1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the ML eviction advisor and reward injection pass 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AllocationOrder.h" 14 #include "RegAllocEvictionAdvisor.h" 15 #include "RegAllocGreedy.h" 16 #include "llvm/Analysis/InteractiveModelRunner.h" 17 #include "llvm/Analysis/MLModelRunner.h" 18 #include "llvm/Analysis/TensorSpec.h" 19 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) 20 #include "llvm/Analysis/ModelUnderTrainingRunner.h" 21 #include "llvm/Analysis/NoInferenceModelRunner.h" 22 #include "llvm/Analysis/Utils/TrainingLogger.h" 23 #endif 24 #include "MLRegAllocEvictAdvisor.h" 25 #include "llvm/Analysis/ReleaseModeModelRunner.h" 26 #include "llvm/CodeGen/CalcSpillWeights.h" 27 #include "llvm/CodeGen/LiveRegMatrix.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/VirtRegMap.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/PassRegistry.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 42 #include <array> 43 #include <bitset> 44 #include <memory> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "ml-regalloc" 49 50 // Generated header in release (AOT) mode 51 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) 52 #include "RegAllocEvictModel.h" 53 using CompiledModelType = RegAllocEvictModel; 54 #else 55 using CompiledModelType = NoopSavedModelImpl; 56 #endif 57 58 static cl::opt<std::string> InteractiveChannelBaseName( 59 "regalloc-evict-interactive-channel-base", cl::Hidden, 60 cl::desc( 61 "Base file path for the interactive mode. The incoming filename should " 62 "have the name <regalloc-evict-interactive-channel-base>.in, while the " 63 "outgoing name should be " 64 "<regalloc-evict-interactive-channel-base>.out")); 65 66 // Options that only make sense in development mode 67 #ifdef LLVM_HAVE_TFLITE 68 #include "RegAllocScore.h" 69 #include "llvm/Analysis/Utils/TFUtils.h" 70 71 static cl::opt<std::string> TrainingLog( 72 "regalloc-training-log", cl::Hidden, 73 cl::desc("Training log for the register allocator eviction model")); 74 75 static cl::opt<std::string> ModelUnderTraining( 76 "regalloc-model", cl::Hidden, 77 cl::desc("The model being trained for register allocation eviction")); 78 79 static cl::opt<bool> EnableDevelopmentFeatures( 80 "regalloc-enable-development-features", cl::Hidden, 81 cl::desc("Whether or not to enable features under development for the ML " 82 "regalloc advisor")); 83 84 #else 85 static const bool EnableDevelopmentFeatures = false; 86 #endif // #ifdef LLVM_HAVE_TFLITE 87 88 /// The score injection pass. 89 /// This pass calculates the score for a function and inserts it in the log, but 90 /// this happens only in development mode. It's a no-op otherwise. 91 namespace llvm { 92 extern cl::opt<unsigned> EvictInterferenceCutoff; 93 94 class RegAllocScoring : public MachineFunctionPass { 95 public: 96 static char ID; 97 98 RegAllocScoring() : MachineFunctionPass(ID) { 99 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); 100 } 101 102 ~RegAllocScoring() override = default; 103 104 StringRef getPassName() const override { 105 return "Register Allocation Pass Scoring"; 106 } 107 108 /// RegAllocReward analysis usage. 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.setPreservesAll(); 111 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 112 AU.addRequired<RegAllocPriorityAdvisorAnalysis>(); 113 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 114 MachineFunctionPass::getAnalysisUsage(AU); 115 } 116 117 /// Performs this pass 118 bool runOnMachineFunction(MachineFunction &) override; 119 }; 120 121 char RegAllocScoring::ID = 0; 122 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } 123 124 } // namespace llvm 125 126 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", 127 "Register Allocation Scoring Pass", false, false) 128 129 // =================================== 130 // Common ML Advisor declarations 131 // =================================== 132 namespace { 133 // The model can only accept a specified number of opcodes and will error it if 134 // fed an opcode it hasn't seen before. This constant sets the current cutoff. 135 static const int OpcodeValueCutoff = 17716; 136 137 // Most features are as described above, so we'll reuse this vector in defining 138 // them. 139 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; 140 141 // -------------- 142 // Features table 143 // -------------- 144 // For each interfering live range (incl. the candidate) we collect a number of 145 // features. However, because the features are of different types (and because 146 // of ML best practices), we organize the tensors per feature, not per 147 // candidate. Each such tensor has a scalar value corresponding to the 148 // interferring live range at that position, in the order in AllocationOrder. 149 // The last position corresponds to the virt reg seeking allocation. 150 // Exception to all that is the progression feature, which is just a scalar (see 151 // its documentation for details). 152 // Note on naming: the "_by_max" are normalized using the largest value of that 153 // tensor, as observed in the current decision making stage (i.e. for the 154 // current call to the advisor's tryFindEvictionCandidate) 155 // 156 // The feature list format: type, name, shape, documentation. 157 // Note: we can really just use int64 and float, hence the modeling of some 158 // bools as int64 values. 159 #define RA_EVICT_FEATURES_LIST(M) \ 160 M(int64_t, mask, PerLiveRangeShape, \ 161 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ 162 "it " \ 163 "can't be evicted)") \ 164 M(int64_t, is_free, PerLiveRangeShape, \ 165 "boolean values, 1 if this phys reg is actually free (no interferences)") \ 166 M(float, nr_urgent, PerLiveRangeShape, \ 167 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ 168 "to break cascades") \ 169 M(float, nr_broken_hints, PerLiveRangeShape, \ 170 "if this position were evicted, how many broken hints would there be") \ 171 M(int64_t, is_hint, PerLiveRangeShape, \ 172 "is this a preferred phys reg for the candidate") \ 173 M(int64_t, is_local, PerLiveRangeShape, \ 174 "is this live range local to a basic block") \ 175 M(float, nr_rematerializable, PerLiveRangeShape, \ 176 "nr rematerializable ranges") \ 177 M(float, nr_defs_and_uses, PerLiveRangeShape, \ 178 "bb freq - weighed nr defs and uses") \ 179 M(float, weighed_reads_by_max, PerLiveRangeShape, \ 180 "bb freq - weighed nr of reads, normalized") \ 181 M(float, weighed_writes_by_max, PerLiveRangeShape, \ 182 "bb feq - weighed nr of writes, normalized") \ 183 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ 184 "bb freq - weighed nr of uses that are both read and writes, normalized") \ 185 M(float, weighed_indvars_by_max, PerLiveRangeShape, \ 186 "bb freq - weighed nr of uses that are indvars, normalized") \ 187 M(float, hint_weights_by_max, PerLiveRangeShape, \ 188 "bb freq - weighed nr of uses that are hints, normalized") \ 189 M(float, start_bb_freq_by_max, PerLiveRangeShape, \ 190 "the freq in the start block, normalized") \ 191 M(float, end_bb_freq_by_max, PerLiveRangeShape, \ 192 "freq of end block, normalized") \ 193 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ 194 "hottest BB freq, normalized") \ 195 M(float, liverange_size, PerLiveRangeShape, \ 196 "size (instr index diff) of the LR") \ 197 M(float, use_def_density, PerLiveRangeShape, \ 198 "the max weight, as computed by the manual heuristic") \ 199 M(int64_t, max_stage, PerLiveRangeShape, \ 200 "largest stage of an interval in this LR") \ 201 M(int64_t, min_stage, PerLiveRangeShape, \ 202 "lowest stage of an interval in this LR") \ 203 M(float, progress, {1}, "ratio of current queue size to initial size") 204 205 #ifdef LLVM_HAVE_TFLITE 206 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \ 207 M(int64_t, instructions, InstructionsShape, \ 208 "Opcodes of the instructions covered by the eviction problem") 209 210 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \ 211 M(int64_t, instructions_mapping, InstructionsMappingShape, \ 212 "A binary matrix mapping LRs to instruction opcodes") \ 213 M(float, mbb_frequencies, MBBFrequencyShape, \ 214 "A vector of machine basic block frequencies") \ 215 M(int64_t, mbb_mapping, InstructionsShape, \ 216 "A vector of indices mapping instructions to MBBs") 217 #else 218 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) 219 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) 220 #endif 221 222 // The model learns to pick one of the mask == 1 interferences. This is the 223 // name of the output tensor. The contract with the model is that the output 224 // will be guaranteed to be to a mask == 1 position. Using a macro here to 225 // avoid 'not used' warnings (and keep cond compilation to a minimum) 226 #define DecisionName "index_to_evict" 227 static const TensorSpec DecisionSpec = 228 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 229 230 // Named features index. 231 enum FeatureIDs { 232 #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name 233 #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), 234 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, 235 #ifdef LLVM_HAVE_TFLITE 236 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, 237 #else 238 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) 239 #endif // #ifdef LLVM_HAVE_TFLITE 240 RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount 241 #undef _FEATURE_IDX 242 #undef _FEATURE_IDX_SIMPLE 243 }; 244 245 // The ML advisor will typically have a sparse input to the evaluator, because 246 // various phys regs won't be available. It's easier (maintenance-wise) to 247 // bulk-reset the state of the evaluator each time we are about to use it 248 // again. 249 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { 250 size_t Ret = sizeof(T); 251 for (const auto V : Shape) 252 Ret *= V; 253 return Ret; 254 } 255 256 void resetInputs(MLModelRunner &Runner) { 257 #define _RESET(TYPE, NAME, SHAPE, __) \ 258 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ 259 getTotalSize<TYPE>(SHAPE)); 260 RA_EVICT_FEATURES_LIST(_RESET) 261 if (EnableDevelopmentFeatures) { 262 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) 263 RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) 264 #undef _RESET 265 } 266 } 267 268 // Per-live interval components that get aggregated into the feature values 269 // that will be passed to the evaluator. 270 struct LIFeatureComponents { 271 double R = 0; 272 double W = 0; 273 double RW = 0; 274 double IndVarUpdates = 0; 275 double HintWeights = 0.0; 276 int64_t NrDefsAndUses = 0; 277 float HottestBlockFreq = 0.0; 278 bool IsRemat = false; 279 }; 280 281 using CandidateRegList = 282 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; 283 using FeaturesListNormalizer = 284 llvm::SmallVector<float, FeatureIDs::FeatureCount>; 285 286 /// The ML evictor (commonalities between release and development mode) 287 class MLEvictAdvisor : public RegAllocEvictionAdvisor { 288 public: 289 MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 290 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, 291 const MachineLoopInfo &Loops); 292 293 protected: 294 const RegAllocEvictionAdvisor &getDefaultAdvisor() const { 295 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); 296 } 297 298 // The assumption is that if the Runner could not be constructed, we emit-ed 299 // error, and we shouldn't be asking for it here. 300 const MLModelRunner &getRunner() const { return *Runner; } 301 302 /// This just calls Evaluate on the Runner, but in the development mode 303 /// case, if we're just capturing the log of the default advisor, it needs 304 /// to call the latter instead, so we need to pass all the necessary 305 /// parameters for it. In the development case, it will also log. 306 virtual int64_t 307 tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, 308 const AllocationOrder &Order, 309 unsigned OrderLimit, uint8_t CostPerUseLimit, 310 const SmallVirtRegSet &FixedRegisters) const; 311 312 /// Load the features of the given VirtReg (allocated or not) at column Pos, 313 /// but if that can't be evicted, return false instead. 314 bool 315 loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, 316 bool IsHint, const SmallVirtRegSet &FixedRegisters, 317 llvm::SmallVectorImpl<float> &Largest, size_t Pos, 318 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; 319 320 private: 321 static float getInitialQueueSize(const MachineFunction &MF); 322 323 MCRegister tryFindEvictionCandidate( 324 const LiveInterval &VirtReg, const AllocationOrder &Order, 325 uint8_t CostPerUseLimit, 326 const SmallVirtRegSet &FixedRegisters) const override; 327 328 void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, 329 llvm::SmallVectorImpl<float> &Largest, size_t Pos, 330 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent, 331 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; 332 333 // Point-in-time: we didn't learn this, so we always delegate to the 334 // default. 335 bool canEvictHintInterference( 336 const LiveInterval &VirtReg, MCRegister PhysReg, 337 const SmallVirtRegSet &FixedRegisters) const override { 338 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, 339 FixedRegisters); 340 } 341 342 const LIFeatureComponents & 343 getLIFeatureComponents(const LiveInterval &LI) const; 344 345 // Hold on to a default advisor for: 346 // 1) the implementation of canEvictHintInterference, because we didn't 347 // learn that nuance yet; 2) for bootstrapping (logging) in the development 348 // mode case. 349 const DefaultEvictionAdvisor DefaultAdvisor; 350 MLModelRunner *const Runner; 351 const MachineBlockFrequencyInfo &MBFI; 352 const MachineLoopInfo &Loops; 353 354 // Indices of those features we don't want to normalize. 355 // This could be static and shared, but its initialization is non-trivial. 356 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; 357 const float InitialQSize; 358 359 using RegID = unsigned; 360 mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; 361 }; 362 363 #define _DECL_FEATURES(type, name, shape, _) \ 364 TensorSpec::createSpec<type>(#name, shape), 365 366 // =================================== 367 // Release (AOT) - specifics 368 // =================================== 369 class ReleaseModeEvictionAdvisorAnalysis final 370 : public RegAllocEvictionAdvisorAnalysis { 371 public: 372 ReleaseModeEvictionAdvisorAnalysis() 373 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) { 374 if (EnableDevelopmentFeatures) { 375 InputFeatures = {RA_EVICT_FEATURES_LIST( 376 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) 377 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; 378 } else { 379 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; 380 } 381 } 382 // support for isa<> and dyn_cast. 383 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 384 return R->getAdvisorMode() == AdvisorMode::Release; 385 } 386 387 private: 388 std::vector<TensorSpec> InputFeatures; 389 390 void getAnalysisUsage(AnalysisUsage &AU) const override { 391 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 392 AU.addRequired<MachineLoopInfoWrapperPass>(); 393 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 394 } 395 396 std::unique_ptr<RegAllocEvictionAdvisor> 397 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { 398 if (!Runner) { 399 if (InteractiveChannelBaseName.empty()) 400 Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( 401 MF.getFunction().getContext(), InputFeatures, DecisionName); 402 else 403 Runner = std::make_unique<InteractiveModelRunner>( 404 MF.getFunction().getContext(), InputFeatures, DecisionSpec, 405 InteractiveChannelBaseName + ".out", 406 InteractiveChannelBaseName + ".in"); 407 } 408 return std::make_unique<MLEvictAdvisor>( 409 MF, RA, Runner.get(), 410 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(), 411 getAnalysis<MachineLoopInfoWrapperPass>().getLI()); 412 } 413 std::unique_ptr<MLModelRunner> Runner; 414 }; 415 416 // =================================== 417 // Development mode-specifics 418 // =================================== 419 // 420 // Features we log 421 #ifdef LLVM_HAVE_TFLITE 422 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); 423 424 // Features we bind on the model. The tensor names have a prefix, and we also 425 // need to include some tensors that are expected to be present by the 426 // training algo. 427 // TODO: can we just get rid of these? 428 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ 429 TensorSpec::createSpec<type>(std::string("action_") + #name, shape), 430 431 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { 432 public: 433 DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 434 MLModelRunner *Runner, 435 const MachineBlockFrequencyInfo &MBFI, 436 const MachineLoopInfo &Loops, Logger *Log) 437 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} 438 439 private: 440 int64_t tryFindEvictionCandidatePosition( 441 const LiveInterval &VirtReg, const AllocationOrder &Order, 442 unsigned OrderLimit, uint8_t CostPerUseLimit, 443 const SmallVirtRegSet &FixedRegisters) const override; 444 445 Logger *const Log; 446 }; 447 448 class DevelopmentModeEvictionAdvisorAnalysis final 449 : public RegAllocEvictionAdvisorAnalysis { 450 public: 451 DevelopmentModeEvictionAdvisorAnalysis() 452 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) { 453 if (EnableDevelopmentFeatures) { 454 InputFeatures = {RA_EVICT_FEATURES_LIST( 455 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) 456 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; 457 TrainingInputFeatures = { 458 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 459 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) 460 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) 461 TensorSpec::createSpec<float>("action_discount", {1}), 462 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 463 TensorSpec::createSpec<float>("action_reward", {1})}; 464 } else { 465 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; 466 TrainingInputFeatures = { 467 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) 468 TensorSpec::createSpec<float>("action_discount", {1}), 469 TensorSpec::createSpec<int32_t>("action_step_type", {1}), 470 TensorSpec::createSpec<float>("action_reward", {1})}; 471 } 472 } 473 // support for isa<> and dyn_cast. 474 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { 475 return R->getAdvisorMode() == AdvisorMode::Development; 476 } 477 478 void logRewardIfNeeded(const MachineFunction &MF, 479 llvm::function_ref<float()> GetReward) override { 480 if (!Log || !Log->hasAnyObservationForContext(MF.getName())) 481 return; 482 // The function pass manager would run all the function passes for a 483 // function, so we assume the last context belongs to this function. If 484 // this invariant ever changes, we can implement at that time switching 485 // contexts. At this point, it'd be an error 486 if (Log->currentContext() != MF.getName()) { 487 MF.getFunction().getContext().emitError( 488 "The training log context shouldn't have had changed."); 489 } 490 if (Log->hasObservationInProgress()) 491 Log->logReward<float>(GetReward()); 492 } 493 494 private: 495 std::vector<TensorSpec> InputFeatures; 496 std::vector<TensorSpec> TrainingInputFeatures; 497 498 void getAnalysisUsage(AnalysisUsage &AU) const override { 499 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 500 AU.addRequired<MachineLoopInfoWrapperPass>(); 501 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); 502 } 503 504 bool doInitialization(Module &M) override { 505 LLVMContext &Ctx = M.getContext(); 506 if (ModelUnderTraining.empty() && TrainingLog.empty()) { 507 Ctx.emitError("Regalloc development mode should be requested with at " 508 "least logging enabled and/or a training model"); 509 return false; 510 } 511 if (ModelUnderTraining.empty()) 512 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); 513 else 514 Runner = ModelUnderTrainingRunner::createAndEnsureValid( 515 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); 516 if (!Runner) { 517 Ctx.emitError("Regalloc: could not set up the model runner"); 518 return false; 519 } 520 if (TrainingLog.empty()) 521 return false; 522 std::error_code EC; 523 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); 524 if (EC) { 525 M.getContext().emitError(EC.message() + ":" + TrainingLog); 526 return false; 527 } 528 std::vector<TensorSpec> LFS = InputFeatures; 529 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) 530 append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); 531 // We always log the output; in particular, if we're not evaluating, we 532 // don't have an output spec json file. That's why we handle the 533 // 'normal' output separately. 534 LFS.push_back(DecisionSpec); 535 536 Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, 537 /*IncludeReward*/ true); 538 return false; 539 } 540 541 std::unique_ptr<RegAllocEvictionAdvisor> 542 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { 543 if (!Runner) 544 return nullptr; 545 if (Log) 546 Log->switchContext(MF.getName()); 547 return std::make_unique<DevelopmentModeEvictAdvisor>( 548 MF, RA, Runner.get(), 549 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(), 550 getAnalysis<MachineLoopInfoWrapperPass>().getLI(), Log.get()); 551 } 552 553 std::unique_ptr<MLModelRunner> Runner; 554 std::unique_ptr<Logger> Log; 555 }; 556 557 #endif //#ifdef LLVM_HAVE_TFLITE 558 } // namespace 559 560 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { 561 auto &MRI = MF.getRegInfo(); 562 float Ret = 0.0; 563 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 564 Register Reg = Register::index2VirtReg(I); 565 if (MRI.reg_nodbg_empty(Reg)) 566 continue; 567 ++Ret; 568 } 569 return Ret; 570 } 571 572 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, 573 MLModelRunner *Runner, 574 const MachineBlockFrequencyInfo &MBFI, 575 const MachineLoopInfo &Loops) 576 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), 577 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), 578 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { 579 assert(this->Runner); 580 Runner->switchContext(MF.getName()); 581 DoNotNormalize.set(FeatureIDs::mask); 582 DoNotNormalize.set(FeatureIDs::is_free); 583 DoNotNormalize.set(FeatureIDs::is_hint); 584 DoNotNormalize.set(FeatureIDs::is_local); 585 DoNotNormalize.set(FeatureIDs::min_stage); 586 DoNotNormalize.set(FeatureIDs::max_stage); 587 DoNotNormalize.set(FeatureIDs::progress); 588 } 589 590 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( 591 const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, 592 const SmallVirtRegSet &) const { 593 int64_t Ret = Runner->evaluate<int64_t>(); 594 assert(Ret >= 0); 595 assert(Ret <= CandidateVirtRegPos); 596 return Ret; 597 } 598 599 bool MLEvictAdvisor::loadInterferenceFeatures( 600 const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 601 const SmallVirtRegSet &FixedRegisters, 602 llvm::SmallVectorImpl<float> &Largest, size_t Pos, 603 llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { 604 // It is only possible to evict virtual register interference. 605 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { 606 // leave unavailable 607 return false; 608 } 609 610 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 611 int64_t LocalIntfs = 0; 612 float NrUrgent = 0.0f; 613 614 // The cascade tracking is the same as in the default advisor 615 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); 616 617 SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; 618 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 619 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); 620 // Different from the default heuristic, we don't make any assumptions 621 // about what having more than 10 results in the query may mean. 622 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); 623 if (IFIntervals.empty() && InterferingIntervals.empty()) 624 continue; 625 if (IFIntervals.size() >= EvictInterferenceCutoff) 626 return false; 627 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); 628 for (const LiveInterval *Intf : reverse(IFIntervals)) { 629 assert(Intf->reg().isVirtual() && 630 "Only expecting virtual register interference from query"); 631 // This is the same set of legality checks as in the default case: don't 632 // try to evict fixed regs or 'done' ones. Also don't break cascades, 633 // except in the urgent case, with the same nuances used in the default 634 // heuristic. 635 // We could try sharing this between the advisors, but it may end up 636 // more complex than it is right now. 637 if (FixedRegisters.count(Intf->reg())) 638 return false; 639 if (RA.getExtraInfo().getStage(*Intf) == RS_Done) 640 return false; 641 bool Urgent = 642 !VirtReg.isSpillable() && 643 (Intf->isSpillable() || 644 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 645 RegClassInfo.getNumAllocatableRegs( 646 MRI->getRegClass(Intf->reg()))); 647 // Only evict older cascades or live ranges without a cascade. 648 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); 649 if (Cascade <= IntfCascade) { 650 if (!Urgent) 651 return false; 652 ++NrUrgent; 653 } 654 655 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && 656 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); 657 } 658 } 659 // OK, so if we made it this far, this LR is an eviction candidate, load its 660 // features. 661 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, 662 NrUrgent, LRPosInfo); 663 return true; 664 } 665 666 MCRegister MLEvictAdvisor::tryFindEvictionCandidate( 667 const LiveInterval &VirtReg, const AllocationOrder &Order, 668 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 669 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); 670 if (!MaybeOrderLimit) 671 return MCRegister::NoRegister; 672 unsigned OrderLimit = *MaybeOrderLimit; 673 674 // The heuristic sets initial costs such as, if CostPerUseLimit is 675 // max<uint8_t>, then any of the costs of the legally-evictable intervals 676 // would be lower. When that happens, one of those will be selected. 677 // Therefore, we allow the candidate be selected, unless the candidate is 678 // unspillable, in which case it would be incorrect to not find a register 679 // for it. 680 const bool MustFindEviction = 681 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); 682 // Number of available candidates - if 0, no need to continue. 683 size_t Available = 0; 684 // Make sure we don't have leftover partial state from an attempt where we 685 // had no available candidates and bailed out early. 686 resetInputs(*Runner); 687 688 // Track the index->register mapping because AllocationOrder doesn't do that 689 // and we'd have to scan it. 690 // Also track their mask, to write asserts/debug. 691 CandidateRegList Regs; 692 Regs.fill({0, false}); 693 694 // Track the largest value of features seen during this eviction session. We 695 // only normalize (some of) the float features, but it's just simpler to 696 // dimension 'Largest' to all the features, especially since we have the 697 // 'DoNotNormalize' list. 698 FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); 699 700 // Same overal idea as in the default eviction policy - we visit the values 701 // of AllocationOrder one at a time. If it's not legally available, we mask 702 // off the corresponding feature column (==do nothing because we already 703 // reset all the features to 0) Use Pos to capture the column we load 704 // features at - in AllocationOrder order. 705 size_t Pos = 0; 706 SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; 707 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 708 ++I, ++Pos) { 709 MCRegister PhysReg = *I; 710 assert(!Regs[Pos].second); 711 assert(PhysReg); 712 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { 713 continue; 714 } 715 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, 716 Largest, Pos, LRPosInfo)) { 717 ++Available; 718 Regs[Pos] = std::make_pair(PhysReg, true); 719 } 720 } 721 if (Available == 0) { 722 // Nothing to decide, nothing to learn. 723 assert(!MustFindEviction); 724 return MCRegister::NoRegister; 725 } 726 const size_t ValidPosLimit = Pos; 727 // If we must find eviction, the candidate should be masked out of the 728 // decision making process. 729 Regs[CandidateVirtRegPos].second = !MustFindEviction; 730 if (!MustFindEviction) 731 extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, 732 CandidateVirtRegPos, /*IsHint*/ 0, 733 /*LocalIntfsCount*/ 0, 734 /*NrUrgent*/ 0.0, LRPosInfo); 735 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " 736 "nothing to allocate initially."); 737 #ifdef LLVM_HAVE_TFLITE 738 if (EnableDevelopmentFeatures) { 739 extractInstructionFeatures( 740 LRPosInfo, Runner, 741 [this](SlotIndex InputIndex) -> int { 742 auto *CurrentMachineInstruction = 743 LIS->getInstructionFromIndex(InputIndex); 744 if (!CurrentMachineInstruction) { 745 return -1; 746 } 747 return CurrentMachineInstruction->getOpcode(); 748 }, 749 [this](SlotIndex InputIndex) -> float { 750 auto *CurrentMachineInstruction = 751 LIS->getInstructionFromIndex(InputIndex); 752 return MBFI.getBlockFreqRelativeToEntryBlock( 753 CurrentMachineInstruction->getParent()); 754 }, 755 [this](SlotIndex InputIndex) -> MachineBasicBlock * { 756 auto *CurrentMachineInstruction = 757 LIS->getInstructionFromIndex(InputIndex); 758 return CurrentMachineInstruction->getParent(); 759 }, 760 FeatureIDs::instructions, FeatureIDs::instructions_mapping, 761 FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, 762 LIS->getSlotIndexes()->getLastIndex()); 763 } 764 #endif // #ifdef LLVM_HAVE_TFLITE 765 // Normalize the features. 766 for (auto &V : Largest) 767 V = V ? V : 1.0; 768 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; 769 ++FeatureIndex) { 770 if (DoNotNormalize.test(FeatureIndex)) 771 continue; 772 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { 773 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; 774 } 775 } 776 *Runner->getTensor<float>(FeatureIDs::progress) = 777 static_cast<float>(RA.getQueueSize()) / InitialQSize; 778 779 // Get a decision. 780 size_t CandidatePos = tryFindEvictionCandidatePosition( 781 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 782 // The contract with the ML side is that CandidatePos is mask == 1 (i.e. 783 // Regs[CandidatePos].second) 784 assert(Regs[CandidatePos].second); 785 if (CandidatePos == CandidateVirtRegPos) { 786 assert(!MustFindEviction); 787 return MCRegister::NoRegister; 788 } 789 assert(CandidatePos < ValidPosLimit); 790 (void)ValidPosLimit; 791 return Regs[CandidatePos].first; 792 } 793 794 const LIFeatureComponents & 795 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { 796 RegID ID = LI.reg().id(); 797 LIFeatureComponents Empty; 798 auto I = CachedFeatures.insert(std::make_pair(ID, Empty)); 799 LIFeatureComponents &Ret = I.first->getSecond(); 800 if (!I.second) 801 return Ret; 802 803 SmallPtrSet<MachineInstr *, 8> Visited; 804 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 805 806 for (MachineRegisterInfo::reg_instr_nodbg_iterator 807 I = MRI->reg_instr_nodbg_begin(LI.reg()), 808 E = MRI->reg_instr_nodbg_end(); 809 I != E;) { 810 MachineInstr *MI = &*(I++); 811 812 ++Ret.NrDefsAndUses; 813 if (!Visited.insert(MI).second) 814 continue; 815 816 if (MI->isIdentityCopy() || MI->isImplicitDef()) 817 continue; 818 819 bool Reads, Writes; 820 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); 821 822 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); 823 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); 824 825 Ret.R += (Reads && !Writes) * Freq; 826 Ret.W += (!Reads && Writes) * Freq; 827 Ret.RW += (Reads && Writes) * Freq; 828 829 auto *MBB = MI->getParent(); 830 auto *Loop = Loops.getLoopFor(MBB); 831 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; 832 833 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) 834 Ret.IndVarUpdates += Freq; 835 836 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) 837 Ret.HintWeights += Freq; 838 } 839 Ret.IsRemat = VirtRegAuxInfo::isRematerializable( 840 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); 841 return Ret; 842 } 843 844 // Overall, this currently mimics what we do for weight calculation, but instead 845 // of accummulating the various features, we keep them separate. 846 void MLEvictAdvisor::extractFeatures( 847 const SmallVectorImpl<const LiveInterval *> &Intervals, 848 llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, 849 int64_t LocalIntfsCount, float NrUrgent, 850 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { 851 int64_t NrDefsAndUses = 0; 852 int64_t NrBrokenHints = 0; 853 double R = 0.0; 854 double W = 0.0; 855 double RW = 0.0; 856 double IndVarUpdates = 0.0; 857 double HintWeights = 0.0; 858 float StartBBFreq = 0.0; 859 float EndBBFreq = 0.0; 860 float HottestBlockFreq = 0.0; 861 int32_t NrRematerializable = 0; 862 float TotalWeight = 0.0; 863 864 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); 865 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); 866 int64_t MaxStage = 0; 867 int64_t MinStage = 868 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); 869 870 for (const auto *L : Intervals) { 871 const LiveInterval &LI = *L; 872 MaxStage = std::max<int64_t>( 873 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 874 MinStage = std::min<int64_t>( 875 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); 876 877 TotalWeight = std::max(TotalWeight, LI.weight()); 878 879 if (LI.beginIndex() < StartSI) 880 StartSI = LI.beginIndex(); 881 882 if (LI.endIndex() > EndSI) 883 EndSI = LI.endIndex(); 884 const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); 885 NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); 886 887 NrDefsAndUses += LIFC.NrDefsAndUses; 888 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); 889 R += LIFC.R; 890 W += LIFC.W; 891 RW += LIFC.RW; 892 893 IndVarUpdates += LIFC.IndVarUpdates; 894 895 HintWeights += LIFC.HintWeights; 896 NrRematerializable += LIFC.IsRemat; 897 898 if (EnableDevelopmentFeatures) { 899 for (auto CurrentSegment : LI) { 900 LRPosInfo.push_back( 901 LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos}); 902 } 903 } 904 } 905 size_t Size = 0; 906 if (!Intervals.empty()) { 907 StartBBFreq = 908 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); 909 if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) 910 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); 911 EndBBFreq = 912 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); 913 Size = StartSI.distance(EndSI); 914 } 915 // Set the features at the column 'Pos'. 916 #define SET(ID, TYPE, VAL) \ 917 do { \ 918 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ 919 if (!DoNotNormalize.test(FeatureIDs::ID)) \ 920 Largest[FeatureIDs::ID] = \ 921 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ 922 } while (false) 923 SET(mask, int64_t, 1); 924 SET(is_free, int64_t, Intervals.empty()); 925 SET(nr_urgent, float, NrUrgent); 926 SET(nr_broken_hints, float, NrBrokenHints); 927 SET(is_hint, int64_t, IsHint); 928 SET(is_local, int64_t, LocalIntfsCount); 929 SET(nr_rematerializable, float, NrRematerializable); 930 SET(nr_defs_and_uses, float, NrDefsAndUses); 931 SET(weighed_reads_by_max, float, R); 932 SET(weighed_writes_by_max, float, W); 933 SET(weighed_read_writes_by_max, float, RW); 934 SET(weighed_indvars_by_max, float, IndVarUpdates); 935 SET(hint_weights_by_max, float, HintWeights); 936 SET(start_bb_freq_by_max, float, StartBBFreq); 937 SET(end_bb_freq_by_max, float, EndBBFreq); 938 SET(hottest_bb_freq_by_max, float, HottestBlockFreq); 939 SET(liverange_size, float, Size); 940 SET(use_def_density, float, TotalWeight); 941 SET(max_stage, int64_t, MaxStage); 942 SET(min_stage, int64_t, MinStage); 943 #undef SET 944 } 945 946 void extractInstructionFeatures( 947 SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, 948 function_ref<int(SlotIndex)> GetOpcode, 949 function_ref<float(SlotIndex)> GetMBBFreq, 950 function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, 951 const int InstructionsIndex, const int InstructionsMappingIndex, 952 const int MBBFreqIndex, const int MBBMappingIndex, 953 const SlotIndex LastIndex) { 954 // This function extracts instruction based features relevant to the eviction 955 // problem currently being solved. This function ends up extracting two 956 // tensors. 957 // 1 - A vector of size max instruction count. It contains the opcodes of the 958 // instructions spanned by all the intervals in the current instance of the 959 // eviction problem. 960 // 2 - A binary mapping matrix of size (LR count * max 961 // instruction count) which maps where the LRs are live to the actual opcodes 962 // for which they are live. 963 // 3 - A vector of size max supported MBB count storing MBB frequencies, 964 // encompassing all of the MBBs covered by the eviction problem. 965 // 4 - A vector of size max instruction count of indices to members of the MBB 966 // frequency vector, mapping each instruction to its associated MBB. 967 968 // Start off by sorting the segments based on the beginning slot index. 969 std::sort( 970 LRPosInfo.begin(), LRPosInfo.end(), 971 [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); 972 size_t InstructionIndex = 0; 973 size_t CurrentSegmentIndex = 0; 974 SlotIndex CurrentIndex = LRPosInfo[0].Begin; 975 std::map<MachineBasicBlock *, size_t> VisitedMBBs; 976 size_t CurrentMBBIndex = 0; 977 // This loop processes all the segments sequentially by starting at the 978 // beginning slot index of the first segment, iterating through all the slot 979 // indices before the end slot index of that segment (while checking for 980 // overlaps with segments that start at greater slot indices). After hitting 981 // that end index, the current segment being processed gets bumped until they 982 // are all processed or the max instruction count is hit, where everything is 983 // just truncated. 984 while (true) { 985 // If the index that we are currently at is within the current segment and 986 // we haven't hit the max instruction count, continue processing the current 987 // segment. 988 while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && 989 InstructionIndex < ModelMaxSupportedInstructionCount) { 990 int CurrentOpcode = GetOpcode(CurrentIndex); 991 // If the current machine instruction is null, skip it 992 if (CurrentOpcode == -1) { 993 // If we're currently at the last index in the SlotIndex analysis, 994 // we can't go any further, so return from the function 995 if (CurrentIndex >= LastIndex) { 996 return; 997 } 998 CurrentIndex = CurrentIndex.getNextIndex(); 999 continue; 1000 } 1001 MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); 1002 if (VisitedMBBs.count(CurrentMBBReference) == 0) { 1003 VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; 1004 ++CurrentMBBIndex; 1005 } 1006 extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs, 1007 GetMBBFreq, CurrentMBBReference, RegallocRunner, 1008 MBBFreqIndex, MBBMappingIndex); 1009 // Current code assumes we're not going to get any disjointed segments 1010 assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); 1011 RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] = 1012 CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; 1013 // set value in the binary mapping matrix for the current instruction 1014 auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; 1015 RegallocRunner->getTensor<int64_t>( 1016 InstructionsMappingIndex)[CurrentSegmentPosition * 1017 ModelMaxSupportedInstructionCount + 1018 InstructionIndex] = 1; 1019 // All of the segments are sorted based on the beginning slot index, but 1020 // this doesn't mean that the beginning slot index of the next segment is 1021 // after the end segment of the one being currently processed. This while 1022 // loop checks for overlapping segments and modifies the portion of the 1023 // column in the mapping matrix for the currently processed instruction 1024 // for the LR it is checking. Also make sure that the beginning of the 1025 // current segment we're checking for overlap in is less than the current 1026 // index, otherwise we're done checking overlaps. 1027 size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; 1028 while (OverlapCheckCurrentSegment < LRPosInfo.size() && 1029 LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { 1030 auto OverlapCurrentSegmentPosition = 1031 LRPosInfo[OverlapCheckCurrentSegment].Pos; 1032 if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { 1033 RegallocRunner->getTensor<int64_t>( 1034 InstructionsMappingIndex)[OverlapCurrentSegmentPosition * 1035 ModelMaxSupportedInstructionCount + 1036 InstructionIndex] = 1; 1037 } 1038 ++OverlapCheckCurrentSegment; 1039 } 1040 ++InstructionIndex; 1041 if (CurrentIndex >= LastIndex) { 1042 return; 1043 } 1044 CurrentIndex = CurrentIndex.getNextIndex(); 1045 } 1046 // if we've just finished processing through the last segment or if we've 1047 // hit the maximum number of instructions, break out of the loop. 1048 if (CurrentSegmentIndex == LRPosInfo.size() - 1 || 1049 InstructionIndex >= ModelMaxSupportedInstructionCount) { 1050 break; 1051 } 1052 // If the segments are not overlapping, we need to move to the beginning 1053 // index of the next segment to avoid having instructions not attached to 1054 // any register. 1055 if (LRPosInfo[CurrentSegmentIndex + 1].Begin > 1056 LRPosInfo[CurrentSegmentIndex].End) { 1057 CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; 1058 } 1059 ++CurrentSegmentIndex; 1060 } 1061 } 1062 1063 void extractMBBFrequency(const SlotIndex CurrentIndex, 1064 const size_t CurrentInstructionIndex, 1065 std::map<MachineBasicBlock *, size_t> &VisitedMBBs, 1066 function_ref<float(SlotIndex)> GetMBBFreq, 1067 MachineBasicBlock *CurrentMBBReference, 1068 MLModelRunner *RegallocRunner, const int MBBFreqIndex, 1069 const int MBBMappingIndex) { 1070 size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; 1071 float CurrentMBBFreq = GetMBBFreq(CurrentIndex); 1072 if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { 1073 RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] = 1074 CurrentMBBFreq; 1075 RegallocRunner->getTensor<int64_t>( 1076 MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; 1077 } 1078 } 1079 1080 // Development mode-specific implementations 1081 #ifdef LLVM_HAVE_TFLITE 1082 1083 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { 1084 return new DevelopmentModeEvictionAdvisorAnalysis(); 1085 } 1086 1087 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( 1088 const LiveInterval &VirtReg, const AllocationOrder &Order, 1089 unsigned OrderLimit, uint8_t CostPerUseLimit, 1090 const SmallVirtRegSet &FixedRegisters) const { 1091 int64_t Ret = 0; 1092 if (isa<ModelUnderTrainingRunner>(getRunner())) { 1093 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( 1094 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); 1095 } else { 1096 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( 1097 VirtReg, Order, CostPerUseLimit, FixedRegisters); 1098 // Find the index of the selected PhysReg. We need it for logging, 1099 // otherwise this is wasted cycles (but so would starting development mode 1100 // without a model nor logging) 1101 if (!PhysReg) 1102 Ret = CandidateVirtRegPos; 1103 else 1104 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); 1105 I != E; ++I, ++Ret) 1106 if (*I == PhysReg) 1107 break; 1108 } 1109 if (TrainingLog.empty()) 1110 return Ret; 1111 // TODO(mtrofin): when we support optional rewards, this can go away. In the 1112 // meantime, we log the "pretend" reward (0) for the previous observation 1113 // before starting a new one. 1114 if (Log->hasObservationInProgress()) 1115 Log->logReward<float>(0.0); 1116 1117 Log->startObservation(); 1118 size_t CurrentFeature = 0; 1119 size_t FeatureCount = EnableDevelopmentFeatures 1120 ? FeatureIDs::FeaturesWithDevelopmentCount 1121 : FeatureIDs::FeatureCount; 1122 for (; CurrentFeature < FeatureCount; ++CurrentFeature) { 1123 Log->logTensorValue(CurrentFeature, 1124 reinterpret_cast<const char *>( 1125 getRunner().getTensorUntyped(CurrentFeature))); 1126 } 1127 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) 1128 for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); 1129 ++I, ++CurrentFeature) 1130 Log->logTensorValue( 1131 CurrentFeature, 1132 reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); 1133 // The output is right after the features and the extra outputs 1134 Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); 1135 Log->endObservation(); 1136 return Ret; 1137 } 1138 1139 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { 1140 std::optional<float> CachedReward; 1141 auto GetReward = [&]() { 1142 if (!CachedReward) 1143 CachedReward = static_cast<float>( 1144 calculateRegAllocScore( 1145 MF, getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()) 1146 .getScore()); 1147 return *CachedReward; 1148 }; 1149 1150 getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF, 1151 GetReward); 1152 getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF, 1153 GetReward); 1154 return false; 1155 } 1156 #endif // #ifdef LLVM_HAVE_TFLITE 1157 1158 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { 1159 return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || 1160 !InteractiveChannelBaseName.empty() 1161 ? new ReleaseModeEvictionAdvisorAnalysis() 1162 : nullptr; 1163 } 1164 1165 // In all cases except development mode, we don't need scoring. 1166 #if !defined(LLVM_HAVE_TFLITE) 1167 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } 1168 #endif 1169