1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRPrinter.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/MC/LaneBitmask.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCDwarf.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Support/SourceMgr.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetIntrinsicInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cctype> 77 #include <cstddef> 78 #include <cstdint> 79 #include <limits> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 void PerTargetMIParsingState::setTarget( 86 const TargetSubtargetInfo &NewSubtarget) { 87 88 // If the subtarget changed, over conservatively assume everything is invalid. 89 if (&Subtarget == &NewSubtarget) 90 return; 91 92 Names2InstrOpCodes.clear(); 93 Names2Regs.clear(); 94 Names2RegMasks.clear(); 95 Names2SubRegIndices.clear(); 96 Names2TargetIndices.clear(); 97 Names2DirectTargetFlags.clear(); 98 Names2BitmaskTargetFlags.clear(); 99 Names2MMOTargetFlags.clear(); 100 101 initNames2RegClasses(); 102 initNames2RegBanks(); 103 } 104 105 void PerTargetMIParsingState::initNames2Regs() { 106 if (!Names2Regs.empty()) 107 return; 108 109 // The '%noreg' register is the register 0. 110 Names2Regs.insert(std::make_pair("noreg", 0)); 111 const auto *TRI = Subtarget.getRegisterInfo(); 112 assert(TRI && "Expected target register info"); 113 114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 115 bool WasInserted = 116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 117 .second; 118 (void)WasInserted; 119 assert(WasInserted && "Expected registers to be unique case-insensitively"); 120 } 121 } 122 123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 124 unsigned &Reg) { 125 initNames2Regs(); 126 auto RegInfo = Names2Regs.find(RegName); 127 if (RegInfo == Names2Regs.end()) 128 return true; 129 Reg = RegInfo->getValue(); 130 return false; 131 } 132 133 void PerTargetMIParsingState::initNames2InstrOpCodes() { 134 if (!Names2InstrOpCodes.empty()) 135 return; 136 const auto *TII = Subtarget.getInstrInfo(); 137 assert(TII && "Expected target instruction info"); 138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 140 } 141 142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 143 unsigned &OpCode) { 144 initNames2InstrOpCodes(); 145 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 146 if (InstrInfo == Names2InstrOpCodes.end()) 147 return true; 148 OpCode = InstrInfo->getValue(); 149 return false; 150 } 151 152 void PerTargetMIParsingState::initNames2RegMasks() { 153 if (!Names2RegMasks.empty()) 154 return; 155 const auto *TRI = Subtarget.getRegisterInfo(); 156 assert(TRI && "Expected target register info"); 157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 159 assert(RegMasks.size() == RegMaskNames.size()); 160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 161 Names2RegMasks.insert( 162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 163 } 164 165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 166 initNames2RegMasks(); 167 auto RegMaskInfo = Names2RegMasks.find(Identifier); 168 if (RegMaskInfo == Names2RegMasks.end()) 169 return nullptr; 170 return RegMaskInfo->getValue(); 171 } 172 173 void PerTargetMIParsingState::initNames2SubRegIndices() { 174 if (!Names2SubRegIndices.empty()) 175 return; 176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 178 Names2SubRegIndices.insert( 179 std::make_pair(TRI->getSubRegIndexName(I), I)); 180 } 181 182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 183 initNames2SubRegIndices(); 184 auto SubRegInfo = Names2SubRegIndices.find(Name); 185 if (SubRegInfo == Names2SubRegIndices.end()) 186 return 0; 187 return SubRegInfo->getValue(); 188 } 189 190 void PerTargetMIParsingState::initNames2TargetIndices() { 191 if (!Names2TargetIndices.empty()) 192 return; 193 const auto *TII = Subtarget.getInstrInfo(); 194 assert(TII && "Expected target instruction info"); 195 auto Indices = TII->getSerializableTargetIndices(); 196 for (const auto &I : Indices) 197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 198 } 199 200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 201 initNames2TargetIndices(); 202 auto IndexInfo = Names2TargetIndices.find(Name); 203 if (IndexInfo == Names2TargetIndices.end()) 204 return true; 205 Index = IndexInfo->second; 206 return false; 207 } 208 209 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 210 if (!Names2DirectTargetFlags.empty()) 211 return; 212 213 const auto *TII = Subtarget.getInstrInfo(); 214 assert(TII && "Expected target instruction info"); 215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 216 for (const auto &I : Flags) 217 Names2DirectTargetFlags.insert( 218 std::make_pair(StringRef(I.second), I.first)); 219 } 220 221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 222 unsigned &Flag) { 223 initNames2DirectTargetFlags(); 224 auto FlagInfo = Names2DirectTargetFlags.find(Name); 225 if (FlagInfo == Names2DirectTargetFlags.end()) 226 return true; 227 Flag = FlagInfo->second; 228 return false; 229 } 230 231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 232 if (!Names2BitmaskTargetFlags.empty()) 233 return; 234 235 const auto *TII = Subtarget.getInstrInfo(); 236 assert(TII && "Expected target instruction info"); 237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 238 for (const auto &I : Flags) 239 Names2BitmaskTargetFlags.insert( 240 std::make_pair(StringRef(I.second), I.first)); 241 } 242 243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 244 unsigned &Flag) { 245 initNames2BitmaskTargetFlags(); 246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 247 if (FlagInfo == Names2BitmaskTargetFlags.end()) 248 return true; 249 Flag = FlagInfo->second; 250 return false; 251 } 252 253 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 254 if (!Names2MMOTargetFlags.empty()) 255 return; 256 257 const auto *TII = Subtarget.getInstrInfo(); 258 assert(TII && "Expected target instruction info"); 259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 260 for (const auto &I : Flags) 261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 262 } 263 264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 265 MachineMemOperand::Flags &Flag) { 266 initNames2MMOTargetFlags(); 267 auto FlagInfo = Names2MMOTargetFlags.find(Name); 268 if (FlagInfo == Names2MMOTargetFlags.end()) 269 return true; 270 Flag = FlagInfo->second; 271 return false; 272 } 273 274 void PerTargetMIParsingState::initNames2RegClasses() { 275 if (!Names2RegClasses.empty()) 276 return; 277 278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 280 const auto *RC = TRI->getRegClass(I); 281 Names2RegClasses.insert( 282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 283 } 284 } 285 286 void PerTargetMIParsingState::initNames2RegBanks() { 287 if (!Names2RegBanks.empty()) 288 return; 289 290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 291 // If the target does not support GlobalISel, we may not have a 292 // register bank info. 293 if (!RBI) 294 return; 295 296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 297 const auto &RegBank = RBI->getRegBank(I); 298 Names2RegBanks.insert( 299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 300 } 301 } 302 303 const TargetRegisterClass * 304 PerTargetMIParsingState::getRegClass(StringRef Name) { 305 auto RegClassInfo = Names2RegClasses.find(Name); 306 if (RegClassInfo == Names2RegClasses.end()) 307 return nullptr; 308 return RegClassInfo->getValue(); 309 } 310 311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 312 auto RegBankInfo = Names2RegBanks.find(Name); 313 if (RegBankInfo == Names2RegBanks.end()) 314 return nullptr; 315 return RegBankInfo->getValue(); 316 } 317 318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 321 } 322 323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 325 if (I.second) { 326 MachineRegisterInfo &MRI = MF.getRegInfo(); 327 VRegInfo *Info = new (Allocator) VRegInfo; 328 Info->VReg = MRI.createIncompleteVirtualRegister(); 329 I.first->second = Info; 330 } 331 return *I.first->second; 332 } 333 334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 335 assert(RegName != "" && "Expected named reg."); 336 337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 338 if (I.second) { 339 VRegInfo *Info = new (Allocator) VRegInfo; 340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 341 I.first->second = Info; 342 } 343 return *I.first->second; 344 } 345 346 namespace { 347 348 /// A wrapper struct around the 'MachineOperand' struct that includes a source 349 /// range and other attributes. 350 struct ParsedMachineOperand { 351 MachineOperand Operand; 352 StringRef::iterator Begin; 353 StringRef::iterator End; 354 Optional<unsigned> TiedDefIdx; 355 356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 359 if (TiedDefIdx) 360 assert(Operand.isReg() && Operand.isUse() && 361 "Only used register operands can be tied"); 362 } 363 }; 364 365 class MIParser { 366 MachineFunction &MF; 367 SMDiagnostic &Error; 368 StringRef Source, CurrentSource; 369 MIToken Token; 370 PerFunctionMIParsingState &PFS; 371 /// Maps from slot numbers to function's unnamed basic blocks. 372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 373 /// Maps from slot numbers to function's unnamed values. 374 DenseMap<unsigned, const Value *> Slots2Values; 375 376 public: 377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 378 StringRef Source); 379 380 /// \p SkipChar gives the number of characters to skip before looking 381 /// for the next token. 382 void lex(unsigned SkipChar = 0); 383 384 /// Report an error at the current location with the given message. 385 /// 386 /// This function always return true. 387 bool error(const Twine &Msg); 388 389 /// Report an error at the given location with the given message. 390 /// 391 /// This function always return true. 392 bool error(StringRef::iterator Loc, const Twine &Msg); 393 394 bool 395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 396 bool parseBasicBlocks(); 397 bool parse(MachineInstr *&MI); 398 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 399 bool parseStandaloneNamedRegister(unsigned &Reg); 400 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 401 bool parseStandaloneRegister(unsigned &Reg); 402 bool parseStandaloneStackObject(int &FI); 403 bool parseStandaloneMDNode(MDNode *&Node); 404 405 bool 406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 407 bool parseBasicBlock(MachineBasicBlock &MBB, 408 MachineBasicBlock *&AddFalthroughFrom); 409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 411 412 bool parseNamedRegister(unsigned &Reg); 413 bool parseVirtualRegister(VRegInfo *&Info); 414 bool parseNamedVirtualRegister(VRegInfo *&Info); 415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 416 bool parseRegisterFlag(unsigned &Flags); 417 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 418 bool parseSubRegisterIndex(unsigned &SubReg); 419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 420 bool parseRegisterOperand(MachineOperand &Dest, 421 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 422 bool parseImmediateOperand(MachineOperand &Dest); 423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 424 const Constant *&C); 425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 427 bool parseTypedImmediateOperand(MachineOperand &Dest); 428 bool parseFPImmediateOperand(MachineOperand &Dest); 429 bool parseMBBReference(MachineBasicBlock *&MBB); 430 bool parseMBBOperand(MachineOperand &Dest); 431 bool parseStackFrameIndex(int &FI); 432 bool parseStackObjectOperand(MachineOperand &Dest); 433 bool parseFixedStackFrameIndex(int &FI); 434 bool parseFixedStackObjectOperand(MachineOperand &Dest); 435 bool parseGlobalValue(GlobalValue *&GV); 436 bool parseGlobalAddressOperand(MachineOperand &Dest); 437 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 438 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 439 bool parseJumpTableIndexOperand(MachineOperand &Dest); 440 bool parseExternalSymbolOperand(MachineOperand &Dest); 441 bool parseMCSymbolOperand(MachineOperand &Dest); 442 bool parseMDNode(MDNode *&Node); 443 bool parseDIExpression(MDNode *&Expr); 444 bool parseDILocation(MDNode *&Expr); 445 bool parseMetadataOperand(MachineOperand &Dest); 446 bool parseCFIOffset(int &Offset); 447 bool parseCFIRegister(unsigned &Reg); 448 bool parseCFIEscapeValues(std::string& Values); 449 bool parseCFIOperand(MachineOperand &Dest); 450 bool parseIRBlock(BasicBlock *&BB, const Function &F); 451 bool parseBlockAddressOperand(MachineOperand &Dest); 452 bool parseIntrinsicOperand(MachineOperand &Dest); 453 bool parsePredicateOperand(MachineOperand &Dest); 454 bool parseShuffleMaskOperand(MachineOperand &Dest); 455 bool parseTargetIndexOperand(MachineOperand &Dest); 456 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 457 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 458 bool parseMachineOperand(MachineOperand &Dest, 459 Optional<unsigned> &TiedDefIdx); 460 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 461 Optional<unsigned> &TiedDefIdx); 462 bool parseOffset(int64_t &Offset); 463 bool parseAlignment(unsigned &Alignment); 464 bool parseAddrspace(unsigned &Addrspace); 465 bool parseOperandsOffset(MachineOperand &Op); 466 bool parseIRValue(const Value *&V); 467 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 468 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 469 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 470 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 471 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 472 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 473 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 474 475 private: 476 /// Convert the integer literal in the current token into an unsigned integer. 477 /// 478 /// Return true if an error occurred. 479 bool getUnsigned(unsigned &Result); 480 481 /// Convert the integer literal in the current token into an uint64. 482 /// 483 /// Return true if an error occurred. 484 bool getUint64(uint64_t &Result); 485 486 /// Convert the hexadecimal literal in the current token into an unsigned 487 /// APInt with a minimum bitwidth required to represent the value. 488 /// 489 /// Return true if the literal does not represent an integer value. 490 bool getHexUint(APInt &Result); 491 492 /// If the current token is of the given kind, consume it and return false. 493 /// Otherwise report an error and return true. 494 bool expectAndConsume(MIToken::TokenKind TokenKind); 495 496 /// If the current token is of the given kind, consume it and return true. 497 /// Otherwise return false. 498 bool consumeIfPresent(MIToken::TokenKind TokenKind); 499 500 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 501 502 bool assignRegisterTies(MachineInstr &MI, 503 ArrayRef<ParsedMachineOperand> Operands); 504 505 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 506 const MCInstrDesc &MCID); 507 508 const BasicBlock *getIRBlock(unsigned Slot); 509 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 510 511 const Value *getIRValue(unsigned Slot); 512 513 /// Get or create an MCSymbol for a given name. 514 MCSymbol *getOrCreateMCSymbol(StringRef Name); 515 516 /// parseStringConstant 517 /// ::= StringConstant 518 bool parseStringConstant(std::string &Result); 519 }; 520 521 } // end anonymous namespace 522 523 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 524 StringRef Source) 525 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 526 {} 527 528 void MIParser::lex(unsigned SkipChar) { 529 CurrentSource = lexMIToken( 530 CurrentSource.data() + SkipChar, Token, 531 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 532 } 533 534 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 535 536 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 537 const SourceMgr &SM = *PFS.SM; 538 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 539 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 540 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 541 // Create an ordinary diagnostic when the source manager's buffer is the 542 // source string. 543 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 544 return true; 545 } 546 // Create a diagnostic for a YAML string literal. 547 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 548 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 549 Source, None, None); 550 return true; 551 } 552 553 static const char *toString(MIToken::TokenKind TokenKind) { 554 switch (TokenKind) { 555 case MIToken::comma: 556 return "','"; 557 case MIToken::equal: 558 return "'='"; 559 case MIToken::colon: 560 return "':'"; 561 case MIToken::lparen: 562 return "'('"; 563 case MIToken::rparen: 564 return "')'"; 565 default: 566 return "<unknown token>"; 567 } 568 } 569 570 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 571 if (Token.isNot(TokenKind)) 572 return error(Twine("expected ") + toString(TokenKind)); 573 lex(); 574 return false; 575 } 576 577 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 578 if (Token.isNot(TokenKind)) 579 return false; 580 lex(); 581 return true; 582 } 583 584 bool MIParser::parseBasicBlockDefinition( 585 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 586 assert(Token.is(MIToken::MachineBasicBlockLabel)); 587 unsigned ID = 0; 588 if (getUnsigned(ID)) 589 return true; 590 auto Loc = Token.location(); 591 auto Name = Token.stringValue(); 592 lex(); 593 bool HasAddressTaken = false; 594 bool IsLandingPad = false; 595 unsigned Alignment = 0; 596 BasicBlock *BB = nullptr; 597 if (consumeIfPresent(MIToken::lparen)) { 598 do { 599 // TODO: Report an error when multiple same attributes are specified. 600 switch (Token.kind()) { 601 case MIToken::kw_address_taken: 602 HasAddressTaken = true; 603 lex(); 604 break; 605 case MIToken::kw_landing_pad: 606 IsLandingPad = true; 607 lex(); 608 break; 609 case MIToken::kw_align: 610 if (parseAlignment(Alignment)) 611 return true; 612 break; 613 case MIToken::IRBlock: 614 // TODO: Report an error when both name and ir block are specified. 615 if (parseIRBlock(BB, MF.getFunction())) 616 return true; 617 lex(); 618 break; 619 default: 620 break; 621 } 622 } while (consumeIfPresent(MIToken::comma)); 623 if (expectAndConsume(MIToken::rparen)) 624 return true; 625 } 626 if (expectAndConsume(MIToken::colon)) 627 return true; 628 629 if (!Name.empty()) { 630 BB = dyn_cast_or_null<BasicBlock>( 631 MF.getFunction().getValueSymbolTable()->lookup(Name)); 632 if (!BB) 633 return error(Loc, Twine("basic block '") + Name + 634 "' is not defined in the function '" + 635 MF.getName() + "'"); 636 } 637 auto *MBB = MF.CreateMachineBasicBlock(BB); 638 MF.insert(MF.end(), MBB); 639 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 640 if (!WasInserted) 641 return error(Loc, Twine("redefinition of machine basic block with id #") + 642 Twine(ID)); 643 if (Alignment) 644 MBB->setAlignment(Align(Alignment)); 645 if (HasAddressTaken) 646 MBB->setHasAddressTaken(); 647 MBB->setIsEHPad(IsLandingPad); 648 return false; 649 } 650 651 bool MIParser::parseBasicBlockDefinitions( 652 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 653 lex(); 654 // Skip until the first machine basic block. 655 while (Token.is(MIToken::Newline)) 656 lex(); 657 if (Token.isErrorOrEOF()) 658 return Token.isError(); 659 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 660 return error("expected a basic block definition before instructions"); 661 unsigned BraceDepth = 0; 662 do { 663 if (parseBasicBlockDefinition(MBBSlots)) 664 return true; 665 bool IsAfterNewline = false; 666 // Skip until the next machine basic block. 667 while (true) { 668 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 669 Token.isErrorOrEOF()) 670 break; 671 else if (Token.is(MIToken::MachineBasicBlockLabel)) 672 return error("basic block definition should be located at the start of " 673 "the line"); 674 else if (consumeIfPresent(MIToken::Newline)) { 675 IsAfterNewline = true; 676 continue; 677 } 678 IsAfterNewline = false; 679 if (Token.is(MIToken::lbrace)) 680 ++BraceDepth; 681 if (Token.is(MIToken::rbrace)) { 682 if (!BraceDepth) 683 return error("extraneous closing brace ('}')"); 684 --BraceDepth; 685 } 686 lex(); 687 } 688 // Verify that we closed all of the '{' at the end of a file or a block. 689 if (!Token.isError() && BraceDepth) 690 return error("expected '}'"); // FIXME: Report a note that shows '{'. 691 } while (!Token.isErrorOrEOF()); 692 return Token.isError(); 693 } 694 695 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 696 assert(Token.is(MIToken::kw_liveins)); 697 lex(); 698 if (expectAndConsume(MIToken::colon)) 699 return true; 700 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 701 return false; 702 do { 703 if (Token.isNot(MIToken::NamedRegister)) 704 return error("expected a named register"); 705 unsigned Reg = 0; 706 if (parseNamedRegister(Reg)) 707 return true; 708 lex(); 709 LaneBitmask Mask = LaneBitmask::getAll(); 710 if (consumeIfPresent(MIToken::colon)) { 711 // Parse lane mask. 712 if (Token.isNot(MIToken::IntegerLiteral) && 713 Token.isNot(MIToken::HexLiteral)) 714 return error("expected a lane mask"); 715 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 716 "Use correct get-function for lane mask"); 717 LaneBitmask::Type V; 718 if (getUnsigned(V)) 719 return error("invalid lane mask value"); 720 Mask = LaneBitmask(V); 721 lex(); 722 } 723 MBB.addLiveIn(Reg, Mask); 724 } while (consumeIfPresent(MIToken::comma)); 725 return false; 726 } 727 728 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 729 assert(Token.is(MIToken::kw_successors)); 730 lex(); 731 if (expectAndConsume(MIToken::colon)) 732 return true; 733 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 734 return false; 735 do { 736 if (Token.isNot(MIToken::MachineBasicBlock)) 737 return error("expected a machine basic block reference"); 738 MachineBasicBlock *SuccMBB = nullptr; 739 if (parseMBBReference(SuccMBB)) 740 return true; 741 lex(); 742 unsigned Weight = 0; 743 if (consumeIfPresent(MIToken::lparen)) { 744 if (Token.isNot(MIToken::IntegerLiteral) && 745 Token.isNot(MIToken::HexLiteral)) 746 return error("expected an integer literal after '('"); 747 if (getUnsigned(Weight)) 748 return true; 749 lex(); 750 if (expectAndConsume(MIToken::rparen)) 751 return true; 752 } 753 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 754 } while (consumeIfPresent(MIToken::comma)); 755 MBB.normalizeSuccProbs(); 756 return false; 757 } 758 759 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 760 MachineBasicBlock *&AddFalthroughFrom) { 761 // Skip the definition. 762 assert(Token.is(MIToken::MachineBasicBlockLabel)); 763 lex(); 764 if (consumeIfPresent(MIToken::lparen)) { 765 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 766 lex(); 767 consumeIfPresent(MIToken::rparen); 768 } 769 consumeIfPresent(MIToken::colon); 770 771 // Parse the liveins and successors. 772 // N.B: Multiple lists of successors and liveins are allowed and they're 773 // merged into one. 774 // Example: 775 // liveins: %edi 776 // liveins: %esi 777 // 778 // is equivalent to 779 // liveins: %edi, %esi 780 bool ExplicitSuccessors = false; 781 while (true) { 782 if (Token.is(MIToken::kw_successors)) { 783 if (parseBasicBlockSuccessors(MBB)) 784 return true; 785 ExplicitSuccessors = true; 786 } else if (Token.is(MIToken::kw_liveins)) { 787 if (parseBasicBlockLiveins(MBB)) 788 return true; 789 } else if (consumeIfPresent(MIToken::Newline)) { 790 continue; 791 } else 792 break; 793 if (!Token.isNewlineOrEOF()) 794 return error("expected line break at the end of a list"); 795 lex(); 796 } 797 798 // Parse the instructions. 799 bool IsInBundle = false; 800 MachineInstr *PrevMI = nullptr; 801 while (!Token.is(MIToken::MachineBasicBlockLabel) && 802 !Token.is(MIToken::Eof)) { 803 if (consumeIfPresent(MIToken::Newline)) 804 continue; 805 if (consumeIfPresent(MIToken::rbrace)) { 806 // The first parsing pass should verify that all closing '}' have an 807 // opening '{'. 808 assert(IsInBundle); 809 IsInBundle = false; 810 continue; 811 } 812 MachineInstr *MI = nullptr; 813 if (parse(MI)) 814 return true; 815 MBB.insert(MBB.end(), MI); 816 if (IsInBundle) { 817 PrevMI->setFlag(MachineInstr::BundledSucc); 818 MI->setFlag(MachineInstr::BundledPred); 819 } 820 PrevMI = MI; 821 if (Token.is(MIToken::lbrace)) { 822 if (IsInBundle) 823 return error("nested instruction bundles are not allowed"); 824 lex(); 825 // This instruction is the start of the bundle. 826 MI->setFlag(MachineInstr::BundledSucc); 827 IsInBundle = true; 828 if (!Token.is(MIToken::Newline)) 829 // The next instruction can be on the same line. 830 continue; 831 } 832 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 833 lex(); 834 } 835 836 // Construct successor list by searching for basic block machine operands. 837 if (!ExplicitSuccessors) { 838 SmallVector<MachineBasicBlock*,4> Successors; 839 bool IsFallthrough; 840 guessSuccessors(MBB, Successors, IsFallthrough); 841 for (MachineBasicBlock *Succ : Successors) 842 MBB.addSuccessor(Succ); 843 844 if (IsFallthrough) { 845 AddFalthroughFrom = &MBB; 846 } else { 847 MBB.normalizeSuccProbs(); 848 } 849 } 850 851 return false; 852 } 853 854 bool MIParser::parseBasicBlocks() { 855 lex(); 856 // Skip until the first machine basic block. 857 while (Token.is(MIToken::Newline)) 858 lex(); 859 if (Token.isErrorOrEOF()) 860 return Token.isError(); 861 // The first parsing pass should have verified that this token is a MBB label 862 // in the 'parseBasicBlockDefinitions' method. 863 assert(Token.is(MIToken::MachineBasicBlockLabel)); 864 MachineBasicBlock *AddFalthroughFrom = nullptr; 865 do { 866 MachineBasicBlock *MBB = nullptr; 867 if (parseMBBReference(MBB)) 868 return true; 869 if (AddFalthroughFrom) { 870 if (!AddFalthroughFrom->isSuccessor(MBB)) 871 AddFalthroughFrom->addSuccessor(MBB); 872 AddFalthroughFrom->normalizeSuccProbs(); 873 AddFalthroughFrom = nullptr; 874 } 875 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 876 return true; 877 // The method 'parseBasicBlock' should parse the whole block until the next 878 // block or the end of file. 879 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 880 } while (Token.isNot(MIToken::Eof)); 881 return false; 882 } 883 884 bool MIParser::parse(MachineInstr *&MI) { 885 // Parse any register operands before '=' 886 MachineOperand MO = MachineOperand::CreateImm(0); 887 SmallVector<ParsedMachineOperand, 8> Operands; 888 while (Token.isRegister() || Token.isRegisterFlag()) { 889 auto Loc = Token.location(); 890 Optional<unsigned> TiedDefIdx; 891 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 892 return true; 893 Operands.push_back( 894 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 895 if (Token.isNot(MIToken::comma)) 896 break; 897 lex(); 898 } 899 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 900 return true; 901 902 unsigned OpCode, Flags = 0; 903 if (Token.isError() || parseInstruction(OpCode, Flags)) 904 return true; 905 906 // Parse the remaining machine operands. 907 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 908 Token.isNot(MIToken::kw_post_instr_symbol) && 909 Token.isNot(MIToken::kw_debug_location) && 910 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 911 auto Loc = Token.location(); 912 Optional<unsigned> TiedDefIdx; 913 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 914 return true; 915 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 916 MO.setIsDebug(); 917 Operands.push_back( 918 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 919 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 920 Token.is(MIToken::lbrace)) 921 break; 922 if (Token.isNot(MIToken::comma)) 923 return error("expected ',' before the next machine operand"); 924 lex(); 925 } 926 927 MCSymbol *PreInstrSymbol = nullptr; 928 if (Token.is(MIToken::kw_pre_instr_symbol)) 929 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 930 return true; 931 MCSymbol *PostInstrSymbol = nullptr; 932 if (Token.is(MIToken::kw_post_instr_symbol)) 933 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 934 return true; 935 936 DebugLoc DebugLocation; 937 if (Token.is(MIToken::kw_debug_location)) { 938 lex(); 939 MDNode *Node = nullptr; 940 if (Token.is(MIToken::exclaim)) { 941 if (parseMDNode(Node)) 942 return true; 943 } else if (Token.is(MIToken::md_dilocation)) { 944 if (parseDILocation(Node)) 945 return true; 946 } else 947 return error("expected a metadata node after 'debug-location'"); 948 if (!isa<DILocation>(Node)) 949 return error("referenced metadata is not a DILocation"); 950 DebugLocation = DebugLoc(Node); 951 } 952 953 // Parse the machine memory operands. 954 SmallVector<MachineMemOperand *, 2> MemOperands; 955 if (Token.is(MIToken::coloncolon)) { 956 lex(); 957 while (!Token.isNewlineOrEOF()) { 958 MachineMemOperand *MemOp = nullptr; 959 if (parseMachineMemoryOperand(MemOp)) 960 return true; 961 MemOperands.push_back(MemOp); 962 if (Token.isNewlineOrEOF()) 963 break; 964 if (Token.isNot(MIToken::comma)) 965 return error("expected ',' before the next machine memory operand"); 966 lex(); 967 } 968 } 969 970 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 971 if (!MCID.isVariadic()) { 972 // FIXME: Move the implicit operand verification to the machine verifier. 973 if (verifyImplicitOperands(Operands, MCID)) 974 return true; 975 } 976 977 // TODO: Check for extraneous machine operands. 978 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 979 MI->setFlags(Flags); 980 for (const auto &Operand : Operands) 981 MI->addOperand(MF, Operand.Operand); 982 if (assignRegisterTies(*MI, Operands)) 983 return true; 984 if (PreInstrSymbol) 985 MI->setPreInstrSymbol(MF, PreInstrSymbol); 986 if (PostInstrSymbol) 987 MI->setPostInstrSymbol(MF, PostInstrSymbol); 988 if (!MemOperands.empty()) 989 MI->setMemRefs(MF, MemOperands); 990 return false; 991 } 992 993 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 994 lex(); 995 if (Token.isNot(MIToken::MachineBasicBlock)) 996 return error("expected a machine basic block reference"); 997 if (parseMBBReference(MBB)) 998 return true; 999 lex(); 1000 if (Token.isNot(MIToken::Eof)) 1001 return error( 1002 "expected end of string after the machine basic block reference"); 1003 return false; 1004 } 1005 1006 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1007 lex(); 1008 if (Token.isNot(MIToken::NamedRegister)) 1009 return error("expected a named register"); 1010 if (parseNamedRegister(Reg)) 1011 return true; 1012 lex(); 1013 if (Token.isNot(MIToken::Eof)) 1014 return error("expected end of string after the register reference"); 1015 return false; 1016 } 1017 1018 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1019 lex(); 1020 if (Token.isNot(MIToken::VirtualRegister)) 1021 return error("expected a virtual register"); 1022 if (parseVirtualRegister(Info)) 1023 return true; 1024 lex(); 1025 if (Token.isNot(MIToken::Eof)) 1026 return error("expected end of string after the register reference"); 1027 return false; 1028 } 1029 1030 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1031 lex(); 1032 if (Token.isNot(MIToken::NamedRegister) && 1033 Token.isNot(MIToken::VirtualRegister)) 1034 return error("expected either a named or virtual register"); 1035 1036 VRegInfo *Info; 1037 if (parseRegister(Reg, Info)) 1038 return true; 1039 1040 lex(); 1041 if (Token.isNot(MIToken::Eof)) 1042 return error("expected end of string after the register reference"); 1043 return false; 1044 } 1045 1046 bool MIParser::parseStandaloneStackObject(int &FI) { 1047 lex(); 1048 if (Token.isNot(MIToken::StackObject)) 1049 return error("expected a stack object"); 1050 if (parseStackFrameIndex(FI)) 1051 return true; 1052 if (Token.isNot(MIToken::Eof)) 1053 return error("expected end of string after the stack object reference"); 1054 return false; 1055 } 1056 1057 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1058 lex(); 1059 if (Token.is(MIToken::exclaim)) { 1060 if (parseMDNode(Node)) 1061 return true; 1062 } else if (Token.is(MIToken::md_diexpr)) { 1063 if (parseDIExpression(Node)) 1064 return true; 1065 } else if (Token.is(MIToken::md_dilocation)) { 1066 if (parseDILocation(Node)) 1067 return true; 1068 } else 1069 return error("expected a metadata node"); 1070 if (Token.isNot(MIToken::Eof)) 1071 return error("expected end of string after the metadata node"); 1072 return false; 1073 } 1074 1075 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1076 assert(MO.isImplicit()); 1077 return MO.isDef() ? "implicit-def" : "implicit"; 1078 } 1079 1080 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1081 unsigned Reg) { 1082 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1083 return StringRef(TRI->getName(Reg)).lower(); 1084 } 1085 1086 /// Return true if the parsed machine operands contain a given machine operand. 1087 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1088 ArrayRef<ParsedMachineOperand> Operands) { 1089 for (const auto &I : Operands) { 1090 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1097 const MCInstrDesc &MCID) { 1098 if (MCID.isCall()) 1099 // We can't verify call instructions as they can contain arbitrary implicit 1100 // register and register mask operands. 1101 return false; 1102 1103 // Gather all the expected implicit operands. 1104 SmallVector<MachineOperand, 4> ImplicitOperands; 1105 if (MCID.ImplicitDefs) 1106 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1107 ImplicitOperands.push_back( 1108 MachineOperand::CreateReg(*ImpDefs, true, true)); 1109 if (MCID.ImplicitUses) 1110 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1111 ImplicitOperands.push_back( 1112 MachineOperand::CreateReg(*ImpUses, false, true)); 1113 1114 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1115 assert(TRI && "Expected target register info"); 1116 for (const auto &I : ImplicitOperands) { 1117 if (isImplicitOperandIn(I, Operands)) 1118 continue; 1119 return error(Operands.empty() ? Token.location() : Operands.back().End, 1120 Twine("missing implicit register operand '") + 1121 printImplicitRegisterFlag(I) + " $" + 1122 getRegisterName(TRI, I.getReg()) + "'"); 1123 } 1124 return false; 1125 } 1126 1127 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1128 // Allow frame and fast math flags for OPCODE 1129 while (Token.is(MIToken::kw_frame_setup) || 1130 Token.is(MIToken::kw_frame_destroy) || 1131 Token.is(MIToken::kw_nnan) || 1132 Token.is(MIToken::kw_ninf) || 1133 Token.is(MIToken::kw_nsz) || 1134 Token.is(MIToken::kw_arcp) || 1135 Token.is(MIToken::kw_contract) || 1136 Token.is(MIToken::kw_afn) || 1137 Token.is(MIToken::kw_reassoc) || 1138 Token.is(MIToken::kw_nuw) || 1139 Token.is(MIToken::kw_nsw) || 1140 Token.is(MIToken::kw_exact) || 1141 Token.is(MIToken::kw_fpexcept)) { 1142 // Mine frame and fast math flags 1143 if (Token.is(MIToken::kw_frame_setup)) 1144 Flags |= MachineInstr::FrameSetup; 1145 if (Token.is(MIToken::kw_frame_destroy)) 1146 Flags |= MachineInstr::FrameDestroy; 1147 if (Token.is(MIToken::kw_nnan)) 1148 Flags |= MachineInstr::FmNoNans; 1149 if (Token.is(MIToken::kw_ninf)) 1150 Flags |= MachineInstr::FmNoInfs; 1151 if (Token.is(MIToken::kw_nsz)) 1152 Flags |= MachineInstr::FmNsz; 1153 if (Token.is(MIToken::kw_arcp)) 1154 Flags |= MachineInstr::FmArcp; 1155 if (Token.is(MIToken::kw_contract)) 1156 Flags |= MachineInstr::FmContract; 1157 if (Token.is(MIToken::kw_afn)) 1158 Flags |= MachineInstr::FmAfn; 1159 if (Token.is(MIToken::kw_reassoc)) 1160 Flags |= MachineInstr::FmReassoc; 1161 if (Token.is(MIToken::kw_nuw)) 1162 Flags |= MachineInstr::NoUWrap; 1163 if (Token.is(MIToken::kw_nsw)) 1164 Flags |= MachineInstr::NoSWrap; 1165 if (Token.is(MIToken::kw_exact)) 1166 Flags |= MachineInstr::IsExact; 1167 if (Token.is(MIToken::kw_fpexcept)) 1168 Flags |= MachineInstr::FPExcept; 1169 1170 lex(); 1171 } 1172 if (Token.isNot(MIToken::Identifier)) 1173 return error("expected a machine instruction"); 1174 StringRef InstrName = Token.stringValue(); 1175 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1176 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1177 lex(); 1178 return false; 1179 } 1180 1181 bool MIParser::parseNamedRegister(unsigned &Reg) { 1182 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1183 StringRef Name = Token.stringValue(); 1184 if (PFS.Target.getRegisterByName(Name, Reg)) 1185 return error(Twine("unknown register name '") + Name + "'"); 1186 return false; 1187 } 1188 1189 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1190 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1191 StringRef Name = Token.stringValue(); 1192 // TODO: Check that the VReg name is not the same as a physical register name. 1193 // If it is, then print a warning (when warnings are implemented). 1194 Info = &PFS.getVRegInfoNamed(Name); 1195 return false; 1196 } 1197 1198 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1199 if (Token.is(MIToken::NamedVirtualRegister)) 1200 return parseNamedVirtualRegister(Info); 1201 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1202 unsigned ID; 1203 if (getUnsigned(ID)) 1204 return true; 1205 Info = &PFS.getVRegInfo(ID); 1206 return false; 1207 } 1208 1209 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1210 switch (Token.kind()) { 1211 case MIToken::underscore: 1212 Reg = 0; 1213 return false; 1214 case MIToken::NamedRegister: 1215 return parseNamedRegister(Reg); 1216 case MIToken::NamedVirtualRegister: 1217 case MIToken::VirtualRegister: 1218 if (parseVirtualRegister(Info)) 1219 return true; 1220 Reg = Info->VReg; 1221 return false; 1222 // TODO: Parse other register kinds. 1223 default: 1224 llvm_unreachable("The current token should be a register"); 1225 } 1226 } 1227 1228 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1229 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1230 return error("expected '_', register class, or register bank name"); 1231 StringRef::iterator Loc = Token.location(); 1232 StringRef Name = Token.stringValue(); 1233 1234 // Was it a register class? 1235 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1236 if (RC) { 1237 lex(); 1238 1239 switch (RegInfo.Kind) { 1240 case VRegInfo::UNKNOWN: 1241 case VRegInfo::NORMAL: 1242 RegInfo.Kind = VRegInfo::NORMAL; 1243 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1244 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1245 return error(Loc, Twine("conflicting register classes, previously: ") + 1246 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1247 } 1248 RegInfo.D.RC = RC; 1249 RegInfo.Explicit = true; 1250 return false; 1251 1252 case VRegInfo::GENERIC: 1253 case VRegInfo::REGBANK: 1254 return error(Loc, "register class specification on generic register"); 1255 } 1256 llvm_unreachable("Unexpected register kind"); 1257 } 1258 1259 // Should be a register bank or a generic register. 1260 const RegisterBank *RegBank = nullptr; 1261 if (Name != "_") { 1262 RegBank = PFS.Target.getRegBank(Name); 1263 if (!RegBank) 1264 return error(Loc, "expected '_', register class, or register bank name"); 1265 } 1266 1267 lex(); 1268 1269 switch (RegInfo.Kind) { 1270 case VRegInfo::UNKNOWN: 1271 case VRegInfo::GENERIC: 1272 case VRegInfo::REGBANK: 1273 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1274 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1275 return error(Loc, "conflicting generic register banks"); 1276 RegInfo.D.RegBank = RegBank; 1277 RegInfo.Explicit = true; 1278 return false; 1279 1280 case VRegInfo::NORMAL: 1281 return error(Loc, "register bank specification on normal register"); 1282 } 1283 llvm_unreachable("Unexpected register kind"); 1284 } 1285 1286 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1287 const unsigned OldFlags = Flags; 1288 switch (Token.kind()) { 1289 case MIToken::kw_implicit: 1290 Flags |= RegState::Implicit; 1291 break; 1292 case MIToken::kw_implicit_define: 1293 Flags |= RegState::ImplicitDefine; 1294 break; 1295 case MIToken::kw_def: 1296 Flags |= RegState::Define; 1297 break; 1298 case MIToken::kw_dead: 1299 Flags |= RegState::Dead; 1300 break; 1301 case MIToken::kw_killed: 1302 Flags |= RegState::Kill; 1303 break; 1304 case MIToken::kw_undef: 1305 Flags |= RegState::Undef; 1306 break; 1307 case MIToken::kw_internal: 1308 Flags |= RegState::InternalRead; 1309 break; 1310 case MIToken::kw_early_clobber: 1311 Flags |= RegState::EarlyClobber; 1312 break; 1313 case MIToken::kw_debug_use: 1314 Flags |= RegState::Debug; 1315 break; 1316 case MIToken::kw_renamable: 1317 Flags |= RegState::Renamable; 1318 break; 1319 default: 1320 llvm_unreachable("The current token should be a register flag"); 1321 } 1322 if (OldFlags == Flags) 1323 // We know that the same flag is specified more than once when the flags 1324 // weren't modified. 1325 return error("duplicate '" + Token.stringValue() + "' register flag"); 1326 lex(); 1327 return false; 1328 } 1329 1330 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1331 assert(Token.is(MIToken::dot)); 1332 lex(); 1333 if (Token.isNot(MIToken::Identifier)) 1334 return error("expected a subregister index after '.'"); 1335 auto Name = Token.stringValue(); 1336 SubReg = PFS.Target.getSubRegIndex(Name); 1337 if (!SubReg) 1338 return error(Twine("use of unknown subregister index '") + Name + "'"); 1339 lex(); 1340 return false; 1341 } 1342 1343 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1344 if (!consumeIfPresent(MIToken::kw_tied_def)) 1345 return true; 1346 if (Token.isNot(MIToken::IntegerLiteral)) 1347 return error("expected an integer literal after 'tied-def'"); 1348 if (getUnsigned(TiedDefIdx)) 1349 return true; 1350 lex(); 1351 if (expectAndConsume(MIToken::rparen)) 1352 return true; 1353 return false; 1354 } 1355 1356 bool MIParser::assignRegisterTies(MachineInstr &MI, 1357 ArrayRef<ParsedMachineOperand> Operands) { 1358 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1359 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1360 if (!Operands[I].TiedDefIdx) 1361 continue; 1362 // The parser ensures that this operand is a register use, so we just have 1363 // to check the tied-def operand. 1364 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1365 if (DefIdx >= E) 1366 return error(Operands[I].Begin, 1367 Twine("use of invalid tied-def operand index '" + 1368 Twine(DefIdx) + "'; instruction has only ") + 1369 Twine(E) + " operands"); 1370 const auto &DefOperand = Operands[DefIdx].Operand; 1371 if (!DefOperand.isReg() || !DefOperand.isDef()) 1372 // FIXME: add note with the def operand. 1373 return error(Operands[I].Begin, 1374 Twine("use of invalid tied-def operand index '") + 1375 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1376 " isn't a defined register"); 1377 // Check that the tied-def operand wasn't tied elsewhere. 1378 for (const auto &TiedPair : TiedRegisterPairs) { 1379 if (TiedPair.first == DefIdx) 1380 return error(Operands[I].Begin, 1381 Twine("the tied-def operand #") + Twine(DefIdx) + 1382 " is already tied with another register operand"); 1383 } 1384 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1385 } 1386 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1387 // indices must be less than tied max. 1388 for (const auto &TiedPair : TiedRegisterPairs) 1389 MI.tieOperands(TiedPair.first, TiedPair.second); 1390 return false; 1391 } 1392 1393 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1394 Optional<unsigned> &TiedDefIdx, 1395 bool IsDef) { 1396 unsigned Flags = IsDef ? RegState::Define : 0; 1397 while (Token.isRegisterFlag()) { 1398 if (parseRegisterFlag(Flags)) 1399 return true; 1400 } 1401 if (!Token.isRegister()) 1402 return error("expected a register after register flags"); 1403 unsigned Reg; 1404 VRegInfo *RegInfo; 1405 if (parseRegister(Reg, RegInfo)) 1406 return true; 1407 lex(); 1408 unsigned SubReg = 0; 1409 if (Token.is(MIToken::dot)) { 1410 if (parseSubRegisterIndex(SubReg)) 1411 return true; 1412 if (!Register::isVirtualRegister(Reg)) 1413 return error("subregister index expects a virtual register"); 1414 } 1415 if (Token.is(MIToken::colon)) { 1416 if (!Register::isVirtualRegister(Reg)) 1417 return error("register class specification expects a virtual register"); 1418 lex(); 1419 if (parseRegisterClassOrBank(*RegInfo)) 1420 return true; 1421 } 1422 MachineRegisterInfo &MRI = MF.getRegInfo(); 1423 if ((Flags & RegState::Define) == 0) { 1424 if (consumeIfPresent(MIToken::lparen)) { 1425 unsigned Idx; 1426 if (!parseRegisterTiedDefIndex(Idx)) 1427 TiedDefIdx = Idx; 1428 else { 1429 // Try a redundant low-level type. 1430 LLT Ty; 1431 if (parseLowLevelType(Token.location(), Ty)) 1432 return error("expected tied-def or low-level type after '('"); 1433 1434 if (expectAndConsume(MIToken::rparen)) 1435 return true; 1436 1437 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1438 return error("inconsistent type for generic virtual register"); 1439 1440 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1441 MRI.setType(Reg, Ty); 1442 } 1443 } 1444 } else if (consumeIfPresent(MIToken::lparen)) { 1445 // Virtual registers may have a tpe with GlobalISel. 1446 if (!Register::isVirtualRegister(Reg)) 1447 return error("unexpected type on physical register"); 1448 1449 LLT Ty; 1450 if (parseLowLevelType(Token.location(), Ty)) 1451 return true; 1452 1453 if (expectAndConsume(MIToken::rparen)) 1454 return true; 1455 1456 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1457 return error("inconsistent type for generic virtual register"); 1458 1459 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1460 MRI.setType(Reg, Ty); 1461 } else if (Register::isVirtualRegister(Reg)) { 1462 // Generic virtual registers must have a type. 1463 // If we end up here this means the type hasn't been specified and 1464 // this is bad! 1465 if (RegInfo->Kind == VRegInfo::GENERIC || 1466 RegInfo->Kind == VRegInfo::REGBANK) 1467 return error("generic virtual registers must have a type"); 1468 } 1469 Dest = MachineOperand::CreateReg( 1470 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1471 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1472 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1473 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1474 1475 return false; 1476 } 1477 1478 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1479 assert(Token.is(MIToken::IntegerLiteral)); 1480 const APSInt &Int = Token.integerValue(); 1481 if (Int.getMinSignedBits() > 64) 1482 return error("integer literal is too large to be an immediate operand"); 1483 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1484 lex(); 1485 return false; 1486 } 1487 1488 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1489 const Constant *&C) { 1490 auto Source = StringValue.str(); // The source has to be null terminated. 1491 SMDiagnostic Err; 1492 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1493 &PFS.IRSlots); 1494 if (!C) 1495 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1496 return false; 1497 } 1498 1499 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1500 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1501 return true; 1502 lex(); 1503 return false; 1504 } 1505 1506 // See LLT implemntation for bit size limits. 1507 static bool verifyScalarSize(uint64_t Size) { 1508 return Size != 0 && isUInt<16>(Size); 1509 } 1510 1511 static bool verifyVectorElementCount(uint64_t NumElts) { 1512 return NumElts != 0 && isUInt<16>(NumElts); 1513 } 1514 1515 static bool verifyAddrSpace(uint64_t AddrSpace) { 1516 return isUInt<24>(AddrSpace); 1517 } 1518 1519 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1520 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1521 StringRef SizeStr = Token.range().drop_front(); 1522 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1523 return error("expected integers after 's'/'p' type character"); 1524 } 1525 1526 if (Token.range().front() == 's') { 1527 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1528 if (!verifyScalarSize(ScalarSize)) 1529 return error("invalid size for scalar type"); 1530 1531 Ty = LLT::scalar(ScalarSize); 1532 lex(); 1533 return false; 1534 } else if (Token.range().front() == 'p') { 1535 const DataLayout &DL = MF.getDataLayout(); 1536 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1537 if (!verifyAddrSpace(AS)) 1538 return error("invalid address space number"); 1539 1540 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1541 lex(); 1542 return false; 1543 } 1544 1545 // Now we're looking for a vector. 1546 if (Token.isNot(MIToken::less)) 1547 return error(Loc, 1548 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1549 lex(); 1550 1551 if (Token.isNot(MIToken::IntegerLiteral)) 1552 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1553 uint64_t NumElements = Token.integerValue().getZExtValue(); 1554 if (!verifyVectorElementCount(NumElements)) 1555 return error("invalid number of vector elements"); 1556 1557 lex(); 1558 1559 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1560 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1561 lex(); 1562 1563 if (Token.range().front() != 's' && Token.range().front() != 'p') 1564 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1565 StringRef SizeStr = Token.range().drop_front(); 1566 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1567 return error("expected integers after 's'/'p' type character"); 1568 1569 if (Token.range().front() == 's') { 1570 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1571 if (!verifyScalarSize(ScalarSize)) 1572 return error("invalid size for scalar type"); 1573 Ty = LLT::scalar(ScalarSize); 1574 } else if (Token.range().front() == 'p') { 1575 const DataLayout &DL = MF.getDataLayout(); 1576 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1577 if (!verifyAddrSpace(AS)) 1578 return error("invalid address space number"); 1579 1580 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1581 } else 1582 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1583 lex(); 1584 1585 if (Token.isNot(MIToken::greater)) 1586 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1587 lex(); 1588 1589 Ty = LLT::vector(NumElements, Ty); 1590 return false; 1591 } 1592 1593 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1594 assert(Token.is(MIToken::Identifier)); 1595 StringRef TypeStr = Token.range(); 1596 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1597 TypeStr.front() != 'p') 1598 return error( 1599 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1600 StringRef SizeStr = Token.range().drop_front(); 1601 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1602 return error("expected integers after 'i'/'s'/'p' type character"); 1603 1604 auto Loc = Token.location(); 1605 lex(); 1606 if (Token.isNot(MIToken::IntegerLiteral)) { 1607 if (Token.isNot(MIToken::Identifier) || 1608 !(Token.range() == "true" || Token.range() == "false")) 1609 return error("expected an integer literal"); 1610 } 1611 const Constant *C = nullptr; 1612 if (parseIRConstant(Loc, C)) 1613 return true; 1614 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1615 return false; 1616 } 1617 1618 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1619 auto Loc = Token.location(); 1620 lex(); 1621 if (Token.isNot(MIToken::FloatingPointLiteral) && 1622 Token.isNot(MIToken::HexLiteral)) 1623 return error("expected a floating point literal"); 1624 const Constant *C = nullptr; 1625 if (parseIRConstant(Loc, C)) 1626 return true; 1627 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1628 return false; 1629 } 1630 1631 bool MIParser::getUnsigned(unsigned &Result) { 1632 if (Token.hasIntegerValue()) { 1633 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1634 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1635 if (Val64 == Limit) 1636 return error("expected 32-bit integer (too large)"); 1637 Result = Val64; 1638 return false; 1639 } 1640 if (Token.is(MIToken::HexLiteral)) { 1641 APInt A; 1642 if (getHexUint(A)) 1643 return true; 1644 if (A.getBitWidth() > 32) 1645 return error("expected 32-bit integer (too large)"); 1646 Result = A.getZExtValue(); 1647 return false; 1648 } 1649 return true; 1650 } 1651 1652 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1653 assert(Token.is(MIToken::MachineBasicBlock) || 1654 Token.is(MIToken::MachineBasicBlockLabel)); 1655 unsigned Number; 1656 if (getUnsigned(Number)) 1657 return true; 1658 auto MBBInfo = PFS.MBBSlots.find(Number); 1659 if (MBBInfo == PFS.MBBSlots.end()) 1660 return error(Twine("use of undefined machine basic block #") + 1661 Twine(Number)); 1662 MBB = MBBInfo->second; 1663 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1664 // we drop the <irname> from the bb.<id>.<irname> format. 1665 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1666 return error(Twine("the name of machine basic block #") + Twine(Number) + 1667 " isn't '" + Token.stringValue() + "'"); 1668 return false; 1669 } 1670 1671 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1672 MachineBasicBlock *MBB; 1673 if (parseMBBReference(MBB)) 1674 return true; 1675 Dest = MachineOperand::CreateMBB(MBB); 1676 lex(); 1677 return false; 1678 } 1679 1680 bool MIParser::parseStackFrameIndex(int &FI) { 1681 assert(Token.is(MIToken::StackObject)); 1682 unsigned ID; 1683 if (getUnsigned(ID)) 1684 return true; 1685 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1686 if (ObjectInfo == PFS.StackObjectSlots.end()) 1687 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1688 "'"); 1689 StringRef Name; 1690 if (const auto *Alloca = 1691 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1692 Name = Alloca->getName(); 1693 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1694 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1695 "' isn't '" + Token.stringValue() + "'"); 1696 lex(); 1697 FI = ObjectInfo->second; 1698 return false; 1699 } 1700 1701 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1702 int FI; 1703 if (parseStackFrameIndex(FI)) 1704 return true; 1705 Dest = MachineOperand::CreateFI(FI); 1706 return false; 1707 } 1708 1709 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1710 assert(Token.is(MIToken::FixedStackObject)); 1711 unsigned ID; 1712 if (getUnsigned(ID)) 1713 return true; 1714 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1715 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1716 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1717 Twine(ID) + "'"); 1718 lex(); 1719 FI = ObjectInfo->second; 1720 return false; 1721 } 1722 1723 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1724 int FI; 1725 if (parseFixedStackFrameIndex(FI)) 1726 return true; 1727 Dest = MachineOperand::CreateFI(FI); 1728 return false; 1729 } 1730 1731 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1732 switch (Token.kind()) { 1733 case MIToken::NamedGlobalValue: { 1734 const Module *M = MF.getFunction().getParent(); 1735 GV = M->getNamedValue(Token.stringValue()); 1736 if (!GV) 1737 return error(Twine("use of undefined global value '") + Token.range() + 1738 "'"); 1739 break; 1740 } 1741 case MIToken::GlobalValue: { 1742 unsigned GVIdx; 1743 if (getUnsigned(GVIdx)) 1744 return true; 1745 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1746 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1747 "'"); 1748 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1749 break; 1750 } 1751 default: 1752 llvm_unreachable("The current token should be a global value"); 1753 } 1754 return false; 1755 } 1756 1757 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1758 GlobalValue *GV = nullptr; 1759 if (parseGlobalValue(GV)) 1760 return true; 1761 lex(); 1762 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1763 if (parseOperandsOffset(Dest)) 1764 return true; 1765 return false; 1766 } 1767 1768 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1769 assert(Token.is(MIToken::ConstantPoolItem)); 1770 unsigned ID; 1771 if (getUnsigned(ID)) 1772 return true; 1773 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1774 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1775 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1776 lex(); 1777 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1778 if (parseOperandsOffset(Dest)) 1779 return true; 1780 return false; 1781 } 1782 1783 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1784 assert(Token.is(MIToken::JumpTableIndex)); 1785 unsigned ID; 1786 if (getUnsigned(ID)) 1787 return true; 1788 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1789 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1790 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1791 lex(); 1792 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1793 return false; 1794 } 1795 1796 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1797 assert(Token.is(MIToken::ExternalSymbol)); 1798 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1799 lex(); 1800 Dest = MachineOperand::CreateES(Symbol); 1801 if (parseOperandsOffset(Dest)) 1802 return true; 1803 return false; 1804 } 1805 1806 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1807 assert(Token.is(MIToken::MCSymbol)); 1808 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1809 lex(); 1810 Dest = MachineOperand::CreateMCSymbol(Symbol); 1811 if (parseOperandsOffset(Dest)) 1812 return true; 1813 return false; 1814 } 1815 1816 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1817 assert(Token.is(MIToken::SubRegisterIndex)); 1818 StringRef Name = Token.stringValue(); 1819 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1820 if (SubRegIndex == 0) 1821 return error(Twine("unknown subregister index '") + Name + "'"); 1822 lex(); 1823 Dest = MachineOperand::CreateImm(SubRegIndex); 1824 return false; 1825 } 1826 1827 bool MIParser::parseMDNode(MDNode *&Node) { 1828 assert(Token.is(MIToken::exclaim)); 1829 1830 auto Loc = Token.location(); 1831 lex(); 1832 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1833 return error("expected metadata id after '!'"); 1834 unsigned ID; 1835 if (getUnsigned(ID)) 1836 return true; 1837 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1838 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1839 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1840 lex(); 1841 Node = NodeInfo->second.get(); 1842 return false; 1843 } 1844 1845 bool MIParser::parseDIExpression(MDNode *&Expr) { 1846 assert(Token.is(MIToken::md_diexpr)); 1847 lex(); 1848 1849 // FIXME: Share this parsing with the IL parser. 1850 SmallVector<uint64_t, 8> Elements; 1851 1852 if (expectAndConsume(MIToken::lparen)) 1853 return true; 1854 1855 if (Token.isNot(MIToken::rparen)) { 1856 do { 1857 if (Token.is(MIToken::Identifier)) { 1858 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1859 lex(); 1860 Elements.push_back(Op); 1861 continue; 1862 } 1863 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 1864 lex(); 1865 Elements.push_back(Enc); 1866 continue; 1867 } 1868 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1869 } 1870 1871 if (Token.isNot(MIToken::IntegerLiteral) || 1872 Token.integerValue().isSigned()) 1873 return error("expected unsigned integer"); 1874 1875 auto &U = Token.integerValue(); 1876 if (U.ugt(UINT64_MAX)) 1877 return error("element too large, limit is " + Twine(UINT64_MAX)); 1878 Elements.push_back(U.getZExtValue()); 1879 lex(); 1880 1881 } while (consumeIfPresent(MIToken::comma)); 1882 } 1883 1884 if (expectAndConsume(MIToken::rparen)) 1885 return true; 1886 1887 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1888 return false; 1889 } 1890 1891 bool MIParser::parseDILocation(MDNode *&Loc) { 1892 assert(Token.is(MIToken::md_dilocation)); 1893 lex(); 1894 1895 bool HaveLine = false; 1896 unsigned Line = 0; 1897 unsigned Column = 0; 1898 MDNode *Scope = nullptr; 1899 MDNode *InlinedAt = nullptr; 1900 bool ImplicitCode = false; 1901 1902 if (expectAndConsume(MIToken::lparen)) 1903 return true; 1904 1905 if (Token.isNot(MIToken::rparen)) { 1906 do { 1907 if (Token.is(MIToken::Identifier)) { 1908 if (Token.stringValue() == "line") { 1909 lex(); 1910 if (expectAndConsume(MIToken::colon)) 1911 return true; 1912 if (Token.isNot(MIToken::IntegerLiteral) || 1913 Token.integerValue().isSigned()) 1914 return error("expected unsigned integer"); 1915 Line = Token.integerValue().getZExtValue(); 1916 HaveLine = true; 1917 lex(); 1918 continue; 1919 } 1920 if (Token.stringValue() == "column") { 1921 lex(); 1922 if (expectAndConsume(MIToken::colon)) 1923 return true; 1924 if (Token.isNot(MIToken::IntegerLiteral) || 1925 Token.integerValue().isSigned()) 1926 return error("expected unsigned integer"); 1927 Column = Token.integerValue().getZExtValue(); 1928 lex(); 1929 continue; 1930 } 1931 if (Token.stringValue() == "scope") { 1932 lex(); 1933 if (expectAndConsume(MIToken::colon)) 1934 return true; 1935 if (parseMDNode(Scope)) 1936 return error("expected metadata node"); 1937 if (!isa<DIScope>(Scope)) 1938 return error("expected DIScope node"); 1939 continue; 1940 } 1941 if (Token.stringValue() == "inlinedAt") { 1942 lex(); 1943 if (expectAndConsume(MIToken::colon)) 1944 return true; 1945 if (Token.is(MIToken::exclaim)) { 1946 if (parseMDNode(InlinedAt)) 1947 return true; 1948 } else if (Token.is(MIToken::md_dilocation)) { 1949 if (parseDILocation(InlinedAt)) 1950 return true; 1951 } else 1952 return error("expected metadata node"); 1953 if (!isa<DILocation>(InlinedAt)) 1954 return error("expected DILocation node"); 1955 continue; 1956 } 1957 if (Token.stringValue() == "isImplicitCode") { 1958 lex(); 1959 if (expectAndConsume(MIToken::colon)) 1960 return true; 1961 if (!Token.is(MIToken::Identifier)) 1962 return error("expected true/false"); 1963 // As far as I can see, we don't have any existing need for parsing 1964 // true/false in MIR yet. Do it ad-hoc until there's something else 1965 // that needs it. 1966 if (Token.stringValue() == "true") 1967 ImplicitCode = true; 1968 else if (Token.stringValue() == "false") 1969 ImplicitCode = false; 1970 else 1971 return error("expected true/false"); 1972 lex(); 1973 continue; 1974 } 1975 } 1976 return error(Twine("invalid DILocation argument '") + 1977 Token.stringValue() + "'"); 1978 } while (consumeIfPresent(MIToken::comma)); 1979 } 1980 1981 if (expectAndConsume(MIToken::rparen)) 1982 return true; 1983 1984 if (!HaveLine) 1985 return error("DILocation requires line number"); 1986 if (!Scope) 1987 return error("DILocation requires a scope"); 1988 1989 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1990 InlinedAt, ImplicitCode); 1991 return false; 1992 } 1993 1994 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1995 MDNode *Node = nullptr; 1996 if (Token.is(MIToken::exclaim)) { 1997 if (parseMDNode(Node)) 1998 return true; 1999 } else if (Token.is(MIToken::md_diexpr)) { 2000 if (parseDIExpression(Node)) 2001 return true; 2002 } 2003 Dest = MachineOperand::CreateMetadata(Node); 2004 return false; 2005 } 2006 2007 bool MIParser::parseCFIOffset(int &Offset) { 2008 if (Token.isNot(MIToken::IntegerLiteral)) 2009 return error("expected a cfi offset"); 2010 if (Token.integerValue().getMinSignedBits() > 32) 2011 return error("expected a 32 bit integer (the cfi offset is too large)"); 2012 Offset = (int)Token.integerValue().getExtValue(); 2013 lex(); 2014 return false; 2015 } 2016 2017 bool MIParser::parseCFIRegister(unsigned &Reg) { 2018 if (Token.isNot(MIToken::NamedRegister)) 2019 return error("expected a cfi register"); 2020 unsigned LLVMReg; 2021 if (parseNamedRegister(LLVMReg)) 2022 return true; 2023 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2024 assert(TRI && "Expected target register info"); 2025 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2026 if (DwarfReg < 0) 2027 return error("invalid DWARF register"); 2028 Reg = (unsigned)DwarfReg; 2029 lex(); 2030 return false; 2031 } 2032 2033 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2034 do { 2035 if (Token.isNot(MIToken::HexLiteral)) 2036 return error("expected a hexadecimal literal"); 2037 unsigned Value; 2038 if (getUnsigned(Value)) 2039 return true; 2040 if (Value > UINT8_MAX) 2041 return error("expected a 8-bit integer (too large)"); 2042 Values.push_back(static_cast<uint8_t>(Value)); 2043 lex(); 2044 } while (consumeIfPresent(MIToken::comma)); 2045 return false; 2046 } 2047 2048 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2049 auto Kind = Token.kind(); 2050 lex(); 2051 int Offset; 2052 unsigned Reg; 2053 unsigned CFIIndex; 2054 switch (Kind) { 2055 case MIToken::kw_cfi_same_value: 2056 if (parseCFIRegister(Reg)) 2057 return true; 2058 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2059 break; 2060 case MIToken::kw_cfi_offset: 2061 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2062 parseCFIOffset(Offset)) 2063 return true; 2064 CFIIndex = 2065 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2066 break; 2067 case MIToken::kw_cfi_rel_offset: 2068 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2069 parseCFIOffset(Offset)) 2070 return true; 2071 CFIIndex = MF.addFrameInst( 2072 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2073 break; 2074 case MIToken::kw_cfi_def_cfa_register: 2075 if (parseCFIRegister(Reg)) 2076 return true; 2077 CFIIndex = 2078 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2079 break; 2080 case MIToken::kw_cfi_def_cfa_offset: 2081 if (parseCFIOffset(Offset)) 2082 return true; 2083 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2084 CFIIndex = MF.addFrameInst( 2085 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2086 break; 2087 case MIToken::kw_cfi_adjust_cfa_offset: 2088 if (parseCFIOffset(Offset)) 2089 return true; 2090 CFIIndex = MF.addFrameInst( 2091 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2092 break; 2093 case MIToken::kw_cfi_def_cfa: 2094 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2095 parseCFIOffset(Offset)) 2096 return true; 2097 // NB: MCCFIInstruction::createDefCfa negates the offset. 2098 CFIIndex = 2099 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2100 break; 2101 case MIToken::kw_cfi_remember_state: 2102 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2103 break; 2104 case MIToken::kw_cfi_restore: 2105 if (parseCFIRegister(Reg)) 2106 return true; 2107 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2108 break; 2109 case MIToken::kw_cfi_restore_state: 2110 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2111 break; 2112 case MIToken::kw_cfi_undefined: 2113 if (parseCFIRegister(Reg)) 2114 return true; 2115 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2116 break; 2117 case MIToken::kw_cfi_register: { 2118 unsigned Reg2; 2119 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2120 parseCFIRegister(Reg2)) 2121 return true; 2122 2123 CFIIndex = 2124 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2125 break; 2126 } 2127 case MIToken::kw_cfi_window_save: 2128 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2129 break; 2130 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2131 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2132 break; 2133 case MIToken::kw_cfi_escape: { 2134 std::string Values; 2135 if (parseCFIEscapeValues(Values)) 2136 return true; 2137 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2138 break; 2139 } 2140 default: 2141 // TODO: Parse the other CFI operands. 2142 llvm_unreachable("The current token should be a cfi operand"); 2143 } 2144 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2145 return false; 2146 } 2147 2148 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2149 switch (Token.kind()) { 2150 case MIToken::NamedIRBlock: { 2151 BB = dyn_cast_or_null<BasicBlock>( 2152 F.getValueSymbolTable()->lookup(Token.stringValue())); 2153 if (!BB) 2154 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2155 break; 2156 } 2157 case MIToken::IRBlock: { 2158 unsigned SlotNumber = 0; 2159 if (getUnsigned(SlotNumber)) 2160 return true; 2161 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2162 if (!BB) 2163 return error(Twine("use of undefined IR block '%ir-block.") + 2164 Twine(SlotNumber) + "'"); 2165 break; 2166 } 2167 default: 2168 llvm_unreachable("The current token should be an IR block reference"); 2169 } 2170 return false; 2171 } 2172 2173 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2174 assert(Token.is(MIToken::kw_blockaddress)); 2175 lex(); 2176 if (expectAndConsume(MIToken::lparen)) 2177 return true; 2178 if (Token.isNot(MIToken::GlobalValue) && 2179 Token.isNot(MIToken::NamedGlobalValue)) 2180 return error("expected a global value"); 2181 GlobalValue *GV = nullptr; 2182 if (parseGlobalValue(GV)) 2183 return true; 2184 auto *F = dyn_cast<Function>(GV); 2185 if (!F) 2186 return error("expected an IR function reference"); 2187 lex(); 2188 if (expectAndConsume(MIToken::comma)) 2189 return true; 2190 BasicBlock *BB = nullptr; 2191 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2192 return error("expected an IR block reference"); 2193 if (parseIRBlock(BB, *F)) 2194 return true; 2195 lex(); 2196 if (expectAndConsume(MIToken::rparen)) 2197 return true; 2198 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2199 if (parseOperandsOffset(Dest)) 2200 return true; 2201 return false; 2202 } 2203 2204 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2205 assert(Token.is(MIToken::kw_intrinsic)); 2206 lex(); 2207 if (expectAndConsume(MIToken::lparen)) 2208 return error("expected syntax intrinsic(@llvm.whatever)"); 2209 2210 if (Token.isNot(MIToken::NamedGlobalValue)) 2211 return error("expected syntax intrinsic(@llvm.whatever)"); 2212 2213 std::string Name = Token.stringValue(); 2214 lex(); 2215 2216 if (expectAndConsume(MIToken::rparen)) 2217 return error("expected ')' to terminate intrinsic name"); 2218 2219 // Find out what intrinsic we're dealing with, first try the global namespace 2220 // and then the target's private intrinsics if that fails. 2221 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2222 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2223 if (ID == Intrinsic::not_intrinsic && TII) 2224 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2225 2226 if (ID == Intrinsic::not_intrinsic) 2227 return error("unknown intrinsic name"); 2228 Dest = MachineOperand::CreateIntrinsicID(ID); 2229 2230 return false; 2231 } 2232 2233 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2234 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2235 bool IsFloat = Token.is(MIToken::kw_floatpred); 2236 lex(); 2237 2238 if (expectAndConsume(MIToken::lparen)) 2239 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2240 2241 if (Token.isNot(MIToken::Identifier)) 2242 return error("whatever"); 2243 2244 CmpInst::Predicate Pred; 2245 if (IsFloat) { 2246 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2247 .Case("false", CmpInst::FCMP_FALSE) 2248 .Case("oeq", CmpInst::FCMP_OEQ) 2249 .Case("ogt", CmpInst::FCMP_OGT) 2250 .Case("oge", CmpInst::FCMP_OGE) 2251 .Case("olt", CmpInst::FCMP_OLT) 2252 .Case("ole", CmpInst::FCMP_OLE) 2253 .Case("one", CmpInst::FCMP_ONE) 2254 .Case("ord", CmpInst::FCMP_ORD) 2255 .Case("uno", CmpInst::FCMP_UNO) 2256 .Case("ueq", CmpInst::FCMP_UEQ) 2257 .Case("ugt", CmpInst::FCMP_UGT) 2258 .Case("uge", CmpInst::FCMP_UGE) 2259 .Case("ult", CmpInst::FCMP_ULT) 2260 .Case("ule", CmpInst::FCMP_ULE) 2261 .Case("une", CmpInst::FCMP_UNE) 2262 .Case("true", CmpInst::FCMP_TRUE) 2263 .Default(CmpInst::BAD_FCMP_PREDICATE); 2264 if (!CmpInst::isFPPredicate(Pred)) 2265 return error("invalid floating-point predicate"); 2266 } else { 2267 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2268 .Case("eq", CmpInst::ICMP_EQ) 2269 .Case("ne", CmpInst::ICMP_NE) 2270 .Case("sgt", CmpInst::ICMP_SGT) 2271 .Case("sge", CmpInst::ICMP_SGE) 2272 .Case("slt", CmpInst::ICMP_SLT) 2273 .Case("sle", CmpInst::ICMP_SLE) 2274 .Case("ugt", CmpInst::ICMP_UGT) 2275 .Case("uge", CmpInst::ICMP_UGE) 2276 .Case("ult", CmpInst::ICMP_ULT) 2277 .Case("ule", CmpInst::ICMP_ULE) 2278 .Default(CmpInst::BAD_ICMP_PREDICATE); 2279 if (!CmpInst::isIntPredicate(Pred)) 2280 return error("invalid integer predicate"); 2281 } 2282 2283 lex(); 2284 Dest = MachineOperand::CreatePredicate(Pred); 2285 if (expectAndConsume(MIToken::rparen)) 2286 return error("predicate should be terminated by ')'."); 2287 2288 return false; 2289 } 2290 2291 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2292 assert(Token.is(MIToken::kw_shufflemask)); 2293 2294 lex(); 2295 if (expectAndConsume(MIToken::lparen)) 2296 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2297 2298 SmallVector<Constant *, 32> ShufMask; 2299 LLVMContext &Ctx = MF.getFunction().getContext(); 2300 Type *I32Ty = Type::getInt32Ty(Ctx); 2301 2302 bool AllZero = true; 2303 bool AllUndef = true; 2304 2305 do { 2306 if (Token.is(MIToken::kw_undef)) { 2307 ShufMask.push_back(UndefValue::get(I32Ty)); 2308 AllZero = false; 2309 } else if (Token.is(MIToken::IntegerLiteral)) { 2310 AllUndef = false; 2311 const APSInt &Int = Token.integerValue(); 2312 if (!Int.isNullValue()) 2313 AllZero = false; 2314 ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue())); 2315 } else 2316 return error("expected integer constant"); 2317 2318 lex(); 2319 } while (consumeIfPresent(MIToken::comma)); 2320 2321 if (expectAndConsume(MIToken::rparen)) 2322 return error("shufflemask should be terminated by ')'."); 2323 2324 if (AllZero || AllUndef) { 2325 VectorType *VT = VectorType::get(I32Ty, ShufMask.size()); 2326 Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT); 2327 Dest = MachineOperand::CreateShuffleMask(C); 2328 } else 2329 Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask)); 2330 2331 return false; 2332 } 2333 2334 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2335 assert(Token.is(MIToken::kw_target_index)); 2336 lex(); 2337 if (expectAndConsume(MIToken::lparen)) 2338 return true; 2339 if (Token.isNot(MIToken::Identifier)) 2340 return error("expected the name of the target index"); 2341 int Index = 0; 2342 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2343 return error("use of undefined target index '" + Token.stringValue() + "'"); 2344 lex(); 2345 if (expectAndConsume(MIToken::rparen)) 2346 return true; 2347 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2348 if (parseOperandsOffset(Dest)) 2349 return true; 2350 return false; 2351 } 2352 2353 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2354 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2355 lex(); 2356 if (expectAndConsume(MIToken::lparen)) 2357 return true; 2358 2359 uint32_t *Mask = MF.allocateRegMask(); 2360 while (true) { 2361 if (Token.isNot(MIToken::NamedRegister)) 2362 return error("expected a named register"); 2363 unsigned Reg; 2364 if (parseNamedRegister(Reg)) 2365 return true; 2366 lex(); 2367 Mask[Reg / 32] |= 1U << (Reg % 32); 2368 // TODO: Report an error if the same register is used more than once. 2369 if (Token.isNot(MIToken::comma)) 2370 break; 2371 lex(); 2372 } 2373 2374 if (expectAndConsume(MIToken::rparen)) 2375 return true; 2376 Dest = MachineOperand::CreateRegMask(Mask); 2377 return false; 2378 } 2379 2380 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2381 assert(Token.is(MIToken::kw_liveout)); 2382 uint32_t *Mask = MF.allocateRegMask(); 2383 lex(); 2384 if (expectAndConsume(MIToken::lparen)) 2385 return true; 2386 while (true) { 2387 if (Token.isNot(MIToken::NamedRegister)) 2388 return error("expected a named register"); 2389 unsigned Reg; 2390 if (parseNamedRegister(Reg)) 2391 return true; 2392 lex(); 2393 Mask[Reg / 32] |= 1U << (Reg % 32); 2394 // TODO: Report an error if the same register is used more than once. 2395 if (Token.isNot(MIToken::comma)) 2396 break; 2397 lex(); 2398 } 2399 if (expectAndConsume(MIToken::rparen)) 2400 return true; 2401 Dest = MachineOperand::CreateRegLiveOut(Mask); 2402 return false; 2403 } 2404 2405 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2406 Optional<unsigned> &TiedDefIdx) { 2407 switch (Token.kind()) { 2408 case MIToken::kw_implicit: 2409 case MIToken::kw_implicit_define: 2410 case MIToken::kw_def: 2411 case MIToken::kw_dead: 2412 case MIToken::kw_killed: 2413 case MIToken::kw_undef: 2414 case MIToken::kw_internal: 2415 case MIToken::kw_early_clobber: 2416 case MIToken::kw_debug_use: 2417 case MIToken::kw_renamable: 2418 case MIToken::underscore: 2419 case MIToken::NamedRegister: 2420 case MIToken::VirtualRegister: 2421 case MIToken::NamedVirtualRegister: 2422 return parseRegisterOperand(Dest, TiedDefIdx); 2423 case MIToken::IntegerLiteral: 2424 return parseImmediateOperand(Dest); 2425 case MIToken::kw_half: 2426 case MIToken::kw_float: 2427 case MIToken::kw_double: 2428 case MIToken::kw_x86_fp80: 2429 case MIToken::kw_fp128: 2430 case MIToken::kw_ppc_fp128: 2431 return parseFPImmediateOperand(Dest); 2432 case MIToken::MachineBasicBlock: 2433 return parseMBBOperand(Dest); 2434 case MIToken::StackObject: 2435 return parseStackObjectOperand(Dest); 2436 case MIToken::FixedStackObject: 2437 return parseFixedStackObjectOperand(Dest); 2438 case MIToken::GlobalValue: 2439 case MIToken::NamedGlobalValue: 2440 return parseGlobalAddressOperand(Dest); 2441 case MIToken::ConstantPoolItem: 2442 return parseConstantPoolIndexOperand(Dest); 2443 case MIToken::JumpTableIndex: 2444 return parseJumpTableIndexOperand(Dest); 2445 case MIToken::ExternalSymbol: 2446 return parseExternalSymbolOperand(Dest); 2447 case MIToken::MCSymbol: 2448 return parseMCSymbolOperand(Dest); 2449 case MIToken::SubRegisterIndex: 2450 return parseSubRegisterIndexOperand(Dest); 2451 case MIToken::md_diexpr: 2452 case MIToken::exclaim: 2453 return parseMetadataOperand(Dest); 2454 case MIToken::kw_cfi_same_value: 2455 case MIToken::kw_cfi_offset: 2456 case MIToken::kw_cfi_rel_offset: 2457 case MIToken::kw_cfi_def_cfa_register: 2458 case MIToken::kw_cfi_def_cfa_offset: 2459 case MIToken::kw_cfi_adjust_cfa_offset: 2460 case MIToken::kw_cfi_escape: 2461 case MIToken::kw_cfi_def_cfa: 2462 case MIToken::kw_cfi_register: 2463 case MIToken::kw_cfi_remember_state: 2464 case MIToken::kw_cfi_restore: 2465 case MIToken::kw_cfi_restore_state: 2466 case MIToken::kw_cfi_undefined: 2467 case MIToken::kw_cfi_window_save: 2468 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2469 return parseCFIOperand(Dest); 2470 case MIToken::kw_blockaddress: 2471 return parseBlockAddressOperand(Dest); 2472 case MIToken::kw_intrinsic: 2473 return parseIntrinsicOperand(Dest); 2474 case MIToken::kw_target_index: 2475 return parseTargetIndexOperand(Dest); 2476 case MIToken::kw_liveout: 2477 return parseLiveoutRegisterMaskOperand(Dest); 2478 case MIToken::kw_floatpred: 2479 case MIToken::kw_intpred: 2480 return parsePredicateOperand(Dest); 2481 case MIToken::kw_shufflemask: 2482 return parseShuffleMaskOperand(Dest); 2483 case MIToken::Error: 2484 return true; 2485 case MIToken::Identifier: 2486 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2487 Dest = MachineOperand::CreateRegMask(RegMask); 2488 lex(); 2489 break; 2490 } else if (Token.stringValue() == "CustomRegMask") { 2491 return parseCustomRegisterMaskOperand(Dest); 2492 } else 2493 return parseTypedImmediateOperand(Dest); 2494 default: 2495 // FIXME: Parse the MCSymbol machine operand. 2496 return error("expected a machine operand"); 2497 } 2498 return false; 2499 } 2500 2501 bool MIParser::parseMachineOperandAndTargetFlags( 2502 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2503 unsigned TF = 0; 2504 bool HasTargetFlags = false; 2505 if (Token.is(MIToken::kw_target_flags)) { 2506 HasTargetFlags = true; 2507 lex(); 2508 if (expectAndConsume(MIToken::lparen)) 2509 return true; 2510 if (Token.isNot(MIToken::Identifier)) 2511 return error("expected the name of the target flag"); 2512 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2513 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2514 return error("use of undefined target flag '" + Token.stringValue() + 2515 "'"); 2516 } 2517 lex(); 2518 while (Token.is(MIToken::comma)) { 2519 lex(); 2520 if (Token.isNot(MIToken::Identifier)) 2521 return error("expected the name of the target flag"); 2522 unsigned BitFlag = 0; 2523 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2524 return error("use of undefined target flag '" + Token.stringValue() + 2525 "'"); 2526 // TODO: Report an error when using a duplicate bit target flag. 2527 TF |= BitFlag; 2528 lex(); 2529 } 2530 if (expectAndConsume(MIToken::rparen)) 2531 return true; 2532 } 2533 auto Loc = Token.location(); 2534 if (parseMachineOperand(Dest, TiedDefIdx)) 2535 return true; 2536 if (!HasTargetFlags) 2537 return false; 2538 if (Dest.isReg()) 2539 return error(Loc, "register operands can't have target flags"); 2540 Dest.setTargetFlags(TF); 2541 return false; 2542 } 2543 2544 bool MIParser::parseOffset(int64_t &Offset) { 2545 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2546 return false; 2547 StringRef Sign = Token.range(); 2548 bool IsNegative = Token.is(MIToken::minus); 2549 lex(); 2550 if (Token.isNot(MIToken::IntegerLiteral)) 2551 return error("expected an integer literal after '" + Sign + "'"); 2552 if (Token.integerValue().getMinSignedBits() > 64) 2553 return error("expected 64-bit integer (too large)"); 2554 Offset = Token.integerValue().getExtValue(); 2555 if (IsNegative) 2556 Offset = -Offset; 2557 lex(); 2558 return false; 2559 } 2560 2561 bool MIParser::parseAlignment(unsigned &Alignment) { 2562 assert(Token.is(MIToken::kw_align)); 2563 lex(); 2564 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2565 return error("expected an integer literal after 'align'"); 2566 if (getUnsigned(Alignment)) 2567 return true; 2568 lex(); 2569 2570 if (!isPowerOf2_32(Alignment)) 2571 return error("expected a power-of-2 literal after 'align'"); 2572 2573 return false; 2574 } 2575 2576 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2577 assert(Token.is(MIToken::kw_addrspace)); 2578 lex(); 2579 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2580 return error("expected an integer literal after 'addrspace'"); 2581 if (getUnsigned(Addrspace)) 2582 return true; 2583 lex(); 2584 return false; 2585 } 2586 2587 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2588 int64_t Offset = 0; 2589 if (parseOffset(Offset)) 2590 return true; 2591 Op.setOffset(Offset); 2592 return false; 2593 } 2594 2595 bool MIParser::parseIRValue(const Value *&V) { 2596 switch (Token.kind()) { 2597 case MIToken::NamedIRValue: { 2598 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2599 break; 2600 } 2601 case MIToken::IRValue: { 2602 unsigned SlotNumber = 0; 2603 if (getUnsigned(SlotNumber)) 2604 return true; 2605 V = getIRValue(SlotNumber); 2606 break; 2607 } 2608 case MIToken::NamedGlobalValue: 2609 case MIToken::GlobalValue: { 2610 GlobalValue *GV = nullptr; 2611 if (parseGlobalValue(GV)) 2612 return true; 2613 V = GV; 2614 break; 2615 } 2616 case MIToken::QuotedIRValue: { 2617 const Constant *C = nullptr; 2618 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2619 return true; 2620 V = C; 2621 break; 2622 } 2623 default: 2624 llvm_unreachable("The current token should be an IR block reference"); 2625 } 2626 if (!V) 2627 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2628 return false; 2629 } 2630 2631 bool MIParser::getUint64(uint64_t &Result) { 2632 if (Token.hasIntegerValue()) { 2633 if (Token.integerValue().getActiveBits() > 64) 2634 return error("expected 64-bit integer (too large)"); 2635 Result = Token.integerValue().getZExtValue(); 2636 return false; 2637 } 2638 if (Token.is(MIToken::HexLiteral)) { 2639 APInt A; 2640 if (getHexUint(A)) 2641 return true; 2642 if (A.getBitWidth() > 64) 2643 return error("expected 64-bit integer (too large)"); 2644 Result = A.getZExtValue(); 2645 return false; 2646 } 2647 return true; 2648 } 2649 2650 bool MIParser::getHexUint(APInt &Result) { 2651 assert(Token.is(MIToken::HexLiteral)); 2652 StringRef S = Token.range(); 2653 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2654 // This could be a floating point literal with a special prefix. 2655 if (!isxdigit(S[2])) 2656 return true; 2657 StringRef V = S.substr(2); 2658 APInt A(V.size()*4, V, 16); 2659 2660 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2661 // sure it isn't the case before constructing result. 2662 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2663 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2664 return false; 2665 } 2666 2667 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2668 const auto OldFlags = Flags; 2669 switch (Token.kind()) { 2670 case MIToken::kw_volatile: 2671 Flags |= MachineMemOperand::MOVolatile; 2672 break; 2673 case MIToken::kw_non_temporal: 2674 Flags |= MachineMemOperand::MONonTemporal; 2675 break; 2676 case MIToken::kw_dereferenceable: 2677 Flags |= MachineMemOperand::MODereferenceable; 2678 break; 2679 case MIToken::kw_invariant: 2680 Flags |= MachineMemOperand::MOInvariant; 2681 break; 2682 case MIToken::StringConstant: { 2683 MachineMemOperand::Flags TF; 2684 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2685 return error("use of undefined target MMO flag '" + Token.stringValue() + 2686 "'"); 2687 Flags |= TF; 2688 break; 2689 } 2690 default: 2691 llvm_unreachable("The current token should be a memory operand flag"); 2692 } 2693 if (OldFlags == Flags) 2694 // We know that the same flag is specified more than once when the flags 2695 // weren't modified. 2696 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2697 lex(); 2698 return false; 2699 } 2700 2701 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2702 switch (Token.kind()) { 2703 case MIToken::kw_stack: 2704 PSV = MF.getPSVManager().getStack(); 2705 break; 2706 case MIToken::kw_got: 2707 PSV = MF.getPSVManager().getGOT(); 2708 break; 2709 case MIToken::kw_jump_table: 2710 PSV = MF.getPSVManager().getJumpTable(); 2711 break; 2712 case MIToken::kw_constant_pool: 2713 PSV = MF.getPSVManager().getConstantPool(); 2714 break; 2715 case MIToken::FixedStackObject: { 2716 int FI; 2717 if (parseFixedStackFrameIndex(FI)) 2718 return true; 2719 PSV = MF.getPSVManager().getFixedStack(FI); 2720 // The token was already consumed, so use return here instead of break. 2721 return false; 2722 } 2723 case MIToken::StackObject: { 2724 int FI; 2725 if (parseStackFrameIndex(FI)) 2726 return true; 2727 PSV = MF.getPSVManager().getFixedStack(FI); 2728 // The token was already consumed, so use return here instead of break. 2729 return false; 2730 } 2731 case MIToken::kw_call_entry: 2732 lex(); 2733 switch (Token.kind()) { 2734 case MIToken::GlobalValue: 2735 case MIToken::NamedGlobalValue: { 2736 GlobalValue *GV = nullptr; 2737 if (parseGlobalValue(GV)) 2738 return true; 2739 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2740 break; 2741 } 2742 case MIToken::ExternalSymbol: 2743 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2744 MF.createExternalSymbolName(Token.stringValue())); 2745 break; 2746 default: 2747 return error( 2748 "expected a global value or an external symbol after 'call-entry'"); 2749 } 2750 break; 2751 default: 2752 llvm_unreachable("The current token should be pseudo source value"); 2753 } 2754 lex(); 2755 return false; 2756 } 2757 2758 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2759 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2760 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2761 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2762 Token.is(MIToken::kw_call_entry)) { 2763 const PseudoSourceValue *PSV = nullptr; 2764 if (parseMemoryPseudoSourceValue(PSV)) 2765 return true; 2766 int64_t Offset = 0; 2767 if (parseOffset(Offset)) 2768 return true; 2769 Dest = MachinePointerInfo(PSV, Offset); 2770 return false; 2771 } 2772 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2773 Token.isNot(MIToken::GlobalValue) && 2774 Token.isNot(MIToken::NamedGlobalValue) && 2775 Token.isNot(MIToken::QuotedIRValue)) 2776 return error("expected an IR value reference"); 2777 const Value *V = nullptr; 2778 if (parseIRValue(V)) 2779 return true; 2780 if (!V->getType()->isPointerTy()) 2781 return error("expected a pointer IR value"); 2782 lex(); 2783 int64_t Offset = 0; 2784 if (parseOffset(Offset)) 2785 return true; 2786 Dest = MachinePointerInfo(V, Offset); 2787 return false; 2788 } 2789 2790 bool MIParser::parseOptionalScope(LLVMContext &Context, 2791 SyncScope::ID &SSID) { 2792 SSID = SyncScope::System; 2793 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2794 lex(); 2795 if (expectAndConsume(MIToken::lparen)) 2796 return error("expected '(' in syncscope"); 2797 2798 std::string SSN; 2799 if (parseStringConstant(SSN)) 2800 return true; 2801 2802 SSID = Context.getOrInsertSyncScopeID(SSN); 2803 if (expectAndConsume(MIToken::rparen)) 2804 return error("expected ')' in syncscope"); 2805 } 2806 2807 return false; 2808 } 2809 2810 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2811 Order = AtomicOrdering::NotAtomic; 2812 if (Token.isNot(MIToken::Identifier)) 2813 return false; 2814 2815 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2816 .Case("unordered", AtomicOrdering::Unordered) 2817 .Case("monotonic", AtomicOrdering::Monotonic) 2818 .Case("acquire", AtomicOrdering::Acquire) 2819 .Case("release", AtomicOrdering::Release) 2820 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2821 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2822 .Default(AtomicOrdering::NotAtomic); 2823 2824 if (Order != AtomicOrdering::NotAtomic) { 2825 lex(); 2826 return false; 2827 } 2828 2829 return error("expected an atomic scope, ordering or a size specification"); 2830 } 2831 2832 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2833 if (expectAndConsume(MIToken::lparen)) 2834 return true; 2835 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2836 while (Token.isMemoryOperandFlag()) { 2837 if (parseMemoryOperandFlag(Flags)) 2838 return true; 2839 } 2840 if (Token.isNot(MIToken::Identifier) || 2841 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2842 return error("expected 'load' or 'store' memory operation"); 2843 if (Token.stringValue() == "load") 2844 Flags |= MachineMemOperand::MOLoad; 2845 else 2846 Flags |= MachineMemOperand::MOStore; 2847 lex(); 2848 2849 // Optional 'store' for operands that both load and store. 2850 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2851 Flags |= MachineMemOperand::MOStore; 2852 lex(); 2853 } 2854 2855 // Optional synchronization scope. 2856 SyncScope::ID SSID; 2857 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2858 return true; 2859 2860 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2861 AtomicOrdering Order, FailureOrder; 2862 if (parseOptionalAtomicOrdering(Order)) 2863 return true; 2864 2865 if (parseOptionalAtomicOrdering(FailureOrder)) 2866 return true; 2867 2868 if (Token.isNot(MIToken::IntegerLiteral) && 2869 Token.isNot(MIToken::kw_unknown_size)) 2870 return error("expected the size integer literal or 'unknown-size' after " 2871 "memory operation"); 2872 uint64_t Size; 2873 if (Token.is(MIToken::IntegerLiteral)) { 2874 if (getUint64(Size)) 2875 return true; 2876 } else if (Token.is(MIToken::kw_unknown_size)) { 2877 Size = MemoryLocation::UnknownSize; 2878 } 2879 lex(); 2880 2881 MachinePointerInfo Ptr = MachinePointerInfo(); 2882 if (Token.is(MIToken::Identifier)) { 2883 const char *Word = 2884 ((Flags & MachineMemOperand::MOLoad) && 2885 (Flags & MachineMemOperand::MOStore)) 2886 ? "on" 2887 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2888 if (Token.stringValue() != Word) 2889 return error(Twine("expected '") + Word + "'"); 2890 lex(); 2891 2892 if (parseMachinePointerInfo(Ptr)) 2893 return true; 2894 } 2895 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2896 AAMDNodes AAInfo; 2897 MDNode *Range = nullptr; 2898 while (consumeIfPresent(MIToken::comma)) { 2899 switch (Token.kind()) { 2900 case MIToken::kw_align: 2901 if (parseAlignment(BaseAlignment)) 2902 return true; 2903 break; 2904 case MIToken::kw_addrspace: 2905 if (parseAddrspace(Ptr.AddrSpace)) 2906 return true; 2907 break; 2908 case MIToken::md_tbaa: 2909 lex(); 2910 if (parseMDNode(AAInfo.TBAA)) 2911 return true; 2912 break; 2913 case MIToken::md_alias_scope: 2914 lex(); 2915 if (parseMDNode(AAInfo.Scope)) 2916 return true; 2917 break; 2918 case MIToken::md_noalias: 2919 lex(); 2920 if (parseMDNode(AAInfo.NoAlias)) 2921 return true; 2922 break; 2923 case MIToken::md_range: 2924 lex(); 2925 if (parseMDNode(Range)) 2926 return true; 2927 break; 2928 // TODO: Report an error on duplicate metadata nodes. 2929 default: 2930 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2931 "'!noalias' or '!range'"); 2932 } 2933 } 2934 if (expectAndConsume(MIToken::rparen)) 2935 return true; 2936 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2937 SSID, Order, FailureOrder); 2938 return false; 2939 } 2940 2941 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2942 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2943 Token.is(MIToken::kw_post_instr_symbol)) && 2944 "Invalid token for a pre- post-instruction symbol!"); 2945 lex(); 2946 if (Token.isNot(MIToken::MCSymbol)) 2947 return error("expected a symbol after 'pre-instr-symbol'"); 2948 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2949 lex(); 2950 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2951 Token.is(MIToken::lbrace)) 2952 return false; 2953 if (Token.isNot(MIToken::comma)) 2954 return error("expected ',' before the next machine operand"); 2955 lex(); 2956 return false; 2957 } 2958 2959 static void initSlots2BasicBlocks( 2960 const Function &F, 2961 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2962 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2963 MST.incorporateFunction(F); 2964 for (auto &BB : F) { 2965 if (BB.hasName()) 2966 continue; 2967 int Slot = MST.getLocalSlot(&BB); 2968 if (Slot == -1) 2969 continue; 2970 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2971 } 2972 } 2973 2974 static const BasicBlock *getIRBlockFromSlot( 2975 unsigned Slot, 2976 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2977 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2978 if (BlockInfo == Slots2BasicBlocks.end()) 2979 return nullptr; 2980 return BlockInfo->second; 2981 } 2982 2983 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2984 if (Slots2BasicBlocks.empty()) 2985 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2986 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2987 } 2988 2989 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2990 if (&F == &MF.getFunction()) 2991 return getIRBlock(Slot); 2992 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2993 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2994 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2995 } 2996 2997 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2998 DenseMap<unsigned, const Value *> &Slots2Values) { 2999 int Slot = MST.getLocalSlot(V); 3000 if (Slot == -1) 3001 return; 3002 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 3003 } 3004 3005 /// Creates the mapping from slot numbers to function's unnamed IR values. 3006 static void initSlots2Values(const Function &F, 3007 DenseMap<unsigned, const Value *> &Slots2Values) { 3008 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3009 MST.incorporateFunction(F); 3010 for (const auto &Arg : F.args()) 3011 mapValueToSlot(&Arg, MST, Slots2Values); 3012 for (const auto &BB : F) { 3013 mapValueToSlot(&BB, MST, Slots2Values); 3014 for (const auto &I : BB) 3015 mapValueToSlot(&I, MST, Slots2Values); 3016 } 3017 } 3018 3019 const Value *MIParser::getIRValue(unsigned Slot) { 3020 if (Slots2Values.empty()) 3021 initSlots2Values(MF.getFunction(), Slots2Values); 3022 auto ValueInfo = Slots2Values.find(Slot); 3023 if (ValueInfo == Slots2Values.end()) 3024 return nullptr; 3025 return ValueInfo->second; 3026 } 3027 3028 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3029 // FIXME: Currently we can't recognize temporary or local symbols and call all 3030 // of the appropriate forms to create them. However, this handles basic cases 3031 // well as most of the special aspects are recognized by a prefix on their 3032 // name, and the input names should already be unique. For test cases, keeping 3033 // the symbol name out of the symbol table isn't terribly important. 3034 return MF.getContext().getOrCreateSymbol(Name); 3035 } 3036 3037 bool MIParser::parseStringConstant(std::string &Result) { 3038 if (Token.isNot(MIToken::StringConstant)) 3039 return error("expected string constant"); 3040 Result = Token.stringValue(); 3041 lex(); 3042 return false; 3043 } 3044 3045 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3046 StringRef Src, 3047 SMDiagnostic &Error) { 3048 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3049 } 3050 3051 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3052 StringRef Src, SMDiagnostic &Error) { 3053 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3054 } 3055 3056 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3057 MachineBasicBlock *&MBB, StringRef Src, 3058 SMDiagnostic &Error) { 3059 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3060 } 3061 3062 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3063 unsigned &Reg, StringRef Src, 3064 SMDiagnostic &Error) { 3065 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3066 } 3067 3068 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3069 unsigned &Reg, StringRef Src, 3070 SMDiagnostic &Error) { 3071 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3072 } 3073 3074 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3075 VRegInfo *&Info, StringRef Src, 3076 SMDiagnostic &Error) { 3077 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3078 } 3079 3080 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3081 int &FI, StringRef Src, 3082 SMDiagnostic &Error) { 3083 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3084 } 3085 3086 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3087 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3088 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3089 } 3090