) {
1150      // After splitting the edge and updating SlotIndexes, live intervals may be
1151      // in one of two situations, depending on whether this block was the last in
1152      // the function. If the original block was the last in the function, all
1153      // live intervals will end prior to the beginning of the new split block. If
1154      // the original block was not at the end of the function, all live intervals
1155      // will extend to the end of the new split block.
1156  
1157      bool isLastMBB =
1158        std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1159  
1160      SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1161      SlotIndex PrevIndex = StartIndex.getPrevSlot();
1162      SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1163  
1164      // Find the registers used from NMBB in PHIs in Succ.
1165      SmallSet<Register, 8> PHISrcRegs;
1166      for (MachineBasicBlock::instr_iterator
1167           I = Succ->instr_begin(), E = Succ->instr_end();
1168           I != E && I->isPHI(); ++I) {
1169        for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1170          if (I->getOperand(ni+1).getMBB() == NMBB) {
1171            MachineOperand &MO = I->getOperand(ni);
1172            Register Reg = MO.getReg();
1173            PHISrcRegs.insert(Reg);
1174            if (MO.isUndef())
1175              continue;
1176  
1177            LiveInterval &LI = LIS->getInterval(Reg);
1178            VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1179            assert(VNI &&
1180                   "PHI sources should be live out of their predecessors.");
1181            LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1182          }
1183        }
1184      }
1185  
1186      MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1187      for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1188        Register Reg = Register::index2VirtReg(i);
1189        if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1190          continue;
1191  
1192        LiveInterval &LI = LIS->getInterval(Reg);
1193        if (!LI.liveAt(PrevIndex))
1194          continue;
1195  
1196        bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1197        if (isLiveOut && isLastMBB) {
1198          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1199          assert(VNI && "LiveInterval should have VNInfo where it is live.");
1200          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1201        } else if (!isLiveOut && !isLastMBB) {
1202          LI.removeSegment(StartIndex, EndIndex);
1203        }
1204      }
1205  
1206      // Update all intervals for registers whose uses may have been modified by
1207      // updateTerminator().
1208      LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1209    }
1210  
1211    if (MachineDominatorTree *MDT =
1212            P.getAnalysisIfAvailable<MachineDominatorTree>())
1213      MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1214  
1215    if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1216      if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1217        // If one or the other blocks were not in a loop, the new block is not
1218        // either, and thus LI doesn't need to be updated.
1219        if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1220          if (TIL == DestLoop) {
1221            // Both in the same loop, the NMBB joins loop.
1222            DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1223          } else if (TIL->contains(DestLoop)) {
1224            // Edge from an outer loop to an inner loop.  Add to the outer loop.
1225            TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1226          } else if (DestLoop->contains(TIL)) {
1227            // Edge from an inner loop to an outer loop.  Add to the outer loop.
1228            DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1229          } else {
1230            // Edge from two loops with no containment relation.  Because these
1231            // are natural loops, we know that the destination block must be the
1232            // header of its loop (adding a branch into a loop elsewhere would
1233            // create an irreducible loop).
1234            assert(DestLoop->getHeader() == Succ &&
1235                   "Should not create irreducible loops!");
1236            if (MachineLoop *P = DestLoop->getParentLoop())
1237              P->addBasicBlockToLoop(NMBB, MLI->getBase());
1238          }
1239        }
1240      }
1241  
1242    return NMBB;
1243  }
1244  
1245  bool MachineBasicBlock::canSplitCriticalEdge(
1246      const MachineBasicBlock *Succ) const {
1247    // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1248    // it in this generic function.
1249    if (Succ->isEHPad())
1250      return false;
1251  
1252    // Splitting the critical edge to a callbr's indirect block isn't advised.
1253    // Don't do it in this generic function.
1254    if (Succ->isInlineAsmBrIndirectTarget())
1255      return false;
1256  
1257    const MachineFunction *MF = getParent();
1258    // Performance might be harmed on HW that implements branching using exec mask
1259    // where both sides of the branches are always executed.
1260    if (MF->getTarget().requiresStructuredCFG())
1261      return false;
1262  
1263    // We may need to update this's terminator, but we can't do that if
1264    // analyzeBranch fails. If this uses a jump table, we won't touch it.
1265    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1266    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1267    SmallVector<MachineOperand, 4> Cond;
1268    // AnalyzeBanch should modify this, since we did not allow modification.
1269    if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1270                           /*AllowModify*/ false))
1271      return false;
1272  
1273    // Avoid bugpoint weirdness: A block may end with a conditional branch but
1274    // jumps to the same MBB is either case. We have duplicate CFG edges in that
1275    // case that we can't handle. Since this never happens in properly optimized
1276    // code, just skip those edges.
1277    if (TBB && TBB == FBB) {
1278      LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1279                        << printMBBReference(*this) << '\n');
1280      return false;
1281    }
1282    return true;
1283  }
1284  
1285  /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1286  /// neighboring instructions so the bundle won't be broken by removing MI.
1287  static void unbundleSingleMI(MachineInstr *MI) {
1288    // Removing the first instruction in a bundle.
1289    if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1290      MI->unbundleFromSucc();
1291    // Removing the last instruction in a bundle.
1292    if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1293      MI->unbundleFromPred();
1294    // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1295    // are already fine.
1296  }
1297  
1298  MachineBasicBlock::instr_iterator
1299  MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1300    unbundleSingleMI(&*I);
1301    return Insts.erase(I);
1302  }
1303  
1304  MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1305    unbundleSingleMI(MI);
1306    MI->clearFlag(MachineInstr::BundledPred);
1307    MI->clearFlag(MachineInstr::BundledSucc);
1308    return Insts.remove(MI);
1309  }
1310  
1311  MachineBasicBlock::instr_iterator
1312  MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1313    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1314           "Cannot insert instruction with bundle flags");
1315    // Set the bundle flags when inserting inside a bundle.
1316    if (I != instr_end() && I->isBundledWithPred()) {
1317      MI->setFlag(MachineInstr::BundledPred);
1318      MI->setFlag(MachineInstr::BundledSucc);
1319    }
1320    return Insts.insert(I, MI);
1321  }
1322  
1323  /// This method unlinks 'this' from the containing function, and returns it, but
1324  /// does not delete it.
1325  MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1326    assert(getParent() && "Not embedded in a function!");
1327    getParent()->remove(this);
1328    return this;
1329  }
1330  
1331  /// This method unlinks 'this' from the containing function, and deletes it.
1332  void MachineBasicBlock::eraseFromParent() {
1333    assert(getParent() && "Not embedded in a function!");
1334    getParent()->erase(this);
1335  }
1336  
1337  /// Given a machine basic block that branched to 'Old', change the code and CFG
1338  /// so that it branches to 'New' instead.
1339  void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1340                                                 MachineBasicBlock *New) {
1341    assert(Old != New && "Cannot replace self with self!");
1342  
1343    MachineBasicBlock::instr_iterator I = instr_end();
1344    while (I != instr_begin()) {
1345      --I;
1346      if (!I->isTerminator()) break;
1347  
1348      // Scan the operands of this machine instruction, replacing any uses of Old
1349      // with New.
1350      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1351        if (I->getOperand(i).isMBB() &&
1352            I->getOperand(i).getMBB() == Old)
1353          I->getOperand(i).setMBB(New);
1354    }
1355  
1356    // Update the successor information.
1357    replaceSuccessor(Old, New);
1358  }
1359  
1360  void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1361                                             MachineBasicBlock *New) {
1362    for (MachineInstr &MI : phis())
1363      for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1364        MachineOperand &MO = MI.getOperand(i);
1365        if (MO.getMBB() == Old)
1366          MO.setMBB(New);
1367      }
1368  }
1369  
1370  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1371  /// instructions.  Return UnknownLoc if there is none.
1372  DebugLoc
1373  MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1374    // Skip debug declarations, we don't want a DebugLoc from them.
1375    MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1376    if (MBBI != instr_end())
1377      return MBBI->getDebugLoc();
1378    return {};
1379  }
1380  
1381  DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1382    // Skip debug declarations, we don't want a DebugLoc from them.
1383    MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1384    if (!MBBI->isDebugInstr())
1385      return MBBI->getDebugLoc();
1386    return {};
1387  }
1388  
1389  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1390  /// instructions.  Return UnknownLoc if there is none.
1391  DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1392    if (MBBI == instr_begin()) return {};
1393    // Skip debug instructions, we don't want a DebugLoc from them.
1394    MBBI = prev_nodbg(MBBI, instr_begin());
1395    if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1396    return {};
1397  }
1398  
1399  DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1400    if (MBBI == instr_rend())
1401      return {};
1402    // Skip debug declarations, we don't want a DebugLoc from them.
1403    MBBI = next_nodbg(MBBI, instr_rend());
1404    if (MBBI != instr_rend())
1405      return MBBI->getDebugLoc();
1406    return {};
1407  }
1408  
1409  /// Find and return the merged DebugLoc of the branch instructions of the block.
1410  /// Return UnknownLoc if there is none.
1411  DebugLoc
1412  MachineBasicBlock::findBranchDebugLoc() {
1413    DebugLoc DL;
1414    auto TI = getFirstTerminator();
1415    while (TI != end() && !TI->isBranch())
1416      ++TI;
1417  
1418    if (TI != end()) {
1419      DL = TI->getDebugLoc();
1420      for (++TI ; TI != end() ; ++TI)
1421        if (TI->isBranch())
1422          DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1423    }
1424    return DL;
1425  }
1426  
1427  /// Return probability of the edge from this block to MBB.
1428  BranchProbability
1429  MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1430    if (Probs.empty())
1431      return BranchProbability(1, succ_size());
1432  
1433    const auto &Prob = *getProbabilityIterator(Succ);
1434    if (Prob.isUnknown()) {
1435      // For unknown probabilities, collect the sum of all known ones, and evenly
1436      // ditribute the complemental of the sum to each unknown probability.
1437      unsigned KnownProbNum = 0;
1438      auto Sum = BranchProbability::getZero();
1439      for (const auto &P : Probs) {
1440        if (!P.isUnknown()) {
1441          Sum += P;
1442          KnownProbNum++;
1443        }
1444      }
1445      return Sum.getCompl() / (Probs.size() - KnownProbNum);
1446    } else
1447      return Prob;
1448  }
1449  
1450  /// Set successor probability of a given iterator.
1451  void MachineBasicBlock::setSuccProbability(succ_iterator I,
1452                                             BranchProbability Prob) {
1453    assert(!Prob.isUnknown());
1454    if (Probs.empty())
1455      return;
1456    *getProbabilityIterator(I) = Prob;
1457  }
1458  
1459  /// Return probability iterator corresonding to the I successor iterator
1460  MachineBasicBlock::const_probability_iterator
1461  MachineBasicBlock::getProbabilityIterator(
1462      MachineBasicBlock::const_succ_iterator I) const {
1463    assert(Probs.size() == Successors.size() && "Async probability list!");
1464    const size_t index = std::distance(Successors.begin(), I);
1465    assert(index < Probs.size() && "Not a current successor!");
1466    return Probs.begin() + index;
1467  }
1468  
1469  /// Return probability iterator corresonding to the I successor iterator.
1470  MachineBasicBlock::probability_iterator
1471  MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1472    assert(Probs.size() == Successors.size() && "Async probability list!");
1473    const size_t index = std::distance(Successors.begin(), I);
1474    assert(index < Probs.size() && "Not a current successor!");
1475    return Probs.begin() + index;
1476  }
1477  
1478  /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1479  /// as of just before "MI".
1480  ///
1481  /// Search is localised to a neighborhood of
1482  /// Neighborhood instructions before (searching for defs or kills) and N
1483  /// instructions after (searching just for defs) MI.
1484  MachineBasicBlock::LivenessQueryResult
1485  MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1486                                             MCRegister Reg, const_iterator Before,
1487                                             unsigned Neighborhood) const {
1488    unsigned N = Neighborhood;
1489  
1490    // Try searching forwards from Before, looking for reads or defs.
1491    const_iterator I(Before);
1492    for (; I != end() && N > 0; ++I) {
1493      if (I->isDebugOrPseudoInstr())
1494        continue;
1495  
1496      --N;
1497  
1498      PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1499  
1500      // Register is live when we read it here.
1501      if (Info.Read)
1502        return LQR_Live;
1503      // Register is dead if we can fully overwrite or clobber it here.
1504      if (Info.FullyDefined || Info.Clobbered)
1505        return LQR_Dead;
1506    }
1507  
1508    // If we reached the end, it is safe to clobber Reg at the end of a block of
1509    // no successor has it live in.
1510    if (I == end()) {
1511      for (MachineBasicBlock *S : successors()) {
1512        for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1513          if (TRI->regsOverlap(LI.PhysReg, Reg))
1514            return LQR_Live;
1515        }
1516      }
1517  
1518      return LQR_Dead;
1519    }
1520  
1521  
1522    N = Neighborhood;
1523  
1524    // Start by searching backwards from Before, looking for kills, reads or defs.
1525    I = const_iterator(Before);
1526    // If this is the first insn in the block, don't search backwards.
1527    if (I != begin()) {
1528      do {
1529        --I;
1530  
1531        if (I->isDebugOrPseudoInstr())
1532          continue;
1533  
1534        --N;
1535  
1536        PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1537  
1538        // Defs happen after uses so they take precedence if both are present.
1539  
1540        // Register is dead after a dead def of the full register.
1541        if (Info.DeadDef)
1542          return LQR_Dead;
1543        // Register is (at least partially) live after a def.
1544        if (Info.Defined) {
1545          if (!Info.PartialDeadDef)
1546            return LQR_Live;
1547          // As soon as we saw a partial definition (dead or not),
1548          // we cannot tell if the value is partial live without
1549          // tracking the lanemasks. We are not going to do this,
1550          // so fall back on the remaining of the analysis.
1551          break;
1552        }
1553        // Register is dead after a full kill or clobber and no def.
1554        if (Info.Killed || Info.Clobbered)
1555          return LQR_Dead;
1556        // Register must be live if we read it.
1557        if (Info.Read)
1558          return LQR_Live;
1559  
1560      } while (I != begin() && N > 0);
1561    }
1562  
1563    // If all the instructions before this in the block are debug instructions,
1564    // skip over them.
1565    while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1566      --I;
1567  
1568    // Did we get to the start of the block?
1569    if (I == begin()) {
1570      // If so, the register's state is definitely defined by the live-in state.
1571      for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1572        if (TRI->regsOverlap(LI.PhysReg, Reg))
1573          return LQR_Live;
1574  
1575      return LQR_Dead;
1576    }
1577  
1578    // At this point we have no idea of the liveness of the register.
1579    return LQR_Unknown;
1580  }
1581  
1582  const uint32_t *
1583  MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1584    // EH funclet entry does not preserve any registers.
1585    return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1586  }
1587  
1588  const uint32_t *
1589  MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1590    // If we see a return block with successors, this must be a funclet return,
1591    // which does not preserve any registers. If there are no successors, we don't
1592    // care what kind of return it is, putting a mask after it is a no-op.
1593    return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1594  }
1595  
1596  void MachineBasicBlock::clearLiveIns() {
1597    LiveIns.clear();
1598  }
1599  
1600  MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1601    assert(getParent()->getProperties().hasProperty(
1602        MachineFunctionProperties::Property::TracksLiveness) &&
1603        "Liveness information is accurate");
1604    return LiveIns.begin();
1605  }
1606  
1607  MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1608    const MachineFunction &MF = *getParent();
1609    assert(MF.getProperties().hasProperty(
1610        MachineFunctionProperties::Property::TracksLiveness) &&
1611        "Liveness information is accurate");
1612  
1613    const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1614    MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1615    if (MF.getFunction().hasPersonalityFn()) {
1616      auto PersonalityFn = MF.getFunction().getPersonalityFn();
1617      ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1618      ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1619    }
1620  
1621    return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1622  }
1623  
1624  bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1625    unsigned Cntr = 0;
1626    auto R = instructionsWithoutDebug(begin(), end());
1627    for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1628      if (++Cntr > Limit)
1629        return true;
1630    }
1631    return false;
1632  }
1633  
1634  const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1635  const MBBSectionID
1636      MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1637