xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocPriorityAdvisor.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- MLRegAllocPriorityAdvisor.cpp - ML priority advisor-----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the ML priority advisor and reward injection pass
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AllocationOrder.h"
14 #include "RegAllocGreedy.h"
15 #include "RegAllocPriorityAdvisor.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/InteractiveModelRunner.h"
18 #include "llvm/Analysis/MLModelRunner.h"
19 #include "llvm/Analysis/ReleaseModeModelRunner.h"
20 #include "llvm/Analysis/TensorSpec.h"
21 #include "llvm/CodeGen/CalcSpillWeights.h"
22 #include "llvm/CodeGen/LiveRegMatrix.h"
23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Pass.h"
33 #include "llvm/PassRegistry.h"
34 #include "llvm/Support/CommandLine.h"
35 
36 #if defined(LLVM_HAVE_TFLITE)
37 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
38 #include "llvm/Analysis/NoInferenceModelRunner.h"
39 #include "llvm/Analysis/Utils/TrainingLogger.h"
40 #include "llvm/IR/Module.h"
41 #endif
42 
43 using namespace llvm;
44 
45 static cl::opt<std::string> InteractiveChannelBaseName(
46     "regalloc-priority-interactive-channel-base", cl::Hidden,
47     cl::desc(
48         "Base file path for the interactive mode. The incoming filename should "
49         "have the name <regalloc-priority-interactive-channel-base>.in, while "
50         "the outgoing name should be "
51         "<regalloc-priority-interactive-channel-base>.out"));
52 
53 using CompiledModelType = NoopSavedModelImpl;
54 
55 // Options that only make sense in development mode
56 #ifdef LLVM_HAVE_TFLITE
57 #include "RegAllocScore.h"
58 #include "llvm/Analysis/Utils/TFUtils.h"
59 
60 static cl::opt<std::string> TrainingLog(
61     "regalloc-priority-training-log", cl::Hidden,
62     cl::desc("Training log for the register allocator priority model"));
63 
64 static cl::opt<std::string> ModelUnderTraining(
65     "regalloc-priority-model", cl::Hidden,
66     cl::desc("The model being trained for register allocation priority"));
67 
68 #endif // #ifdef LLVM_HAVE_TFLITE
69 
70 namespace llvm {
71 
72 static const std::vector<int64_t> PerLiveRangeShape{1};
73 
74 #define RA_PRIORITY_FEATURES_LIST(M)                                           \
75   M(int64_t, li_size, PerLiveRangeShape, "size")                               \
76   M(int64_t, stage, PerLiveRangeShape, "stage")                                \
77   M(float, weight, PerLiveRangeShape, "weight")
78 
79 #define DecisionName "priority"
80 static const TensorSpec DecisionSpec =
81     TensorSpec::createSpec<float>(DecisionName, {1});
82 
83 
84 // Named features index.
85 enum FeatureIDs {
86 #define _FEATURE_IDX(_, name, __, ___) name,
87   RA_PRIORITY_FEATURES_LIST(_FEATURE_IDX)
88 #undef _FEATURE_IDX
89       FeatureCount
90 };
91 
92 class MLPriorityAdvisor : public RegAllocPriorityAdvisor {
93 public:
94   MLPriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
95                     SlotIndexes *const Indexes, MLModelRunner *Runner);
96 
97 protected:
98   const RegAllocPriorityAdvisor &getDefaultAdvisor() const {
99     return static_cast<const RegAllocPriorityAdvisor &>(DefaultAdvisor);
100   }
101 
102   // The assumption is that if the Runner could not be constructed, we emit-ed
103   // error, and we shouldn't be asking for it here.
104   const MLModelRunner &getRunner() const { return *Runner; }
105   float getPriorityImpl(const LiveInterval &LI) const;
106   unsigned getPriority(const LiveInterval &LI) const override;
107 
108 private:
109   const DefaultPriorityAdvisor DefaultAdvisor;
110   MLModelRunner *const Runner;
111 };
112 
113 #define _DECL_FEATURES(type, name, shape, _)                                   \
114   TensorSpec::createSpec<type>(#name, shape),
115 
116 static const std::vector<TensorSpec> InputFeatures{
117     {RA_PRIORITY_FEATURES_LIST(_DECL_FEATURES)},
118 };
119 #undef _DECL_FEATURES
120 
121 // ===================================
122 // Release (AOT) - specifics
123 // ===================================
124 class ReleaseModePriorityAdvisorAnalysis final
125     : public RegAllocPriorityAdvisorAnalysis {
126 public:
127   ReleaseModePriorityAdvisorAnalysis()
128       : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Release) {}
129   // support for isa<> and dyn_cast.
130   static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
131     return R->getAdvisorMode() == AdvisorMode::Release;
132   }
133 
134 private:
135   void getAnalysisUsage(AnalysisUsage &AU) const override {
136     AU.setPreservesAll();
137     AU.addRequired<SlotIndexesWrapperPass>();
138     RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
139   }
140 
141   std::unique_ptr<RegAllocPriorityAdvisor>
142   getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
143     if (!Runner) {
144       if (InteractiveChannelBaseName.empty())
145         Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
146             MF.getFunction().getContext(), InputFeatures, DecisionName);
147       else
148         Runner = std::make_unique<InteractiveModelRunner>(
149             MF.getFunction().getContext(), InputFeatures, DecisionSpec,
150             InteractiveChannelBaseName + ".out",
151             InteractiveChannelBaseName + ".in");
152     }
153     return std::make_unique<MLPriorityAdvisor>(
154         MF, RA, &getAnalysis<SlotIndexesWrapperPass>().getSI(), Runner.get());
155   }
156   std::unique_ptr<MLModelRunner> Runner;
157 };
158 
159 // ===================================
160 // Development mode-specifics
161 // ===================================
162 //
163 // Features we log
164 #ifdef LLVM_HAVE_TFLITE
165 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
166 
167 #define _DECL_TRAIN_FEATURES(type, name, shape, _)                             \
168   TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
169 
170 static const std::vector<TensorSpec> TrainingInputFeatures{
171     {RA_PRIORITY_FEATURES_LIST(_DECL_TRAIN_FEATURES)
172          TensorSpec::createSpec<float>("action_discount", {1}),
173      TensorSpec::createSpec<int32_t>("action_step_type", {1}),
174      TensorSpec::createSpec<float>("action_reward", {1})}};
175 #undef _DECL_TRAIN_FEATURES
176 
177 class DevelopmentModePriorityAdvisor : public MLPriorityAdvisor {
178 public:
179   DevelopmentModePriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
180                                  SlotIndexes *const Indexes,
181                                  MLModelRunner *Runner, Logger *Log)
182       : MLPriorityAdvisor(MF, RA, Indexes, Runner), Log(Log) {}
183 
184 private:
185   unsigned getPriority(const LiveInterval &LI) const override;
186   Logger *const Log;
187 };
188 
189 class DevelopmentModePriorityAdvisorAnalysis final
190     : public RegAllocPriorityAdvisorAnalysis {
191 public:
192   DevelopmentModePriorityAdvisorAnalysis()
193       : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Development) {}
194   // support for isa<> and dyn_cast.
195   static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
196     return R->getAdvisorMode() == AdvisorMode::Development;
197   }
198 
199   void logRewardIfNeeded(const MachineFunction &MF,
200                          llvm::function_ref<float()> GetReward) override {
201     if (!Log || !Log->hasAnyObservationForContext(MF.getName()))
202       return;
203     // The function pass manager would run all the function passes for a
204     // function, so we assume the last context belongs to this function. If
205     // this invariant ever changes, we can implement at that time switching
206     // contexts. At this point, it'd be an error
207     if (Log->currentContext() != MF.getName()) {
208       MF.getFunction().getContext().emitError(
209           "The training log context shouldn't have had changed.");
210     }
211     if (Log->hasObservationInProgress())
212       Log->logReward<float>(GetReward());
213   }
214 
215 private:
216   void getAnalysisUsage(AnalysisUsage &AU) const override {
217     AU.setPreservesAll();
218     AU.addRequired<SlotIndexesWrapperPass>();
219     RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
220   }
221 
222   // Save all the logs (when requested).
223   bool doInitialization(Module &M) override {
224     LLVMContext &Ctx = M.getContext();
225     if (ModelUnderTraining.empty() && TrainingLog.empty()) {
226       Ctx.emitError("Regalloc development mode should be requested with at "
227                     "least logging enabled and/or a training model");
228       return false;
229     }
230     if (ModelUnderTraining.empty())
231       Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
232     else
233       Runner = ModelUnderTrainingRunner::createAndEnsureValid(
234           Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
235     if (!Runner) {
236       Ctx.emitError("Regalloc: could not set up the model runner");
237       return false;
238     }
239     if (TrainingLog.empty())
240       return false;
241     std::error_code EC;
242     auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
243     if (EC) {
244       M.getContext().emitError(EC.message() + ":" + TrainingLog);
245       return false;
246     }
247     std::vector<TensorSpec> LFS = InputFeatures;
248     if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
249       append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
250     // We always log the output; in particular, if we're not evaluating, we
251     // don't have an output spec json file. That's why we handle the
252     // 'normal' output separately.
253     LFS.push_back(DecisionSpec);
254 
255     Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
256                                    /*IncludeReward*/ true);
257     return false;
258   }
259 
260   std::unique_ptr<RegAllocPriorityAdvisor>
261   getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
262     if (!Runner)
263       return nullptr;
264     if (Log) {
265       Log->switchContext(MF.getName());
266     }
267 
268     return std::make_unique<DevelopmentModePriorityAdvisor>(
269         MF, RA, &getAnalysis<SlotIndexesWrapperPass>().getSI(), Runner.get(),
270         Log.get());
271   }
272 
273   std::unique_ptr<MLModelRunner> Runner;
274   std::unique_ptr<Logger> Log;
275 };
276 #endif //#ifdef LLVM_HAVE_TFLITE
277 
278 } // namespace llvm
279 
280 RegAllocPriorityAdvisorAnalysis *llvm::createReleaseModePriorityAdvisor() {
281   return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() ||
282                  !InteractiveChannelBaseName.empty()
283              ? new ReleaseModePriorityAdvisorAnalysis()
284              : nullptr;
285 }
286 
287 MLPriorityAdvisor::MLPriorityAdvisor(const MachineFunction &MF,
288                                      const RAGreedy &RA,
289                                      SlotIndexes *const Indexes,
290                                      MLModelRunner *Runner)
291     : RegAllocPriorityAdvisor(MF, RA, Indexes), DefaultAdvisor(MF, RA, Indexes),
292       Runner(std::move(Runner)) {
293   assert(this->Runner);
294   Runner->switchContext(MF.getName());
295 }
296 
297 float MLPriorityAdvisor::getPriorityImpl(const LiveInterval &LI) const {
298   const unsigned Size = LI.getSize();
299   LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
300 
301   *Runner->getTensor<int64_t>(0) = static_cast<int64_t>(Size);
302   *Runner->getTensor<int64_t>(1) = static_cast<int64_t>(Stage);
303   *Runner->getTensor<float>(2) = static_cast<float>(LI.weight());
304 
305   return Runner->evaluate<float>();
306 }
307 
308 unsigned MLPriorityAdvisor::getPriority(const LiveInterval &LI) const {
309   return static_cast<unsigned>(getPriorityImpl(LI));
310 }
311 
312 #ifdef LLVM_HAVE_TFLITE
313 RegAllocPriorityAdvisorAnalysis *llvm::createDevelopmentModePriorityAdvisor() {
314   return new DevelopmentModePriorityAdvisorAnalysis();
315 }
316 
317 unsigned
318 DevelopmentModePriorityAdvisor::getPriority(const LiveInterval &LI) const {
319   double Prio = 0;
320 
321   if (isa<ModelUnderTrainingRunner>(getRunner())) {
322     Prio = MLPriorityAdvisor::getPriorityImpl(LI);
323   } else {
324     Prio = getDefaultAdvisor().getPriority(LI);
325   }
326 
327   if (TrainingLog.empty())
328     return Prio;
329 
330   // TODO(mtrofin): when we support optional rewards, this can go away. In the
331   // meantime, we log the "pretend" reward (0) for the previous observation
332   // before starting a new one.
333   if (Log->hasObservationInProgress())
334     Log->logReward<float>(0.0);
335 
336   Log->startObservation();
337   size_t CurrentFeature = 0;
338   for (; CurrentFeature < InputFeatures.size(); ++CurrentFeature) {
339     Log->logTensorValue(CurrentFeature,
340                         reinterpret_cast<const char *>(
341                             getRunner().getTensorUntyped(CurrentFeature)));
342   }
343 
344   if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) {
345     for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
346          ++I, ++CurrentFeature)
347       Log->logTensorValue(
348           CurrentFeature,
349           reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
350   }
351 
352   float Ret = static_cast<float>(Prio);
353   Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
354   Log->endObservation();
355 
356   return static_cast<unsigned>(Prio);
357 }
358 
359 #endif // #ifdef LLVM_HAVE_TFLITE
360