xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MIRParser/MIParser.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 Register &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   auto ValueInfo = Slots2Values.find(Slot);
373   if (ValueInfo == Slots2Values.end())
374     return nullptr;
375   return ValueInfo->second;
376 }
377 
378 namespace {
379 
380 /// A wrapper struct around the 'MachineOperand' struct that includes a source
381 /// range and other attributes.
382 struct ParsedMachineOperand {
383   MachineOperand Operand;
384   StringRef::iterator Begin;
385   StringRef::iterator End;
386   Optional<unsigned> TiedDefIdx;
387 
388   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
389                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
390       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
391     if (TiedDefIdx)
392       assert(Operand.isReg() && Operand.isUse() &&
393              "Only used register operands can be tied");
394   }
395 };
396 
397 class MIParser {
398   MachineFunction &MF;
399   SMDiagnostic &Error;
400   StringRef Source, CurrentSource;
401   MIToken Token;
402   PerFunctionMIParsingState &PFS;
403   /// Maps from slot numbers to function's unnamed basic blocks.
404   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
405 
406 public:
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(Register &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(Register &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434 
435   bool
436   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437   bool parseBasicBlock(MachineBasicBlock &MBB,
438                        MachineBasicBlock *&AddFalthroughFrom);
439   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441 
442   bool parseNamedRegister(Register &Reg);
443   bool parseVirtualRegister(VRegInfo *&Info);
444   bool parseNamedVirtualRegister(VRegInfo *&Info);
445   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
446   bool parseRegisterFlag(unsigned &Flags);
447   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448   bool parseSubRegisterIndex(unsigned &SubReg);
449   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450   bool parseRegisterOperand(MachineOperand &Dest,
451                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
452   bool parseImmediateOperand(MachineOperand &Dest);
453   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
454                        const Constant *&C);
455   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
456   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
457   bool parseTypedImmediateOperand(MachineOperand &Dest);
458   bool parseFPImmediateOperand(MachineOperand &Dest);
459   bool parseMBBReference(MachineBasicBlock *&MBB);
460   bool parseMBBOperand(MachineOperand &Dest);
461   bool parseStackFrameIndex(int &FI);
462   bool parseStackObjectOperand(MachineOperand &Dest);
463   bool parseFixedStackFrameIndex(int &FI);
464   bool parseFixedStackObjectOperand(MachineOperand &Dest);
465   bool parseGlobalValue(GlobalValue *&GV);
466   bool parseGlobalAddressOperand(MachineOperand &Dest);
467   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
468   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
469   bool parseJumpTableIndexOperand(MachineOperand &Dest);
470   bool parseExternalSymbolOperand(MachineOperand &Dest);
471   bool parseMCSymbolOperand(MachineOperand &Dest);
472   bool parseMDNode(MDNode *&Node);
473   bool parseDIExpression(MDNode *&Expr);
474   bool parseDILocation(MDNode *&Expr);
475   bool parseMetadataOperand(MachineOperand &Dest);
476   bool parseCFIOffset(int &Offset);
477   bool parseCFIRegister(Register &Reg);
478   bool parseCFIEscapeValues(std::string& Values);
479   bool parseCFIOperand(MachineOperand &Dest);
480   bool parseIRBlock(BasicBlock *&BB, const Function &F);
481   bool parseBlockAddressOperand(MachineOperand &Dest);
482   bool parseIntrinsicOperand(MachineOperand &Dest);
483   bool parsePredicateOperand(MachineOperand &Dest);
484   bool parseShuffleMaskOperand(MachineOperand &Dest);
485   bool parseTargetIndexOperand(MachineOperand &Dest);
486   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
487   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
488   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
489                            MachineOperand &Dest,
490                            Optional<unsigned> &TiedDefIdx);
491   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
492                                          const unsigned OpIdx,
493                                          MachineOperand &Dest,
494                                          Optional<unsigned> &TiedDefIdx);
495   bool parseOffset(int64_t &Offset);
496   bool parseAlignment(unsigned &Alignment);
497   bool parseAddrspace(unsigned &Addrspace);
498   bool parseSectionID(Optional<MBBSectionID> &SID);
499   bool parseOperandsOffset(MachineOperand &Op);
500   bool parseIRValue(const Value *&V);
501   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
502   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
503   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
504   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
505   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
506   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
507   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
508   bool parseHeapAllocMarker(MDNode *&Node);
509 
510   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
511                               MachineOperand &Dest, const MIRFormatter &MF);
512 
513 private:
514   /// Convert the integer literal in the current token into an unsigned integer.
515   ///
516   /// Return true if an error occurred.
517   bool getUnsigned(unsigned &Result);
518 
519   /// Convert the integer literal in the current token into an uint64.
520   ///
521   /// Return true if an error occurred.
522   bool getUint64(uint64_t &Result);
523 
524   /// Convert the hexadecimal literal in the current token into an unsigned
525   ///  APInt with a minimum bitwidth required to represent the value.
526   ///
527   /// Return true if the literal does not represent an integer value.
528   bool getHexUint(APInt &Result);
529 
530   /// If the current token is of the given kind, consume it and return false.
531   /// Otherwise report an error and return true.
532   bool expectAndConsume(MIToken::TokenKind TokenKind);
533 
534   /// If the current token is of the given kind, consume it and return true.
535   /// Otherwise return false.
536   bool consumeIfPresent(MIToken::TokenKind TokenKind);
537 
538   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
539 
540   bool assignRegisterTies(MachineInstr &MI,
541                           ArrayRef<ParsedMachineOperand> Operands);
542 
543   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
544                               const MCInstrDesc &MCID);
545 
546   const BasicBlock *getIRBlock(unsigned Slot);
547   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
548 
549   /// Get or create an MCSymbol for a given name.
550   MCSymbol *getOrCreateMCSymbol(StringRef Name);
551 
552   /// parseStringConstant
553   ///   ::= StringConstant
554   bool parseStringConstant(std::string &Result);
555 };
556 
557 } // end anonymous namespace
558 
559 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
560                    StringRef Source)
561     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
562 {}
563 
564 void MIParser::lex(unsigned SkipChar) {
565   CurrentSource = lexMIToken(
566       CurrentSource.slice(SkipChar, StringRef::npos), Token,
567       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
568 }
569 
570 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
571 
572 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
573   const SourceMgr &SM = *PFS.SM;
574   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
575   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
576   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
577     // Create an ordinary diagnostic when the source manager's buffer is the
578     // source string.
579     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
580     return true;
581   }
582   // Create a diagnostic for a YAML string literal.
583   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
584                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
585                        Source, None, None);
586   return true;
587 }
588 
589 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
590     ErrorCallbackType;
591 
592 static const char *toString(MIToken::TokenKind TokenKind) {
593   switch (TokenKind) {
594   case MIToken::comma:
595     return "','";
596   case MIToken::equal:
597     return "'='";
598   case MIToken::colon:
599     return "':'";
600   case MIToken::lparen:
601     return "'('";
602   case MIToken::rparen:
603     return "')'";
604   default:
605     return "<unknown token>";
606   }
607 }
608 
609 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
610   if (Token.isNot(TokenKind))
611     return error(Twine("expected ") + toString(TokenKind));
612   lex();
613   return false;
614 }
615 
616 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
617   if (Token.isNot(TokenKind))
618     return false;
619   lex();
620   return true;
621 }
622 
623 // Parse Machine Basic Block Section ID.
624 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
625   assert(Token.is(MIToken::kw_bbsections));
626   lex();
627   if (Token.is(MIToken::IntegerLiteral)) {
628     unsigned Value = 0;
629     if (getUnsigned(Value))
630       return error("Unknown Section ID");
631     SID = MBBSectionID{Value};
632   } else {
633     const StringRef &S = Token.stringValue();
634     if (S == "Exception")
635       SID = MBBSectionID::ExceptionSectionID;
636     else if (S == "Cold")
637       SID = MBBSectionID::ColdSectionID;
638     else
639       return error("Unknown Section ID");
640   }
641   lex();
642   return false;
643 }
644 
645 bool MIParser::parseBasicBlockDefinition(
646     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
647   assert(Token.is(MIToken::MachineBasicBlockLabel));
648   unsigned ID = 0;
649   if (getUnsigned(ID))
650     return true;
651   auto Loc = Token.location();
652   auto Name = Token.stringValue();
653   lex();
654   bool HasAddressTaken = false;
655   bool IsLandingPad = false;
656   bool IsEHFuncletEntry = false;
657   Optional<MBBSectionID> SectionID;
658   unsigned Alignment = 0;
659   BasicBlock *BB = nullptr;
660   if (consumeIfPresent(MIToken::lparen)) {
661     do {
662       // TODO: Report an error when multiple same attributes are specified.
663       switch (Token.kind()) {
664       case MIToken::kw_address_taken:
665         HasAddressTaken = true;
666         lex();
667         break;
668       case MIToken::kw_landing_pad:
669         IsLandingPad = true;
670         lex();
671         break;
672       case MIToken::kw_ehfunclet_entry:
673         IsEHFuncletEntry = true;
674         lex();
675         break;
676       case MIToken::kw_align:
677         if (parseAlignment(Alignment))
678           return true;
679         break;
680       case MIToken::IRBlock:
681         // TODO: Report an error when both name and ir block are specified.
682         if (parseIRBlock(BB, MF.getFunction()))
683           return true;
684         lex();
685         break;
686       case MIToken::kw_bbsections:
687         if (parseSectionID(SectionID))
688           return true;
689         break;
690       default:
691         break;
692       }
693     } while (consumeIfPresent(MIToken::comma));
694     if (expectAndConsume(MIToken::rparen))
695       return true;
696   }
697   if (expectAndConsume(MIToken::colon))
698     return true;
699 
700   if (!Name.empty()) {
701     BB = dyn_cast_or_null<BasicBlock>(
702         MF.getFunction().getValueSymbolTable()->lookup(Name));
703     if (!BB)
704       return error(Loc, Twine("basic block '") + Name +
705                             "' is not defined in the function '" +
706                             MF.getName() + "'");
707   }
708   auto *MBB = MF.CreateMachineBasicBlock(BB);
709   MF.insert(MF.end(), MBB);
710   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
711   if (!WasInserted)
712     return error(Loc, Twine("redefinition of machine basic block with id #") +
713                           Twine(ID));
714   if (Alignment)
715     MBB->setAlignment(Align(Alignment));
716   if (HasAddressTaken)
717     MBB->setHasAddressTaken();
718   MBB->setIsEHPad(IsLandingPad);
719   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
720   if (SectionID.hasValue()) {
721     MBB->setSectionID(SectionID.getValue());
722     MF.setBBSectionsType(BasicBlockSection::List);
723   }
724   return false;
725 }
726 
727 bool MIParser::parseBasicBlockDefinitions(
728     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
729   lex();
730   // Skip until the first machine basic block.
731   while (Token.is(MIToken::Newline))
732     lex();
733   if (Token.isErrorOrEOF())
734     return Token.isError();
735   if (Token.isNot(MIToken::MachineBasicBlockLabel))
736     return error("expected a basic block definition before instructions");
737   unsigned BraceDepth = 0;
738   do {
739     if (parseBasicBlockDefinition(MBBSlots))
740       return true;
741     bool IsAfterNewline = false;
742     // Skip until the next machine basic block.
743     while (true) {
744       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
745           Token.isErrorOrEOF())
746         break;
747       else if (Token.is(MIToken::MachineBasicBlockLabel))
748         return error("basic block definition should be located at the start of "
749                      "the line");
750       else if (consumeIfPresent(MIToken::Newline)) {
751         IsAfterNewline = true;
752         continue;
753       }
754       IsAfterNewline = false;
755       if (Token.is(MIToken::lbrace))
756         ++BraceDepth;
757       if (Token.is(MIToken::rbrace)) {
758         if (!BraceDepth)
759           return error("extraneous closing brace ('}')");
760         --BraceDepth;
761       }
762       lex();
763     }
764     // Verify that we closed all of the '{' at the end of a file or a block.
765     if (!Token.isError() && BraceDepth)
766       return error("expected '}'"); // FIXME: Report a note that shows '{'.
767   } while (!Token.isErrorOrEOF());
768   return Token.isError();
769 }
770 
771 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
772   assert(Token.is(MIToken::kw_liveins));
773   lex();
774   if (expectAndConsume(MIToken::colon))
775     return true;
776   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
777     return false;
778   do {
779     if (Token.isNot(MIToken::NamedRegister))
780       return error("expected a named register");
781     Register Reg;
782     if (parseNamedRegister(Reg))
783       return true;
784     lex();
785     LaneBitmask Mask = LaneBitmask::getAll();
786     if (consumeIfPresent(MIToken::colon)) {
787       // Parse lane mask.
788       if (Token.isNot(MIToken::IntegerLiteral) &&
789           Token.isNot(MIToken::HexLiteral))
790         return error("expected a lane mask");
791       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
792                     "Use correct get-function for lane mask");
793       LaneBitmask::Type V;
794       if (getUint64(V))
795         return error("invalid lane mask value");
796       Mask = LaneBitmask(V);
797       lex();
798     }
799     MBB.addLiveIn(Reg, Mask);
800   } while (consumeIfPresent(MIToken::comma));
801   return false;
802 }
803 
804 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
805   assert(Token.is(MIToken::kw_successors));
806   lex();
807   if (expectAndConsume(MIToken::colon))
808     return true;
809   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
810     return false;
811   do {
812     if (Token.isNot(MIToken::MachineBasicBlock))
813       return error("expected a machine basic block reference");
814     MachineBasicBlock *SuccMBB = nullptr;
815     if (parseMBBReference(SuccMBB))
816       return true;
817     lex();
818     unsigned Weight = 0;
819     if (consumeIfPresent(MIToken::lparen)) {
820       if (Token.isNot(MIToken::IntegerLiteral) &&
821           Token.isNot(MIToken::HexLiteral))
822         return error("expected an integer literal after '('");
823       if (getUnsigned(Weight))
824         return true;
825       lex();
826       if (expectAndConsume(MIToken::rparen))
827         return true;
828     }
829     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
830   } while (consumeIfPresent(MIToken::comma));
831   MBB.normalizeSuccProbs();
832   return false;
833 }
834 
835 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
836                                MachineBasicBlock *&AddFalthroughFrom) {
837   // Skip the definition.
838   assert(Token.is(MIToken::MachineBasicBlockLabel));
839   lex();
840   if (consumeIfPresent(MIToken::lparen)) {
841     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
842       lex();
843     consumeIfPresent(MIToken::rparen);
844   }
845   consumeIfPresent(MIToken::colon);
846 
847   // Parse the liveins and successors.
848   // N.B: Multiple lists of successors and liveins are allowed and they're
849   // merged into one.
850   // Example:
851   //   liveins: %edi
852   //   liveins: %esi
853   //
854   // is equivalent to
855   //   liveins: %edi, %esi
856   bool ExplicitSuccessors = false;
857   while (true) {
858     if (Token.is(MIToken::kw_successors)) {
859       if (parseBasicBlockSuccessors(MBB))
860         return true;
861       ExplicitSuccessors = true;
862     } else if (Token.is(MIToken::kw_liveins)) {
863       if (parseBasicBlockLiveins(MBB))
864         return true;
865     } else if (consumeIfPresent(MIToken::Newline)) {
866       continue;
867     } else
868       break;
869     if (!Token.isNewlineOrEOF())
870       return error("expected line break at the end of a list");
871     lex();
872   }
873 
874   // Parse the instructions.
875   bool IsInBundle = false;
876   MachineInstr *PrevMI = nullptr;
877   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
878          !Token.is(MIToken::Eof)) {
879     if (consumeIfPresent(MIToken::Newline))
880       continue;
881     if (consumeIfPresent(MIToken::rbrace)) {
882       // The first parsing pass should verify that all closing '}' have an
883       // opening '{'.
884       assert(IsInBundle);
885       IsInBundle = false;
886       continue;
887     }
888     MachineInstr *MI = nullptr;
889     if (parse(MI))
890       return true;
891     MBB.insert(MBB.end(), MI);
892     if (IsInBundle) {
893       PrevMI->setFlag(MachineInstr::BundledSucc);
894       MI->setFlag(MachineInstr::BundledPred);
895     }
896     PrevMI = MI;
897     if (Token.is(MIToken::lbrace)) {
898       if (IsInBundle)
899         return error("nested instruction bundles are not allowed");
900       lex();
901       // This instruction is the start of the bundle.
902       MI->setFlag(MachineInstr::BundledSucc);
903       IsInBundle = true;
904       if (!Token.is(MIToken::Newline))
905         // The next instruction can be on the same line.
906         continue;
907     }
908     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
909     lex();
910   }
911 
912   // Construct successor list by searching for basic block machine operands.
913   if (!ExplicitSuccessors) {
914     SmallVector<MachineBasicBlock*,4> Successors;
915     bool IsFallthrough;
916     guessSuccessors(MBB, Successors, IsFallthrough);
917     for (MachineBasicBlock *Succ : Successors)
918       MBB.addSuccessor(Succ);
919 
920     if (IsFallthrough) {
921       AddFalthroughFrom = &MBB;
922     } else {
923       MBB.normalizeSuccProbs();
924     }
925   }
926 
927   return false;
928 }
929 
930 bool MIParser::parseBasicBlocks() {
931   lex();
932   // Skip until the first machine basic block.
933   while (Token.is(MIToken::Newline))
934     lex();
935   if (Token.isErrorOrEOF())
936     return Token.isError();
937   // The first parsing pass should have verified that this token is a MBB label
938   // in the 'parseBasicBlockDefinitions' method.
939   assert(Token.is(MIToken::MachineBasicBlockLabel));
940   MachineBasicBlock *AddFalthroughFrom = nullptr;
941   do {
942     MachineBasicBlock *MBB = nullptr;
943     if (parseMBBReference(MBB))
944       return true;
945     if (AddFalthroughFrom) {
946       if (!AddFalthroughFrom->isSuccessor(MBB))
947         AddFalthroughFrom->addSuccessor(MBB);
948       AddFalthroughFrom->normalizeSuccProbs();
949       AddFalthroughFrom = nullptr;
950     }
951     if (parseBasicBlock(*MBB, AddFalthroughFrom))
952       return true;
953     // The method 'parseBasicBlock' should parse the whole block until the next
954     // block or the end of file.
955     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
956   } while (Token.isNot(MIToken::Eof));
957   return false;
958 }
959 
960 bool MIParser::parse(MachineInstr *&MI) {
961   // Parse any register operands before '='
962   MachineOperand MO = MachineOperand::CreateImm(0);
963   SmallVector<ParsedMachineOperand, 8> Operands;
964   while (Token.isRegister() || Token.isRegisterFlag()) {
965     auto Loc = Token.location();
966     Optional<unsigned> TiedDefIdx;
967     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
968       return true;
969     Operands.push_back(
970         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
971     if (Token.isNot(MIToken::comma))
972       break;
973     lex();
974   }
975   if (!Operands.empty() && expectAndConsume(MIToken::equal))
976     return true;
977 
978   unsigned OpCode, Flags = 0;
979   if (Token.isError() || parseInstruction(OpCode, Flags))
980     return true;
981 
982   // Parse the remaining machine operands.
983   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
984          Token.isNot(MIToken::kw_post_instr_symbol) &&
985          Token.isNot(MIToken::kw_heap_alloc_marker) &&
986          Token.isNot(MIToken::kw_debug_location) &&
987          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
988     auto Loc = Token.location();
989     Optional<unsigned> TiedDefIdx;
990     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
991       return true;
992     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
993       MO.setIsDebug();
994     Operands.push_back(
995         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
996     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
997         Token.is(MIToken::lbrace))
998       break;
999     if (Token.isNot(MIToken::comma))
1000       return error("expected ',' before the next machine operand");
1001     lex();
1002   }
1003 
1004   MCSymbol *PreInstrSymbol = nullptr;
1005   if (Token.is(MIToken::kw_pre_instr_symbol))
1006     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1007       return true;
1008   MCSymbol *PostInstrSymbol = nullptr;
1009   if (Token.is(MIToken::kw_post_instr_symbol))
1010     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1011       return true;
1012   MDNode *HeapAllocMarker = nullptr;
1013   if (Token.is(MIToken::kw_heap_alloc_marker))
1014     if (parseHeapAllocMarker(HeapAllocMarker))
1015       return true;
1016 
1017   DebugLoc DebugLocation;
1018   if (Token.is(MIToken::kw_debug_location)) {
1019     lex();
1020     MDNode *Node = nullptr;
1021     if (Token.is(MIToken::exclaim)) {
1022       if (parseMDNode(Node))
1023         return true;
1024     } else if (Token.is(MIToken::md_dilocation)) {
1025       if (parseDILocation(Node))
1026         return true;
1027     } else
1028       return error("expected a metadata node after 'debug-location'");
1029     if (!isa<DILocation>(Node))
1030       return error("referenced metadata is not a DILocation");
1031     DebugLocation = DebugLoc(Node);
1032   }
1033 
1034   // Parse the machine memory operands.
1035   SmallVector<MachineMemOperand *, 2> MemOperands;
1036   if (Token.is(MIToken::coloncolon)) {
1037     lex();
1038     while (!Token.isNewlineOrEOF()) {
1039       MachineMemOperand *MemOp = nullptr;
1040       if (parseMachineMemoryOperand(MemOp))
1041         return true;
1042       MemOperands.push_back(MemOp);
1043       if (Token.isNewlineOrEOF())
1044         break;
1045       if (Token.isNot(MIToken::comma))
1046         return error("expected ',' before the next machine memory operand");
1047       lex();
1048     }
1049   }
1050 
1051   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1052   if (!MCID.isVariadic()) {
1053     // FIXME: Move the implicit operand verification to the machine verifier.
1054     if (verifyImplicitOperands(Operands, MCID))
1055       return true;
1056   }
1057 
1058   // TODO: Check for extraneous machine operands.
1059   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1060   MI->setFlags(Flags);
1061   for (const auto &Operand : Operands)
1062     MI->addOperand(MF, Operand.Operand);
1063   if (assignRegisterTies(*MI, Operands))
1064     return true;
1065   if (PreInstrSymbol)
1066     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1067   if (PostInstrSymbol)
1068     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1069   if (HeapAllocMarker)
1070     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1071   if (!MemOperands.empty())
1072     MI->setMemRefs(MF, MemOperands);
1073   return false;
1074 }
1075 
1076 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1077   lex();
1078   if (Token.isNot(MIToken::MachineBasicBlock))
1079     return error("expected a machine basic block reference");
1080   if (parseMBBReference(MBB))
1081     return true;
1082   lex();
1083   if (Token.isNot(MIToken::Eof))
1084     return error(
1085         "expected end of string after the machine basic block reference");
1086   return false;
1087 }
1088 
1089 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1090   lex();
1091   if (Token.isNot(MIToken::NamedRegister))
1092     return error("expected a named register");
1093   if (parseNamedRegister(Reg))
1094     return true;
1095   lex();
1096   if (Token.isNot(MIToken::Eof))
1097     return error("expected end of string after the register reference");
1098   return false;
1099 }
1100 
1101 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1102   lex();
1103   if (Token.isNot(MIToken::VirtualRegister))
1104     return error("expected a virtual register");
1105   if (parseVirtualRegister(Info))
1106     return true;
1107   lex();
1108   if (Token.isNot(MIToken::Eof))
1109     return error("expected end of string after the register reference");
1110   return false;
1111 }
1112 
1113 bool MIParser::parseStandaloneRegister(Register &Reg) {
1114   lex();
1115   if (Token.isNot(MIToken::NamedRegister) &&
1116       Token.isNot(MIToken::VirtualRegister))
1117     return error("expected either a named or virtual register");
1118 
1119   VRegInfo *Info;
1120   if (parseRegister(Reg, Info))
1121     return true;
1122 
1123   lex();
1124   if (Token.isNot(MIToken::Eof))
1125     return error("expected end of string after the register reference");
1126   return false;
1127 }
1128 
1129 bool MIParser::parseStandaloneStackObject(int &FI) {
1130   lex();
1131   if (Token.isNot(MIToken::StackObject))
1132     return error("expected a stack object");
1133   if (parseStackFrameIndex(FI))
1134     return true;
1135   if (Token.isNot(MIToken::Eof))
1136     return error("expected end of string after the stack object reference");
1137   return false;
1138 }
1139 
1140 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1141   lex();
1142   if (Token.is(MIToken::exclaim)) {
1143     if (parseMDNode(Node))
1144       return true;
1145   } else if (Token.is(MIToken::md_diexpr)) {
1146     if (parseDIExpression(Node))
1147       return true;
1148   } else if (Token.is(MIToken::md_dilocation)) {
1149     if (parseDILocation(Node))
1150       return true;
1151   } else
1152     return error("expected a metadata node");
1153   if (Token.isNot(MIToken::Eof))
1154     return error("expected end of string after the metadata node");
1155   return false;
1156 }
1157 
1158 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1159   assert(MO.isImplicit());
1160   return MO.isDef() ? "implicit-def" : "implicit";
1161 }
1162 
1163 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1164                                    Register Reg) {
1165   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1166   return StringRef(TRI->getName(Reg)).lower();
1167 }
1168 
1169 /// Return true if the parsed machine operands contain a given machine operand.
1170 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1171                                 ArrayRef<ParsedMachineOperand> Operands) {
1172   for (const auto &I : Operands) {
1173     if (ImplicitOperand.isIdenticalTo(I.Operand))
1174       return true;
1175   }
1176   return false;
1177 }
1178 
1179 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1180                                       const MCInstrDesc &MCID) {
1181   if (MCID.isCall())
1182     // We can't verify call instructions as they can contain arbitrary implicit
1183     // register and register mask operands.
1184     return false;
1185 
1186   // Gather all the expected implicit operands.
1187   SmallVector<MachineOperand, 4> ImplicitOperands;
1188   if (MCID.ImplicitDefs)
1189     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1190       ImplicitOperands.push_back(
1191           MachineOperand::CreateReg(*ImpDefs, true, true));
1192   if (MCID.ImplicitUses)
1193     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1194       ImplicitOperands.push_back(
1195           MachineOperand::CreateReg(*ImpUses, false, true));
1196 
1197   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1198   assert(TRI && "Expected target register info");
1199   for (const auto &I : ImplicitOperands) {
1200     if (isImplicitOperandIn(I, Operands))
1201       continue;
1202     return error(Operands.empty() ? Token.location() : Operands.back().End,
1203                  Twine("missing implicit register operand '") +
1204                      printImplicitRegisterFlag(I) + " $" +
1205                      getRegisterName(TRI, I.getReg()) + "'");
1206   }
1207   return false;
1208 }
1209 
1210 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1211   // Allow frame and fast math flags for OPCODE
1212   while (Token.is(MIToken::kw_frame_setup) ||
1213          Token.is(MIToken::kw_frame_destroy) ||
1214          Token.is(MIToken::kw_nnan) ||
1215          Token.is(MIToken::kw_ninf) ||
1216          Token.is(MIToken::kw_nsz) ||
1217          Token.is(MIToken::kw_arcp) ||
1218          Token.is(MIToken::kw_contract) ||
1219          Token.is(MIToken::kw_afn) ||
1220          Token.is(MIToken::kw_reassoc) ||
1221          Token.is(MIToken::kw_nuw) ||
1222          Token.is(MIToken::kw_nsw) ||
1223          Token.is(MIToken::kw_exact) ||
1224          Token.is(MIToken::kw_nofpexcept)) {
1225     // Mine frame and fast math flags
1226     if (Token.is(MIToken::kw_frame_setup))
1227       Flags |= MachineInstr::FrameSetup;
1228     if (Token.is(MIToken::kw_frame_destroy))
1229       Flags |= MachineInstr::FrameDestroy;
1230     if (Token.is(MIToken::kw_nnan))
1231       Flags |= MachineInstr::FmNoNans;
1232     if (Token.is(MIToken::kw_ninf))
1233       Flags |= MachineInstr::FmNoInfs;
1234     if (Token.is(MIToken::kw_nsz))
1235       Flags |= MachineInstr::FmNsz;
1236     if (Token.is(MIToken::kw_arcp))
1237       Flags |= MachineInstr::FmArcp;
1238     if (Token.is(MIToken::kw_contract))
1239       Flags |= MachineInstr::FmContract;
1240     if (Token.is(MIToken::kw_afn))
1241       Flags |= MachineInstr::FmAfn;
1242     if (Token.is(MIToken::kw_reassoc))
1243       Flags |= MachineInstr::FmReassoc;
1244     if (Token.is(MIToken::kw_nuw))
1245       Flags |= MachineInstr::NoUWrap;
1246     if (Token.is(MIToken::kw_nsw))
1247       Flags |= MachineInstr::NoSWrap;
1248     if (Token.is(MIToken::kw_exact))
1249       Flags |= MachineInstr::IsExact;
1250     if (Token.is(MIToken::kw_nofpexcept))
1251       Flags |= MachineInstr::NoFPExcept;
1252 
1253     lex();
1254   }
1255   if (Token.isNot(MIToken::Identifier))
1256     return error("expected a machine instruction");
1257   StringRef InstrName = Token.stringValue();
1258   if (PFS.Target.parseInstrName(InstrName, OpCode))
1259     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1260   lex();
1261   return false;
1262 }
1263 
1264 bool MIParser::parseNamedRegister(Register &Reg) {
1265   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1266   StringRef Name = Token.stringValue();
1267   if (PFS.Target.getRegisterByName(Name, Reg))
1268     return error(Twine("unknown register name '") + Name + "'");
1269   return false;
1270 }
1271 
1272 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1273   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1274   StringRef Name = Token.stringValue();
1275   // TODO: Check that the VReg name is not the same as a physical register name.
1276   //       If it is, then print a warning (when warnings are implemented).
1277   Info = &PFS.getVRegInfoNamed(Name);
1278   return false;
1279 }
1280 
1281 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1282   if (Token.is(MIToken::NamedVirtualRegister))
1283     return parseNamedVirtualRegister(Info);
1284   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1285   unsigned ID;
1286   if (getUnsigned(ID))
1287     return true;
1288   Info = &PFS.getVRegInfo(ID);
1289   return false;
1290 }
1291 
1292 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1293   switch (Token.kind()) {
1294   case MIToken::underscore:
1295     Reg = 0;
1296     return false;
1297   case MIToken::NamedRegister:
1298     return parseNamedRegister(Reg);
1299   case MIToken::NamedVirtualRegister:
1300   case MIToken::VirtualRegister:
1301     if (parseVirtualRegister(Info))
1302       return true;
1303     Reg = Info->VReg;
1304     return false;
1305   // TODO: Parse other register kinds.
1306   default:
1307     llvm_unreachable("The current token should be a register");
1308   }
1309 }
1310 
1311 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1312   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1313     return error("expected '_', register class, or register bank name");
1314   StringRef::iterator Loc = Token.location();
1315   StringRef Name = Token.stringValue();
1316 
1317   // Was it a register class?
1318   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1319   if (RC) {
1320     lex();
1321 
1322     switch (RegInfo.Kind) {
1323     case VRegInfo::UNKNOWN:
1324     case VRegInfo::NORMAL:
1325       RegInfo.Kind = VRegInfo::NORMAL;
1326       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1327         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1328         return error(Loc, Twine("conflicting register classes, previously: ") +
1329                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1330       }
1331       RegInfo.D.RC = RC;
1332       RegInfo.Explicit = true;
1333       return false;
1334 
1335     case VRegInfo::GENERIC:
1336     case VRegInfo::REGBANK:
1337       return error(Loc, "register class specification on generic register");
1338     }
1339     llvm_unreachable("Unexpected register kind");
1340   }
1341 
1342   // Should be a register bank or a generic register.
1343   const RegisterBank *RegBank = nullptr;
1344   if (Name != "_") {
1345     RegBank = PFS.Target.getRegBank(Name);
1346     if (!RegBank)
1347       return error(Loc, "expected '_', register class, or register bank name");
1348   }
1349 
1350   lex();
1351 
1352   switch (RegInfo.Kind) {
1353   case VRegInfo::UNKNOWN:
1354   case VRegInfo::GENERIC:
1355   case VRegInfo::REGBANK:
1356     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1357     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1358       return error(Loc, "conflicting generic register banks");
1359     RegInfo.D.RegBank = RegBank;
1360     RegInfo.Explicit = true;
1361     return false;
1362 
1363   case VRegInfo::NORMAL:
1364     return error(Loc, "register bank specification on normal register");
1365   }
1366   llvm_unreachable("Unexpected register kind");
1367 }
1368 
1369 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1370   const unsigned OldFlags = Flags;
1371   switch (Token.kind()) {
1372   case MIToken::kw_implicit:
1373     Flags |= RegState::Implicit;
1374     break;
1375   case MIToken::kw_implicit_define:
1376     Flags |= RegState::ImplicitDefine;
1377     break;
1378   case MIToken::kw_def:
1379     Flags |= RegState::Define;
1380     break;
1381   case MIToken::kw_dead:
1382     Flags |= RegState::Dead;
1383     break;
1384   case MIToken::kw_killed:
1385     Flags |= RegState::Kill;
1386     break;
1387   case MIToken::kw_undef:
1388     Flags |= RegState::Undef;
1389     break;
1390   case MIToken::kw_internal:
1391     Flags |= RegState::InternalRead;
1392     break;
1393   case MIToken::kw_early_clobber:
1394     Flags |= RegState::EarlyClobber;
1395     break;
1396   case MIToken::kw_debug_use:
1397     Flags |= RegState::Debug;
1398     break;
1399   case MIToken::kw_renamable:
1400     Flags |= RegState::Renamable;
1401     break;
1402   default:
1403     llvm_unreachable("The current token should be a register flag");
1404   }
1405   if (OldFlags == Flags)
1406     // We know that the same flag is specified more than once when the flags
1407     // weren't modified.
1408     return error("duplicate '" + Token.stringValue() + "' register flag");
1409   lex();
1410   return false;
1411 }
1412 
1413 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1414   assert(Token.is(MIToken::dot));
1415   lex();
1416   if (Token.isNot(MIToken::Identifier))
1417     return error("expected a subregister index after '.'");
1418   auto Name = Token.stringValue();
1419   SubReg = PFS.Target.getSubRegIndex(Name);
1420   if (!SubReg)
1421     return error(Twine("use of unknown subregister index '") + Name + "'");
1422   lex();
1423   return false;
1424 }
1425 
1426 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1427   if (!consumeIfPresent(MIToken::kw_tied_def))
1428     return true;
1429   if (Token.isNot(MIToken::IntegerLiteral))
1430     return error("expected an integer literal after 'tied-def'");
1431   if (getUnsigned(TiedDefIdx))
1432     return true;
1433   lex();
1434   if (expectAndConsume(MIToken::rparen))
1435     return true;
1436   return false;
1437 }
1438 
1439 bool MIParser::assignRegisterTies(MachineInstr &MI,
1440                                   ArrayRef<ParsedMachineOperand> Operands) {
1441   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1442   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1443     if (!Operands[I].TiedDefIdx)
1444       continue;
1445     // The parser ensures that this operand is a register use, so we just have
1446     // to check the tied-def operand.
1447     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1448     if (DefIdx >= E)
1449       return error(Operands[I].Begin,
1450                    Twine("use of invalid tied-def operand index '" +
1451                          Twine(DefIdx) + "'; instruction has only ") +
1452                        Twine(E) + " operands");
1453     const auto &DefOperand = Operands[DefIdx].Operand;
1454     if (!DefOperand.isReg() || !DefOperand.isDef())
1455       // FIXME: add note with the def operand.
1456       return error(Operands[I].Begin,
1457                    Twine("use of invalid tied-def operand index '") +
1458                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1459                        " isn't a defined register");
1460     // Check that the tied-def operand wasn't tied elsewhere.
1461     for (const auto &TiedPair : TiedRegisterPairs) {
1462       if (TiedPair.first == DefIdx)
1463         return error(Operands[I].Begin,
1464                      Twine("the tied-def operand #") + Twine(DefIdx) +
1465                          " is already tied with another register operand");
1466     }
1467     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1468   }
1469   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1470   // indices must be less than tied max.
1471   for (const auto &TiedPair : TiedRegisterPairs)
1472     MI.tieOperands(TiedPair.first, TiedPair.second);
1473   return false;
1474 }
1475 
1476 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1477                                     Optional<unsigned> &TiedDefIdx,
1478                                     bool IsDef) {
1479   unsigned Flags = IsDef ? RegState::Define : 0;
1480   while (Token.isRegisterFlag()) {
1481     if (parseRegisterFlag(Flags))
1482       return true;
1483   }
1484   if (!Token.isRegister())
1485     return error("expected a register after register flags");
1486   Register Reg;
1487   VRegInfo *RegInfo;
1488   if (parseRegister(Reg, RegInfo))
1489     return true;
1490   lex();
1491   unsigned SubReg = 0;
1492   if (Token.is(MIToken::dot)) {
1493     if (parseSubRegisterIndex(SubReg))
1494       return true;
1495     if (!Register::isVirtualRegister(Reg))
1496       return error("subregister index expects a virtual register");
1497   }
1498   if (Token.is(MIToken::colon)) {
1499     if (!Register::isVirtualRegister(Reg))
1500       return error("register class specification expects a virtual register");
1501     lex();
1502     if (parseRegisterClassOrBank(*RegInfo))
1503         return true;
1504   }
1505   MachineRegisterInfo &MRI = MF.getRegInfo();
1506   if ((Flags & RegState::Define) == 0) {
1507     if (consumeIfPresent(MIToken::lparen)) {
1508       unsigned Idx;
1509       if (!parseRegisterTiedDefIndex(Idx))
1510         TiedDefIdx = Idx;
1511       else {
1512         // Try a redundant low-level type.
1513         LLT Ty;
1514         if (parseLowLevelType(Token.location(), Ty))
1515           return error("expected tied-def or low-level type after '('");
1516 
1517         if (expectAndConsume(MIToken::rparen))
1518           return true;
1519 
1520         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1521           return error("inconsistent type for generic virtual register");
1522 
1523         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1524         MRI.setType(Reg, Ty);
1525       }
1526     }
1527   } else if (consumeIfPresent(MIToken::lparen)) {
1528     // Virtual registers may have a tpe with GlobalISel.
1529     if (!Register::isVirtualRegister(Reg))
1530       return error("unexpected type on physical register");
1531 
1532     LLT Ty;
1533     if (parseLowLevelType(Token.location(), Ty))
1534       return true;
1535 
1536     if (expectAndConsume(MIToken::rparen))
1537       return true;
1538 
1539     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1540       return error("inconsistent type for generic virtual register");
1541 
1542     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1543     MRI.setType(Reg, Ty);
1544   } else if (Register::isVirtualRegister(Reg)) {
1545     // Generic virtual registers must have a type.
1546     // If we end up here this means the type hasn't been specified and
1547     // this is bad!
1548     if (RegInfo->Kind == VRegInfo::GENERIC ||
1549         RegInfo->Kind == VRegInfo::REGBANK)
1550       return error("generic virtual registers must have a type");
1551   }
1552   Dest = MachineOperand::CreateReg(
1553       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1554       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1555       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1556       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1557 
1558   return false;
1559 }
1560 
1561 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1562   assert(Token.is(MIToken::IntegerLiteral));
1563   const APSInt &Int = Token.integerValue();
1564   if (Int.getMinSignedBits() > 64)
1565     return error("integer literal is too large to be an immediate operand");
1566   Dest = MachineOperand::CreateImm(Int.getExtValue());
1567   lex();
1568   return false;
1569 }
1570 
1571 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1572                                       const unsigned OpIdx,
1573                                       MachineOperand &Dest,
1574                                       const MIRFormatter &MF) {
1575   assert(Token.is(MIToken::dot));
1576   auto Loc = Token.location(); // record start position
1577   size_t Len = 1;              // for "."
1578   lex();
1579 
1580   // Handle the case that mnemonic starts with number.
1581   if (Token.is(MIToken::IntegerLiteral)) {
1582     Len += Token.range().size();
1583     lex();
1584   }
1585 
1586   StringRef Src;
1587   if (Token.is(MIToken::comma))
1588     Src = StringRef(Loc, Len);
1589   else {
1590     assert(Token.is(MIToken::Identifier));
1591     Src = StringRef(Loc, Len + Token.stringValue().size());
1592   }
1593   int64_t Val;
1594   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1595                           [this](StringRef::iterator Loc, const Twine &Msg)
1596                               -> bool { return error(Loc, Msg); }))
1597     return true;
1598 
1599   Dest = MachineOperand::CreateImm(Val);
1600   if (!Token.is(MIToken::comma))
1601     lex();
1602   return false;
1603 }
1604 
1605 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1606                             PerFunctionMIParsingState &PFS, const Constant *&C,
1607                             ErrorCallbackType ErrCB) {
1608   auto Source = StringValue.str(); // The source has to be null terminated.
1609   SMDiagnostic Err;
1610   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1611                          &PFS.IRSlots);
1612   if (!C)
1613     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1614   return false;
1615 }
1616 
1617 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1618                                const Constant *&C) {
1619   return ::parseIRConstant(
1620       Loc, StringValue, PFS, C,
1621       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1622         return error(Loc, Msg);
1623       });
1624 }
1625 
1626 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1627   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1628     return true;
1629   lex();
1630   return false;
1631 }
1632 
1633 // See LLT implemntation for bit size limits.
1634 static bool verifyScalarSize(uint64_t Size) {
1635   return Size != 0 && isUInt<16>(Size);
1636 }
1637 
1638 static bool verifyVectorElementCount(uint64_t NumElts) {
1639   return NumElts != 0 && isUInt<16>(NumElts);
1640 }
1641 
1642 static bool verifyAddrSpace(uint64_t AddrSpace) {
1643   return isUInt<24>(AddrSpace);
1644 }
1645 
1646 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1647   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1648     StringRef SizeStr = Token.range().drop_front();
1649     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1650       return error("expected integers after 's'/'p' type character");
1651   }
1652 
1653   if (Token.range().front() == 's') {
1654     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1655     if (!verifyScalarSize(ScalarSize))
1656       return error("invalid size for scalar type");
1657 
1658     Ty = LLT::scalar(ScalarSize);
1659     lex();
1660     return false;
1661   } else if (Token.range().front() == 'p') {
1662     const DataLayout &DL = MF.getDataLayout();
1663     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1664     if (!verifyAddrSpace(AS))
1665       return error("invalid address space number");
1666 
1667     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1668     lex();
1669     return false;
1670   }
1671 
1672   // Now we're looking for a vector.
1673   if (Token.isNot(MIToken::less))
1674     return error(Loc,
1675                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1676   lex();
1677 
1678   if (Token.isNot(MIToken::IntegerLiteral))
1679     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1680   uint64_t NumElements = Token.integerValue().getZExtValue();
1681   if (!verifyVectorElementCount(NumElements))
1682     return error("invalid number of vector elements");
1683 
1684   lex();
1685 
1686   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1687     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1688   lex();
1689 
1690   if (Token.range().front() != 's' && Token.range().front() != 'p')
1691     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1692   StringRef SizeStr = Token.range().drop_front();
1693   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1694     return error("expected integers after 's'/'p' type character");
1695 
1696   if (Token.range().front() == 's') {
1697     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1698     if (!verifyScalarSize(ScalarSize))
1699       return error("invalid size for scalar type");
1700     Ty = LLT::scalar(ScalarSize);
1701   } else if (Token.range().front() == 'p') {
1702     const DataLayout &DL = MF.getDataLayout();
1703     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1704     if (!verifyAddrSpace(AS))
1705       return error("invalid address space number");
1706 
1707     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1708   } else
1709     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1710   lex();
1711 
1712   if (Token.isNot(MIToken::greater))
1713     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1714   lex();
1715 
1716   Ty = LLT::vector(NumElements, Ty);
1717   return false;
1718 }
1719 
1720 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1721   assert(Token.is(MIToken::Identifier));
1722   StringRef TypeStr = Token.range();
1723   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1724       TypeStr.front() != 'p')
1725     return error(
1726         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1727   StringRef SizeStr = Token.range().drop_front();
1728   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1729     return error("expected integers after 'i'/'s'/'p' type character");
1730 
1731   auto Loc = Token.location();
1732   lex();
1733   if (Token.isNot(MIToken::IntegerLiteral)) {
1734     if (Token.isNot(MIToken::Identifier) ||
1735         !(Token.range() == "true" || Token.range() == "false"))
1736       return error("expected an integer literal");
1737   }
1738   const Constant *C = nullptr;
1739   if (parseIRConstant(Loc, C))
1740     return true;
1741   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1742   return false;
1743 }
1744 
1745 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1746   auto Loc = Token.location();
1747   lex();
1748   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1749       Token.isNot(MIToken::HexLiteral))
1750     return error("expected a floating point literal");
1751   const Constant *C = nullptr;
1752   if (parseIRConstant(Loc, C))
1753     return true;
1754   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1755   return false;
1756 }
1757 
1758 static bool getHexUint(const MIToken &Token, APInt &Result) {
1759   assert(Token.is(MIToken::HexLiteral));
1760   StringRef S = Token.range();
1761   assert(S[0] == '0' && tolower(S[1]) == 'x');
1762   // This could be a floating point literal with a special prefix.
1763   if (!isxdigit(S[2]))
1764     return true;
1765   StringRef V = S.substr(2);
1766   APInt A(V.size()*4, V, 16);
1767 
1768   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1769   // sure it isn't the case before constructing result.
1770   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1771   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1772   return false;
1773 }
1774 
1775 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1776                         ErrorCallbackType ErrCB) {
1777   if (Token.hasIntegerValue()) {
1778     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1779     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1780     if (Val64 == Limit)
1781       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1782     Result = Val64;
1783     return false;
1784   }
1785   if (Token.is(MIToken::HexLiteral)) {
1786     APInt A;
1787     if (getHexUint(Token, A))
1788       return true;
1789     if (A.getBitWidth() > 32)
1790       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1791     Result = A.getZExtValue();
1792     return false;
1793   }
1794   return true;
1795 }
1796 
1797 bool MIParser::getUnsigned(unsigned &Result) {
1798   return ::getUnsigned(
1799       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1800         return error(Loc, Msg);
1801       });
1802 }
1803 
1804 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1805   assert(Token.is(MIToken::MachineBasicBlock) ||
1806          Token.is(MIToken::MachineBasicBlockLabel));
1807   unsigned Number;
1808   if (getUnsigned(Number))
1809     return true;
1810   auto MBBInfo = PFS.MBBSlots.find(Number);
1811   if (MBBInfo == PFS.MBBSlots.end())
1812     return error(Twine("use of undefined machine basic block #") +
1813                  Twine(Number));
1814   MBB = MBBInfo->second;
1815   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1816   // we drop the <irname> from the bb.<id>.<irname> format.
1817   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1818     return error(Twine("the name of machine basic block #") + Twine(Number) +
1819                  " isn't '" + Token.stringValue() + "'");
1820   return false;
1821 }
1822 
1823 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1824   MachineBasicBlock *MBB;
1825   if (parseMBBReference(MBB))
1826     return true;
1827   Dest = MachineOperand::CreateMBB(MBB);
1828   lex();
1829   return false;
1830 }
1831 
1832 bool MIParser::parseStackFrameIndex(int &FI) {
1833   assert(Token.is(MIToken::StackObject));
1834   unsigned ID;
1835   if (getUnsigned(ID))
1836     return true;
1837   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1838   if (ObjectInfo == PFS.StackObjectSlots.end())
1839     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1840                  "'");
1841   StringRef Name;
1842   if (const auto *Alloca =
1843           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1844     Name = Alloca->getName();
1845   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1846     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1847                  "' isn't '" + Token.stringValue() + "'");
1848   lex();
1849   FI = ObjectInfo->second;
1850   return false;
1851 }
1852 
1853 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1854   int FI;
1855   if (parseStackFrameIndex(FI))
1856     return true;
1857   Dest = MachineOperand::CreateFI(FI);
1858   return false;
1859 }
1860 
1861 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1862   assert(Token.is(MIToken::FixedStackObject));
1863   unsigned ID;
1864   if (getUnsigned(ID))
1865     return true;
1866   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1867   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1868     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1869                  Twine(ID) + "'");
1870   lex();
1871   FI = ObjectInfo->second;
1872   return false;
1873 }
1874 
1875 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1876   int FI;
1877   if (parseFixedStackFrameIndex(FI))
1878     return true;
1879   Dest = MachineOperand::CreateFI(FI);
1880   return false;
1881 }
1882 
1883 static bool parseGlobalValue(const MIToken &Token,
1884                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
1885                              ErrorCallbackType ErrCB) {
1886   switch (Token.kind()) {
1887   case MIToken::NamedGlobalValue: {
1888     const Module *M = PFS.MF.getFunction().getParent();
1889     GV = M->getNamedValue(Token.stringValue());
1890     if (!GV)
1891       return ErrCB(Token.location(), Twine("use of undefined global value '") +
1892                                          Token.range() + "'");
1893     break;
1894   }
1895   case MIToken::GlobalValue: {
1896     unsigned GVIdx;
1897     if (getUnsigned(Token, GVIdx, ErrCB))
1898       return true;
1899     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1900       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
1901                                          Twine(GVIdx) + "'");
1902     GV = PFS.IRSlots.GlobalValues[GVIdx];
1903     break;
1904   }
1905   default:
1906     llvm_unreachable("The current token should be a global value");
1907   }
1908   return false;
1909 }
1910 
1911 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1912   return ::parseGlobalValue(
1913       Token, PFS, GV,
1914       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1915         return error(Loc, Msg);
1916       });
1917 }
1918 
1919 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1920   GlobalValue *GV = nullptr;
1921   if (parseGlobalValue(GV))
1922     return true;
1923   lex();
1924   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1925   if (parseOperandsOffset(Dest))
1926     return true;
1927   return false;
1928 }
1929 
1930 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1931   assert(Token.is(MIToken::ConstantPoolItem));
1932   unsigned ID;
1933   if (getUnsigned(ID))
1934     return true;
1935   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1936   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1937     return error("use of undefined constant '%const." + Twine(ID) + "'");
1938   lex();
1939   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1940   if (parseOperandsOffset(Dest))
1941     return true;
1942   return false;
1943 }
1944 
1945 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1946   assert(Token.is(MIToken::JumpTableIndex));
1947   unsigned ID;
1948   if (getUnsigned(ID))
1949     return true;
1950   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1951   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1952     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1953   lex();
1954   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1955   return false;
1956 }
1957 
1958 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1959   assert(Token.is(MIToken::ExternalSymbol));
1960   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1961   lex();
1962   Dest = MachineOperand::CreateES(Symbol);
1963   if (parseOperandsOffset(Dest))
1964     return true;
1965   return false;
1966 }
1967 
1968 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1969   assert(Token.is(MIToken::MCSymbol));
1970   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1971   lex();
1972   Dest = MachineOperand::CreateMCSymbol(Symbol);
1973   if (parseOperandsOffset(Dest))
1974     return true;
1975   return false;
1976 }
1977 
1978 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1979   assert(Token.is(MIToken::SubRegisterIndex));
1980   StringRef Name = Token.stringValue();
1981   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1982   if (SubRegIndex == 0)
1983     return error(Twine("unknown subregister index '") + Name + "'");
1984   lex();
1985   Dest = MachineOperand::CreateImm(SubRegIndex);
1986   return false;
1987 }
1988 
1989 bool MIParser::parseMDNode(MDNode *&Node) {
1990   assert(Token.is(MIToken::exclaim));
1991 
1992   auto Loc = Token.location();
1993   lex();
1994   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1995     return error("expected metadata id after '!'");
1996   unsigned ID;
1997   if (getUnsigned(ID))
1998     return true;
1999   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2000   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
2001     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2002   lex();
2003   Node = NodeInfo->second.get();
2004   return false;
2005 }
2006 
2007 bool MIParser::parseDIExpression(MDNode *&Expr) {
2008   assert(Token.is(MIToken::md_diexpr));
2009   lex();
2010 
2011   // FIXME: Share this parsing with the IL parser.
2012   SmallVector<uint64_t, 8> Elements;
2013 
2014   if (expectAndConsume(MIToken::lparen))
2015     return true;
2016 
2017   if (Token.isNot(MIToken::rparen)) {
2018     do {
2019       if (Token.is(MIToken::Identifier)) {
2020         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2021           lex();
2022           Elements.push_back(Op);
2023           continue;
2024         }
2025         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2026           lex();
2027           Elements.push_back(Enc);
2028           continue;
2029         }
2030         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2031       }
2032 
2033       if (Token.isNot(MIToken::IntegerLiteral) ||
2034           Token.integerValue().isSigned())
2035         return error("expected unsigned integer");
2036 
2037       auto &U = Token.integerValue();
2038       if (U.ugt(UINT64_MAX))
2039         return error("element too large, limit is " + Twine(UINT64_MAX));
2040       Elements.push_back(U.getZExtValue());
2041       lex();
2042 
2043     } while (consumeIfPresent(MIToken::comma));
2044   }
2045 
2046   if (expectAndConsume(MIToken::rparen))
2047     return true;
2048 
2049   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2050   return false;
2051 }
2052 
2053 bool MIParser::parseDILocation(MDNode *&Loc) {
2054   assert(Token.is(MIToken::md_dilocation));
2055   lex();
2056 
2057   bool HaveLine = false;
2058   unsigned Line = 0;
2059   unsigned Column = 0;
2060   MDNode *Scope = nullptr;
2061   MDNode *InlinedAt = nullptr;
2062   bool ImplicitCode = false;
2063 
2064   if (expectAndConsume(MIToken::lparen))
2065     return true;
2066 
2067   if (Token.isNot(MIToken::rparen)) {
2068     do {
2069       if (Token.is(MIToken::Identifier)) {
2070         if (Token.stringValue() == "line") {
2071           lex();
2072           if (expectAndConsume(MIToken::colon))
2073             return true;
2074           if (Token.isNot(MIToken::IntegerLiteral) ||
2075               Token.integerValue().isSigned())
2076             return error("expected unsigned integer");
2077           Line = Token.integerValue().getZExtValue();
2078           HaveLine = true;
2079           lex();
2080           continue;
2081         }
2082         if (Token.stringValue() == "column") {
2083           lex();
2084           if (expectAndConsume(MIToken::colon))
2085             return true;
2086           if (Token.isNot(MIToken::IntegerLiteral) ||
2087               Token.integerValue().isSigned())
2088             return error("expected unsigned integer");
2089           Column = Token.integerValue().getZExtValue();
2090           lex();
2091           continue;
2092         }
2093         if (Token.stringValue() == "scope") {
2094           lex();
2095           if (expectAndConsume(MIToken::colon))
2096             return true;
2097           if (parseMDNode(Scope))
2098             return error("expected metadata node");
2099           if (!isa<DIScope>(Scope))
2100             return error("expected DIScope node");
2101           continue;
2102         }
2103         if (Token.stringValue() == "inlinedAt") {
2104           lex();
2105           if (expectAndConsume(MIToken::colon))
2106             return true;
2107           if (Token.is(MIToken::exclaim)) {
2108             if (parseMDNode(InlinedAt))
2109               return true;
2110           } else if (Token.is(MIToken::md_dilocation)) {
2111             if (parseDILocation(InlinedAt))
2112               return true;
2113           } else
2114             return error("expected metadata node");
2115           if (!isa<DILocation>(InlinedAt))
2116             return error("expected DILocation node");
2117           continue;
2118         }
2119         if (Token.stringValue() == "isImplicitCode") {
2120           lex();
2121           if (expectAndConsume(MIToken::colon))
2122             return true;
2123           if (!Token.is(MIToken::Identifier))
2124             return error("expected true/false");
2125           // As far as I can see, we don't have any existing need for parsing
2126           // true/false in MIR yet. Do it ad-hoc until there's something else
2127           // that needs it.
2128           if (Token.stringValue() == "true")
2129             ImplicitCode = true;
2130           else if (Token.stringValue() == "false")
2131             ImplicitCode = false;
2132           else
2133             return error("expected true/false");
2134           lex();
2135           continue;
2136         }
2137       }
2138       return error(Twine("invalid DILocation argument '") +
2139                    Token.stringValue() + "'");
2140     } while (consumeIfPresent(MIToken::comma));
2141   }
2142 
2143   if (expectAndConsume(MIToken::rparen))
2144     return true;
2145 
2146   if (!HaveLine)
2147     return error("DILocation requires line number");
2148   if (!Scope)
2149     return error("DILocation requires a scope");
2150 
2151   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2152                         InlinedAt, ImplicitCode);
2153   return false;
2154 }
2155 
2156 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2157   MDNode *Node = nullptr;
2158   if (Token.is(MIToken::exclaim)) {
2159     if (parseMDNode(Node))
2160       return true;
2161   } else if (Token.is(MIToken::md_diexpr)) {
2162     if (parseDIExpression(Node))
2163       return true;
2164   }
2165   Dest = MachineOperand::CreateMetadata(Node);
2166   return false;
2167 }
2168 
2169 bool MIParser::parseCFIOffset(int &Offset) {
2170   if (Token.isNot(MIToken::IntegerLiteral))
2171     return error("expected a cfi offset");
2172   if (Token.integerValue().getMinSignedBits() > 32)
2173     return error("expected a 32 bit integer (the cfi offset is too large)");
2174   Offset = (int)Token.integerValue().getExtValue();
2175   lex();
2176   return false;
2177 }
2178 
2179 bool MIParser::parseCFIRegister(Register &Reg) {
2180   if (Token.isNot(MIToken::NamedRegister))
2181     return error("expected a cfi register");
2182   Register LLVMReg;
2183   if (parseNamedRegister(LLVMReg))
2184     return true;
2185   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2186   assert(TRI && "Expected target register info");
2187   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2188   if (DwarfReg < 0)
2189     return error("invalid DWARF register");
2190   Reg = (unsigned)DwarfReg;
2191   lex();
2192   return false;
2193 }
2194 
2195 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2196   do {
2197     if (Token.isNot(MIToken::HexLiteral))
2198       return error("expected a hexadecimal literal");
2199     unsigned Value;
2200     if (getUnsigned(Value))
2201       return true;
2202     if (Value > UINT8_MAX)
2203       return error("expected a 8-bit integer (too large)");
2204     Values.push_back(static_cast<uint8_t>(Value));
2205     lex();
2206   } while (consumeIfPresent(MIToken::comma));
2207   return false;
2208 }
2209 
2210 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2211   auto Kind = Token.kind();
2212   lex();
2213   int Offset;
2214   Register Reg;
2215   unsigned CFIIndex;
2216   switch (Kind) {
2217   case MIToken::kw_cfi_same_value:
2218     if (parseCFIRegister(Reg))
2219       return true;
2220     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2221     break;
2222   case MIToken::kw_cfi_offset:
2223     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2224         parseCFIOffset(Offset))
2225       return true;
2226     CFIIndex =
2227         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2228     break;
2229   case MIToken::kw_cfi_rel_offset:
2230     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2231         parseCFIOffset(Offset))
2232       return true;
2233     CFIIndex = MF.addFrameInst(
2234         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2235     break;
2236   case MIToken::kw_cfi_def_cfa_register:
2237     if (parseCFIRegister(Reg))
2238       return true;
2239     CFIIndex =
2240         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2241     break;
2242   case MIToken::kw_cfi_def_cfa_offset:
2243     if (parseCFIOffset(Offset))
2244       return true;
2245     CFIIndex =
2246         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2247     break;
2248   case MIToken::kw_cfi_adjust_cfa_offset:
2249     if (parseCFIOffset(Offset))
2250       return true;
2251     CFIIndex = MF.addFrameInst(
2252         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2253     break;
2254   case MIToken::kw_cfi_def_cfa:
2255     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2256         parseCFIOffset(Offset))
2257       return true;
2258     CFIIndex =
2259         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2260     break;
2261   case MIToken::kw_cfi_remember_state:
2262     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2263     break;
2264   case MIToken::kw_cfi_restore:
2265     if (parseCFIRegister(Reg))
2266       return true;
2267     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2268     break;
2269   case MIToken::kw_cfi_restore_state:
2270     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2271     break;
2272   case MIToken::kw_cfi_undefined:
2273     if (parseCFIRegister(Reg))
2274       return true;
2275     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2276     break;
2277   case MIToken::kw_cfi_register: {
2278     Register Reg2;
2279     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2280         parseCFIRegister(Reg2))
2281       return true;
2282 
2283     CFIIndex =
2284         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2285     break;
2286   }
2287   case MIToken::kw_cfi_window_save:
2288     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2289     break;
2290   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2291     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2292     break;
2293   case MIToken::kw_cfi_escape: {
2294     std::string Values;
2295     if (parseCFIEscapeValues(Values))
2296       return true;
2297     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2298     break;
2299   }
2300   default:
2301     // TODO: Parse the other CFI operands.
2302     llvm_unreachable("The current token should be a cfi operand");
2303   }
2304   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2305   return false;
2306 }
2307 
2308 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2309   switch (Token.kind()) {
2310   case MIToken::NamedIRBlock: {
2311     BB = dyn_cast_or_null<BasicBlock>(
2312         F.getValueSymbolTable()->lookup(Token.stringValue()));
2313     if (!BB)
2314       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2315     break;
2316   }
2317   case MIToken::IRBlock: {
2318     unsigned SlotNumber = 0;
2319     if (getUnsigned(SlotNumber))
2320       return true;
2321     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2322     if (!BB)
2323       return error(Twine("use of undefined IR block '%ir-block.") +
2324                    Twine(SlotNumber) + "'");
2325     break;
2326   }
2327   default:
2328     llvm_unreachable("The current token should be an IR block reference");
2329   }
2330   return false;
2331 }
2332 
2333 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2334   assert(Token.is(MIToken::kw_blockaddress));
2335   lex();
2336   if (expectAndConsume(MIToken::lparen))
2337     return true;
2338   if (Token.isNot(MIToken::GlobalValue) &&
2339       Token.isNot(MIToken::NamedGlobalValue))
2340     return error("expected a global value");
2341   GlobalValue *GV = nullptr;
2342   if (parseGlobalValue(GV))
2343     return true;
2344   auto *F = dyn_cast<Function>(GV);
2345   if (!F)
2346     return error("expected an IR function reference");
2347   lex();
2348   if (expectAndConsume(MIToken::comma))
2349     return true;
2350   BasicBlock *BB = nullptr;
2351   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2352     return error("expected an IR block reference");
2353   if (parseIRBlock(BB, *F))
2354     return true;
2355   lex();
2356   if (expectAndConsume(MIToken::rparen))
2357     return true;
2358   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2359   if (parseOperandsOffset(Dest))
2360     return true;
2361   return false;
2362 }
2363 
2364 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2365   assert(Token.is(MIToken::kw_intrinsic));
2366   lex();
2367   if (expectAndConsume(MIToken::lparen))
2368     return error("expected syntax intrinsic(@llvm.whatever)");
2369 
2370   if (Token.isNot(MIToken::NamedGlobalValue))
2371     return error("expected syntax intrinsic(@llvm.whatever)");
2372 
2373   std::string Name = std::string(Token.stringValue());
2374   lex();
2375 
2376   if (expectAndConsume(MIToken::rparen))
2377     return error("expected ')' to terminate intrinsic name");
2378 
2379   // Find out what intrinsic we're dealing with, first try the global namespace
2380   // and then the target's private intrinsics if that fails.
2381   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2382   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2383   if (ID == Intrinsic::not_intrinsic && TII)
2384     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2385 
2386   if (ID == Intrinsic::not_intrinsic)
2387     return error("unknown intrinsic name");
2388   Dest = MachineOperand::CreateIntrinsicID(ID);
2389 
2390   return false;
2391 }
2392 
2393 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2394   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2395   bool IsFloat = Token.is(MIToken::kw_floatpred);
2396   lex();
2397 
2398   if (expectAndConsume(MIToken::lparen))
2399     return error("expected syntax intpred(whatever) or floatpred(whatever");
2400 
2401   if (Token.isNot(MIToken::Identifier))
2402     return error("whatever");
2403 
2404   CmpInst::Predicate Pred;
2405   if (IsFloat) {
2406     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2407                .Case("false", CmpInst::FCMP_FALSE)
2408                .Case("oeq", CmpInst::FCMP_OEQ)
2409                .Case("ogt", CmpInst::FCMP_OGT)
2410                .Case("oge", CmpInst::FCMP_OGE)
2411                .Case("olt", CmpInst::FCMP_OLT)
2412                .Case("ole", CmpInst::FCMP_OLE)
2413                .Case("one", CmpInst::FCMP_ONE)
2414                .Case("ord", CmpInst::FCMP_ORD)
2415                .Case("uno", CmpInst::FCMP_UNO)
2416                .Case("ueq", CmpInst::FCMP_UEQ)
2417                .Case("ugt", CmpInst::FCMP_UGT)
2418                .Case("uge", CmpInst::FCMP_UGE)
2419                .Case("ult", CmpInst::FCMP_ULT)
2420                .Case("ule", CmpInst::FCMP_ULE)
2421                .Case("une", CmpInst::FCMP_UNE)
2422                .Case("true", CmpInst::FCMP_TRUE)
2423                .Default(CmpInst::BAD_FCMP_PREDICATE);
2424     if (!CmpInst::isFPPredicate(Pred))
2425       return error("invalid floating-point predicate");
2426   } else {
2427     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2428                .Case("eq", CmpInst::ICMP_EQ)
2429                .Case("ne", CmpInst::ICMP_NE)
2430                .Case("sgt", CmpInst::ICMP_SGT)
2431                .Case("sge", CmpInst::ICMP_SGE)
2432                .Case("slt", CmpInst::ICMP_SLT)
2433                .Case("sle", CmpInst::ICMP_SLE)
2434                .Case("ugt", CmpInst::ICMP_UGT)
2435                .Case("uge", CmpInst::ICMP_UGE)
2436                .Case("ult", CmpInst::ICMP_ULT)
2437                .Case("ule", CmpInst::ICMP_ULE)
2438                .Default(CmpInst::BAD_ICMP_PREDICATE);
2439     if (!CmpInst::isIntPredicate(Pred))
2440       return error("invalid integer predicate");
2441   }
2442 
2443   lex();
2444   Dest = MachineOperand::CreatePredicate(Pred);
2445   if (expectAndConsume(MIToken::rparen))
2446     return error("predicate should be terminated by ')'.");
2447 
2448   return false;
2449 }
2450 
2451 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2452   assert(Token.is(MIToken::kw_shufflemask));
2453 
2454   lex();
2455   if (expectAndConsume(MIToken::lparen))
2456     return error("expected syntax shufflemask(<integer or undef>, ...)");
2457 
2458   SmallVector<int, 32> ShufMask;
2459   do {
2460     if (Token.is(MIToken::kw_undef)) {
2461       ShufMask.push_back(-1);
2462     } else if (Token.is(MIToken::IntegerLiteral)) {
2463       const APSInt &Int = Token.integerValue();
2464       ShufMask.push_back(Int.getExtValue());
2465     } else
2466       return error("expected integer constant");
2467 
2468     lex();
2469   } while (consumeIfPresent(MIToken::comma));
2470 
2471   if (expectAndConsume(MIToken::rparen))
2472     return error("shufflemask should be terminated by ')'.");
2473 
2474   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2475   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2476   return false;
2477 }
2478 
2479 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2480   assert(Token.is(MIToken::kw_target_index));
2481   lex();
2482   if (expectAndConsume(MIToken::lparen))
2483     return true;
2484   if (Token.isNot(MIToken::Identifier))
2485     return error("expected the name of the target index");
2486   int Index = 0;
2487   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2488     return error("use of undefined target index '" + Token.stringValue() + "'");
2489   lex();
2490   if (expectAndConsume(MIToken::rparen))
2491     return true;
2492   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2493   if (parseOperandsOffset(Dest))
2494     return true;
2495   return false;
2496 }
2497 
2498 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2499   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2500   lex();
2501   if (expectAndConsume(MIToken::lparen))
2502     return true;
2503 
2504   uint32_t *Mask = MF.allocateRegMask();
2505   while (true) {
2506     if (Token.isNot(MIToken::NamedRegister))
2507       return error("expected a named register");
2508     Register Reg;
2509     if (parseNamedRegister(Reg))
2510       return true;
2511     lex();
2512     Mask[Reg / 32] |= 1U << (Reg % 32);
2513     // TODO: Report an error if the same register is used more than once.
2514     if (Token.isNot(MIToken::comma))
2515       break;
2516     lex();
2517   }
2518 
2519   if (expectAndConsume(MIToken::rparen))
2520     return true;
2521   Dest = MachineOperand::CreateRegMask(Mask);
2522   return false;
2523 }
2524 
2525 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2526   assert(Token.is(MIToken::kw_liveout));
2527   uint32_t *Mask = MF.allocateRegMask();
2528   lex();
2529   if (expectAndConsume(MIToken::lparen))
2530     return true;
2531   while (true) {
2532     if (Token.isNot(MIToken::NamedRegister))
2533       return error("expected a named register");
2534     Register Reg;
2535     if (parseNamedRegister(Reg))
2536       return true;
2537     lex();
2538     Mask[Reg / 32] |= 1U << (Reg % 32);
2539     // TODO: Report an error if the same register is used more than once.
2540     if (Token.isNot(MIToken::comma))
2541       break;
2542     lex();
2543   }
2544   if (expectAndConsume(MIToken::rparen))
2545     return true;
2546   Dest = MachineOperand::CreateRegLiveOut(Mask);
2547   return false;
2548 }
2549 
2550 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2551                                    MachineOperand &Dest,
2552                                    Optional<unsigned> &TiedDefIdx) {
2553   switch (Token.kind()) {
2554   case MIToken::kw_implicit:
2555   case MIToken::kw_implicit_define:
2556   case MIToken::kw_def:
2557   case MIToken::kw_dead:
2558   case MIToken::kw_killed:
2559   case MIToken::kw_undef:
2560   case MIToken::kw_internal:
2561   case MIToken::kw_early_clobber:
2562   case MIToken::kw_debug_use:
2563   case MIToken::kw_renamable:
2564   case MIToken::underscore:
2565   case MIToken::NamedRegister:
2566   case MIToken::VirtualRegister:
2567   case MIToken::NamedVirtualRegister:
2568     return parseRegisterOperand(Dest, TiedDefIdx);
2569   case MIToken::IntegerLiteral:
2570     return parseImmediateOperand(Dest);
2571   case MIToken::kw_half:
2572   case MIToken::kw_float:
2573   case MIToken::kw_double:
2574   case MIToken::kw_x86_fp80:
2575   case MIToken::kw_fp128:
2576   case MIToken::kw_ppc_fp128:
2577     return parseFPImmediateOperand(Dest);
2578   case MIToken::MachineBasicBlock:
2579     return parseMBBOperand(Dest);
2580   case MIToken::StackObject:
2581     return parseStackObjectOperand(Dest);
2582   case MIToken::FixedStackObject:
2583     return parseFixedStackObjectOperand(Dest);
2584   case MIToken::GlobalValue:
2585   case MIToken::NamedGlobalValue:
2586     return parseGlobalAddressOperand(Dest);
2587   case MIToken::ConstantPoolItem:
2588     return parseConstantPoolIndexOperand(Dest);
2589   case MIToken::JumpTableIndex:
2590     return parseJumpTableIndexOperand(Dest);
2591   case MIToken::ExternalSymbol:
2592     return parseExternalSymbolOperand(Dest);
2593   case MIToken::MCSymbol:
2594     return parseMCSymbolOperand(Dest);
2595   case MIToken::SubRegisterIndex:
2596     return parseSubRegisterIndexOperand(Dest);
2597   case MIToken::md_diexpr:
2598   case MIToken::exclaim:
2599     return parseMetadataOperand(Dest);
2600   case MIToken::kw_cfi_same_value:
2601   case MIToken::kw_cfi_offset:
2602   case MIToken::kw_cfi_rel_offset:
2603   case MIToken::kw_cfi_def_cfa_register:
2604   case MIToken::kw_cfi_def_cfa_offset:
2605   case MIToken::kw_cfi_adjust_cfa_offset:
2606   case MIToken::kw_cfi_escape:
2607   case MIToken::kw_cfi_def_cfa:
2608   case MIToken::kw_cfi_register:
2609   case MIToken::kw_cfi_remember_state:
2610   case MIToken::kw_cfi_restore:
2611   case MIToken::kw_cfi_restore_state:
2612   case MIToken::kw_cfi_undefined:
2613   case MIToken::kw_cfi_window_save:
2614   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2615     return parseCFIOperand(Dest);
2616   case MIToken::kw_blockaddress:
2617     return parseBlockAddressOperand(Dest);
2618   case MIToken::kw_intrinsic:
2619     return parseIntrinsicOperand(Dest);
2620   case MIToken::kw_target_index:
2621     return parseTargetIndexOperand(Dest);
2622   case MIToken::kw_liveout:
2623     return parseLiveoutRegisterMaskOperand(Dest);
2624   case MIToken::kw_floatpred:
2625   case MIToken::kw_intpred:
2626     return parsePredicateOperand(Dest);
2627   case MIToken::kw_shufflemask:
2628     return parseShuffleMaskOperand(Dest);
2629   case MIToken::Error:
2630     return true;
2631   case MIToken::Identifier:
2632     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2633       Dest = MachineOperand::CreateRegMask(RegMask);
2634       lex();
2635       break;
2636     } else if (Token.stringValue() == "CustomRegMask") {
2637       return parseCustomRegisterMaskOperand(Dest);
2638     } else
2639       return parseTypedImmediateOperand(Dest);
2640   case MIToken::dot: {
2641     const auto *TII = MF.getSubtarget().getInstrInfo();
2642     if (const auto *Formatter = TII->getMIRFormatter()) {
2643       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2644     }
2645     LLVM_FALLTHROUGH;
2646   }
2647   default:
2648     // FIXME: Parse the MCSymbol machine operand.
2649     return error("expected a machine operand");
2650   }
2651   return false;
2652 }
2653 
2654 bool MIParser::parseMachineOperandAndTargetFlags(
2655     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2656     Optional<unsigned> &TiedDefIdx) {
2657   unsigned TF = 0;
2658   bool HasTargetFlags = false;
2659   if (Token.is(MIToken::kw_target_flags)) {
2660     HasTargetFlags = true;
2661     lex();
2662     if (expectAndConsume(MIToken::lparen))
2663       return true;
2664     if (Token.isNot(MIToken::Identifier))
2665       return error("expected the name of the target flag");
2666     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2667       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2668         return error("use of undefined target flag '" + Token.stringValue() +
2669                      "'");
2670     }
2671     lex();
2672     while (Token.is(MIToken::comma)) {
2673       lex();
2674       if (Token.isNot(MIToken::Identifier))
2675         return error("expected the name of the target flag");
2676       unsigned BitFlag = 0;
2677       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2678         return error("use of undefined target flag '" + Token.stringValue() +
2679                      "'");
2680       // TODO: Report an error when using a duplicate bit target flag.
2681       TF |= BitFlag;
2682       lex();
2683     }
2684     if (expectAndConsume(MIToken::rparen))
2685       return true;
2686   }
2687   auto Loc = Token.location();
2688   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2689     return true;
2690   if (!HasTargetFlags)
2691     return false;
2692   if (Dest.isReg())
2693     return error(Loc, "register operands can't have target flags");
2694   Dest.setTargetFlags(TF);
2695   return false;
2696 }
2697 
2698 bool MIParser::parseOffset(int64_t &Offset) {
2699   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2700     return false;
2701   StringRef Sign = Token.range();
2702   bool IsNegative = Token.is(MIToken::minus);
2703   lex();
2704   if (Token.isNot(MIToken::IntegerLiteral))
2705     return error("expected an integer literal after '" + Sign + "'");
2706   if (Token.integerValue().getMinSignedBits() > 64)
2707     return error("expected 64-bit integer (too large)");
2708   Offset = Token.integerValue().getExtValue();
2709   if (IsNegative)
2710     Offset = -Offset;
2711   lex();
2712   return false;
2713 }
2714 
2715 bool MIParser::parseAlignment(unsigned &Alignment) {
2716   assert(Token.is(MIToken::kw_align));
2717   lex();
2718   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2719     return error("expected an integer literal after 'align'");
2720   if (getUnsigned(Alignment))
2721     return true;
2722   lex();
2723 
2724   if (!isPowerOf2_32(Alignment))
2725     return error("expected a power-of-2 literal after 'align'");
2726 
2727   return false;
2728 }
2729 
2730 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2731   assert(Token.is(MIToken::kw_addrspace));
2732   lex();
2733   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2734     return error("expected an integer literal after 'addrspace'");
2735   if (getUnsigned(Addrspace))
2736     return true;
2737   lex();
2738   return false;
2739 }
2740 
2741 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2742   int64_t Offset = 0;
2743   if (parseOffset(Offset))
2744     return true;
2745   Op.setOffset(Offset);
2746   return false;
2747 }
2748 
2749 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2750                          const Value *&V, ErrorCallbackType ErrCB) {
2751   switch (Token.kind()) {
2752   case MIToken::NamedIRValue: {
2753     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2754     break;
2755   }
2756   case MIToken::IRValue: {
2757     unsigned SlotNumber = 0;
2758     if (getUnsigned(Token, SlotNumber, ErrCB))
2759       return true;
2760     V = PFS.getIRValue(SlotNumber);
2761     break;
2762   }
2763   case MIToken::NamedGlobalValue:
2764   case MIToken::GlobalValue: {
2765     GlobalValue *GV = nullptr;
2766     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2767       return true;
2768     V = GV;
2769     break;
2770   }
2771   case MIToken::QuotedIRValue: {
2772     const Constant *C = nullptr;
2773     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2774       return true;
2775     V = C;
2776     break;
2777   }
2778   default:
2779     llvm_unreachable("The current token should be an IR block reference");
2780   }
2781   if (!V)
2782     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2783   return false;
2784 }
2785 
2786 bool MIParser::parseIRValue(const Value *&V) {
2787   return ::parseIRValue(
2788       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2789         return error(Loc, Msg);
2790       });
2791 }
2792 
2793 bool MIParser::getUint64(uint64_t &Result) {
2794   if (Token.hasIntegerValue()) {
2795     if (Token.integerValue().getActiveBits() > 64)
2796       return error("expected 64-bit integer (too large)");
2797     Result = Token.integerValue().getZExtValue();
2798     return false;
2799   }
2800   if (Token.is(MIToken::HexLiteral)) {
2801     APInt A;
2802     if (getHexUint(A))
2803       return true;
2804     if (A.getBitWidth() > 64)
2805       return error("expected 64-bit integer (too large)");
2806     Result = A.getZExtValue();
2807     return false;
2808   }
2809   return true;
2810 }
2811 
2812 bool MIParser::getHexUint(APInt &Result) {
2813   return ::getHexUint(Token, Result);
2814 }
2815 
2816 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2817   const auto OldFlags = Flags;
2818   switch (Token.kind()) {
2819   case MIToken::kw_volatile:
2820     Flags |= MachineMemOperand::MOVolatile;
2821     break;
2822   case MIToken::kw_non_temporal:
2823     Flags |= MachineMemOperand::MONonTemporal;
2824     break;
2825   case MIToken::kw_dereferenceable:
2826     Flags |= MachineMemOperand::MODereferenceable;
2827     break;
2828   case MIToken::kw_invariant:
2829     Flags |= MachineMemOperand::MOInvariant;
2830     break;
2831   case MIToken::StringConstant: {
2832     MachineMemOperand::Flags TF;
2833     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2834       return error("use of undefined target MMO flag '" + Token.stringValue() +
2835                    "'");
2836     Flags |= TF;
2837     break;
2838   }
2839   default:
2840     llvm_unreachable("The current token should be a memory operand flag");
2841   }
2842   if (OldFlags == Flags)
2843     // We know that the same flag is specified more than once when the flags
2844     // weren't modified.
2845     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2846   lex();
2847   return false;
2848 }
2849 
2850 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2851   switch (Token.kind()) {
2852   case MIToken::kw_stack:
2853     PSV = MF.getPSVManager().getStack();
2854     break;
2855   case MIToken::kw_got:
2856     PSV = MF.getPSVManager().getGOT();
2857     break;
2858   case MIToken::kw_jump_table:
2859     PSV = MF.getPSVManager().getJumpTable();
2860     break;
2861   case MIToken::kw_constant_pool:
2862     PSV = MF.getPSVManager().getConstantPool();
2863     break;
2864   case MIToken::FixedStackObject: {
2865     int FI;
2866     if (parseFixedStackFrameIndex(FI))
2867       return true;
2868     PSV = MF.getPSVManager().getFixedStack(FI);
2869     // The token was already consumed, so use return here instead of break.
2870     return false;
2871   }
2872   case MIToken::StackObject: {
2873     int FI;
2874     if (parseStackFrameIndex(FI))
2875       return true;
2876     PSV = MF.getPSVManager().getFixedStack(FI);
2877     // The token was already consumed, so use return here instead of break.
2878     return false;
2879   }
2880   case MIToken::kw_call_entry:
2881     lex();
2882     switch (Token.kind()) {
2883     case MIToken::GlobalValue:
2884     case MIToken::NamedGlobalValue: {
2885       GlobalValue *GV = nullptr;
2886       if (parseGlobalValue(GV))
2887         return true;
2888       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2889       break;
2890     }
2891     case MIToken::ExternalSymbol:
2892       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2893           MF.createExternalSymbolName(Token.stringValue()));
2894       break;
2895     default:
2896       return error(
2897           "expected a global value or an external symbol after 'call-entry'");
2898     }
2899     break;
2900   case MIToken::kw_custom: {
2901     lex();
2902     const auto *TII = MF.getSubtarget().getInstrInfo();
2903     if (const auto *Formatter = TII->getMIRFormatter()) {
2904       if (Formatter->parseCustomPseudoSourceValue(
2905               Token.stringValue(), MF, PFS, PSV,
2906               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2907                 return error(Loc, Msg);
2908               }))
2909         return true;
2910     } else
2911       return error("unable to parse target custom pseudo source value");
2912     break;
2913   }
2914   default:
2915     llvm_unreachable("The current token should be pseudo source value");
2916   }
2917   lex();
2918   return false;
2919 }
2920 
2921 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2922   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2923       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2924       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2925       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
2926     const PseudoSourceValue *PSV = nullptr;
2927     if (parseMemoryPseudoSourceValue(PSV))
2928       return true;
2929     int64_t Offset = 0;
2930     if (parseOffset(Offset))
2931       return true;
2932     Dest = MachinePointerInfo(PSV, Offset);
2933     return false;
2934   }
2935   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2936       Token.isNot(MIToken::GlobalValue) &&
2937       Token.isNot(MIToken::NamedGlobalValue) &&
2938       Token.isNot(MIToken::QuotedIRValue))
2939     return error("expected an IR value reference");
2940   const Value *V = nullptr;
2941   if (parseIRValue(V))
2942     return true;
2943   if (!V->getType()->isPointerTy())
2944     return error("expected a pointer IR value");
2945   lex();
2946   int64_t Offset = 0;
2947   if (parseOffset(Offset))
2948     return true;
2949   Dest = MachinePointerInfo(V, Offset);
2950   return false;
2951 }
2952 
2953 bool MIParser::parseOptionalScope(LLVMContext &Context,
2954                                   SyncScope::ID &SSID) {
2955   SSID = SyncScope::System;
2956   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2957     lex();
2958     if (expectAndConsume(MIToken::lparen))
2959       return error("expected '(' in syncscope");
2960 
2961     std::string SSN;
2962     if (parseStringConstant(SSN))
2963       return true;
2964 
2965     SSID = Context.getOrInsertSyncScopeID(SSN);
2966     if (expectAndConsume(MIToken::rparen))
2967       return error("expected ')' in syncscope");
2968   }
2969 
2970   return false;
2971 }
2972 
2973 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2974   Order = AtomicOrdering::NotAtomic;
2975   if (Token.isNot(MIToken::Identifier))
2976     return false;
2977 
2978   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2979               .Case("unordered", AtomicOrdering::Unordered)
2980               .Case("monotonic", AtomicOrdering::Monotonic)
2981               .Case("acquire", AtomicOrdering::Acquire)
2982               .Case("release", AtomicOrdering::Release)
2983               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2984               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2985               .Default(AtomicOrdering::NotAtomic);
2986 
2987   if (Order != AtomicOrdering::NotAtomic) {
2988     lex();
2989     return false;
2990   }
2991 
2992   return error("expected an atomic scope, ordering or a size specification");
2993 }
2994 
2995 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2996   if (expectAndConsume(MIToken::lparen))
2997     return true;
2998   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2999   while (Token.isMemoryOperandFlag()) {
3000     if (parseMemoryOperandFlag(Flags))
3001       return true;
3002   }
3003   if (Token.isNot(MIToken::Identifier) ||
3004       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3005     return error("expected 'load' or 'store' memory operation");
3006   if (Token.stringValue() == "load")
3007     Flags |= MachineMemOperand::MOLoad;
3008   else
3009     Flags |= MachineMemOperand::MOStore;
3010   lex();
3011 
3012   // Optional 'store' for operands that both load and store.
3013   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3014     Flags |= MachineMemOperand::MOStore;
3015     lex();
3016   }
3017 
3018   // Optional synchronization scope.
3019   SyncScope::ID SSID;
3020   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3021     return true;
3022 
3023   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3024   AtomicOrdering Order, FailureOrder;
3025   if (parseOptionalAtomicOrdering(Order))
3026     return true;
3027 
3028   if (parseOptionalAtomicOrdering(FailureOrder))
3029     return true;
3030 
3031   if (Token.isNot(MIToken::IntegerLiteral) &&
3032       Token.isNot(MIToken::kw_unknown_size))
3033     return error("expected the size integer literal or 'unknown-size' after "
3034                  "memory operation");
3035   uint64_t Size;
3036   if (Token.is(MIToken::IntegerLiteral)) {
3037     if (getUint64(Size))
3038       return true;
3039   } else if (Token.is(MIToken::kw_unknown_size)) {
3040     Size = MemoryLocation::UnknownSize;
3041   }
3042   lex();
3043 
3044   MachinePointerInfo Ptr = MachinePointerInfo();
3045   if (Token.is(MIToken::Identifier)) {
3046     const char *Word =
3047         ((Flags & MachineMemOperand::MOLoad) &&
3048          (Flags & MachineMemOperand::MOStore))
3049             ? "on"
3050             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3051     if (Token.stringValue() != Word)
3052       return error(Twine("expected '") + Word + "'");
3053     lex();
3054 
3055     if (parseMachinePointerInfo(Ptr))
3056       return true;
3057   }
3058   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
3059   AAMDNodes AAInfo;
3060   MDNode *Range = nullptr;
3061   while (consumeIfPresent(MIToken::comma)) {
3062     switch (Token.kind()) {
3063     case MIToken::kw_align:
3064       if (parseAlignment(BaseAlignment))
3065         return true;
3066       break;
3067     case MIToken::kw_addrspace:
3068       if (parseAddrspace(Ptr.AddrSpace))
3069         return true;
3070       break;
3071     case MIToken::md_tbaa:
3072       lex();
3073       if (parseMDNode(AAInfo.TBAA))
3074         return true;
3075       break;
3076     case MIToken::md_alias_scope:
3077       lex();
3078       if (parseMDNode(AAInfo.Scope))
3079         return true;
3080       break;
3081     case MIToken::md_noalias:
3082       lex();
3083       if (parseMDNode(AAInfo.NoAlias))
3084         return true;
3085       break;
3086     case MIToken::md_range:
3087       lex();
3088       if (parseMDNode(Range))
3089         return true;
3090       break;
3091     // TODO: Report an error on duplicate metadata nodes.
3092     default:
3093       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3094                    "'!noalias' or '!range'");
3095     }
3096   }
3097   if (expectAndConsume(MIToken::rparen))
3098     return true;
3099   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo,
3100                                  Range, SSID, Order, FailureOrder);
3101   return false;
3102 }
3103 
3104 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3105   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3106           Token.is(MIToken::kw_post_instr_symbol)) &&
3107          "Invalid token for a pre- post-instruction symbol!");
3108   lex();
3109   if (Token.isNot(MIToken::MCSymbol))
3110     return error("expected a symbol after 'pre-instr-symbol'");
3111   Symbol = getOrCreateMCSymbol(Token.stringValue());
3112   lex();
3113   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3114       Token.is(MIToken::lbrace))
3115     return false;
3116   if (Token.isNot(MIToken::comma))
3117     return error("expected ',' before the next machine operand");
3118   lex();
3119   return false;
3120 }
3121 
3122 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3123   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3124          "Invalid token for a heap alloc marker!");
3125   lex();
3126   parseMDNode(Node);
3127   if (!Node)
3128     return error("expected a MDNode after 'heap-alloc-marker'");
3129   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3130       Token.is(MIToken::lbrace))
3131     return false;
3132   if (Token.isNot(MIToken::comma))
3133     return error("expected ',' before the next machine operand");
3134   lex();
3135   return false;
3136 }
3137 
3138 static void initSlots2BasicBlocks(
3139     const Function &F,
3140     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3141   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3142   MST.incorporateFunction(F);
3143   for (auto &BB : F) {
3144     if (BB.hasName())
3145       continue;
3146     int Slot = MST.getLocalSlot(&BB);
3147     if (Slot == -1)
3148       continue;
3149     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3150   }
3151 }
3152 
3153 static const BasicBlock *getIRBlockFromSlot(
3154     unsigned Slot,
3155     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3156   auto BlockInfo = Slots2BasicBlocks.find(Slot);
3157   if (BlockInfo == Slots2BasicBlocks.end())
3158     return nullptr;
3159   return BlockInfo->second;
3160 }
3161 
3162 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3163   if (Slots2BasicBlocks.empty())
3164     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3165   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3166 }
3167 
3168 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3169   if (&F == &MF.getFunction())
3170     return getIRBlock(Slot);
3171   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3172   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3173   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3174 }
3175 
3176 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3177   // FIXME: Currently we can't recognize temporary or local symbols and call all
3178   // of the appropriate forms to create them. However, this handles basic cases
3179   // well as most of the special aspects are recognized by a prefix on their
3180   // name, and the input names should already be unique. For test cases, keeping
3181   // the symbol name out of the symbol table isn't terribly important.
3182   return MF.getContext().getOrCreateSymbol(Name);
3183 }
3184 
3185 bool MIParser::parseStringConstant(std::string &Result) {
3186   if (Token.isNot(MIToken::StringConstant))
3187     return error("expected string constant");
3188   Result = std::string(Token.stringValue());
3189   lex();
3190   return false;
3191 }
3192 
3193 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3194                                              StringRef Src,
3195                                              SMDiagnostic &Error) {
3196   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3197 }
3198 
3199 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3200                                     StringRef Src, SMDiagnostic &Error) {
3201   return MIParser(PFS, Error, Src).parseBasicBlocks();
3202 }
3203 
3204 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3205                              MachineBasicBlock *&MBB, StringRef Src,
3206                              SMDiagnostic &Error) {
3207   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3208 }
3209 
3210 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3211                                   Register &Reg, StringRef Src,
3212                                   SMDiagnostic &Error) {
3213   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3214 }
3215 
3216 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3217                                        Register &Reg, StringRef Src,
3218                                        SMDiagnostic &Error) {
3219   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3220 }
3221 
3222 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3223                                          VRegInfo *&Info, StringRef Src,
3224                                          SMDiagnostic &Error) {
3225   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3226 }
3227 
3228 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3229                                      int &FI, StringRef Src,
3230                                      SMDiagnostic &Error) {
3231   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3232 }
3233 
3234 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3235                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3236   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3237 }
3238 
3239 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3240                                 PerFunctionMIParsingState &PFS, const Value *&V,
3241                                 ErrorCallbackType ErrorCallback) {
3242   MIToken Token;
3243   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3244     ErrorCallback(Loc, Msg);
3245   });
3246   V = nullptr;
3247 
3248   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3249 }
3250