xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MIRParser/MIParser.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 Register &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   return Slots2Values.lookup(Slot);
373 }
374 
375 namespace {
376 
377 /// A wrapper struct around the 'MachineOperand' struct that includes a source
378 /// range and other attributes.
379 struct ParsedMachineOperand {
380   MachineOperand Operand;
381   StringRef::iterator Begin;
382   StringRef::iterator End;
383   Optional<unsigned> TiedDefIdx;
384 
385   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
386                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
387       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
388     if (TiedDefIdx)
389       assert(Operand.isReg() && Operand.isUse() &&
390              "Only used register operands can be tied");
391   }
392 };
393 
394 class MIParser {
395   MachineFunction &MF;
396   SMDiagnostic &Error;
397   StringRef Source, CurrentSource;
398   SMRange SourceRange;
399   MIToken Token;
400   PerFunctionMIParsingState &PFS;
401   /// Maps from slot numbers to function's unnamed basic blocks.
402   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
403 
404 public:
405   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
406            StringRef Source);
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source, SMRange SourceRange);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(Register &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(Register &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434   bool parseMachineMetadata();
435   bool parseMDTuple(MDNode *&MD, bool IsDistinct);
436   bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
437   bool parseMetadata(Metadata *&MD);
438 
439   bool
440   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
441   bool parseBasicBlock(MachineBasicBlock &MBB,
442                        MachineBasicBlock *&AddFalthroughFrom);
443   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
444   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
445 
446   bool parseNamedRegister(Register &Reg);
447   bool parseVirtualRegister(VRegInfo *&Info);
448   bool parseNamedVirtualRegister(VRegInfo *&Info);
449   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
450   bool parseRegisterFlag(unsigned &Flags);
451   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
452   bool parseSubRegisterIndex(unsigned &SubReg);
453   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
454   bool parseRegisterOperand(MachineOperand &Dest,
455                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
456   bool parseImmediateOperand(MachineOperand &Dest);
457   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
458                        const Constant *&C);
459   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
460   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
461   bool parseTypedImmediateOperand(MachineOperand &Dest);
462   bool parseFPImmediateOperand(MachineOperand &Dest);
463   bool parseMBBReference(MachineBasicBlock *&MBB);
464   bool parseMBBOperand(MachineOperand &Dest);
465   bool parseStackFrameIndex(int &FI);
466   bool parseStackObjectOperand(MachineOperand &Dest);
467   bool parseFixedStackFrameIndex(int &FI);
468   bool parseFixedStackObjectOperand(MachineOperand &Dest);
469   bool parseGlobalValue(GlobalValue *&GV);
470   bool parseGlobalAddressOperand(MachineOperand &Dest);
471   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
472   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
473   bool parseJumpTableIndexOperand(MachineOperand &Dest);
474   bool parseExternalSymbolOperand(MachineOperand &Dest);
475   bool parseMCSymbolOperand(MachineOperand &Dest);
476   bool parseMDNode(MDNode *&Node);
477   bool parseDIExpression(MDNode *&Expr);
478   bool parseDILocation(MDNode *&Expr);
479   bool parseMetadataOperand(MachineOperand &Dest);
480   bool parseCFIOffset(int &Offset);
481   bool parseCFIRegister(Register &Reg);
482   bool parseCFIAddressSpace(unsigned &AddressSpace);
483   bool parseCFIEscapeValues(std::string& Values);
484   bool parseCFIOperand(MachineOperand &Dest);
485   bool parseIRBlock(BasicBlock *&BB, const Function &F);
486   bool parseBlockAddressOperand(MachineOperand &Dest);
487   bool parseIntrinsicOperand(MachineOperand &Dest);
488   bool parsePredicateOperand(MachineOperand &Dest);
489   bool parseShuffleMaskOperand(MachineOperand &Dest);
490   bool parseTargetIndexOperand(MachineOperand &Dest);
491   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
492   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
493   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
494                            MachineOperand &Dest,
495                            Optional<unsigned> &TiedDefIdx);
496   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
497                                          const unsigned OpIdx,
498                                          MachineOperand &Dest,
499                                          Optional<unsigned> &TiedDefIdx);
500   bool parseOffset(int64_t &Offset);
501   bool parseAlignment(unsigned &Alignment);
502   bool parseAddrspace(unsigned &Addrspace);
503   bool parseSectionID(Optional<MBBSectionID> &SID);
504   bool parseOperandsOffset(MachineOperand &Op);
505   bool parseIRValue(const Value *&V);
506   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513   bool parseHeapAllocMarker(MDNode *&Node);
514 
515   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
516                               MachineOperand &Dest, const MIRFormatter &MF);
517 
518 private:
519   /// Convert the integer literal in the current token into an unsigned integer.
520   ///
521   /// Return true if an error occurred.
522   bool getUnsigned(unsigned &Result);
523 
524   /// Convert the integer literal in the current token into an uint64.
525   ///
526   /// Return true if an error occurred.
527   bool getUint64(uint64_t &Result);
528 
529   /// Convert the hexadecimal literal in the current token into an unsigned
530   ///  APInt with a minimum bitwidth required to represent the value.
531   ///
532   /// Return true if the literal does not represent an integer value.
533   bool getHexUint(APInt &Result);
534 
535   /// If the current token is of the given kind, consume it and return false.
536   /// Otherwise report an error and return true.
537   bool expectAndConsume(MIToken::TokenKind TokenKind);
538 
539   /// If the current token is of the given kind, consume it and return true.
540   /// Otherwise return false.
541   bool consumeIfPresent(MIToken::TokenKind TokenKind);
542 
543   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
544 
545   bool assignRegisterTies(MachineInstr &MI,
546                           ArrayRef<ParsedMachineOperand> Operands);
547 
548   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
549                               const MCInstrDesc &MCID);
550 
551   const BasicBlock *getIRBlock(unsigned Slot);
552   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
553 
554   /// Get or create an MCSymbol for a given name.
555   MCSymbol *getOrCreateMCSymbol(StringRef Name);
556 
557   /// parseStringConstant
558   ///   ::= StringConstant
559   bool parseStringConstant(std::string &Result);
560 
561   /// Map the location in the MI string to the corresponding location specified
562   /// in `SourceRange`.
563   SMLoc mapSMLoc(StringRef::iterator Loc);
564 };
565 
566 } // end anonymous namespace
567 
568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
569                    StringRef Source)
570     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
571 {}
572 
573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
574                    StringRef Source, SMRange SourceRange)
575     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
576       SourceRange(SourceRange), PFS(PFS) {}
577 
578 void MIParser::lex(unsigned SkipChar) {
579   CurrentSource = lexMIToken(
580       CurrentSource.slice(SkipChar, StringRef::npos), Token,
581       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
582 }
583 
584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
585 
586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
587   const SourceMgr &SM = *PFS.SM;
588   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
589   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
590   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
591     // Create an ordinary diagnostic when the source manager's buffer is the
592     // source string.
593     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
594     return true;
595   }
596   // Create a diagnostic for a YAML string literal.
597   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
598                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
599                        Source, None, None);
600   return true;
601 }
602 
603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
604   assert(SourceRange.isValid() && "Invalid source range");
605   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
606   return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
607                                (Loc - Source.data()));
608 }
609 
610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
611     ErrorCallbackType;
612 
613 static const char *toString(MIToken::TokenKind TokenKind) {
614   switch (TokenKind) {
615   case MIToken::comma:
616     return "','";
617   case MIToken::equal:
618     return "'='";
619   case MIToken::colon:
620     return "':'";
621   case MIToken::lparen:
622     return "'('";
623   case MIToken::rparen:
624     return "')'";
625   default:
626     return "<unknown token>";
627   }
628 }
629 
630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
631   if (Token.isNot(TokenKind))
632     return error(Twine("expected ") + toString(TokenKind));
633   lex();
634   return false;
635 }
636 
637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
638   if (Token.isNot(TokenKind))
639     return false;
640   lex();
641   return true;
642 }
643 
644 // Parse Machine Basic Block Section ID.
645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
646   assert(Token.is(MIToken::kw_bbsections));
647   lex();
648   if (Token.is(MIToken::IntegerLiteral)) {
649     unsigned Value = 0;
650     if (getUnsigned(Value))
651       return error("Unknown Section ID");
652     SID = MBBSectionID{Value};
653   } else {
654     const StringRef &S = Token.stringValue();
655     if (S == "Exception")
656       SID = MBBSectionID::ExceptionSectionID;
657     else if (S == "Cold")
658       SID = MBBSectionID::ColdSectionID;
659     else
660       return error("Unknown Section ID");
661   }
662   lex();
663   return false;
664 }
665 
666 bool MIParser::parseBasicBlockDefinition(
667     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
668   assert(Token.is(MIToken::MachineBasicBlockLabel));
669   unsigned ID = 0;
670   if (getUnsigned(ID))
671     return true;
672   auto Loc = Token.location();
673   auto Name = Token.stringValue();
674   lex();
675   bool HasAddressTaken = false;
676   bool IsLandingPad = false;
677   bool IsEHFuncletEntry = false;
678   Optional<MBBSectionID> SectionID;
679   unsigned Alignment = 0;
680   BasicBlock *BB = nullptr;
681   if (consumeIfPresent(MIToken::lparen)) {
682     do {
683       // TODO: Report an error when multiple same attributes are specified.
684       switch (Token.kind()) {
685       case MIToken::kw_address_taken:
686         HasAddressTaken = true;
687         lex();
688         break;
689       case MIToken::kw_landing_pad:
690         IsLandingPad = true;
691         lex();
692         break;
693       case MIToken::kw_ehfunclet_entry:
694         IsEHFuncletEntry = true;
695         lex();
696         break;
697       case MIToken::kw_align:
698         if (parseAlignment(Alignment))
699           return true;
700         break;
701       case MIToken::IRBlock:
702         // TODO: Report an error when both name and ir block are specified.
703         if (parseIRBlock(BB, MF.getFunction()))
704           return true;
705         lex();
706         break;
707       case MIToken::kw_bbsections:
708         if (parseSectionID(SectionID))
709           return true;
710         break;
711       default:
712         break;
713       }
714     } while (consumeIfPresent(MIToken::comma));
715     if (expectAndConsume(MIToken::rparen))
716       return true;
717   }
718   if (expectAndConsume(MIToken::colon))
719     return true;
720 
721   if (!Name.empty()) {
722     BB = dyn_cast_or_null<BasicBlock>(
723         MF.getFunction().getValueSymbolTable()->lookup(Name));
724     if (!BB)
725       return error(Loc, Twine("basic block '") + Name +
726                             "' is not defined in the function '" +
727                             MF.getName() + "'");
728   }
729   auto *MBB = MF.CreateMachineBasicBlock(BB);
730   MF.insert(MF.end(), MBB);
731   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
732   if (!WasInserted)
733     return error(Loc, Twine("redefinition of machine basic block with id #") +
734                           Twine(ID));
735   if (Alignment)
736     MBB->setAlignment(Align(Alignment));
737   if (HasAddressTaken)
738     MBB->setHasAddressTaken();
739   MBB->setIsEHPad(IsLandingPad);
740   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
741   if (SectionID.hasValue()) {
742     MBB->setSectionID(SectionID.getValue());
743     MF.setBBSectionsType(BasicBlockSection::List);
744   }
745   return false;
746 }
747 
748 bool MIParser::parseBasicBlockDefinitions(
749     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
750   lex();
751   // Skip until the first machine basic block.
752   while (Token.is(MIToken::Newline))
753     lex();
754   if (Token.isErrorOrEOF())
755     return Token.isError();
756   if (Token.isNot(MIToken::MachineBasicBlockLabel))
757     return error("expected a basic block definition before instructions");
758   unsigned BraceDepth = 0;
759   do {
760     if (parseBasicBlockDefinition(MBBSlots))
761       return true;
762     bool IsAfterNewline = false;
763     // Skip until the next machine basic block.
764     while (true) {
765       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
766           Token.isErrorOrEOF())
767         break;
768       else if (Token.is(MIToken::MachineBasicBlockLabel))
769         return error("basic block definition should be located at the start of "
770                      "the line");
771       else if (consumeIfPresent(MIToken::Newline)) {
772         IsAfterNewline = true;
773         continue;
774       }
775       IsAfterNewline = false;
776       if (Token.is(MIToken::lbrace))
777         ++BraceDepth;
778       if (Token.is(MIToken::rbrace)) {
779         if (!BraceDepth)
780           return error("extraneous closing brace ('}')");
781         --BraceDepth;
782       }
783       lex();
784     }
785     // Verify that we closed all of the '{' at the end of a file or a block.
786     if (!Token.isError() && BraceDepth)
787       return error("expected '}'"); // FIXME: Report a note that shows '{'.
788   } while (!Token.isErrorOrEOF());
789   return Token.isError();
790 }
791 
792 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
793   assert(Token.is(MIToken::kw_liveins));
794   lex();
795   if (expectAndConsume(MIToken::colon))
796     return true;
797   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
798     return false;
799   do {
800     if (Token.isNot(MIToken::NamedRegister))
801       return error("expected a named register");
802     Register Reg;
803     if (parseNamedRegister(Reg))
804       return true;
805     lex();
806     LaneBitmask Mask = LaneBitmask::getAll();
807     if (consumeIfPresent(MIToken::colon)) {
808       // Parse lane mask.
809       if (Token.isNot(MIToken::IntegerLiteral) &&
810           Token.isNot(MIToken::HexLiteral))
811         return error("expected a lane mask");
812       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
813                     "Use correct get-function for lane mask");
814       LaneBitmask::Type V;
815       if (getUint64(V))
816         return error("invalid lane mask value");
817       Mask = LaneBitmask(V);
818       lex();
819     }
820     MBB.addLiveIn(Reg, Mask);
821   } while (consumeIfPresent(MIToken::comma));
822   return false;
823 }
824 
825 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
826   assert(Token.is(MIToken::kw_successors));
827   lex();
828   if (expectAndConsume(MIToken::colon))
829     return true;
830   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
831     return false;
832   do {
833     if (Token.isNot(MIToken::MachineBasicBlock))
834       return error("expected a machine basic block reference");
835     MachineBasicBlock *SuccMBB = nullptr;
836     if (parseMBBReference(SuccMBB))
837       return true;
838     lex();
839     unsigned Weight = 0;
840     if (consumeIfPresent(MIToken::lparen)) {
841       if (Token.isNot(MIToken::IntegerLiteral) &&
842           Token.isNot(MIToken::HexLiteral))
843         return error("expected an integer literal after '('");
844       if (getUnsigned(Weight))
845         return true;
846       lex();
847       if (expectAndConsume(MIToken::rparen))
848         return true;
849     }
850     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
851   } while (consumeIfPresent(MIToken::comma));
852   MBB.normalizeSuccProbs();
853   return false;
854 }
855 
856 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
857                                MachineBasicBlock *&AddFalthroughFrom) {
858   // Skip the definition.
859   assert(Token.is(MIToken::MachineBasicBlockLabel));
860   lex();
861   if (consumeIfPresent(MIToken::lparen)) {
862     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
863       lex();
864     consumeIfPresent(MIToken::rparen);
865   }
866   consumeIfPresent(MIToken::colon);
867 
868   // Parse the liveins and successors.
869   // N.B: Multiple lists of successors and liveins are allowed and they're
870   // merged into one.
871   // Example:
872   //   liveins: %edi
873   //   liveins: %esi
874   //
875   // is equivalent to
876   //   liveins: %edi, %esi
877   bool ExplicitSuccessors = false;
878   while (true) {
879     if (Token.is(MIToken::kw_successors)) {
880       if (parseBasicBlockSuccessors(MBB))
881         return true;
882       ExplicitSuccessors = true;
883     } else if (Token.is(MIToken::kw_liveins)) {
884       if (parseBasicBlockLiveins(MBB))
885         return true;
886     } else if (consumeIfPresent(MIToken::Newline)) {
887       continue;
888     } else
889       break;
890     if (!Token.isNewlineOrEOF())
891       return error("expected line break at the end of a list");
892     lex();
893   }
894 
895   // Parse the instructions.
896   bool IsInBundle = false;
897   MachineInstr *PrevMI = nullptr;
898   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
899          !Token.is(MIToken::Eof)) {
900     if (consumeIfPresent(MIToken::Newline))
901       continue;
902     if (consumeIfPresent(MIToken::rbrace)) {
903       // The first parsing pass should verify that all closing '}' have an
904       // opening '{'.
905       assert(IsInBundle);
906       IsInBundle = false;
907       continue;
908     }
909     MachineInstr *MI = nullptr;
910     if (parse(MI))
911       return true;
912     MBB.insert(MBB.end(), MI);
913     if (IsInBundle) {
914       PrevMI->setFlag(MachineInstr::BundledSucc);
915       MI->setFlag(MachineInstr::BundledPred);
916     }
917     PrevMI = MI;
918     if (Token.is(MIToken::lbrace)) {
919       if (IsInBundle)
920         return error("nested instruction bundles are not allowed");
921       lex();
922       // This instruction is the start of the bundle.
923       MI->setFlag(MachineInstr::BundledSucc);
924       IsInBundle = true;
925       if (!Token.is(MIToken::Newline))
926         // The next instruction can be on the same line.
927         continue;
928     }
929     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
930     lex();
931   }
932 
933   // Construct successor list by searching for basic block machine operands.
934   if (!ExplicitSuccessors) {
935     SmallVector<MachineBasicBlock*,4> Successors;
936     bool IsFallthrough;
937     guessSuccessors(MBB, Successors, IsFallthrough);
938     for (MachineBasicBlock *Succ : Successors)
939       MBB.addSuccessor(Succ);
940 
941     if (IsFallthrough) {
942       AddFalthroughFrom = &MBB;
943     } else {
944       MBB.normalizeSuccProbs();
945     }
946   }
947 
948   return false;
949 }
950 
951 bool MIParser::parseBasicBlocks() {
952   lex();
953   // Skip until the first machine basic block.
954   while (Token.is(MIToken::Newline))
955     lex();
956   if (Token.isErrorOrEOF())
957     return Token.isError();
958   // The first parsing pass should have verified that this token is a MBB label
959   // in the 'parseBasicBlockDefinitions' method.
960   assert(Token.is(MIToken::MachineBasicBlockLabel));
961   MachineBasicBlock *AddFalthroughFrom = nullptr;
962   do {
963     MachineBasicBlock *MBB = nullptr;
964     if (parseMBBReference(MBB))
965       return true;
966     if (AddFalthroughFrom) {
967       if (!AddFalthroughFrom->isSuccessor(MBB))
968         AddFalthroughFrom->addSuccessor(MBB);
969       AddFalthroughFrom->normalizeSuccProbs();
970       AddFalthroughFrom = nullptr;
971     }
972     if (parseBasicBlock(*MBB, AddFalthroughFrom))
973       return true;
974     // The method 'parseBasicBlock' should parse the whole block until the next
975     // block or the end of file.
976     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
977   } while (Token.isNot(MIToken::Eof));
978   return false;
979 }
980 
981 bool MIParser::parse(MachineInstr *&MI) {
982   // Parse any register operands before '='
983   MachineOperand MO = MachineOperand::CreateImm(0);
984   SmallVector<ParsedMachineOperand, 8> Operands;
985   while (Token.isRegister() || Token.isRegisterFlag()) {
986     auto Loc = Token.location();
987     Optional<unsigned> TiedDefIdx;
988     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
989       return true;
990     Operands.push_back(
991         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
992     if (Token.isNot(MIToken::comma))
993       break;
994     lex();
995   }
996   if (!Operands.empty() && expectAndConsume(MIToken::equal))
997     return true;
998 
999   unsigned OpCode, Flags = 0;
1000   if (Token.isError() || parseInstruction(OpCode, Flags))
1001     return true;
1002 
1003   // Parse the remaining machine operands.
1004   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1005          Token.isNot(MIToken::kw_post_instr_symbol) &&
1006          Token.isNot(MIToken::kw_heap_alloc_marker) &&
1007          Token.isNot(MIToken::kw_debug_location) &&
1008          Token.isNot(MIToken::kw_debug_instr_number) &&
1009          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1010     auto Loc = Token.location();
1011     Optional<unsigned> TiedDefIdx;
1012     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1013       return true;
1014     if ((OpCode == TargetOpcode::DBG_VALUE ||
1015          OpCode == TargetOpcode::DBG_VALUE_LIST) &&
1016         MO.isReg())
1017       MO.setIsDebug();
1018     Operands.push_back(
1019         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1020     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1021         Token.is(MIToken::lbrace))
1022       break;
1023     if (Token.isNot(MIToken::comma))
1024       return error("expected ',' before the next machine operand");
1025     lex();
1026   }
1027 
1028   MCSymbol *PreInstrSymbol = nullptr;
1029   if (Token.is(MIToken::kw_pre_instr_symbol))
1030     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1031       return true;
1032   MCSymbol *PostInstrSymbol = nullptr;
1033   if (Token.is(MIToken::kw_post_instr_symbol))
1034     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1035       return true;
1036   MDNode *HeapAllocMarker = nullptr;
1037   if (Token.is(MIToken::kw_heap_alloc_marker))
1038     if (parseHeapAllocMarker(HeapAllocMarker))
1039       return true;
1040 
1041   unsigned InstrNum = 0;
1042   if (Token.is(MIToken::kw_debug_instr_number)) {
1043     lex();
1044     if (Token.isNot(MIToken::IntegerLiteral))
1045       return error("expected an integer literal after 'debug-instr-number'");
1046     if (getUnsigned(InstrNum))
1047       return true;
1048     lex();
1049     // Lex past trailing comma if present.
1050     if (Token.is(MIToken::comma))
1051       lex();
1052   }
1053 
1054   DebugLoc DebugLocation;
1055   if (Token.is(MIToken::kw_debug_location)) {
1056     lex();
1057     MDNode *Node = nullptr;
1058     if (Token.is(MIToken::exclaim)) {
1059       if (parseMDNode(Node))
1060         return true;
1061     } else if (Token.is(MIToken::md_dilocation)) {
1062       if (parseDILocation(Node))
1063         return true;
1064     } else
1065       return error("expected a metadata node after 'debug-location'");
1066     if (!isa<DILocation>(Node))
1067       return error("referenced metadata is not a DILocation");
1068     DebugLocation = DebugLoc(Node);
1069   }
1070 
1071   // Parse the machine memory operands.
1072   SmallVector<MachineMemOperand *, 2> MemOperands;
1073   if (Token.is(MIToken::coloncolon)) {
1074     lex();
1075     while (!Token.isNewlineOrEOF()) {
1076       MachineMemOperand *MemOp = nullptr;
1077       if (parseMachineMemoryOperand(MemOp))
1078         return true;
1079       MemOperands.push_back(MemOp);
1080       if (Token.isNewlineOrEOF())
1081         break;
1082       if (Token.isNot(MIToken::comma))
1083         return error("expected ',' before the next machine memory operand");
1084       lex();
1085     }
1086   }
1087 
1088   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1089   if (!MCID.isVariadic()) {
1090     // FIXME: Move the implicit operand verification to the machine verifier.
1091     if (verifyImplicitOperands(Operands, MCID))
1092       return true;
1093   }
1094 
1095   // TODO: Check for extraneous machine operands.
1096   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1097   MI->setFlags(Flags);
1098   for (const auto &Operand : Operands)
1099     MI->addOperand(MF, Operand.Operand);
1100   if (assignRegisterTies(*MI, Operands))
1101     return true;
1102   if (PreInstrSymbol)
1103     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1104   if (PostInstrSymbol)
1105     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1106   if (HeapAllocMarker)
1107     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1108   if (!MemOperands.empty())
1109     MI->setMemRefs(MF, MemOperands);
1110   if (InstrNum)
1111     MI->setDebugInstrNum(InstrNum);
1112   return false;
1113 }
1114 
1115 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1116   lex();
1117   if (Token.isNot(MIToken::MachineBasicBlock))
1118     return error("expected a machine basic block reference");
1119   if (parseMBBReference(MBB))
1120     return true;
1121   lex();
1122   if (Token.isNot(MIToken::Eof))
1123     return error(
1124         "expected end of string after the machine basic block reference");
1125   return false;
1126 }
1127 
1128 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1129   lex();
1130   if (Token.isNot(MIToken::NamedRegister))
1131     return error("expected a named register");
1132   if (parseNamedRegister(Reg))
1133     return true;
1134   lex();
1135   if (Token.isNot(MIToken::Eof))
1136     return error("expected end of string after the register reference");
1137   return false;
1138 }
1139 
1140 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1141   lex();
1142   if (Token.isNot(MIToken::VirtualRegister))
1143     return error("expected a virtual register");
1144   if (parseVirtualRegister(Info))
1145     return true;
1146   lex();
1147   if (Token.isNot(MIToken::Eof))
1148     return error("expected end of string after the register reference");
1149   return false;
1150 }
1151 
1152 bool MIParser::parseStandaloneRegister(Register &Reg) {
1153   lex();
1154   if (Token.isNot(MIToken::NamedRegister) &&
1155       Token.isNot(MIToken::VirtualRegister))
1156     return error("expected either a named or virtual register");
1157 
1158   VRegInfo *Info;
1159   if (parseRegister(Reg, Info))
1160     return true;
1161 
1162   lex();
1163   if (Token.isNot(MIToken::Eof))
1164     return error("expected end of string after the register reference");
1165   return false;
1166 }
1167 
1168 bool MIParser::parseStandaloneStackObject(int &FI) {
1169   lex();
1170   if (Token.isNot(MIToken::StackObject))
1171     return error("expected a stack object");
1172   if (parseStackFrameIndex(FI))
1173     return true;
1174   if (Token.isNot(MIToken::Eof))
1175     return error("expected end of string after the stack object reference");
1176   return false;
1177 }
1178 
1179 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1180   lex();
1181   if (Token.is(MIToken::exclaim)) {
1182     if (parseMDNode(Node))
1183       return true;
1184   } else if (Token.is(MIToken::md_diexpr)) {
1185     if (parseDIExpression(Node))
1186       return true;
1187   } else if (Token.is(MIToken::md_dilocation)) {
1188     if (parseDILocation(Node))
1189       return true;
1190   } else
1191     return error("expected a metadata node");
1192   if (Token.isNot(MIToken::Eof))
1193     return error("expected end of string after the metadata node");
1194   return false;
1195 }
1196 
1197 bool MIParser::parseMachineMetadata() {
1198   lex();
1199   if (Token.isNot(MIToken::exclaim))
1200     return error("expected a metadata node");
1201 
1202   lex();
1203   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1204     return error("expected metadata id after '!'");
1205   unsigned ID = 0;
1206   if (getUnsigned(ID))
1207     return true;
1208   lex();
1209   if (expectAndConsume(MIToken::equal))
1210     return true;
1211   bool IsDistinct = Token.is(MIToken::kw_distinct);
1212   if (IsDistinct)
1213     lex();
1214   if (Token.isNot(MIToken::exclaim))
1215     return error("expected a metadata node");
1216   lex();
1217 
1218   MDNode *MD;
1219   if (parseMDTuple(MD, IsDistinct))
1220     return true;
1221 
1222   auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1223   if (FI != PFS.MachineForwardRefMDNodes.end()) {
1224     FI->second.first->replaceAllUsesWith(MD);
1225     PFS.MachineForwardRefMDNodes.erase(FI);
1226 
1227     assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1228   } else {
1229     if (PFS.MachineMetadataNodes.count(ID))
1230       return error("Metadata id is already used");
1231     PFS.MachineMetadataNodes[ID].reset(MD);
1232   }
1233 
1234   return false;
1235 }
1236 
1237 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1238   SmallVector<Metadata *, 16> Elts;
1239   if (parseMDNodeVector(Elts))
1240     return true;
1241   MD = (IsDistinct ? MDTuple::getDistinct
1242                    : MDTuple::get)(MF.getFunction().getContext(), Elts);
1243   return false;
1244 }
1245 
1246 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1247   if (Token.isNot(MIToken::lbrace))
1248     return error("expected '{' here");
1249   lex();
1250 
1251   if (Token.is(MIToken::rbrace)) {
1252     lex();
1253     return false;
1254   }
1255 
1256   do {
1257     Metadata *MD;
1258     if (parseMetadata(MD))
1259       return true;
1260 
1261     Elts.push_back(MD);
1262 
1263     if (Token.isNot(MIToken::comma))
1264       break;
1265     lex();
1266   } while (true);
1267 
1268   if (Token.isNot(MIToken::rbrace))
1269     return error("expected end of metadata node");
1270   lex();
1271 
1272   return false;
1273 }
1274 
1275 // ::= !42
1276 // ::= !"string"
1277 bool MIParser::parseMetadata(Metadata *&MD) {
1278   if (Token.isNot(MIToken::exclaim))
1279     return error("expected '!' here");
1280   lex();
1281 
1282   if (Token.is(MIToken::StringConstant)) {
1283     std::string Str;
1284     if (parseStringConstant(Str))
1285       return true;
1286     MD = MDString::get(MF.getFunction().getContext(), Str);
1287     return false;
1288   }
1289 
1290   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1291     return error("expected metadata id after '!'");
1292 
1293   SMLoc Loc = mapSMLoc(Token.location());
1294 
1295   unsigned ID = 0;
1296   if (getUnsigned(ID))
1297     return true;
1298   lex();
1299 
1300   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1301   if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1302     MD = NodeInfo->second.get();
1303     return false;
1304   }
1305   // Check machine metadata.
1306   NodeInfo = PFS.MachineMetadataNodes.find(ID);
1307   if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1308     MD = NodeInfo->second.get();
1309     return false;
1310   }
1311   // Forward reference.
1312   auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1313   FwdRef = std::make_pair(
1314       MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc);
1315   PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1316   MD = FwdRef.first.get();
1317 
1318   return false;
1319 }
1320 
1321 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1322   assert(MO.isImplicit());
1323   return MO.isDef() ? "implicit-def" : "implicit";
1324 }
1325 
1326 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1327                                    Register Reg) {
1328   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1329   return StringRef(TRI->getName(Reg)).lower();
1330 }
1331 
1332 /// Return true if the parsed machine operands contain a given machine operand.
1333 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1334                                 ArrayRef<ParsedMachineOperand> Operands) {
1335   for (const auto &I : Operands) {
1336     if (ImplicitOperand.isIdenticalTo(I.Operand))
1337       return true;
1338   }
1339   return false;
1340 }
1341 
1342 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1343                                       const MCInstrDesc &MCID) {
1344   if (MCID.isCall())
1345     // We can't verify call instructions as they can contain arbitrary implicit
1346     // register and register mask operands.
1347     return false;
1348 
1349   // Gather all the expected implicit operands.
1350   SmallVector<MachineOperand, 4> ImplicitOperands;
1351   if (MCID.ImplicitDefs)
1352     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1353       ImplicitOperands.push_back(
1354           MachineOperand::CreateReg(*ImpDefs, true, true));
1355   if (MCID.ImplicitUses)
1356     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1357       ImplicitOperands.push_back(
1358           MachineOperand::CreateReg(*ImpUses, false, true));
1359 
1360   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1361   assert(TRI && "Expected target register info");
1362   for (const auto &I : ImplicitOperands) {
1363     if (isImplicitOperandIn(I, Operands))
1364       continue;
1365     return error(Operands.empty() ? Token.location() : Operands.back().End,
1366                  Twine("missing implicit register operand '") +
1367                      printImplicitRegisterFlag(I) + " $" +
1368                      getRegisterName(TRI, I.getReg()) + "'");
1369   }
1370   return false;
1371 }
1372 
1373 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1374   // Allow frame and fast math flags for OPCODE
1375   while (Token.is(MIToken::kw_frame_setup) ||
1376          Token.is(MIToken::kw_frame_destroy) ||
1377          Token.is(MIToken::kw_nnan) ||
1378          Token.is(MIToken::kw_ninf) ||
1379          Token.is(MIToken::kw_nsz) ||
1380          Token.is(MIToken::kw_arcp) ||
1381          Token.is(MIToken::kw_contract) ||
1382          Token.is(MIToken::kw_afn) ||
1383          Token.is(MIToken::kw_reassoc) ||
1384          Token.is(MIToken::kw_nuw) ||
1385          Token.is(MIToken::kw_nsw) ||
1386          Token.is(MIToken::kw_exact) ||
1387          Token.is(MIToken::kw_nofpexcept)) {
1388     // Mine frame and fast math flags
1389     if (Token.is(MIToken::kw_frame_setup))
1390       Flags |= MachineInstr::FrameSetup;
1391     if (Token.is(MIToken::kw_frame_destroy))
1392       Flags |= MachineInstr::FrameDestroy;
1393     if (Token.is(MIToken::kw_nnan))
1394       Flags |= MachineInstr::FmNoNans;
1395     if (Token.is(MIToken::kw_ninf))
1396       Flags |= MachineInstr::FmNoInfs;
1397     if (Token.is(MIToken::kw_nsz))
1398       Flags |= MachineInstr::FmNsz;
1399     if (Token.is(MIToken::kw_arcp))
1400       Flags |= MachineInstr::FmArcp;
1401     if (Token.is(MIToken::kw_contract))
1402       Flags |= MachineInstr::FmContract;
1403     if (Token.is(MIToken::kw_afn))
1404       Flags |= MachineInstr::FmAfn;
1405     if (Token.is(MIToken::kw_reassoc))
1406       Flags |= MachineInstr::FmReassoc;
1407     if (Token.is(MIToken::kw_nuw))
1408       Flags |= MachineInstr::NoUWrap;
1409     if (Token.is(MIToken::kw_nsw))
1410       Flags |= MachineInstr::NoSWrap;
1411     if (Token.is(MIToken::kw_exact))
1412       Flags |= MachineInstr::IsExact;
1413     if (Token.is(MIToken::kw_nofpexcept))
1414       Flags |= MachineInstr::NoFPExcept;
1415 
1416     lex();
1417   }
1418   if (Token.isNot(MIToken::Identifier))
1419     return error("expected a machine instruction");
1420   StringRef InstrName = Token.stringValue();
1421   if (PFS.Target.parseInstrName(InstrName, OpCode))
1422     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1423   lex();
1424   return false;
1425 }
1426 
1427 bool MIParser::parseNamedRegister(Register &Reg) {
1428   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1429   StringRef Name = Token.stringValue();
1430   if (PFS.Target.getRegisterByName(Name, Reg))
1431     return error(Twine("unknown register name '") + Name + "'");
1432   return false;
1433 }
1434 
1435 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1436   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1437   StringRef Name = Token.stringValue();
1438   // TODO: Check that the VReg name is not the same as a physical register name.
1439   //       If it is, then print a warning (when warnings are implemented).
1440   Info = &PFS.getVRegInfoNamed(Name);
1441   return false;
1442 }
1443 
1444 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1445   if (Token.is(MIToken::NamedVirtualRegister))
1446     return parseNamedVirtualRegister(Info);
1447   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1448   unsigned ID;
1449   if (getUnsigned(ID))
1450     return true;
1451   Info = &PFS.getVRegInfo(ID);
1452   return false;
1453 }
1454 
1455 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1456   switch (Token.kind()) {
1457   case MIToken::underscore:
1458     Reg = 0;
1459     return false;
1460   case MIToken::NamedRegister:
1461     return parseNamedRegister(Reg);
1462   case MIToken::NamedVirtualRegister:
1463   case MIToken::VirtualRegister:
1464     if (parseVirtualRegister(Info))
1465       return true;
1466     Reg = Info->VReg;
1467     return false;
1468   // TODO: Parse other register kinds.
1469   default:
1470     llvm_unreachable("The current token should be a register");
1471   }
1472 }
1473 
1474 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1475   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1476     return error("expected '_', register class, or register bank name");
1477   StringRef::iterator Loc = Token.location();
1478   StringRef Name = Token.stringValue();
1479 
1480   // Was it a register class?
1481   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1482   if (RC) {
1483     lex();
1484 
1485     switch (RegInfo.Kind) {
1486     case VRegInfo::UNKNOWN:
1487     case VRegInfo::NORMAL:
1488       RegInfo.Kind = VRegInfo::NORMAL;
1489       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1490         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1491         return error(Loc, Twine("conflicting register classes, previously: ") +
1492                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1493       }
1494       RegInfo.D.RC = RC;
1495       RegInfo.Explicit = true;
1496       return false;
1497 
1498     case VRegInfo::GENERIC:
1499     case VRegInfo::REGBANK:
1500       return error(Loc, "register class specification on generic register");
1501     }
1502     llvm_unreachable("Unexpected register kind");
1503   }
1504 
1505   // Should be a register bank or a generic register.
1506   const RegisterBank *RegBank = nullptr;
1507   if (Name != "_") {
1508     RegBank = PFS.Target.getRegBank(Name);
1509     if (!RegBank)
1510       return error(Loc, "expected '_', register class, or register bank name");
1511   }
1512 
1513   lex();
1514 
1515   switch (RegInfo.Kind) {
1516   case VRegInfo::UNKNOWN:
1517   case VRegInfo::GENERIC:
1518   case VRegInfo::REGBANK:
1519     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1520     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1521       return error(Loc, "conflicting generic register banks");
1522     RegInfo.D.RegBank = RegBank;
1523     RegInfo.Explicit = true;
1524     return false;
1525 
1526   case VRegInfo::NORMAL:
1527     return error(Loc, "register bank specification on normal register");
1528   }
1529   llvm_unreachable("Unexpected register kind");
1530 }
1531 
1532 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1533   const unsigned OldFlags = Flags;
1534   switch (Token.kind()) {
1535   case MIToken::kw_implicit:
1536     Flags |= RegState::Implicit;
1537     break;
1538   case MIToken::kw_implicit_define:
1539     Flags |= RegState::ImplicitDefine;
1540     break;
1541   case MIToken::kw_def:
1542     Flags |= RegState::Define;
1543     break;
1544   case MIToken::kw_dead:
1545     Flags |= RegState::Dead;
1546     break;
1547   case MIToken::kw_killed:
1548     Flags |= RegState::Kill;
1549     break;
1550   case MIToken::kw_undef:
1551     Flags |= RegState::Undef;
1552     break;
1553   case MIToken::kw_internal:
1554     Flags |= RegState::InternalRead;
1555     break;
1556   case MIToken::kw_early_clobber:
1557     Flags |= RegState::EarlyClobber;
1558     break;
1559   case MIToken::kw_debug_use:
1560     Flags |= RegState::Debug;
1561     break;
1562   case MIToken::kw_renamable:
1563     Flags |= RegState::Renamable;
1564     break;
1565   default:
1566     llvm_unreachable("The current token should be a register flag");
1567   }
1568   if (OldFlags == Flags)
1569     // We know that the same flag is specified more than once when the flags
1570     // weren't modified.
1571     return error("duplicate '" + Token.stringValue() + "' register flag");
1572   lex();
1573   return false;
1574 }
1575 
1576 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1577   assert(Token.is(MIToken::dot));
1578   lex();
1579   if (Token.isNot(MIToken::Identifier))
1580     return error("expected a subregister index after '.'");
1581   auto Name = Token.stringValue();
1582   SubReg = PFS.Target.getSubRegIndex(Name);
1583   if (!SubReg)
1584     return error(Twine("use of unknown subregister index '") + Name + "'");
1585   lex();
1586   return false;
1587 }
1588 
1589 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1590   if (!consumeIfPresent(MIToken::kw_tied_def))
1591     return true;
1592   if (Token.isNot(MIToken::IntegerLiteral))
1593     return error("expected an integer literal after 'tied-def'");
1594   if (getUnsigned(TiedDefIdx))
1595     return true;
1596   lex();
1597   if (expectAndConsume(MIToken::rparen))
1598     return true;
1599   return false;
1600 }
1601 
1602 bool MIParser::assignRegisterTies(MachineInstr &MI,
1603                                   ArrayRef<ParsedMachineOperand> Operands) {
1604   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1605   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1606     if (!Operands[I].TiedDefIdx)
1607       continue;
1608     // The parser ensures that this operand is a register use, so we just have
1609     // to check the tied-def operand.
1610     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1611     if (DefIdx >= E)
1612       return error(Operands[I].Begin,
1613                    Twine("use of invalid tied-def operand index '" +
1614                          Twine(DefIdx) + "'; instruction has only ") +
1615                        Twine(E) + " operands");
1616     const auto &DefOperand = Operands[DefIdx].Operand;
1617     if (!DefOperand.isReg() || !DefOperand.isDef())
1618       // FIXME: add note with the def operand.
1619       return error(Operands[I].Begin,
1620                    Twine("use of invalid tied-def operand index '") +
1621                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1622                        " isn't a defined register");
1623     // Check that the tied-def operand wasn't tied elsewhere.
1624     for (const auto &TiedPair : TiedRegisterPairs) {
1625       if (TiedPair.first == DefIdx)
1626         return error(Operands[I].Begin,
1627                      Twine("the tied-def operand #") + Twine(DefIdx) +
1628                          " is already tied with another register operand");
1629     }
1630     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1631   }
1632   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1633   // indices must be less than tied max.
1634   for (const auto &TiedPair : TiedRegisterPairs)
1635     MI.tieOperands(TiedPair.first, TiedPair.second);
1636   return false;
1637 }
1638 
1639 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1640                                     Optional<unsigned> &TiedDefIdx,
1641                                     bool IsDef) {
1642   unsigned Flags = IsDef ? RegState::Define : 0;
1643   while (Token.isRegisterFlag()) {
1644     if (parseRegisterFlag(Flags))
1645       return true;
1646   }
1647   if (!Token.isRegister())
1648     return error("expected a register after register flags");
1649   Register Reg;
1650   VRegInfo *RegInfo;
1651   if (parseRegister(Reg, RegInfo))
1652     return true;
1653   lex();
1654   unsigned SubReg = 0;
1655   if (Token.is(MIToken::dot)) {
1656     if (parseSubRegisterIndex(SubReg))
1657       return true;
1658     if (!Register::isVirtualRegister(Reg))
1659       return error("subregister index expects a virtual register");
1660   }
1661   if (Token.is(MIToken::colon)) {
1662     if (!Register::isVirtualRegister(Reg))
1663       return error("register class specification expects a virtual register");
1664     lex();
1665     if (parseRegisterClassOrBank(*RegInfo))
1666         return true;
1667   }
1668   MachineRegisterInfo &MRI = MF.getRegInfo();
1669   if ((Flags & RegState::Define) == 0) {
1670     if (consumeIfPresent(MIToken::lparen)) {
1671       unsigned Idx;
1672       if (!parseRegisterTiedDefIndex(Idx))
1673         TiedDefIdx = Idx;
1674       else {
1675         // Try a redundant low-level type.
1676         LLT Ty;
1677         if (parseLowLevelType(Token.location(), Ty))
1678           return error("expected tied-def or low-level type after '('");
1679 
1680         if (expectAndConsume(MIToken::rparen))
1681           return true;
1682 
1683         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1684           return error("inconsistent type for generic virtual register");
1685 
1686         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1687         MRI.setType(Reg, Ty);
1688       }
1689     }
1690   } else if (consumeIfPresent(MIToken::lparen)) {
1691     // Virtual registers may have a tpe with GlobalISel.
1692     if (!Register::isVirtualRegister(Reg))
1693       return error("unexpected type on physical register");
1694 
1695     LLT Ty;
1696     if (parseLowLevelType(Token.location(), Ty))
1697       return true;
1698 
1699     if (expectAndConsume(MIToken::rparen))
1700       return true;
1701 
1702     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1703       return error("inconsistent type for generic virtual register");
1704 
1705     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1706     MRI.setType(Reg, Ty);
1707   } else if (Register::isVirtualRegister(Reg)) {
1708     // Generic virtual registers must have a type.
1709     // If we end up here this means the type hasn't been specified and
1710     // this is bad!
1711     if (RegInfo->Kind == VRegInfo::GENERIC ||
1712         RegInfo->Kind == VRegInfo::REGBANK)
1713       return error("generic virtual registers must have a type");
1714   }
1715   Dest = MachineOperand::CreateReg(
1716       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1717       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1718       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1719       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1720 
1721   return false;
1722 }
1723 
1724 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1725   assert(Token.is(MIToken::IntegerLiteral));
1726   const APSInt &Int = Token.integerValue();
1727   if (Int.getMinSignedBits() > 64)
1728     return error("integer literal is too large to be an immediate operand");
1729   Dest = MachineOperand::CreateImm(Int.getExtValue());
1730   lex();
1731   return false;
1732 }
1733 
1734 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1735                                       const unsigned OpIdx,
1736                                       MachineOperand &Dest,
1737                                       const MIRFormatter &MF) {
1738   assert(Token.is(MIToken::dot));
1739   auto Loc = Token.location(); // record start position
1740   size_t Len = 1;              // for "."
1741   lex();
1742 
1743   // Handle the case that mnemonic starts with number.
1744   if (Token.is(MIToken::IntegerLiteral)) {
1745     Len += Token.range().size();
1746     lex();
1747   }
1748 
1749   StringRef Src;
1750   if (Token.is(MIToken::comma))
1751     Src = StringRef(Loc, Len);
1752   else {
1753     assert(Token.is(MIToken::Identifier));
1754     Src = StringRef(Loc, Len + Token.stringValue().size());
1755   }
1756   int64_t Val;
1757   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1758                           [this](StringRef::iterator Loc, const Twine &Msg)
1759                               -> bool { return error(Loc, Msg); }))
1760     return true;
1761 
1762   Dest = MachineOperand::CreateImm(Val);
1763   if (!Token.is(MIToken::comma))
1764     lex();
1765   return false;
1766 }
1767 
1768 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1769                             PerFunctionMIParsingState &PFS, const Constant *&C,
1770                             ErrorCallbackType ErrCB) {
1771   auto Source = StringValue.str(); // The source has to be null terminated.
1772   SMDiagnostic Err;
1773   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1774                          &PFS.IRSlots);
1775   if (!C)
1776     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1777   return false;
1778 }
1779 
1780 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1781                                const Constant *&C) {
1782   return ::parseIRConstant(
1783       Loc, StringValue, PFS, C,
1784       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1785         return error(Loc, Msg);
1786       });
1787 }
1788 
1789 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1790   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1791     return true;
1792   lex();
1793   return false;
1794 }
1795 
1796 // See LLT implemntation for bit size limits.
1797 static bool verifyScalarSize(uint64_t Size) {
1798   return Size != 0 && isUInt<16>(Size);
1799 }
1800 
1801 static bool verifyVectorElementCount(uint64_t NumElts) {
1802   return NumElts != 0 && isUInt<16>(NumElts);
1803 }
1804 
1805 static bool verifyAddrSpace(uint64_t AddrSpace) {
1806   return isUInt<24>(AddrSpace);
1807 }
1808 
1809 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1810   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1811     StringRef SizeStr = Token.range().drop_front();
1812     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1813       return error("expected integers after 's'/'p' type character");
1814   }
1815 
1816   if (Token.range().front() == 's') {
1817     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1818     if (!verifyScalarSize(ScalarSize))
1819       return error("invalid size for scalar type");
1820 
1821     Ty = LLT::scalar(ScalarSize);
1822     lex();
1823     return false;
1824   } else if (Token.range().front() == 'p') {
1825     const DataLayout &DL = MF.getDataLayout();
1826     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1827     if (!verifyAddrSpace(AS))
1828       return error("invalid address space number");
1829 
1830     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1831     lex();
1832     return false;
1833   }
1834 
1835   // Now we're looking for a vector.
1836   if (Token.isNot(MIToken::less))
1837     return error(Loc,
1838                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1839   lex();
1840 
1841   if (Token.isNot(MIToken::IntegerLiteral))
1842     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1843   uint64_t NumElements = Token.integerValue().getZExtValue();
1844   if (!verifyVectorElementCount(NumElements))
1845     return error("invalid number of vector elements");
1846 
1847   lex();
1848 
1849   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1850     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1851   lex();
1852 
1853   if (Token.range().front() != 's' && Token.range().front() != 'p')
1854     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1855   StringRef SizeStr = Token.range().drop_front();
1856   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1857     return error("expected integers after 's'/'p' type character");
1858 
1859   if (Token.range().front() == 's') {
1860     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1861     if (!verifyScalarSize(ScalarSize))
1862       return error("invalid size for scalar type");
1863     Ty = LLT::scalar(ScalarSize);
1864   } else if (Token.range().front() == 'p') {
1865     const DataLayout &DL = MF.getDataLayout();
1866     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1867     if (!verifyAddrSpace(AS))
1868       return error("invalid address space number");
1869 
1870     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1871   } else
1872     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1873   lex();
1874 
1875   if (Token.isNot(MIToken::greater))
1876     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1877   lex();
1878 
1879   Ty = LLT::fixed_vector(NumElements, Ty);
1880   return false;
1881 }
1882 
1883 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1884   assert(Token.is(MIToken::Identifier));
1885   StringRef TypeStr = Token.range();
1886   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1887       TypeStr.front() != 'p')
1888     return error(
1889         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1890   StringRef SizeStr = Token.range().drop_front();
1891   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1892     return error("expected integers after 'i'/'s'/'p' type character");
1893 
1894   auto Loc = Token.location();
1895   lex();
1896   if (Token.isNot(MIToken::IntegerLiteral)) {
1897     if (Token.isNot(MIToken::Identifier) ||
1898         !(Token.range() == "true" || Token.range() == "false"))
1899       return error("expected an integer literal");
1900   }
1901   const Constant *C = nullptr;
1902   if (parseIRConstant(Loc, C))
1903     return true;
1904   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1905   return false;
1906 }
1907 
1908 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1909   auto Loc = Token.location();
1910   lex();
1911   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1912       Token.isNot(MIToken::HexLiteral))
1913     return error("expected a floating point literal");
1914   const Constant *C = nullptr;
1915   if (parseIRConstant(Loc, C))
1916     return true;
1917   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1918   return false;
1919 }
1920 
1921 static bool getHexUint(const MIToken &Token, APInt &Result) {
1922   assert(Token.is(MIToken::HexLiteral));
1923   StringRef S = Token.range();
1924   assert(S[0] == '0' && tolower(S[1]) == 'x');
1925   // This could be a floating point literal with a special prefix.
1926   if (!isxdigit(S[2]))
1927     return true;
1928   StringRef V = S.substr(2);
1929   APInt A(V.size()*4, V, 16);
1930 
1931   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1932   // sure it isn't the case before constructing result.
1933   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1934   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1935   return false;
1936 }
1937 
1938 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1939                         ErrorCallbackType ErrCB) {
1940   if (Token.hasIntegerValue()) {
1941     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1942     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1943     if (Val64 == Limit)
1944       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1945     Result = Val64;
1946     return false;
1947   }
1948   if (Token.is(MIToken::HexLiteral)) {
1949     APInt A;
1950     if (getHexUint(Token, A))
1951       return true;
1952     if (A.getBitWidth() > 32)
1953       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1954     Result = A.getZExtValue();
1955     return false;
1956   }
1957   return true;
1958 }
1959 
1960 bool MIParser::getUnsigned(unsigned &Result) {
1961   return ::getUnsigned(
1962       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1963         return error(Loc, Msg);
1964       });
1965 }
1966 
1967 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1968   assert(Token.is(MIToken::MachineBasicBlock) ||
1969          Token.is(MIToken::MachineBasicBlockLabel));
1970   unsigned Number;
1971   if (getUnsigned(Number))
1972     return true;
1973   auto MBBInfo = PFS.MBBSlots.find(Number);
1974   if (MBBInfo == PFS.MBBSlots.end())
1975     return error(Twine("use of undefined machine basic block #") +
1976                  Twine(Number));
1977   MBB = MBBInfo->second;
1978   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1979   // we drop the <irname> from the bb.<id>.<irname> format.
1980   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1981     return error(Twine("the name of machine basic block #") + Twine(Number) +
1982                  " isn't '" + Token.stringValue() + "'");
1983   return false;
1984 }
1985 
1986 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1987   MachineBasicBlock *MBB;
1988   if (parseMBBReference(MBB))
1989     return true;
1990   Dest = MachineOperand::CreateMBB(MBB);
1991   lex();
1992   return false;
1993 }
1994 
1995 bool MIParser::parseStackFrameIndex(int &FI) {
1996   assert(Token.is(MIToken::StackObject));
1997   unsigned ID;
1998   if (getUnsigned(ID))
1999     return true;
2000   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2001   if (ObjectInfo == PFS.StackObjectSlots.end())
2002     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2003                  "'");
2004   StringRef Name;
2005   if (const auto *Alloca =
2006           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2007     Name = Alloca->getName();
2008   if (!Token.stringValue().empty() && Token.stringValue() != Name)
2009     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2010                  "' isn't '" + Token.stringValue() + "'");
2011   lex();
2012   FI = ObjectInfo->second;
2013   return false;
2014 }
2015 
2016 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2017   int FI;
2018   if (parseStackFrameIndex(FI))
2019     return true;
2020   Dest = MachineOperand::CreateFI(FI);
2021   return false;
2022 }
2023 
2024 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2025   assert(Token.is(MIToken::FixedStackObject));
2026   unsigned ID;
2027   if (getUnsigned(ID))
2028     return true;
2029   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2030   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2031     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2032                  Twine(ID) + "'");
2033   lex();
2034   FI = ObjectInfo->second;
2035   return false;
2036 }
2037 
2038 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2039   int FI;
2040   if (parseFixedStackFrameIndex(FI))
2041     return true;
2042   Dest = MachineOperand::CreateFI(FI);
2043   return false;
2044 }
2045 
2046 static bool parseGlobalValue(const MIToken &Token,
2047                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2048                              ErrorCallbackType ErrCB) {
2049   switch (Token.kind()) {
2050   case MIToken::NamedGlobalValue: {
2051     const Module *M = PFS.MF.getFunction().getParent();
2052     GV = M->getNamedValue(Token.stringValue());
2053     if (!GV)
2054       return ErrCB(Token.location(), Twine("use of undefined global value '") +
2055                                          Token.range() + "'");
2056     break;
2057   }
2058   case MIToken::GlobalValue: {
2059     unsigned GVIdx;
2060     if (getUnsigned(Token, GVIdx, ErrCB))
2061       return true;
2062     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2063       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2064                                          Twine(GVIdx) + "'");
2065     GV = PFS.IRSlots.GlobalValues[GVIdx];
2066     break;
2067   }
2068   default:
2069     llvm_unreachable("The current token should be a global value");
2070   }
2071   return false;
2072 }
2073 
2074 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2075   return ::parseGlobalValue(
2076       Token, PFS, GV,
2077       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2078         return error(Loc, Msg);
2079       });
2080 }
2081 
2082 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2083   GlobalValue *GV = nullptr;
2084   if (parseGlobalValue(GV))
2085     return true;
2086   lex();
2087   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2088   if (parseOperandsOffset(Dest))
2089     return true;
2090   return false;
2091 }
2092 
2093 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2094   assert(Token.is(MIToken::ConstantPoolItem));
2095   unsigned ID;
2096   if (getUnsigned(ID))
2097     return true;
2098   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2099   if (ConstantInfo == PFS.ConstantPoolSlots.end())
2100     return error("use of undefined constant '%const." + Twine(ID) + "'");
2101   lex();
2102   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2103   if (parseOperandsOffset(Dest))
2104     return true;
2105   return false;
2106 }
2107 
2108 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2109   assert(Token.is(MIToken::JumpTableIndex));
2110   unsigned ID;
2111   if (getUnsigned(ID))
2112     return true;
2113   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2114   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2115     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2116   lex();
2117   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2118   return false;
2119 }
2120 
2121 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2122   assert(Token.is(MIToken::ExternalSymbol));
2123   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2124   lex();
2125   Dest = MachineOperand::CreateES(Symbol);
2126   if (parseOperandsOffset(Dest))
2127     return true;
2128   return false;
2129 }
2130 
2131 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2132   assert(Token.is(MIToken::MCSymbol));
2133   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2134   lex();
2135   Dest = MachineOperand::CreateMCSymbol(Symbol);
2136   if (parseOperandsOffset(Dest))
2137     return true;
2138   return false;
2139 }
2140 
2141 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2142   assert(Token.is(MIToken::SubRegisterIndex));
2143   StringRef Name = Token.stringValue();
2144   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2145   if (SubRegIndex == 0)
2146     return error(Twine("unknown subregister index '") + Name + "'");
2147   lex();
2148   Dest = MachineOperand::CreateImm(SubRegIndex);
2149   return false;
2150 }
2151 
2152 bool MIParser::parseMDNode(MDNode *&Node) {
2153   assert(Token.is(MIToken::exclaim));
2154 
2155   auto Loc = Token.location();
2156   lex();
2157   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2158     return error("expected metadata id after '!'");
2159   unsigned ID;
2160   if (getUnsigned(ID))
2161     return true;
2162   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2163   if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2164     NodeInfo = PFS.MachineMetadataNodes.find(ID);
2165     if (NodeInfo == PFS.MachineMetadataNodes.end())
2166       return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2167   }
2168   lex();
2169   Node = NodeInfo->second.get();
2170   return false;
2171 }
2172 
2173 bool MIParser::parseDIExpression(MDNode *&Expr) {
2174   assert(Token.is(MIToken::md_diexpr));
2175   lex();
2176 
2177   // FIXME: Share this parsing with the IL parser.
2178   SmallVector<uint64_t, 8> Elements;
2179 
2180   if (expectAndConsume(MIToken::lparen))
2181     return true;
2182 
2183   if (Token.isNot(MIToken::rparen)) {
2184     do {
2185       if (Token.is(MIToken::Identifier)) {
2186         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2187           lex();
2188           Elements.push_back(Op);
2189           continue;
2190         }
2191         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2192           lex();
2193           Elements.push_back(Enc);
2194           continue;
2195         }
2196         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2197       }
2198 
2199       if (Token.isNot(MIToken::IntegerLiteral) ||
2200           Token.integerValue().isSigned())
2201         return error("expected unsigned integer");
2202 
2203       auto &U = Token.integerValue();
2204       if (U.ugt(UINT64_MAX))
2205         return error("element too large, limit is " + Twine(UINT64_MAX));
2206       Elements.push_back(U.getZExtValue());
2207       lex();
2208 
2209     } while (consumeIfPresent(MIToken::comma));
2210   }
2211 
2212   if (expectAndConsume(MIToken::rparen))
2213     return true;
2214 
2215   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2216   return false;
2217 }
2218 
2219 bool MIParser::parseDILocation(MDNode *&Loc) {
2220   assert(Token.is(MIToken::md_dilocation));
2221   lex();
2222 
2223   bool HaveLine = false;
2224   unsigned Line = 0;
2225   unsigned Column = 0;
2226   MDNode *Scope = nullptr;
2227   MDNode *InlinedAt = nullptr;
2228   bool ImplicitCode = false;
2229 
2230   if (expectAndConsume(MIToken::lparen))
2231     return true;
2232 
2233   if (Token.isNot(MIToken::rparen)) {
2234     do {
2235       if (Token.is(MIToken::Identifier)) {
2236         if (Token.stringValue() == "line") {
2237           lex();
2238           if (expectAndConsume(MIToken::colon))
2239             return true;
2240           if (Token.isNot(MIToken::IntegerLiteral) ||
2241               Token.integerValue().isSigned())
2242             return error("expected unsigned integer");
2243           Line = Token.integerValue().getZExtValue();
2244           HaveLine = true;
2245           lex();
2246           continue;
2247         }
2248         if (Token.stringValue() == "column") {
2249           lex();
2250           if (expectAndConsume(MIToken::colon))
2251             return true;
2252           if (Token.isNot(MIToken::IntegerLiteral) ||
2253               Token.integerValue().isSigned())
2254             return error("expected unsigned integer");
2255           Column = Token.integerValue().getZExtValue();
2256           lex();
2257           continue;
2258         }
2259         if (Token.stringValue() == "scope") {
2260           lex();
2261           if (expectAndConsume(MIToken::colon))
2262             return true;
2263           if (parseMDNode(Scope))
2264             return error("expected metadata node");
2265           if (!isa<DIScope>(Scope))
2266             return error("expected DIScope node");
2267           continue;
2268         }
2269         if (Token.stringValue() == "inlinedAt") {
2270           lex();
2271           if (expectAndConsume(MIToken::colon))
2272             return true;
2273           if (Token.is(MIToken::exclaim)) {
2274             if (parseMDNode(InlinedAt))
2275               return true;
2276           } else if (Token.is(MIToken::md_dilocation)) {
2277             if (parseDILocation(InlinedAt))
2278               return true;
2279           } else
2280             return error("expected metadata node");
2281           if (!isa<DILocation>(InlinedAt))
2282             return error("expected DILocation node");
2283           continue;
2284         }
2285         if (Token.stringValue() == "isImplicitCode") {
2286           lex();
2287           if (expectAndConsume(MIToken::colon))
2288             return true;
2289           if (!Token.is(MIToken::Identifier))
2290             return error("expected true/false");
2291           // As far as I can see, we don't have any existing need for parsing
2292           // true/false in MIR yet. Do it ad-hoc until there's something else
2293           // that needs it.
2294           if (Token.stringValue() == "true")
2295             ImplicitCode = true;
2296           else if (Token.stringValue() == "false")
2297             ImplicitCode = false;
2298           else
2299             return error("expected true/false");
2300           lex();
2301           continue;
2302         }
2303       }
2304       return error(Twine("invalid DILocation argument '") +
2305                    Token.stringValue() + "'");
2306     } while (consumeIfPresent(MIToken::comma));
2307   }
2308 
2309   if (expectAndConsume(MIToken::rparen))
2310     return true;
2311 
2312   if (!HaveLine)
2313     return error("DILocation requires line number");
2314   if (!Scope)
2315     return error("DILocation requires a scope");
2316 
2317   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2318                         InlinedAt, ImplicitCode);
2319   return false;
2320 }
2321 
2322 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2323   MDNode *Node = nullptr;
2324   if (Token.is(MIToken::exclaim)) {
2325     if (parseMDNode(Node))
2326       return true;
2327   } else if (Token.is(MIToken::md_diexpr)) {
2328     if (parseDIExpression(Node))
2329       return true;
2330   }
2331   Dest = MachineOperand::CreateMetadata(Node);
2332   return false;
2333 }
2334 
2335 bool MIParser::parseCFIOffset(int &Offset) {
2336   if (Token.isNot(MIToken::IntegerLiteral))
2337     return error("expected a cfi offset");
2338   if (Token.integerValue().getMinSignedBits() > 32)
2339     return error("expected a 32 bit integer (the cfi offset is too large)");
2340   Offset = (int)Token.integerValue().getExtValue();
2341   lex();
2342   return false;
2343 }
2344 
2345 bool MIParser::parseCFIRegister(Register &Reg) {
2346   if (Token.isNot(MIToken::NamedRegister))
2347     return error("expected a cfi register");
2348   Register LLVMReg;
2349   if (parseNamedRegister(LLVMReg))
2350     return true;
2351   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2352   assert(TRI && "Expected target register info");
2353   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2354   if (DwarfReg < 0)
2355     return error("invalid DWARF register");
2356   Reg = (unsigned)DwarfReg;
2357   lex();
2358   return false;
2359 }
2360 
2361 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2362   if (Token.isNot(MIToken::IntegerLiteral))
2363     return error("expected a cfi address space literal");
2364   if (Token.integerValue().isSigned())
2365     return error("expected an unsigned integer (cfi address space)");
2366   AddressSpace = Token.integerValue().getZExtValue();
2367   lex();
2368   return false;
2369 }
2370 
2371 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2372   do {
2373     if (Token.isNot(MIToken::HexLiteral))
2374       return error("expected a hexadecimal literal");
2375     unsigned Value;
2376     if (getUnsigned(Value))
2377       return true;
2378     if (Value > UINT8_MAX)
2379       return error("expected a 8-bit integer (too large)");
2380     Values.push_back(static_cast<uint8_t>(Value));
2381     lex();
2382   } while (consumeIfPresent(MIToken::comma));
2383   return false;
2384 }
2385 
2386 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2387   auto Kind = Token.kind();
2388   lex();
2389   int Offset;
2390   Register Reg;
2391   unsigned AddressSpace;
2392   unsigned CFIIndex;
2393   switch (Kind) {
2394   case MIToken::kw_cfi_same_value:
2395     if (parseCFIRegister(Reg))
2396       return true;
2397     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2398     break;
2399   case MIToken::kw_cfi_offset:
2400     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2401         parseCFIOffset(Offset))
2402       return true;
2403     CFIIndex =
2404         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2405     break;
2406   case MIToken::kw_cfi_rel_offset:
2407     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2408         parseCFIOffset(Offset))
2409       return true;
2410     CFIIndex = MF.addFrameInst(
2411         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2412     break;
2413   case MIToken::kw_cfi_def_cfa_register:
2414     if (parseCFIRegister(Reg))
2415       return true;
2416     CFIIndex =
2417         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2418     break;
2419   case MIToken::kw_cfi_def_cfa_offset:
2420     if (parseCFIOffset(Offset))
2421       return true;
2422     CFIIndex =
2423         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2424     break;
2425   case MIToken::kw_cfi_adjust_cfa_offset:
2426     if (parseCFIOffset(Offset))
2427       return true;
2428     CFIIndex = MF.addFrameInst(
2429         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2430     break;
2431   case MIToken::kw_cfi_def_cfa:
2432     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2433         parseCFIOffset(Offset))
2434       return true;
2435     CFIIndex =
2436         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2437     break;
2438   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2439     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2440         parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2441         parseCFIAddressSpace(AddressSpace))
2442       return true;
2443     CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2444         nullptr, Reg, Offset, AddressSpace));
2445     break;
2446   case MIToken::kw_cfi_remember_state:
2447     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2448     break;
2449   case MIToken::kw_cfi_restore:
2450     if (parseCFIRegister(Reg))
2451       return true;
2452     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2453     break;
2454   case MIToken::kw_cfi_restore_state:
2455     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2456     break;
2457   case MIToken::kw_cfi_undefined:
2458     if (parseCFIRegister(Reg))
2459       return true;
2460     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2461     break;
2462   case MIToken::kw_cfi_register: {
2463     Register Reg2;
2464     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2465         parseCFIRegister(Reg2))
2466       return true;
2467 
2468     CFIIndex =
2469         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2470     break;
2471   }
2472   case MIToken::kw_cfi_window_save:
2473     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2474     break;
2475   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2476     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2477     break;
2478   case MIToken::kw_cfi_escape: {
2479     std::string Values;
2480     if (parseCFIEscapeValues(Values))
2481       return true;
2482     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2483     break;
2484   }
2485   default:
2486     // TODO: Parse the other CFI operands.
2487     llvm_unreachable("The current token should be a cfi operand");
2488   }
2489   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2490   return false;
2491 }
2492 
2493 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2494   switch (Token.kind()) {
2495   case MIToken::NamedIRBlock: {
2496     BB = dyn_cast_or_null<BasicBlock>(
2497         F.getValueSymbolTable()->lookup(Token.stringValue()));
2498     if (!BB)
2499       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2500     break;
2501   }
2502   case MIToken::IRBlock: {
2503     unsigned SlotNumber = 0;
2504     if (getUnsigned(SlotNumber))
2505       return true;
2506     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2507     if (!BB)
2508       return error(Twine("use of undefined IR block '%ir-block.") +
2509                    Twine(SlotNumber) + "'");
2510     break;
2511   }
2512   default:
2513     llvm_unreachable("The current token should be an IR block reference");
2514   }
2515   return false;
2516 }
2517 
2518 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2519   assert(Token.is(MIToken::kw_blockaddress));
2520   lex();
2521   if (expectAndConsume(MIToken::lparen))
2522     return true;
2523   if (Token.isNot(MIToken::GlobalValue) &&
2524       Token.isNot(MIToken::NamedGlobalValue))
2525     return error("expected a global value");
2526   GlobalValue *GV = nullptr;
2527   if (parseGlobalValue(GV))
2528     return true;
2529   auto *F = dyn_cast<Function>(GV);
2530   if (!F)
2531     return error("expected an IR function reference");
2532   lex();
2533   if (expectAndConsume(MIToken::comma))
2534     return true;
2535   BasicBlock *BB = nullptr;
2536   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2537     return error("expected an IR block reference");
2538   if (parseIRBlock(BB, *F))
2539     return true;
2540   lex();
2541   if (expectAndConsume(MIToken::rparen))
2542     return true;
2543   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2544   if (parseOperandsOffset(Dest))
2545     return true;
2546   return false;
2547 }
2548 
2549 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2550   assert(Token.is(MIToken::kw_intrinsic));
2551   lex();
2552   if (expectAndConsume(MIToken::lparen))
2553     return error("expected syntax intrinsic(@llvm.whatever)");
2554 
2555   if (Token.isNot(MIToken::NamedGlobalValue))
2556     return error("expected syntax intrinsic(@llvm.whatever)");
2557 
2558   std::string Name = std::string(Token.stringValue());
2559   lex();
2560 
2561   if (expectAndConsume(MIToken::rparen))
2562     return error("expected ')' to terminate intrinsic name");
2563 
2564   // Find out what intrinsic we're dealing with, first try the global namespace
2565   // and then the target's private intrinsics if that fails.
2566   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2567   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2568   if (ID == Intrinsic::not_intrinsic && TII)
2569     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2570 
2571   if (ID == Intrinsic::not_intrinsic)
2572     return error("unknown intrinsic name");
2573   Dest = MachineOperand::CreateIntrinsicID(ID);
2574 
2575   return false;
2576 }
2577 
2578 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2579   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2580   bool IsFloat = Token.is(MIToken::kw_floatpred);
2581   lex();
2582 
2583   if (expectAndConsume(MIToken::lparen))
2584     return error("expected syntax intpred(whatever) or floatpred(whatever");
2585 
2586   if (Token.isNot(MIToken::Identifier))
2587     return error("whatever");
2588 
2589   CmpInst::Predicate Pred;
2590   if (IsFloat) {
2591     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2592                .Case("false", CmpInst::FCMP_FALSE)
2593                .Case("oeq", CmpInst::FCMP_OEQ)
2594                .Case("ogt", CmpInst::FCMP_OGT)
2595                .Case("oge", CmpInst::FCMP_OGE)
2596                .Case("olt", CmpInst::FCMP_OLT)
2597                .Case("ole", CmpInst::FCMP_OLE)
2598                .Case("one", CmpInst::FCMP_ONE)
2599                .Case("ord", CmpInst::FCMP_ORD)
2600                .Case("uno", CmpInst::FCMP_UNO)
2601                .Case("ueq", CmpInst::FCMP_UEQ)
2602                .Case("ugt", CmpInst::FCMP_UGT)
2603                .Case("uge", CmpInst::FCMP_UGE)
2604                .Case("ult", CmpInst::FCMP_ULT)
2605                .Case("ule", CmpInst::FCMP_ULE)
2606                .Case("une", CmpInst::FCMP_UNE)
2607                .Case("true", CmpInst::FCMP_TRUE)
2608                .Default(CmpInst::BAD_FCMP_PREDICATE);
2609     if (!CmpInst::isFPPredicate(Pred))
2610       return error("invalid floating-point predicate");
2611   } else {
2612     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2613                .Case("eq", CmpInst::ICMP_EQ)
2614                .Case("ne", CmpInst::ICMP_NE)
2615                .Case("sgt", CmpInst::ICMP_SGT)
2616                .Case("sge", CmpInst::ICMP_SGE)
2617                .Case("slt", CmpInst::ICMP_SLT)
2618                .Case("sle", CmpInst::ICMP_SLE)
2619                .Case("ugt", CmpInst::ICMP_UGT)
2620                .Case("uge", CmpInst::ICMP_UGE)
2621                .Case("ult", CmpInst::ICMP_ULT)
2622                .Case("ule", CmpInst::ICMP_ULE)
2623                .Default(CmpInst::BAD_ICMP_PREDICATE);
2624     if (!CmpInst::isIntPredicate(Pred))
2625       return error("invalid integer predicate");
2626   }
2627 
2628   lex();
2629   Dest = MachineOperand::CreatePredicate(Pred);
2630   if (expectAndConsume(MIToken::rparen))
2631     return error("predicate should be terminated by ')'.");
2632 
2633   return false;
2634 }
2635 
2636 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2637   assert(Token.is(MIToken::kw_shufflemask));
2638 
2639   lex();
2640   if (expectAndConsume(MIToken::lparen))
2641     return error("expected syntax shufflemask(<integer or undef>, ...)");
2642 
2643   SmallVector<int, 32> ShufMask;
2644   do {
2645     if (Token.is(MIToken::kw_undef)) {
2646       ShufMask.push_back(-1);
2647     } else if (Token.is(MIToken::IntegerLiteral)) {
2648       const APSInt &Int = Token.integerValue();
2649       ShufMask.push_back(Int.getExtValue());
2650     } else
2651       return error("expected integer constant");
2652 
2653     lex();
2654   } while (consumeIfPresent(MIToken::comma));
2655 
2656   if (expectAndConsume(MIToken::rparen))
2657     return error("shufflemask should be terminated by ')'.");
2658 
2659   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2660   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2661   return false;
2662 }
2663 
2664 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2665   assert(Token.is(MIToken::kw_target_index));
2666   lex();
2667   if (expectAndConsume(MIToken::lparen))
2668     return true;
2669   if (Token.isNot(MIToken::Identifier))
2670     return error("expected the name of the target index");
2671   int Index = 0;
2672   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2673     return error("use of undefined target index '" + Token.stringValue() + "'");
2674   lex();
2675   if (expectAndConsume(MIToken::rparen))
2676     return true;
2677   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2678   if (parseOperandsOffset(Dest))
2679     return true;
2680   return false;
2681 }
2682 
2683 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2684   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2685   lex();
2686   if (expectAndConsume(MIToken::lparen))
2687     return true;
2688 
2689   uint32_t *Mask = MF.allocateRegMask();
2690   while (true) {
2691     if (Token.isNot(MIToken::NamedRegister))
2692       return error("expected a named register");
2693     Register Reg;
2694     if (parseNamedRegister(Reg))
2695       return true;
2696     lex();
2697     Mask[Reg / 32] |= 1U << (Reg % 32);
2698     // TODO: Report an error if the same register is used more than once.
2699     if (Token.isNot(MIToken::comma))
2700       break;
2701     lex();
2702   }
2703 
2704   if (expectAndConsume(MIToken::rparen))
2705     return true;
2706   Dest = MachineOperand::CreateRegMask(Mask);
2707   return false;
2708 }
2709 
2710 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2711   assert(Token.is(MIToken::kw_liveout));
2712   uint32_t *Mask = MF.allocateRegMask();
2713   lex();
2714   if (expectAndConsume(MIToken::lparen))
2715     return true;
2716   while (true) {
2717     if (Token.isNot(MIToken::NamedRegister))
2718       return error("expected a named register");
2719     Register Reg;
2720     if (parseNamedRegister(Reg))
2721       return true;
2722     lex();
2723     Mask[Reg / 32] |= 1U << (Reg % 32);
2724     // TODO: Report an error if the same register is used more than once.
2725     if (Token.isNot(MIToken::comma))
2726       break;
2727     lex();
2728   }
2729   if (expectAndConsume(MIToken::rparen))
2730     return true;
2731   Dest = MachineOperand::CreateRegLiveOut(Mask);
2732   return false;
2733 }
2734 
2735 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2736                                    MachineOperand &Dest,
2737                                    Optional<unsigned> &TiedDefIdx) {
2738   switch (Token.kind()) {
2739   case MIToken::kw_implicit:
2740   case MIToken::kw_implicit_define:
2741   case MIToken::kw_def:
2742   case MIToken::kw_dead:
2743   case MIToken::kw_killed:
2744   case MIToken::kw_undef:
2745   case MIToken::kw_internal:
2746   case MIToken::kw_early_clobber:
2747   case MIToken::kw_debug_use:
2748   case MIToken::kw_renamable:
2749   case MIToken::underscore:
2750   case MIToken::NamedRegister:
2751   case MIToken::VirtualRegister:
2752   case MIToken::NamedVirtualRegister:
2753     return parseRegisterOperand(Dest, TiedDefIdx);
2754   case MIToken::IntegerLiteral:
2755     return parseImmediateOperand(Dest);
2756   case MIToken::kw_half:
2757   case MIToken::kw_float:
2758   case MIToken::kw_double:
2759   case MIToken::kw_x86_fp80:
2760   case MIToken::kw_fp128:
2761   case MIToken::kw_ppc_fp128:
2762     return parseFPImmediateOperand(Dest);
2763   case MIToken::MachineBasicBlock:
2764     return parseMBBOperand(Dest);
2765   case MIToken::StackObject:
2766     return parseStackObjectOperand(Dest);
2767   case MIToken::FixedStackObject:
2768     return parseFixedStackObjectOperand(Dest);
2769   case MIToken::GlobalValue:
2770   case MIToken::NamedGlobalValue:
2771     return parseGlobalAddressOperand(Dest);
2772   case MIToken::ConstantPoolItem:
2773     return parseConstantPoolIndexOperand(Dest);
2774   case MIToken::JumpTableIndex:
2775     return parseJumpTableIndexOperand(Dest);
2776   case MIToken::ExternalSymbol:
2777     return parseExternalSymbolOperand(Dest);
2778   case MIToken::MCSymbol:
2779     return parseMCSymbolOperand(Dest);
2780   case MIToken::SubRegisterIndex:
2781     return parseSubRegisterIndexOperand(Dest);
2782   case MIToken::md_diexpr:
2783   case MIToken::exclaim:
2784     return parseMetadataOperand(Dest);
2785   case MIToken::kw_cfi_same_value:
2786   case MIToken::kw_cfi_offset:
2787   case MIToken::kw_cfi_rel_offset:
2788   case MIToken::kw_cfi_def_cfa_register:
2789   case MIToken::kw_cfi_def_cfa_offset:
2790   case MIToken::kw_cfi_adjust_cfa_offset:
2791   case MIToken::kw_cfi_escape:
2792   case MIToken::kw_cfi_def_cfa:
2793   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2794   case MIToken::kw_cfi_register:
2795   case MIToken::kw_cfi_remember_state:
2796   case MIToken::kw_cfi_restore:
2797   case MIToken::kw_cfi_restore_state:
2798   case MIToken::kw_cfi_undefined:
2799   case MIToken::kw_cfi_window_save:
2800   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2801     return parseCFIOperand(Dest);
2802   case MIToken::kw_blockaddress:
2803     return parseBlockAddressOperand(Dest);
2804   case MIToken::kw_intrinsic:
2805     return parseIntrinsicOperand(Dest);
2806   case MIToken::kw_target_index:
2807     return parseTargetIndexOperand(Dest);
2808   case MIToken::kw_liveout:
2809     return parseLiveoutRegisterMaskOperand(Dest);
2810   case MIToken::kw_floatpred:
2811   case MIToken::kw_intpred:
2812     return parsePredicateOperand(Dest);
2813   case MIToken::kw_shufflemask:
2814     return parseShuffleMaskOperand(Dest);
2815   case MIToken::Error:
2816     return true;
2817   case MIToken::Identifier:
2818     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2819       Dest = MachineOperand::CreateRegMask(RegMask);
2820       lex();
2821       break;
2822     } else if (Token.stringValue() == "CustomRegMask") {
2823       return parseCustomRegisterMaskOperand(Dest);
2824     } else
2825       return parseTypedImmediateOperand(Dest);
2826   case MIToken::dot: {
2827     const auto *TII = MF.getSubtarget().getInstrInfo();
2828     if (const auto *Formatter = TII->getMIRFormatter()) {
2829       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2830     }
2831     LLVM_FALLTHROUGH;
2832   }
2833   default:
2834     // FIXME: Parse the MCSymbol machine operand.
2835     return error("expected a machine operand");
2836   }
2837   return false;
2838 }
2839 
2840 bool MIParser::parseMachineOperandAndTargetFlags(
2841     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2842     Optional<unsigned> &TiedDefIdx) {
2843   unsigned TF = 0;
2844   bool HasTargetFlags = false;
2845   if (Token.is(MIToken::kw_target_flags)) {
2846     HasTargetFlags = true;
2847     lex();
2848     if (expectAndConsume(MIToken::lparen))
2849       return true;
2850     if (Token.isNot(MIToken::Identifier))
2851       return error("expected the name of the target flag");
2852     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2853       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2854         return error("use of undefined target flag '" + Token.stringValue() +
2855                      "'");
2856     }
2857     lex();
2858     while (Token.is(MIToken::comma)) {
2859       lex();
2860       if (Token.isNot(MIToken::Identifier))
2861         return error("expected the name of the target flag");
2862       unsigned BitFlag = 0;
2863       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2864         return error("use of undefined target flag '" + Token.stringValue() +
2865                      "'");
2866       // TODO: Report an error when using a duplicate bit target flag.
2867       TF |= BitFlag;
2868       lex();
2869     }
2870     if (expectAndConsume(MIToken::rparen))
2871       return true;
2872   }
2873   auto Loc = Token.location();
2874   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2875     return true;
2876   if (!HasTargetFlags)
2877     return false;
2878   if (Dest.isReg())
2879     return error(Loc, "register operands can't have target flags");
2880   Dest.setTargetFlags(TF);
2881   return false;
2882 }
2883 
2884 bool MIParser::parseOffset(int64_t &Offset) {
2885   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2886     return false;
2887   StringRef Sign = Token.range();
2888   bool IsNegative = Token.is(MIToken::minus);
2889   lex();
2890   if (Token.isNot(MIToken::IntegerLiteral))
2891     return error("expected an integer literal after '" + Sign + "'");
2892   if (Token.integerValue().getMinSignedBits() > 64)
2893     return error("expected 64-bit integer (too large)");
2894   Offset = Token.integerValue().getExtValue();
2895   if (IsNegative)
2896     Offset = -Offset;
2897   lex();
2898   return false;
2899 }
2900 
2901 bool MIParser::parseAlignment(unsigned &Alignment) {
2902   assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
2903   lex();
2904   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2905     return error("expected an integer literal after 'align'");
2906   if (getUnsigned(Alignment))
2907     return true;
2908   lex();
2909 
2910   if (!isPowerOf2_32(Alignment))
2911     return error("expected a power-of-2 literal after 'align'");
2912 
2913   return false;
2914 }
2915 
2916 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2917   assert(Token.is(MIToken::kw_addrspace));
2918   lex();
2919   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2920     return error("expected an integer literal after 'addrspace'");
2921   if (getUnsigned(Addrspace))
2922     return true;
2923   lex();
2924   return false;
2925 }
2926 
2927 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2928   int64_t Offset = 0;
2929   if (parseOffset(Offset))
2930     return true;
2931   Op.setOffset(Offset);
2932   return false;
2933 }
2934 
2935 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2936                          const Value *&V, ErrorCallbackType ErrCB) {
2937   switch (Token.kind()) {
2938   case MIToken::NamedIRValue: {
2939     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2940     break;
2941   }
2942   case MIToken::IRValue: {
2943     unsigned SlotNumber = 0;
2944     if (getUnsigned(Token, SlotNumber, ErrCB))
2945       return true;
2946     V = PFS.getIRValue(SlotNumber);
2947     break;
2948   }
2949   case MIToken::NamedGlobalValue:
2950   case MIToken::GlobalValue: {
2951     GlobalValue *GV = nullptr;
2952     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2953       return true;
2954     V = GV;
2955     break;
2956   }
2957   case MIToken::QuotedIRValue: {
2958     const Constant *C = nullptr;
2959     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2960       return true;
2961     V = C;
2962     break;
2963   }
2964   case MIToken::kw_unknown_address:
2965     V = nullptr;
2966     return false;
2967   default:
2968     llvm_unreachable("The current token should be an IR block reference");
2969   }
2970   if (!V)
2971     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2972   return false;
2973 }
2974 
2975 bool MIParser::parseIRValue(const Value *&V) {
2976   return ::parseIRValue(
2977       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2978         return error(Loc, Msg);
2979       });
2980 }
2981 
2982 bool MIParser::getUint64(uint64_t &Result) {
2983   if (Token.hasIntegerValue()) {
2984     if (Token.integerValue().getActiveBits() > 64)
2985       return error("expected 64-bit integer (too large)");
2986     Result = Token.integerValue().getZExtValue();
2987     return false;
2988   }
2989   if (Token.is(MIToken::HexLiteral)) {
2990     APInt A;
2991     if (getHexUint(A))
2992       return true;
2993     if (A.getBitWidth() > 64)
2994       return error("expected 64-bit integer (too large)");
2995     Result = A.getZExtValue();
2996     return false;
2997   }
2998   return true;
2999 }
3000 
3001 bool MIParser::getHexUint(APInt &Result) {
3002   return ::getHexUint(Token, Result);
3003 }
3004 
3005 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3006   const auto OldFlags = Flags;
3007   switch (Token.kind()) {
3008   case MIToken::kw_volatile:
3009     Flags |= MachineMemOperand::MOVolatile;
3010     break;
3011   case MIToken::kw_non_temporal:
3012     Flags |= MachineMemOperand::MONonTemporal;
3013     break;
3014   case MIToken::kw_dereferenceable:
3015     Flags |= MachineMemOperand::MODereferenceable;
3016     break;
3017   case MIToken::kw_invariant:
3018     Flags |= MachineMemOperand::MOInvariant;
3019     break;
3020   case MIToken::StringConstant: {
3021     MachineMemOperand::Flags TF;
3022     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3023       return error("use of undefined target MMO flag '" + Token.stringValue() +
3024                    "'");
3025     Flags |= TF;
3026     break;
3027   }
3028   default:
3029     llvm_unreachable("The current token should be a memory operand flag");
3030   }
3031   if (OldFlags == Flags)
3032     // We know that the same flag is specified more than once when the flags
3033     // weren't modified.
3034     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3035   lex();
3036   return false;
3037 }
3038 
3039 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3040   switch (Token.kind()) {
3041   case MIToken::kw_stack:
3042     PSV = MF.getPSVManager().getStack();
3043     break;
3044   case MIToken::kw_got:
3045     PSV = MF.getPSVManager().getGOT();
3046     break;
3047   case MIToken::kw_jump_table:
3048     PSV = MF.getPSVManager().getJumpTable();
3049     break;
3050   case MIToken::kw_constant_pool:
3051     PSV = MF.getPSVManager().getConstantPool();
3052     break;
3053   case MIToken::FixedStackObject: {
3054     int FI;
3055     if (parseFixedStackFrameIndex(FI))
3056       return true;
3057     PSV = MF.getPSVManager().getFixedStack(FI);
3058     // The token was already consumed, so use return here instead of break.
3059     return false;
3060   }
3061   case MIToken::StackObject: {
3062     int FI;
3063     if (parseStackFrameIndex(FI))
3064       return true;
3065     PSV = MF.getPSVManager().getFixedStack(FI);
3066     // The token was already consumed, so use return here instead of break.
3067     return false;
3068   }
3069   case MIToken::kw_call_entry:
3070     lex();
3071     switch (Token.kind()) {
3072     case MIToken::GlobalValue:
3073     case MIToken::NamedGlobalValue: {
3074       GlobalValue *GV = nullptr;
3075       if (parseGlobalValue(GV))
3076         return true;
3077       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3078       break;
3079     }
3080     case MIToken::ExternalSymbol:
3081       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3082           MF.createExternalSymbolName(Token.stringValue()));
3083       break;
3084     default:
3085       return error(
3086           "expected a global value or an external symbol after 'call-entry'");
3087     }
3088     break;
3089   case MIToken::kw_custom: {
3090     lex();
3091     const auto *TII = MF.getSubtarget().getInstrInfo();
3092     if (const auto *Formatter = TII->getMIRFormatter()) {
3093       if (Formatter->parseCustomPseudoSourceValue(
3094               Token.stringValue(), MF, PFS, PSV,
3095               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3096                 return error(Loc, Msg);
3097               }))
3098         return true;
3099     } else
3100       return error("unable to parse target custom pseudo source value");
3101     break;
3102   }
3103   default:
3104     llvm_unreachable("The current token should be pseudo source value");
3105   }
3106   lex();
3107   return false;
3108 }
3109 
3110 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3111   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3112       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3113       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3114       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3115     const PseudoSourceValue *PSV = nullptr;
3116     if (parseMemoryPseudoSourceValue(PSV))
3117       return true;
3118     int64_t Offset = 0;
3119     if (parseOffset(Offset))
3120       return true;
3121     Dest = MachinePointerInfo(PSV, Offset);
3122     return false;
3123   }
3124   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3125       Token.isNot(MIToken::GlobalValue) &&
3126       Token.isNot(MIToken::NamedGlobalValue) &&
3127       Token.isNot(MIToken::QuotedIRValue) &&
3128       Token.isNot(MIToken::kw_unknown_address))
3129     return error("expected an IR value reference");
3130   const Value *V = nullptr;
3131   if (parseIRValue(V))
3132     return true;
3133   if (V && !V->getType()->isPointerTy())
3134     return error("expected a pointer IR value");
3135   lex();
3136   int64_t Offset = 0;
3137   if (parseOffset(Offset))
3138     return true;
3139   Dest = MachinePointerInfo(V, Offset);
3140   return false;
3141 }
3142 
3143 bool MIParser::parseOptionalScope(LLVMContext &Context,
3144                                   SyncScope::ID &SSID) {
3145   SSID = SyncScope::System;
3146   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3147     lex();
3148     if (expectAndConsume(MIToken::lparen))
3149       return error("expected '(' in syncscope");
3150 
3151     std::string SSN;
3152     if (parseStringConstant(SSN))
3153       return true;
3154 
3155     SSID = Context.getOrInsertSyncScopeID(SSN);
3156     if (expectAndConsume(MIToken::rparen))
3157       return error("expected ')' in syncscope");
3158   }
3159 
3160   return false;
3161 }
3162 
3163 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3164   Order = AtomicOrdering::NotAtomic;
3165   if (Token.isNot(MIToken::Identifier))
3166     return false;
3167 
3168   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3169               .Case("unordered", AtomicOrdering::Unordered)
3170               .Case("monotonic", AtomicOrdering::Monotonic)
3171               .Case("acquire", AtomicOrdering::Acquire)
3172               .Case("release", AtomicOrdering::Release)
3173               .Case("acq_rel", AtomicOrdering::AcquireRelease)
3174               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3175               .Default(AtomicOrdering::NotAtomic);
3176 
3177   if (Order != AtomicOrdering::NotAtomic) {
3178     lex();
3179     return false;
3180   }
3181 
3182   return error("expected an atomic scope, ordering or a size specification");
3183 }
3184 
3185 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3186   if (expectAndConsume(MIToken::lparen))
3187     return true;
3188   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3189   while (Token.isMemoryOperandFlag()) {
3190     if (parseMemoryOperandFlag(Flags))
3191       return true;
3192   }
3193   if (Token.isNot(MIToken::Identifier) ||
3194       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3195     return error("expected 'load' or 'store' memory operation");
3196   if (Token.stringValue() == "load")
3197     Flags |= MachineMemOperand::MOLoad;
3198   else
3199     Flags |= MachineMemOperand::MOStore;
3200   lex();
3201 
3202   // Optional 'store' for operands that both load and store.
3203   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3204     Flags |= MachineMemOperand::MOStore;
3205     lex();
3206   }
3207 
3208   // Optional synchronization scope.
3209   SyncScope::ID SSID;
3210   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3211     return true;
3212 
3213   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3214   AtomicOrdering Order, FailureOrder;
3215   if (parseOptionalAtomicOrdering(Order))
3216     return true;
3217 
3218   if (parseOptionalAtomicOrdering(FailureOrder))
3219     return true;
3220 
3221   LLT MemoryType;
3222   if (Token.isNot(MIToken::IntegerLiteral) &&
3223       Token.isNot(MIToken::kw_unknown_size) &&
3224       Token.isNot(MIToken::lparen))
3225     return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3226                  "memory operation");
3227 
3228   uint64_t Size = MemoryLocation::UnknownSize;
3229   if (Token.is(MIToken::IntegerLiteral)) {
3230     if (getUint64(Size))
3231       return true;
3232 
3233     // Convert from bytes to bits for storage.
3234     MemoryType = LLT::scalar(8 * Size);
3235     lex();
3236   } else if (Token.is(MIToken::kw_unknown_size)) {
3237     Size = MemoryLocation::UnknownSize;
3238     lex();
3239   } else {
3240     if (expectAndConsume(MIToken::lparen))
3241       return true;
3242     if (parseLowLevelType(Token.location(), MemoryType))
3243       return true;
3244     if (expectAndConsume(MIToken::rparen))
3245       return true;
3246 
3247     Size = MemoryType.getSizeInBytes();
3248   }
3249 
3250   MachinePointerInfo Ptr = MachinePointerInfo();
3251   if (Token.is(MIToken::Identifier)) {
3252     const char *Word =
3253         ((Flags & MachineMemOperand::MOLoad) &&
3254          (Flags & MachineMemOperand::MOStore))
3255             ? "on"
3256             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3257     if (Token.stringValue() != Word)
3258       return error(Twine("expected '") + Word + "'");
3259     lex();
3260 
3261     if (parseMachinePointerInfo(Ptr))
3262       return true;
3263   }
3264   unsigned BaseAlignment =
3265       (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3266   AAMDNodes AAInfo;
3267   MDNode *Range = nullptr;
3268   while (consumeIfPresent(MIToken::comma)) {
3269     switch (Token.kind()) {
3270     case MIToken::kw_align:
3271       // align is printed if it is different than size.
3272       if (parseAlignment(BaseAlignment))
3273         return true;
3274       break;
3275     case MIToken::kw_basealign:
3276       // basealign is printed if it is different than align.
3277       if (parseAlignment(BaseAlignment))
3278         return true;
3279       break;
3280     case MIToken::kw_addrspace:
3281       if (parseAddrspace(Ptr.AddrSpace))
3282         return true;
3283       break;
3284     case MIToken::md_tbaa:
3285       lex();
3286       if (parseMDNode(AAInfo.TBAA))
3287         return true;
3288       break;
3289     case MIToken::md_alias_scope:
3290       lex();
3291       if (parseMDNode(AAInfo.Scope))
3292         return true;
3293       break;
3294     case MIToken::md_noalias:
3295       lex();
3296       if (parseMDNode(AAInfo.NoAlias))
3297         return true;
3298       break;
3299     case MIToken::md_range:
3300       lex();
3301       if (parseMDNode(Range))
3302         return true;
3303       break;
3304     // TODO: Report an error on duplicate metadata nodes.
3305     default:
3306       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3307                    "'!noalias' or '!range'");
3308     }
3309   }
3310   if (expectAndConsume(MIToken::rparen))
3311     return true;
3312   Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3313                                  AAInfo, Range, SSID, Order, FailureOrder);
3314   return false;
3315 }
3316 
3317 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3318   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3319           Token.is(MIToken::kw_post_instr_symbol)) &&
3320          "Invalid token for a pre- post-instruction symbol!");
3321   lex();
3322   if (Token.isNot(MIToken::MCSymbol))
3323     return error("expected a symbol after 'pre-instr-symbol'");
3324   Symbol = getOrCreateMCSymbol(Token.stringValue());
3325   lex();
3326   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3327       Token.is(MIToken::lbrace))
3328     return false;
3329   if (Token.isNot(MIToken::comma))
3330     return error("expected ',' before the next machine operand");
3331   lex();
3332   return false;
3333 }
3334 
3335 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3336   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3337          "Invalid token for a heap alloc marker!");
3338   lex();
3339   parseMDNode(Node);
3340   if (!Node)
3341     return error("expected a MDNode after 'heap-alloc-marker'");
3342   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3343       Token.is(MIToken::lbrace))
3344     return false;
3345   if (Token.isNot(MIToken::comma))
3346     return error("expected ',' before the next machine operand");
3347   lex();
3348   return false;
3349 }
3350 
3351 static void initSlots2BasicBlocks(
3352     const Function &F,
3353     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3354   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3355   MST.incorporateFunction(F);
3356   for (auto &BB : F) {
3357     if (BB.hasName())
3358       continue;
3359     int Slot = MST.getLocalSlot(&BB);
3360     if (Slot == -1)
3361       continue;
3362     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3363   }
3364 }
3365 
3366 static const BasicBlock *getIRBlockFromSlot(
3367     unsigned Slot,
3368     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3369   return Slots2BasicBlocks.lookup(Slot);
3370 }
3371 
3372 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3373   if (Slots2BasicBlocks.empty())
3374     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3375   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3376 }
3377 
3378 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3379   if (&F == &MF.getFunction())
3380     return getIRBlock(Slot);
3381   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3382   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3383   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3384 }
3385 
3386 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3387   // FIXME: Currently we can't recognize temporary or local symbols and call all
3388   // of the appropriate forms to create them. However, this handles basic cases
3389   // well as most of the special aspects are recognized by a prefix on their
3390   // name, and the input names should already be unique. For test cases, keeping
3391   // the symbol name out of the symbol table isn't terribly important.
3392   return MF.getContext().getOrCreateSymbol(Name);
3393 }
3394 
3395 bool MIParser::parseStringConstant(std::string &Result) {
3396   if (Token.isNot(MIToken::StringConstant))
3397     return error("expected string constant");
3398   Result = std::string(Token.stringValue());
3399   lex();
3400   return false;
3401 }
3402 
3403 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3404                                              StringRef Src,
3405                                              SMDiagnostic &Error) {
3406   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3407 }
3408 
3409 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3410                                     StringRef Src, SMDiagnostic &Error) {
3411   return MIParser(PFS, Error, Src).parseBasicBlocks();
3412 }
3413 
3414 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3415                              MachineBasicBlock *&MBB, StringRef Src,
3416                              SMDiagnostic &Error) {
3417   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3418 }
3419 
3420 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3421                                   Register &Reg, StringRef Src,
3422                                   SMDiagnostic &Error) {
3423   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3424 }
3425 
3426 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3427                                        Register &Reg, StringRef Src,
3428                                        SMDiagnostic &Error) {
3429   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3430 }
3431 
3432 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3433                                          VRegInfo *&Info, StringRef Src,
3434                                          SMDiagnostic &Error) {
3435   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3436 }
3437 
3438 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3439                                      int &FI, StringRef Src,
3440                                      SMDiagnostic &Error) {
3441   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3442 }
3443 
3444 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3445                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3446   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3447 }
3448 
3449 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3450                                 SMRange SrcRange, SMDiagnostic &Error) {
3451   return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3452 }
3453 
3454 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3455                                 PerFunctionMIParsingState &PFS, const Value *&V,
3456                                 ErrorCallbackType ErrorCallback) {
3457   MIToken Token;
3458   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3459     ErrorCallback(Loc, Msg);
3460   });
3461   V = nullptr;
3462 
3463   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3464 }
3465