xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MIRParser/MIParser.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/MemoryLocation.h"
25 #include "llvm/AsmParser/Parser.h"
26 #include "llvm/AsmParser/SlotMapping.h"
27 #include "llvm/CodeGen/MIRFormatter.h"
28 #include "llvm/CodeGen/MIRPrinter.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/RegisterBank.h"
38 #include "llvm/CodeGen/RegisterBankInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCDwarf.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <cassert>
72 #include <cctype>
73 #include <cstddef>
74 #include <cstdint>
75 #include <limits>
76 #include <string>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 void PerTargetMIParsingState::setTarget(
82   const TargetSubtargetInfo &NewSubtarget) {
83 
84   // If the subtarget changed, over conservatively assume everything is invalid.
85   if (&Subtarget == &NewSubtarget)
86     return;
87 
88   Names2InstrOpCodes.clear();
89   Names2Regs.clear();
90   Names2RegMasks.clear();
91   Names2SubRegIndices.clear();
92   Names2TargetIndices.clear();
93   Names2DirectTargetFlags.clear();
94   Names2BitmaskTargetFlags.clear();
95   Names2MMOTargetFlags.clear();
96 
97   initNames2RegClasses();
98   initNames2RegBanks();
99 }
100 
101 void PerTargetMIParsingState::initNames2Regs() {
102   if (!Names2Regs.empty())
103     return;
104 
105   // The '%noreg' register is the register 0.
106   Names2Regs.insert(std::make_pair("noreg", 0));
107   const auto *TRI = Subtarget.getRegisterInfo();
108   assert(TRI && "Expected target register info");
109 
110   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
111     bool WasInserted =
112         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
113             .second;
114     (void)WasInserted;
115     assert(WasInserted && "Expected registers to be unique case-insensitively");
116   }
117 }
118 
119 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
120                                                 Register &Reg) {
121   initNames2Regs();
122   auto RegInfo = Names2Regs.find(RegName);
123   if (RegInfo == Names2Regs.end())
124     return true;
125   Reg = RegInfo->getValue();
126   return false;
127 }
128 
129 void PerTargetMIParsingState::initNames2InstrOpCodes() {
130   if (!Names2InstrOpCodes.empty())
131     return;
132   const auto *TII = Subtarget.getInstrInfo();
133   assert(TII && "Expected target instruction info");
134   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
135     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
136 }
137 
138 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
139                                              unsigned &OpCode) {
140   initNames2InstrOpCodes();
141   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
142   if (InstrInfo == Names2InstrOpCodes.end())
143     return true;
144   OpCode = InstrInfo->getValue();
145   return false;
146 }
147 
148 void PerTargetMIParsingState::initNames2RegMasks() {
149   if (!Names2RegMasks.empty())
150     return;
151   const auto *TRI = Subtarget.getRegisterInfo();
152   assert(TRI && "Expected target register info");
153   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
154   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
155   assert(RegMasks.size() == RegMaskNames.size());
156   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
157     Names2RegMasks.insert(
158         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
159 }
160 
161 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
162   initNames2RegMasks();
163   auto RegMaskInfo = Names2RegMasks.find(Identifier);
164   if (RegMaskInfo == Names2RegMasks.end())
165     return nullptr;
166   return RegMaskInfo->getValue();
167 }
168 
169 void PerTargetMIParsingState::initNames2SubRegIndices() {
170   if (!Names2SubRegIndices.empty())
171     return;
172   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
173   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
174     Names2SubRegIndices.insert(
175         std::make_pair(TRI->getSubRegIndexName(I), I));
176 }
177 
178 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
179   initNames2SubRegIndices();
180   auto SubRegInfo = Names2SubRegIndices.find(Name);
181   if (SubRegInfo == Names2SubRegIndices.end())
182     return 0;
183   return SubRegInfo->getValue();
184 }
185 
186 void PerTargetMIParsingState::initNames2TargetIndices() {
187   if (!Names2TargetIndices.empty())
188     return;
189   const auto *TII = Subtarget.getInstrInfo();
190   assert(TII && "Expected target instruction info");
191   auto Indices = TII->getSerializableTargetIndices();
192   for (const auto &I : Indices)
193     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
194 }
195 
196 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
197   initNames2TargetIndices();
198   auto IndexInfo = Names2TargetIndices.find(Name);
199   if (IndexInfo == Names2TargetIndices.end())
200     return true;
201   Index = IndexInfo->second;
202   return false;
203 }
204 
205 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
206   if (!Names2DirectTargetFlags.empty())
207     return;
208 
209   const auto *TII = Subtarget.getInstrInfo();
210   assert(TII && "Expected target instruction info");
211   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
212   for (const auto &I : Flags)
213     Names2DirectTargetFlags.insert(
214         std::make_pair(StringRef(I.second), I.first));
215 }
216 
217 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
218                                                   unsigned &Flag) {
219   initNames2DirectTargetFlags();
220   auto FlagInfo = Names2DirectTargetFlags.find(Name);
221   if (FlagInfo == Names2DirectTargetFlags.end())
222     return true;
223   Flag = FlagInfo->second;
224   return false;
225 }
226 
227 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
228   if (!Names2BitmaskTargetFlags.empty())
229     return;
230 
231   const auto *TII = Subtarget.getInstrInfo();
232   assert(TII && "Expected target instruction info");
233   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
234   for (const auto &I : Flags)
235     Names2BitmaskTargetFlags.insert(
236         std::make_pair(StringRef(I.second), I.first));
237 }
238 
239 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
240                                                    unsigned &Flag) {
241   initNames2BitmaskTargetFlags();
242   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
243   if (FlagInfo == Names2BitmaskTargetFlags.end())
244     return true;
245   Flag = FlagInfo->second;
246   return false;
247 }
248 
249 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
250   if (!Names2MMOTargetFlags.empty())
251     return;
252 
253   const auto *TII = Subtarget.getInstrInfo();
254   assert(TII && "Expected target instruction info");
255   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
256   for (const auto &I : Flags)
257     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
258 }
259 
260 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
261                                                MachineMemOperand::Flags &Flag) {
262   initNames2MMOTargetFlags();
263   auto FlagInfo = Names2MMOTargetFlags.find(Name);
264   if (FlagInfo == Names2MMOTargetFlags.end())
265     return true;
266   Flag = FlagInfo->second;
267   return false;
268 }
269 
270 void PerTargetMIParsingState::initNames2RegClasses() {
271   if (!Names2RegClasses.empty())
272     return;
273 
274   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
275   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
276     const auto *RC = TRI->getRegClass(I);
277     Names2RegClasses.insert(
278         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
279   }
280 }
281 
282 void PerTargetMIParsingState::initNames2RegBanks() {
283   if (!Names2RegBanks.empty())
284     return;
285 
286   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
287   // If the target does not support GlobalISel, we may not have a
288   // register bank info.
289   if (!RBI)
290     return;
291 
292   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
293     const auto &RegBank = RBI->getRegBank(I);
294     Names2RegBanks.insert(
295         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
296   }
297 }
298 
299 const TargetRegisterClass *
300 PerTargetMIParsingState::getRegClass(StringRef Name) {
301   auto RegClassInfo = Names2RegClasses.find(Name);
302   if (RegClassInfo == Names2RegClasses.end())
303     return nullptr;
304   return RegClassInfo->getValue();
305 }
306 
307 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
308   auto RegBankInfo = Names2RegBanks.find(Name);
309   if (RegBankInfo == Names2RegBanks.end())
310     return nullptr;
311   return RegBankInfo->getValue();
312 }
313 
314 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
315     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
316   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
317 }
318 
319 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
320   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
321   if (I.second) {
322     MachineRegisterInfo &MRI = MF.getRegInfo();
323     VRegInfo *Info = new (Allocator) VRegInfo;
324     Info->VReg = MRI.createIncompleteVirtualRegister();
325     I.first->second = Info;
326   }
327   return *I.first->second;
328 }
329 
330 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
331   assert(RegName != "" && "Expected named reg.");
332 
333   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
334   if (I.second) {
335     VRegInfo *Info = new (Allocator) VRegInfo;
336     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
337     I.first->second = Info;
338   }
339   return *I.first->second;
340 }
341 
342 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
343                            DenseMap<unsigned, const Value *> &Slots2Values) {
344   int Slot = MST.getLocalSlot(V);
345   if (Slot == -1)
346     return;
347   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
348 }
349 
350 /// Creates the mapping from slot numbers to function's unnamed IR values.
351 static void initSlots2Values(const Function &F,
352                              DenseMap<unsigned, const Value *> &Slots2Values) {
353   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
354   MST.incorporateFunction(F);
355   for (const auto &Arg : F.args())
356     mapValueToSlot(&Arg, MST, Slots2Values);
357   for (const auto &BB : F) {
358     mapValueToSlot(&BB, MST, Slots2Values);
359     for (const auto &I : BB)
360       mapValueToSlot(&I, MST, Slots2Values);
361   }
362 }
363 
364 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
365   if (Slots2Values.empty())
366     initSlots2Values(MF.getFunction(), Slots2Values);
367   return Slots2Values.lookup(Slot);
368 }
369 
370 namespace {
371 
372 /// A wrapper struct around the 'MachineOperand' struct that includes a source
373 /// range and other attributes.
374 struct ParsedMachineOperand {
375   MachineOperand Operand;
376   StringRef::iterator Begin;
377   StringRef::iterator End;
378   std::optional<unsigned> TiedDefIdx;
379 
380   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
381                        StringRef::iterator End,
382                        std::optional<unsigned> &TiedDefIdx)
383       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
384     if (TiedDefIdx)
385       assert(Operand.isReg() && Operand.isUse() &&
386              "Only used register operands can be tied");
387   }
388 };
389 
390 class MIParser {
391   MachineFunction &MF;
392   SMDiagnostic &Error;
393   StringRef Source, CurrentSource;
394   SMRange SourceRange;
395   MIToken Token;
396   PerFunctionMIParsingState &PFS;
397   /// Maps from slot numbers to function's unnamed basic blocks.
398   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
399 
400 public:
401   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
402            StringRef Source);
403   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
404            StringRef Source, SMRange SourceRange);
405 
406   /// \p SkipChar gives the number of characters to skip before looking
407   /// for the next token.
408   void lex(unsigned SkipChar = 0);
409 
410   /// Report an error at the current location with the given message.
411   ///
412   /// This function always return true.
413   bool error(const Twine &Msg);
414 
415   /// Report an error at the given location with the given message.
416   ///
417   /// This function always return true.
418   bool error(StringRef::iterator Loc, const Twine &Msg);
419 
420   bool
421   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
422   bool parseBasicBlocks();
423   bool parse(MachineInstr *&MI);
424   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
425   bool parseStandaloneNamedRegister(Register &Reg);
426   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
427   bool parseStandaloneRegister(Register &Reg);
428   bool parseStandaloneStackObject(int &FI);
429   bool parseStandaloneMDNode(MDNode *&Node);
430   bool parseMachineMetadata();
431   bool parseMDTuple(MDNode *&MD, bool IsDistinct);
432   bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
433   bool parseMetadata(Metadata *&MD);
434 
435   bool
436   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437   bool parseBasicBlock(MachineBasicBlock &MBB,
438                        MachineBasicBlock *&AddFalthroughFrom);
439   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441 
442   bool parseNamedRegister(Register &Reg);
443   bool parseVirtualRegister(VRegInfo *&Info);
444   bool parseNamedVirtualRegister(VRegInfo *&Info);
445   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
446   bool parseRegisterFlag(unsigned &Flags);
447   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448   bool parseSubRegisterIndex(unsigned &SubReg);
449   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450   bool parseRegisterOperand(MachineOperand &Dest,
451                             std::optional<unsigned> &TiedDefIdx,
452                             bool IsDef = false);
453   bool parseImmediateOperand(MachineOperand &Dest);
454   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
455                        const Constant *&C);
456   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
457   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
458   bool parseTypedImmediateOperand(MachineOperand &Dest);
459   bool parseFPImmediateOperand(MachineOperand &Dest);
460   bool parseMBBReference(MachineBasicBlock *&MBB);
461   bool parseMBBOperand(MachineOperand &Dest);
462   bool parseStackFrameIndex(int &FI);
463   bool parseStackObjectOperand(MachineOperand &Dest);
464   bool parseFixedStackFrameIndex(int &FI);
465   bool parseFixedStackObjectOperand(MachineOperand &Dest);
466   bool parseGlobalValue(GlobalValue *&GV);
467   bool parseGlobalAddressOperand(MachineOperand &Dest);
468   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
469   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
470   bool parseJumpTableIndexOperand(MachineOperand &Dest);
471   bool parseExternalSymbolOperand(MachineOperand &Dest);
472   bool parseMCSymbolOperand(MachineOperand &Dest);
473   bool parseMDNode(MDNode *&Node);
474   bool parseDIExpression(MDNode *&Expr);
475   bool parseDILocation(MDNode *&Expr);
476   bool parseMetadataOperand(MachineOperand &Dest);
477   bool parseCFIOffset(int &Offset);
478   bool parseCFIRegister(Register &Reg);
479   bool parseCFIAddressSpace(unsigned &AddressSpace);
480   bool parseCFIEscapeValues(std::string& Values);
481   bool parseCFIOperand(MachineOperand &Dest);
482   bool parseIRBlock(BasicBlock *&BB, const Function &F);
483   bool parseBlockAddressOperand(MachineOperand &Dest);
484   bool parseIntrinsicOperand(MachineOperand &Dest);
485   bool parsePredicateOperand(MachineOperand &Dest);
486   bool parseShuffleMaskOperand(MachineOperand &Dest);
487   bool parseTargetIndexOperand(MachineOperand &Dest);
488   bool parseDbgInstrRefOperand(MachineOperand &Dest);
489   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
490   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
491   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
492                            MachineOperand &Dest,
493                            std::optional<unsigned> &TiedDefIdx);
494   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
495                                          const unsigned OpIdx,
496                                          MachineOperand &Dest,
497                                          std::optional<unsigned> &TiedDefIdx);
498   bool parseOffset(int64_t &Offset);
499   bool parseIRBlockAddressTaken(BasicBlock *&BB);
500   bool parseAlignment(uint64_t &Alignment);
501   bool parseAddrspace(unsigned &Addrspace);
502   bool parseSectionID(std::optional<MBBSectionID> &SID);
503   bool parseBBID(std::optional<unsigned> &BBID);
504   bool parseOperandsOffset(MachineOperand &Op);
505   bool parseIRValue(const Value *&V);
506   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513   bool parseHeapAllocMarker(MDNode *&Node);
514   bool parsePCSections(MDNode *&Node);
515 
516   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
517                               MachineOperand &Dest, const MIRFormatter &MF);
518 
519 private:
520   /// Convert the integer literal in the current token into an unsigned integer.
521   ///
522   /// Return true if an error occurred.
523   bool getUnsigned(unsigned &Result);
524 
525   /// Convert the integer literal in the current token into an uint64.
526   ///
527   /// Return true if an error occurred.
528   bool getUint64(uint64_t &Result);
529 
530   /// Convert the hexadecimal literal in the current token into an unsigned
531   ///  APInt with a minimum bitwidth required to represent the value.
532   ///
533   /// Return true if the literal does not represent an integer value.
534   bool getHexUint(APInt &Result);
535 
536   /// If the current token is of the given kind, consume it and return false.
537   /// Otherwise report an error and return true.
538   bool expectAndConsume(MIToken::TokenKind TokenKind);
539 
540   /// If the current token is of the given kind, consume it and return true.
541   /// Otherwise return false.
542   bool consumeIfPresent(MIToken::TokenKind TokenKind);
543 
544   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
545 
546   bool assignRegisterTies(MachineInstr &MI,
547                           ArrayRef<ParsedMachineOperand> Operands);
548 
549   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
550                               const MCInstrDesc &MCID);
551 
552   const BasicBlock *getIRBlock(unsigned Slot);
553   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
554 
555   /// Get or create an MCSymbol for a given name.
556   MCSymbol *getOrCreateMCSymbol(StringRef Name);
557 
558   /// parseStringConstant
559   ///   ::= StringConstant
560   bool parseStringConstant(std::string &Result);
561 
562   /// Map the location in the MI string to the corresponding location specified
563   /// in `SourceRange`.
564   SMLoc mapSMLoc(StringRef::iterator Loc);
565 };
566 
567 } // end anonymous namespace
568 
569 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
570                    StringRef Source)
571     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
572 {}
573 
574 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
575                    StringRef Source, SMRange SourceRange)
576     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
577       SourceRange(SourceRange), PFS(PFS) {}
578 
579 void MIParser::lex(unsigned SkipChar) {
580   CurrentSource = lexMIToken(
581       CurrentSource.slice(SkipChar, StringRef::npos), Token,
582       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
583 }
584 
585 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
586 
587 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
588   const SourceMgr &SM = *PFS.SM;
589   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
590   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
591   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
592     // Create an ordinary diagnostic when the source manager's buffer is the
593     // source string.
594     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
595     return true;
596   }
597   // Create a diagnostic for a YAML string literal.
598   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
599                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
600                        Source, std::nullopt, std::nullopt);
601   return true;
602 }
603 
604 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
605   assert(SourceRange.isValid() && "Invalid source range");
606   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
607   return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
608                                (Loc - Source.data()));
609 }
610 
611 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
612     ErrorCallbackType;
613 
614 static const char *toString(MIToken::TokenKind TokenKind) {
615   switch (TokenKind) {
616   case MIToken::comma:
617     return "','";
618   case MIToken::equal:
619     return "'='";
620   case MIToken::colon:
621     return "':'";
622   case MIToken::lparen:
623     return "'('";
624   case MIToken::rparen:
625     return "')'";
626   default:
627     return "<unknown token>";
628   }
629 }
630 
631 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
632   if (Token.isNot(TokenKind))
633     return error(Twine("expected ") + toString(TokenKind));
634   lex();
635   return false;
636 }
637 
638 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
639   if (Token.isNot(TokenKind))
640     return false;
641   lex();
642   return true;
643 }
644 
645 // Parse Machine Basic Block Section ID.
646 bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) {
647   assert(Token.is(MIToken::kw_bbsections));
648   lex();
649   if (Token.is(MIToken::IntegerLiteral)) {
650     unsigned Value = 0;
651     if (getUnsigned(Value))
652       return error("Unknown Section ID");
653     SID = MBBSectionID{Value};
654   } else {
655     const StringRef &S = Token.stringValue();
656     if (S == "Exception")
657       SID = MBBSectionID::ExceptionSectionID;
658     else if (S == "Cold")
659       SID = MBBSectionID::ColdSectionID;
660     else
661       return error("Unknown Section ID");
662   }
663   lex();
664   return false;
665 }
666 
667 // Parse Machine Basic Block ID.
668 bool MIParser::parseBBID(std::optional<unsigned> &BBID) {
669   assert(Token.is(MIToken::kw_bb_id));
670   lex();
671   unsigned Value = 0;
672   if (getUnsigned(Value))
673     return error("Unknown BB ID");
674   BBID = Value;
675   lex();
676   return false;
677 }
678 
679 bool MIParser::parseBasicBlockDefinition(
680     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
681   assert(Token.is(MIToken::MachineBasicBlockLabel));
682   unsigned ID = 0;
683   if (getUnsigned(ID))
684     return true;
685   auto Loc = Token.location();
686   auto Name = Token.stringValue();
687   lex();
688   bool MachineBlockAddressTaken = false;
689   BasicBlock *AddressTakenIRBlock = nullptr;
690   bool IsLandingPad = false;
691   bool IsInlineAsmBrIndirectTarget = false;
692   bool IsEHFuncletEntry = false;
693   std::optional<MBBSectionID> SectionID;
694   uint64_t Alignment = 0;
695   std::optional<unsigned> BBID;
696   BasicBlock *BB = nullptr;
697   if (consumeIfPresent(MIToken::lparen)) {
698     do {
699       // TODO: Report an error when multiple same attributes are specified.
700       switch (Token.kind()) {
701       case MIToken::kw_machine_block_address_taken:
702         MachineBlockAddressTaken = true;
703         lex();
704         break;
705       case MIToken::kw_ir_block_address_taken:
706         if (parseIRBlockAddressTaken(AddressTakenIRBlock))
707           return true;
708         break;
709       case MIToken::kw_landing_pad:
710         IsLandingPad = true;
711         lex();
712         break;
713       case MIToken::kw_inlineasm_br_indirect_target:
714         IsInlineAsmBrIndirectTarget = true;
715         lex();
716         break;
717       case MIToken::kw_ehfunclet_entry:
718         IsEHFuncletEntry = true;
719         lex();
720         break;
721       case MIToken::kw_align:
722         if (parseAlignment(Alignment))
723           return true;
724         break;
725       case MIToken::IRBlock:
726       case MIToken::NamedIRBlock:
727         // TODO: Report an error when both name and ir block are specified.
728         if (parseIRBlock(BB, MF.getFunction()))
729           return true;
730         lex();
731         break;
732       case MIToken::kw_bbsections:
733         if (parseSectionID(SectionID))
734           return true;
735         break;
736       case MIToken::kw_bb_id:
737         if (parseBBID(BBID))
738           return true;
739         break;
740       default:
741         break;
742       }
743     } while (consumeIfPresent(MIToken::comma));
744     if (expectAndConsume(MIToken::rparen))
745       return true;
746   }
747   if (expectAndConsume(MIToken::colon))
748     return true;
749 
750   if (!Name.empty()) {
751     BB = dyn_cast_or_null<BasicBlock>(
752         MF.getFunction().getValueSymbolTable()->lookup(Name));
753     if (!BB)
754       return error(Loc, Twine("basic block '") + Name +
755                             "' is not defined in the function '" +
756                             MF.getName() + "'");
757   }
758   auto *MBB = MF.CreateMachineBasicBlock(BB);
759   MF.insert(MF.end(), MBB);
760   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
761   if (!WasInserted)
762     return error(Loc, Twine("redefinition of machine basic block with id #") +
763                           Twine(ID));
764   if (Alignment)
765     MBB->setAlignment(Align(Alignment));
766   if (MachineBlockAddressTaken)
767     MBB->setMachineBlockAddressTaken();
768   if (AddressTakenIRBlock)
769     MBB->setAddressTakenIRBlock(AddressTakenIRBlock);
770   MBB->setIsEHPad(IsLandingPad);
771   MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
772   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
773   if (SectionID) {
774     MBB->setSectionID(*SectionID);
775     MF.setBBSectionsType(BasicBlockSection::List);
776   }
777   if (BBID.has_value()) {
778     // BBSectionsType is set to `List` if any basic blocks has `SectionID`.
779     // Here, we set it to `Labels` if it hasn't been set above.
780     if (!MF.hasBBSections())
781       MF.setBBSectionsType(BasicBlockSection::Labels);
782     MBB->setBBID(BBID.value());
783   }
784   return false;
785 }
786 
787 bool MIParser::parseBasicBlockDefinitions(
788     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
789   lex();
790   // Skip until the first machine basic block.
791   while (Token.is(MIToken::Newline))
792     lex();
793   if (Token.isErrorOrEOF())
794     return Token.isError();
795   if (Token.isNot(MIToken::MachineBasicBlockLabel))
796     return error("expected a basic block definition before instructions");
797   unsigned BraceDepth = 0;
798   do {
799     if (parseBasicBlockDefinition(MBBSlots))
800       return true;
801     bool IsAfterNewline = false;
802     // Skip until the next machine basic block.
803     while (true) {
804       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
805           Token.isErrorOrEOF())
806         break;
807       else if (Token.is(MIToken::MachineBasicBlockLabel))
808         return error("basic block definition should be located at the start of "
809                      "the line");
810       else if (consumeIfPresent(MIToken::Newline)) {
811         IsAfterNewline = true;
812         continue;
813       }
814       IsAfterNewline = false;
815       if (Token.is(MIToken::lbrace))
816         ++BraceDepth;
817       if (Token.is(MIToken::rbrace)) {
818         if (!BraceDepth)
819           return error("extraneous closing brace ('}')");
820         --BraceDepth;
821       }
822       lex();
823     }
824     // Verify that we closed all of the '{' at the end of a file or a block.
825     if (!Token.isError() && BraceDepth)
826       return error("expected '}'"); // FIXME: Report a note that shows '{'.
827   } while (!Token.isErrorOrEOF());
828   return Token.isError();
829 }
830 
831 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
832   assert(Token.is(MIToken::kw_liveins));
833   lex();
834   if (expectAndConsume(MIToken::colon))
835     return true;
836   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
837     return false;
838   do {
839     if (Token.isNot(MIToken::NamedRegister))
840       return error("expected a named register");
841     Register Reg;
842     if (parseNamedRegister(Reg))
843       return true;
844     lex();
845     LaneBitmask Mask = LaneBitmask::getAll();
846     if (consumeIfPresent(MIToken::colon)) {
847       // Parse lane mask.
848       if (Token.isNot(MIToken::IntegerLiteral) &&
849           Token.isNot(MIToken::HexLiteral))
850         return error("expected a lane mask");
851       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
852                     "Use correct get-function for lane mask");
853       LaneBitmask::Type V;
854       if (getUint64(V))
855         return error("invalid lane mask value");
856       Mask = LaneBitmask(V);
857       lex();
858     }
859     MBB.addLiveIn(Reg, Mask);
860   } while (consumeIfPresent(MIToken::comma));
861   return false;
862 }
863 
864 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
865   assert(Token.is(MIToken::kw_successors));
866   lex();
867   if (expectAndConsume(MIToken::colon))
868     return true;
869   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
870     return false;
871   do {
872     if (Token.isNot(MIToken::MachineBasicBlock))
873       return error("expected a machine basic block reference");
874     MachineBasicBlock *SuccMBB = nullptr;
875     if (parseMBBReference(SuccMBB))
876       return true;
877     lex();
878     unsigned Weight = 0;
879     if (consumeIfPresent(MIToken::lparen)) {
880       if (Token.isNot(MIToken::IntegerLiteral) &&
881           Token.isNot(MIToken::HexLiteral))
882         return error("expected an integer literal after '('");
883       if (getUnsigned(Weight))
884         return true;
885       lex();
886       if (expectAndConsume(MIToken::rparen))
887         return true;
888     }
889     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
890   } while (consumeIfPresent(MIToken::comma));
891   MBB.normalizeSuccProbs();
892   return false;
893 }
894 
895 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
896                                MachineBasicBlock *&AddFalthroughFrom) {
897   // Skip the definition.
898   assert(Token.is(MIToken::MachineBasicBlockLabel));
899   lex();
900   if (consumeIfPresent(MIToken::lparen)) {
901     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
902       lex();
903     consumeIfPresent(MIToken::rparen);
904   }
905   consumeIfPresent(MIToken::colon);
906 
907   // Parse the liveins and successors.
908   // N.B: Multiple lists of successors and liveins are allowed and they're
909   // merged into one.
910   // Example:
911   //   liveins: $edi
912   //   liveins: $esi
913   //
914   // is equivalent to
915   //   liveins: $edi, $esi
916   bool ExplicitSuccessors = false;
917   while (true) {
918     if (Token.is(MIToken::kw_successors)) {
919       if (parseBasicBlockSuccessors(MBB))
920         return true;
921       ExplicitSuccessors = true;
922     } else if (Token.is(MIToken::kw_liveins)) {
923       if (parseBasicBlockLiveins(MBB))
924         return true;
925     } else if (consumeIfPresent(MIToken::Newline)) {
926       continue;
927     } else
928       break;
929     if (!Token.isNewlineOrEOF())
930       return error("expected line break at the end of a list");
931     lex();
932   }
933 
934   // Parse the instructions.
935   bool IsInBundle = false;
936   MachineInstr *PrevMI = nullptr;
937   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
938          !Token.is(MIToken::Eof)) {
939     if (consumeIfPresent(MIToken::Newline))
940       continue;
941     if (consumeIfPresent(MIToken::rbrace)) {
942       // The first parsing pass should verify that all closing '}' have an
943       // opening '{'.
944       assert(IsInBundle);
945       IsInBundle = false;
946       continue;
947     }
948     MachineInstr *MI = nullptr;
949     if (parse(MI))
950       return true;
951     MBB.insert(MBB.end(), MI);
952     if (IsInBundle) {
953       PrevMI->setFlag(MachineInstr::BundledSucc);
954       MI->setFlag(MachineInstr::BundledPred);
955     }
956     PrevMI = MI;
957     if (Token.is(MIToken::lbrace)) {
958       if (IsInBundle)
959         return error("nested instruction bundles are not allowed");
960       lex();
961       // This instruction is the start of the bundle.
962       MI->setFlag(MachineInstr::BundledSucc);
963       IsInBundle = true;
964       if (!Token.is(MIToken::Newline))
965         // The next instruction can be on the same line.
966         continue;
967     }
968     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
969     lex();
970   }
971 
972   // Construct successor list by searching for basic block machine operands.
973   if (!ExplicitSuccessors) {
974     SmallVector<MachineBasicBlock*,4> Successors;
975     bool IsFallthrough;
976     guessSuccessors(MBB, Successors, IsFallthrough);
977     for (MachineBasicBlock *Succ : Successors)
978       MBB.addSuccessor(Succ);
979 
980     if (IsFallthrough) {
981       AddFalthroughFrom = &MBB;
982     } else {
983       MBB.normalizeSuccProbs();
984     }
985   }
986 
987   return false;
988 }
989 
990 bool MIParser::parseBasicBlocks() {
991   lex();
992   // Skip until the first machine basic block.
993   while (Token.is(MIToken::Newline))
994     lex();
995   if (Token.isErrorOrEOF())
996     return Token.isError();
997   // The first parsing pass should have verified that this token is a MBB label
998   // in the 'parseBasicBlockDefinitions' method.
999   assert(Token.is(MIToken::MachineBasicBlockLabel));
1000   MachineBasicBlock *AddFalthroughFrom = nullptr;
1001   do {
1002     MachineBasicBlock *MBB = nullptr;
1003     if (parseMBBReference(MBB))
1004       return true;
1005     if (AddFalthroughFrom) {
1006       if (!AddFalthroughFrom->isSuccessor(MBB))
1007         AddFalthroughFrom->addSuccessor(MBB);
1008       AddFalthroughFrom->normalizeSuccProbs();
1009       AddFalthroughFrom = nullptr;
1010     }
1011     if (parseBasicBlock(*MBB, AddFalthroughFrom))
1012       return true;
1013     // The method 'parseBasicBlock' should parse the whole block until the next
1014     // block or the end of file.
1015     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
1016   } while (Token.isNot(MIToken::Eof));
1017   return false;
1018 }
1019 
1020 bool MIParser::parse(MachineInstr *&MI) {
1021   // Parse any register operands before '='
1022   MachineOperand MO = MachineOperand::CreateImm(0);
1023   SmallVector<ParsedMachineOperand, 8> Operands;
1024   while (Token.isRegister() || Token.isRegisterFlag()) {
1025     auto Loc = Token.location();
1026     std::optional<unsigned> TiedDefIdx;
1027     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
1028       return true;
1029     Operands.push_back(
1030         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1031     if (Token.isNot(MIToken::comma))
1032       break;
1033     lex();
1034   }
1035   if (!Operands.empty() && expectAndConsume(MIToken::equal))
1036     return true;
1037 
1038   unsigned OpCode, Flags = 0;
1039   if (Token.isError() || parseInstruction(OpCode, Flags))
1040     return true;
1041 
1042   // Parse the remaining machine operands.
1043   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1044          Token.isNot(MIToken::kw_post_instr_symbol) &&
1045          Token.isNot(MIToken::kw_heap_alloc_marker) &&
1046          Token.isNot(MIToken::kw_pcsections) &&
1047          Token.isNot(MIToken::kw_cfi_type) &&
1048          Token.isNot(MIToken::kw_debug_location) &&
1049          Token.isNot(MIToken::kw_debug_instr_number) &&
1050          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1051     auto Loc = Token.location();
1052     std::optional<unsigned> TiedDefIdx;
1053     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1054       return true;
1055     Operands.push_back(
1056         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1057     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1058         Token.is(MIToken::lbrace))
1059       break;
1060     if (Token.isNot(MIToken::comma))
1061       return error("expected ',' before the next machine operand");
1062     lex();
1063   }
1064 
1065   MCSymbol *PreInstrSymbol = nullptr;
1066   if (Token.is(MIToken::kw_pre_instr_symbol))
1067     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1068       return true;
1069   MCSymbol *PostInstrSymbol = nullptr;
1070   if (Token.is(MIToken::kw_post_instr_symbol))
1071     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1072       return true;
1073   MDNode *HeapAllocMarker = nullptr;
1074   if (Token.is(MIToken::kw_heap_alloc_marker))
1075     if (parseHeapAllocMarker(HeapAllocMarker))
1076       return true;
1077   MDNode *PCSections = nullptr;
1078   if (Token.is(MIToken::kw_pcsections))
1079     if (parsePCSections(PCSections))
1080       return true;
1081 
1082   unsigned CFIType = 0;
1083   if (Token.is(MIToken::kw_cfi_type)) {
1084     lex();
1085     if (Token.isNot(MIToken::IntegerLiteral))
1086       return error("expected an integer literal after 'cfi-type'");
1087     // getUnsigned is sufficient for 32-bit integers.
1088     if (getUnsigned(CFIType))
1089       return true;
1090     lex();
1091     // Lex past trailing comma if present.
1092     if (Token.is(MIToken::comma))
1093       lex();
1094   }
1095 
1096   unsigned InstrNum = 0;
1097   if (Token.is(MIToken::kw_debug_instr_number)) {
1098     lex();
1099     if (Token.isNot(MIToken::IntegerLiteral))
1100       return error("expected an integer literal after 'debug-instr-number'");
1101     if (getUnsigned(InstrNum))
1102       return true;
1103     lex();
1104     // Lex past trailing comma if present.
1105     if (Token.is(MIToken::comma))
1106       lex();
1107   }
1108 
1109   DebugLoc DebugLocation;
1110   if (Token.is(MIToken::kw_debug_location)) {
1111     lex();
1112     MDNode *Node = nullptr;
1113     if (Token.is(MIToken::exclaim)) {
1114       if (parseMDNode(Node))
1115         return true;
1116     } else if (Token.is(MIToken::md_dilocation)) {
1117       if (parseDILocation(Node))
1118         return true;
1119     } else
1120       return error("expected a metadata node after 'debug-location'");
1121     if (!isa<DILocation>(Node))
1122       return error("referenced metadata is not a DILocation");
1123     DebugLocation = DebugLoc(Node);
1124   }
1125 
1126   // Parse the machine memory operands.
1127   SmallVector<MachineMemOperand *, 2> MemOperands;
1128   if (Token.is(MIToken::coloncolon)) {
1129     lex();
1130     while (!Token.isNewlineOrEOF()) {
1131       MachineMemOperand *MemOp = nullptr;
1132       if (parseMachineMemoryOperand(MemOp))
1133         return true;
1134       MemOperands.push_back(MemOp);
1135       if (Token.isNewlineOrEOF())
1136         break;
1137       if (Token.isNot(MIToken::comma))
1138         return error("expected ',' before the next machine memory operand");
1139       lex();
1140     }
1141   }
1142 
1143   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1144   if (!MCID.isVariadic()) {
1145     // FIXME: Move the implicit operand verification to the machine verifier.
1146     if (verifyImplicitOperands(Operands, MCID))
1147       return true;
1148   }
1149 
1150   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1151   MI->setFlags(Flags);
1152 
1153   unsigned NumExplicitOps = 0;
1154   for (const auto &Operand : Operands) {
1155     bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit();
1156     if (!IsImplicitOp) {
1157       if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() &&
1158           !Operand.Operand.isValidExcessOperand())
1159         return error(Operand.Begin, "too many operands for instruction");
1160 
1161       ++NumExplicitOps;
1162     }
1163 
1164     MI->addOperand(MF, Operand.Operand);
1165   }
1166 
1167   if (assignRegisterTies(*MI, Operands))
1168     return true;
1169   if (PreInstrSymbol)
1170     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1171   if (PostInstrSymbol)
1172     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1173   if (HeapAllocMarker)
1174     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1175   if (PCSections)
1176     MI->setPCSections(MF, PCSections);
1177   if (CFIType)
1178     MI->setCFIType(MF, CFIType);
1179   if (!MemOperands.empty())
1180     MI->setMemRefs(MF, MemOperands);
1181   if (InstrNum)
1182     MI->setDebugInstrNum(InstrNum);
1183   return false;
1184 }
1185 
1186 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1187   lex();
1188   if (Token.isNot(MIToken::MachineBasicBlock))
1189     return error("expected a machine basic block reference");
1190   if (parseMBBReference(MBB))
1191     return true;
1192   lex();
1193   if (Token.isNot(MIToken::Eof))
1194     return error(
1195         "expected end of string after the machine basic block reference");
1196   return false;
1197 }
1198 
1199 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1200   lex();
1201   if (Token.isNot(MIToken::NamedRegister))
1202     return error("expected a named register");
1203   if (parseNamedRegister(Reg))
1204     return true;
1205   lex();
1206   if (Token.isNot(MIToken::Eof))
1207     return error("expected end of string after the register reference");
1208   return false;
1209 }
1210 
1211 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1212   lex();
1213   if (Token.isNot(MIToken::VirtualRegister))
1214     return error("expected a virtual register");
1215   if (parseVirtualRegister(Info))
1216     return true;
1217   lex();
1218   if (Token.isNot(MIToken::Eof))
1219     return error("expected end of string after the register reference");
1220   return false;
1221 }
1222 
1223 bool MIParser::parseStandaloneRegister(Register &Reg) {
1224   lex();
1225   if (Token.isNot(MIToken::NamedRegister) &&
1226       Token.isNot(MIToken::VirtualRegister))
1227     return error("expected either a named or virtual register");
1228 
1229   VRegInfo *Info;
1230   if (parseRegister(Reg, Info))
1231     return true;
1232 
1233   lex();
1234   if (Token.isNot(MIToken::Eof))
1235     return error("expected end of string after the register reference");
1236   return false;
1237 }
1238 
1239 bool MIParser::parseStandaloneStackObject(int &FI) {
1240   lex();
1241   if (Token.isNot(MIToken::StackObject))
1242     return error("expected a stack object");
1243   if (parseStackFrameIndex(FI))
1244     return true;
1245   if (Token.isNot(MIToken::Eof))
1246     return error("expected end of string after the stack object reference");
1247   return false;
1248 }
1249 
1250 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1251   lex();
1252   if (Token.is(MIToken::exclaim)) {
1253     if (parseMDNode(Node))
1254       return true;
1255   } else if (Token.is(MIToken::md_diexpr)) {
1256     if (parseDIExpression(Node))
1257       return true;
1258   } else if (Token.is(MIToken::md_dilocation)) {
1259     if (parseDILocation(Node))
1260       return true;
1261   } else
1262     return error("expected a metadata node");
1263   if (Token.isNot(MIToken::Eof))
1264     return error("expected end of string after the metadata node");
1265   return false;
1266 }
1267 
1268 bool MIParser::parseMachineMetadata() {
1269   lex();
1270   if (Token.isNot(MIToken::exclaim))
1271     return error("expected a metadata node");
1272 
1273   lex();
1274   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1275     return error("expected metadata id after '!'");
1276   unsigned ID = 0;
1277   if (getUnsigned(ID))
1278     return true;
1279   lex();
1280   if (expectAndConsume(MIToken::equal))
1281     return true;
1282   bool IsDistinct = Token.is(MIToken::kw_distinct);
1283   if (IsDistinct)
1284     lex();
1285   if (Token.isNot(MIToken::exclaim))
1286     return error("expected a metadata node");
1287   lex();
1288 
1289   MDNode *MD;
1290   if (parseMDTuple(MD, IsDistinct))
1291     return true;
1292 
1293   auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1294   if (FI != PFS.MachineForwardRefMDNodes.end()) {
1295     FI->second.first->replaceAllUsesWith(MD);
1296     PFS.MachineForwardRefMDNodes.erase(FI);
1297 
1298     assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1299   } else {
1300     if (PFS.MachineMetadataNodes.count(ID))
1301       return error("Metadata id is already used");
1302     PFS.MachineMetadataNodes[ID].reset(MD);
1303   }
1304 
1305   return false;
1306 }
1307 
1308 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1309   SmallVector<Metadata *, 16> Elts;
1310   if (parseMDNodeVector(Elts))
1311     return true;
1312   MD = (IsDistinct ? MDTuple::getDistinct
1313                    : MDTuple::get)(MF.getFunction().getContext(), Elts);
1314   return false;
1315 }
1316 
1317 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1318   if (Token.isNot(MIToken::lbrace))
1319     return error("expected '{' here");
1320   lex();
1321 
1322   if (Token.is(MIToken::rbrace)) {
1323     lex();
1324     return false;
1325   }
1326 
1327   do {
1328     Metadata *MD;
1329     if (parseMetadata(MD))
1330       return true;
1331 
1332     Elts.push_back(MD);
1333 
1334     if (Token.isNot(MIToken::comma))
1335       break;
1336     lex();
1337   } while (true);
1338 
1339   if (Token.isNot(MIToken::rbrace))
1340     return error("expected end of metadata node");
1341   lex();
1342 
1343   return false;
1344 }
1345 
1346 // ::= !42
1347 // ::= !"string"
1348 bool MIParser::parseMetadata(Metadata *&MD) {
1349   if (Token.isNot(MIToken::exclaim))
1350     return error("expected '!' here");
1351   lex();
1352 
1353   if (Token.is(MIToken::StringConstant)) {
1354     std::string Str;
1355     if (parseStringConstant(Str))
1356       return true;
1357     MD = MDString::get(MF.getFunction().getContext(), Str);
1358     return false;
1359   }
1360 
1361   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1362     return error("expected metadata id after '!'");
1363 
1364   SMLoc Loc = mapSMLoc(Token.location());
1365 
1366   unsigned ID = 0;
1367   if (getUnsigned(ID))
1368     return true;
1369   lex();
1370 
1371   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1372   if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1373     MD = NodeInfo->second.get();
1374     return false;
1375   }
1376   // Check machine metadata.
1377   NodeInfo = PFS.MachineMetadataNodes.find(ID);
1378   if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1379     MD = NodeInfo->second.get();
1380     return false;
1381   }
1382   // Forward reference.
1383   auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1384   FwdRef = std::make_pair(
1385       MDTuple::getTemporary(MF.getFunction().getContext(), std::nullopt), Loc);
1386   PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1387   MD = FwdRef.first.get();
1388 
1389   return false;
1390 }
1391 
1392 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1393   assert(MO.isImplicit());
1394   return MO.isDef() ? "implicit-def" : "implicit";
1395 }
1396 
1397 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1398                                    Register Reg) {
1399   assert(Reg.isPhysical() && "expected phys reg");
1400   return StringRef(TRI->getName(Reg)).lower();
1401 }
1402 
1403 /// Return true if the parsed machine operands contain a given machine operand.
1404 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1405                                 ArrayRef<ParsedMachineOperand> Operands) {
1406   for (const auto &I : Operands) {
1407     if (ImplicitOperand.isIdenticalTo(I.Operand))
1408       return true;
1409   }
1410   return false;
1411 }
1412 
1413 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1414                                       const MCInstrDesc &MCID) {
1415   if (MCID.isCall())
1416     // We can't verify call instructions as they can contain arbitrary implicit
1417     // register and register mask operands.
1418     return false;
1419 
1420   // Gather all the expected implicit operands.
1421   SmallVector<MachineOperand, 4> ImplicitOperands;
1422   for (MCPhysReg ImpDef : MCID.implicit_defs())
1423     ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true));
1424   for (MCPhysReg ImpUse : MCID.implicit_uses())
1425     ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true));
1426 
1427   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1428   assert(TRI && "Expected target register info");
1429   for (const auto &I : ImplicitOperands) {
1430     if (isImplicitOperandIn(I, Operands))
1431       continue;
1432     return error(Operands.empty() ? Token.location() : Operands.back().End,
1433                  Twine("missing implicit register operand '") +
1434                      printImplicitRegisterFlag(I) + " $" +
1435                      getRegisterName(TRI, I.getReg()) + "'");
1436   }
1437   return false;
1438 }
1439 
1440 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1441   // Allow frame and fast math flags for OPCODE
1442   while (Token.is(MIToken::kw_frame_setup) ||
1443          Token.is(MIToken::kw_frame_destroy) ||
1444          Token.is(MIToken::kw_nnan) ||
1445          Token.is(MIToken::kw_ninf) ||
1446          Token.is(MIToken::kw_nsz) ||
1447          Token.is(MIToken::kw_arcp) ||
1448          Token.is(MIToken::kw_contract) ||
1449          Token.is(MIToken::kw_afn) ||
1450          Token.is(MIToken::kw_reassoc) ||
1451          Token.is(MIToken::kw_nuw) ||
1452          Token.is(MIToken::kw_nsw) ||
1453          Token.is(MIToken::kw_exact) ||
1454          Token.is(MIToken::kw_nofpexcept)) {
1455     // Mine frame and fast math flags
1456     if (Token.is(MIToken::kw_frame_setup))
1457       Flags |= MachineInstr::FrameSetup;
1458     if (Token.is(MIToken::kw_frame_destroy))
1459       Flags |= MachineInstr::FrameDestroy;
1460     if (Token.is(MIToken::kw_nnan))
1461       Flags |= MachineInstr::FmNoNans;
1462     if (Token.is(MIToken::kw_ninf))
1463       Flags |= MachineInstr::FmNoInfs;
1464     if (Token.is(MIToken::kw_nsz))
1465       Flags |= MachineInstr::FmNsz;
1466     if (Token.is(MIToken::kw_arcp))
1467       Flags |= MachineInstr::FmArcp;
1468     if (Token.is(MIToken::kw_contract))
1469       Flags |= MachineInstr::FmContract;
1470     if (Token.is(MIToken::kw_afn))
1471       Flags |= MachineInstr::FmAfn;
1472     if (Token.is(MIToken::kw_reassoc))
1473       Flags |= MachineInstr::FmReassoc;
1474     if (Token.is(MIToken::kw_nuw))
1475       Flags |= MachineInstr::NoUWrap;
1476     if (Token.is(MIToken::kw_nsw))
1477       Flags |= MachineInstr::NoSWrap;
1478     if (Token.is(MIToken::kw_exact))
1479       Flags |= MachineInstr::IsExact;
1480     if (Token.is(MIToken::kw_nofpexcept))
1481       Flags |= MachineInstr::NoFPExcept;
1482 
1483     lex();
1484   }
1485   if (Token.isNot(MIToken::Identifier))
1486     return error("expected a machine instruction");
1487   StringRef InstrName = Token.stringValue();
1488   if (PFS.Target.parseInstrName(InstrName, OpCode))
1489     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1490   lex();
1491   return false;
1492 }
1493 
1494 bool MIParser::parseNamedRegister(Register &Reg) {
1495   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1496   StringRef Name = Token.stringValue();
1497   if (PFS.Target.getRegisterByName(Name, Reg))
1498     return error(Twine("unknown register name '") + Name + "'");
1499   return false;
1500 }
1501 
1502 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1503   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1504   StringRef Name = Token.stringValue();
1505   // TODO: Check that the VReg name is not the same as a physical register name.
1506   //       If it is, then print a warning (when warnings are implemented).
1507   Info = &PFS.getVRegInfoNamed(Name);
1508   return false;
1509 }
1510 
1511 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1512   if (Token.is(MIToken::NamedVirtualRegister))
1513     return parseNamedVirtualRegister(Info);
1514   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1515   unsigned ID;
1516   if (getUnsigned(ID))
1517     return true;
1518   Info = &PFS.getVRegInfo(ID);
1519   return false;
1520 }
1521 
1522 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1523   switch (Token.kind()) {
1524   case MIToken::underscore:
1525     Reg = 0;
1526     return false;
1527   case MIToken::NamedRegister:
1528     return parseNamedRegister(Reg);
1529   case MIToken::NamedVirtualRegister:
1530   case MIToken::VirtualRegister:
1531     if (parseVirtualRegister(Info))
1532       return true;
1533     Reg = Info->VReg;
1534     return false;
1535   // TODO: Parse other register kinds.
1536   default:
1537     llvm_unreachable("The current token should be a register");
1538   }
1539 }
1540 
1541 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1542   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1543     return error("expected '_', register class, or register bank name");
1544   StringRef::iterator Loc = Token.location();
1545   StringRef Name = Token.stringValue();
1546 
1547   // Was it a register class?
1548   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1549   if (RC) {
1550     lex();
1551 
1552     switch (RegInfo.Kind) {
1553     case VRegInfo::UNKNOWN:
1554     case VRegInfo::NORMAL:
1555       RegInfo.Kind = VRegInfo::NORMAL;
1556       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1557         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1558         return error(Loc, Twine("conflicting register classes, previously: ") +
1559                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1560       }
1561       RegInfo.D.RC = RC;
1562       RegInfo.Explicit = true;
1563       return false;
1564 
1565     case VRegInfo::GENERIC:
1566     case VRegInfo::REGBANK:
1567       return error(Loc, "register class specification on generic register");
1568     }
1569     llvm_unreachable("Unexpected register kind");
1570   }
1571 
1572   // Should be a register bank or a generic register.
1573   const RegisterBank *RegBank = nullptr;
1574   if (Name != "_") {
1575     RegBank = PFS.Target.getRegBank(Name);
1576     if (!RegBank)
1577       return error(Loc, "expected '_', register class, or register bank name");
1578   }
1579 
1580   lex();
1581 
1582   switch (RegInfo.Kind) {
1583   case VRegInfo::UNKNOWN:
1584   case VRegInfo::GENERIC:
1585   case VRegInfo::REGBANK:
1586     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1587     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1588       return error(Loc, "conflicting generic register banks");
1589     RegInfo.D.RegBank = RegBank;
1590     RegInfo.Explicit = true;
1591     return false;
1592 
1593   case VRegInfo::NORMAL:
1594     return error(Loc, "register bank specification on normal register");
1595   }
1596   llvm_unreachable("Unexpected register kind");
1597 }
1598 
1599 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1600   const unsigned OldFlags = Flags;
1601   switch (Token.kind()) {
1602   case MIToken::kw_implicit:
1603     Flags |= RegState::Implicit;
1604     break;
1605   case MIToken::kw_implicit_define:
1606     Flags |= RegState::ImplicitDefine;
1607     break;
1608   case MIToken::kw_def:
1609     Flags |= RegState::Define;
1610     break;
1611   case MIToken::kw_dead:
1612     Flags |= RegState::Dead;
1613     break;
1614   case MIToken::kw_killed:
1615     Flags |= RegState::Kill;
1616     break;
1617   case MIToken::kw_undef:
1618     Flags |= RegState::Undef;
1619     break;
1620   case MIToken::kw_internal:
1621     Flags |= RegState::InternalRead;
1622     break;
1623   case MIToken::kw_early_clobber:
1624     Flags |= RegState::EarlyClobber;
1625     break;
1626   case MIToken::kw_debug_use:
1627     Flags |= RegState::Debug;
1628     break;
1629   case MIToken::kw_renamable:
1630     Flags |= RegState::Renamable;
1631     break;
1632   default:
1633     llvm_unreachable("The current token should be a register flag");
1634   }
1635   if (OldFlags == Flags)
1636     // We know that the same flag is specified more than once when the flags
1637     // weren't modified.
1638     return error("duplicate '" + Token.stringValue() + "' register flag");
1639   lex();
1640   return false;
1641 }
1642 
1643 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1644   assert(Token.is(MIToken::dot));
1645   lex();
1646   if (Token.isNot(MIToken::Identifier))
1647     return error("expected a subregister index after '.'");
1648   auto Name = Token.stringValue();
1649   SubReg = PFS.Target.getSubRegIndex(Name);
1650   if (!SubReg)
1651     return error(Twine("use of unknown subregister index '") + Name + "'");
1652   lex();
1653   return false;
1654 }
1655 
1656 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1657   if (!consumeIfPresent(MIToken::kw_tied_def))
1658     return true;
1659   if (Token.isNot(MIToken::IntegerLiteral))
1660     return error("expected an integer literal after 'tied-def'");
1661   if (getUnsigned(TiedDefIdx))
1662     return true;
1663   lex();
1664   if (expectAndConsume(MIToken::rparen))
1665     return true;
1666   return false;
1667 }
1668 
1669 bool MIParser::assignRegisterTies(MachineInstr &MI,
1670                                   ArrayRef<ParsedMachineOperand> Operands) {
1671   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1672   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1673     if (!Operands[I].TiedDefIdx)
1674       continue;
1675     // The parser ensures that this operand is a register use, so we just have
1676     // to check the tied-def operand.
1677     unsigned DefIdx = *Operands[I].TiedDefIdx;
1678     if (DefIdx >= E)
1679       return error(Operands[I].Begin,
1680                    Twine("use of invalid tied-def operand index '" +
1681                          Twine(DefIdx) + "'; instruction has only ") +
1682                        Twine(E) + " operands");
1683     const auto &DefOperand = Operands[DefIdx].Operand;
1684     if (!DefOperand.isReg() || !DefOperand.isDef())
1685       // FIXME: add note with the def operand.
1686       return error(Operands[I].Begin,
1687                    Twine("use of invalid tied-def operand index '") +
1688                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1689                        " isn't a defined register");
1690     // Check that the tied-def operand wasn't tied elsewhere.
1691     for (const auto &TiedPair : TiedRegisterPairs) {
1692       if (TiedPair.first == DefIdx)
1693         return error(Operands[I].Begin,
1694                      Twine("the tied-def operand #") + Twine(DefIdx) +
1695                          " is already tied with another register operand");
1696     }
1697     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1698   }
1699   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1700   // indices must be less than tied max.
1701   for (const auto &TiedPair : TiedRegisterPairs)
1702     MI.tieOperands(TiedPair.first, TiedPair.second);
1703   return false;
1704 }
1705 
1706 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1707                                     std::optional<unsigned> &TiedDefIdx,
1708                                     bool IsDef) {
1709   unsigned Flags = IsDef ? RegState::Define : 0;
1710   while (Token.isRegisterFlag()) {
1711     if (parseRegisterFlag(Flags))
1712       return true;
1713   }
1714   if (!Token.isRegister())
1715     return error("expected a register after register flags");
1716   Register Reg;
1717   VRegInfo *RegInfo;
1718   if (parseRegister(Reg, RegInfo))
1719     return true;
1720   lex();
1721   unsigned SubReg = 0;
1722   if (Token.is(MIToken::dot)) {
1723     if (parseSubRegisterIndex(SubReg))
1724       return true;
1725     if (!Reg.isVirtual())
1726       return error("subregister index expects a virtual register");
1727   }
1728   if (Token.is(MIToken::colon)) {
1729     if (!Reg.isVirtual())
1730       return error("register class specification expects a virtual register");
1731     lex();
1732     if (parseRegisterClassOrBank(*RegInfo))
1733         return true;
1734   }
1735   MachineRegisterInfo &MRI = MF.getRegInfo();
1736   if ((Flags & RegState::Define) == 0) {
1737     if (consumeIfPresent(MIToken::lparen)) {
1738       unsigned Idx;
1739       if (!parseRegisterTiedDefIndex(Idx))
1740         TiedDefIdx = Idx;
1741       else {
1742         // Try a redundant low-level type.
1743         LLT Ty;
1744         if (parseLowLevelType(Token.location(), Ty))
1745           return error("expected tied-def or low-level type after '('");
1746 
1747         if (expectAndConsume(MIToken::rparen))
1748           return true;
1749 
1750         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1751           return error("inconsistent type for generic virtual register");
1752 
1753         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1754         MRI.setType(Reg, Ty);
1755       }
1756     }
1757   } else if (consumeIfPresent(MIToken::lparen)) {
1758     // Virtual registers may have a tpe with GlobalISel.
1759     if (!Reg.isVirtual())
1760       return error("unexpected type on physical register");
1761 
1762     LLT Ty;
1763     if (parseLowLevelType(Token.location(), Ty))
1764       return true;
1765 
1766     if (expectAndConsume(MIToken::rparen))
1767       return true;
1768 
1769     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1770       return error("inconsistent type for generic virtual register");
1771 
1772     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1773     MRI.setType(Reg, Ty);
1774   } else if (Reg.isVirtual()) {
1775     // Generic virtual registers must have a type.
1776     // If we end up here this means the type hasn't been specified and
1777     // this is bad!
1778     if (RegInfo->Kind == VRegInfo::GENERIC ||
1779         RegInfo->Kind == VRegInfo::REGBANK)
1780       return error("generic virtual registers must have a type");
1781   }
1782 
1783   if (Flags & RegState::Define) {
1784     if (Flags & RegState::Kill)
1785       return error("cannot have a killed def operand");
1786   } else {
1787     if (Flags & RegState::Dead)
1788       return error("cannot have a dead use operand");
1789   }
1790 
1791   Dest = MachineOperand::CreateReg(
1792       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1793       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1794       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1795       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1796 
1797   return false;
1798 }
1799 
1800 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1801   assert(Token.is(MIToken::IntegerLiteral));
1802   const APSInt &Int = Token.integerValue();
1803   if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value())
1804     Dest = MachineOperand::CreateImm(*SImm);
1805   else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value())
1806     Dest = MachineOperand::CreateImm(*UImm);
1807   else
1808     return error("integer literal is too large to be an immediate operand");
1809   lex();
1810   return false;
1811 }
1812 
1813 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1814                                       const unsigned OpIdx,
1815                                       MachineOperand &Dest,
1816                                       const MIRFormatter &MF) {
1817   assert(Token.is(MIToken::dot));
1818   auto Loc = Token.location(); // record start position
1819   size_t Len = 1;              // for "."
1820   lex();
1821 
1822   // Handle the case that mnemonic starts with number.
1823   if (Token.is(MIToken::IntegerLiteral)) {
1824     Len += Token.range().size();
1825     lex();
1826   }
1827 
1828   StringRef Src;
1829   if (Token.is(MIToken::comma))
1830     Src = StringRef(Loc, Len);
1831   else {
1832     assert(Token.is(MIToken::Identifier));
1833     Src = StringRef(Loc, Len + Token.stringValue().size());
1834   }
1835   int64_t Val;
1836   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1837                           [this](StringRef::iterator Loc, const Twine &Msg)
1838                               -> bool { return error(Loc, Msg); }))
1839     return true;
1840 
1841   Dest = MachineOperand::CreateImm(Val);
1842   if (!Token.is(MIToken::comma))
1843     lex();
1844   return false;
1845 }
1846 
1847 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1848                             PerFunctionMIParsingState &PFS, const Constant *&C,
1849                             ErrorCallbackType ErrCB) {
1850   auto Source = StringValue.str(); // The source has to be null terminated.
1851   SMDiagnostic Err;
1852   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1853                          &PFS.IRSlots);
1854   if (!C)
1855     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1856   return false;
1857 }
1858 
1859 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1860                                const Constant *&C) {
1861   return ::parseIRConstant(
1862       Loc, StringValue, PFS, C,
1863       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1864         return error(Loc, Msg);
1865       });
1866 }
1867 
1868 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1869   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1870     return true;
1871   lex();
1872   return false;
1873 }
1874 
1875 // See LLT implementation for bit size limits.
1876 static bool verifyScalarSize(uint64_t Size) {
1877   return Size != 0 && isUInt<16>(Size);
1878 }
1879 
1880 static bool verifyVectorElementCount(uint64_t NumElts) {
1881   return NumElts != 0 && isUInt<16>(NumElts);
1882 }
1883 
1884 static bool verifyAddrSpace(uint64_t AddrSpace) {
1885   return isUInt<24>(AddrSpace);
1886 }
1887 
1888 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1889   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1890     StringRef SizeStr = Token.range().drop_front();
1891     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1892       return error("expected integers after 's'/'p' type character");
1893   }
1894 
1895   if (Token.range().front() == 's') {
1896     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1897     if (!verifyScalarSize(ScalarSize))
1898       return error("invalid size for scalar type");
1899 
1900     Ty = LLT::scalar(ScalarSize);
1901     lex();
1902     return false;
1903   } else if (Token.range().front() == 'p') {
1904     const DataLayout &DL = MF.getDataLayout();
1905     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1906     if (!verifyAddrSpace(AS))
1907       return error("invalid address space number");
1908 
1909     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1910     lex();
1911     return false;
1912   }
1913 
1914   // Now we're looking for a vector.
1915   if (Token.isNot(MIToken::less))
1916     return error(Loc,
1917                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1918   lex();
1919 
1920   if (Token.isNot(MIToken::IntegerLiteral))
1921     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1922   uint64_t NumElements = Token.integerValue().getZExtValue();
1923   if (!verifyVectorElementCount(NumElements))
1924     return error("invalid number of vector elements");
1925 
1926   lex();
1927 
1928   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1929     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1930   lex();
1931 
1932   if (Token.range().front() != 's' && Token.range().front() != 'p')
1933     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1934   StringRef SizeStr = Token.range().drop_front();
1935   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1936     return error("expected integers after 's'/'p' type character");
1937 
1938   if (Token.range().front() == 's') {
1939     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1940     if (!verifyScalarSize(ScalarSize))
1941       return error("invalid size for scalar type");
1942     Ty = LLT::scalar(ScalarSize);
1943   } else if (Token.range().front() == 'p') {
1944     const DataLayout &DL = MF.getDataLayout();
1945     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1946     if (!verifyAddrSpace(AS))
1947       return error("invalid address space number");
1948 
1949     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1950   } else
1951     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1952   lex();
1953 
1954   if (Token.isNot(MIToken::greater))
1955     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1956   lex();
1957 
1958   Ty = LLT::fixed_vector(NumElements, Ty);
1959   return false;
1960 }
1961 
1962 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1963   assert(Token.is(MIToken::Identifier));
1964   StringRef TypeStr = Token.range();
1965   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1966       TypeStr.front() != 'p')
1967     return error(
1968         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1969   StringRef SizeStr = Token.range().drop_front();
1970   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1971     return error("expected integers after 'i'/'s'/'p' type character");
1972 
1973   auto Loc = Token.location();
1974   lex();
1975   if (Token.isNot(MIToken::IntegerLiteral)) {
1976     if (Token.isNot(MIToken::Identifier) ||
1977         !(Token.range() == "true" || Token.range() == "false"))
1978       return error("expected an integer literal");
1979   }
1980   const Constant *C = nullptr;
1981   if (parseIRConstant(Loc, C))
1982     return true;
1983   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1984   return false;
1985 }
1986 
1987 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1988   auto Loc = Token.location();
1989   lex();
1990   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1991       Token.isNot(MIToken::HexLiteral))
1992     return error("expected a floating point literal");
1993   const Constant *C = nullptr;
1994   if (parseIRConstant(Loc, C))
1995     return true;
1996   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1997   return false;
1998 }
1999 
2000 static bool getHexUint(const MIToken &Token, APInt &Result) {
2001   assert(Token.is(MIToken::HexLiteral));
2002   StringRef S = Token.range();
2003   assert(S[0] == '0' && tolower(S[1]) == 'x');
2004   // This could be a floating point literal with a special prefix.
2005   if (!isxdigit(S[2]))
2006     return true;
2007   StringRef V = S.substr(2);
2008   APInt A(V.size()*4, V, 16);
2009 
2010   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2011   // sure it isn't the case before constructing result.
2012   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2013   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2014   return false;
2015 }
2016 
2017 static bool getUnsigned(const MIToken &Token, unsigned &Result,
2018                         ErrorCallbackType ErrCB) {
2019   if (Token.hasIntegerValue()) {
2020     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
2021     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
2022     if (Val64 == Limit)
2023       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2024     Result = Val64;
2025     return false;
2026   }
2027   if (Token.is(MIToken::HexLiteral)) {
2028     APInt A;
2029     if (getHexUint(Token, A))
2030       return true;
2031     if (A.getBitWidth() > 32)
2032       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2033     Result = A.getZExtValue();
2034     return false;
2035   }
2036   return true;
2037 }
2038 
2039 bool MIParser::getUnsigned(unsigned &Result) {
2040   return ::getUnsigned(
2041       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2042         return error(Loc, Msg);
2043       });
2044 }
2045 
2046 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
2047   assert(Token.is(MIToken::MachineBasicBlock) ||
2048          Token.is(MIToken::MachineBasicBlockLabel));
2049   unsigned Number;
2050   if (getUnsigned(Number))
2051     return true;
2052   auto MBBInfo = PFS.MBBSlots.find(Number);
2053   if (MBBInfo == PFS.MBBSlots.end())
2054     return error(Twine("use of undefined machine basic block #") +
2055                  Twine(Number));
2056   MBB = MBBInfo->second;
2057   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
2058   // we drop the <irname> from the bb.<id>.<irname> format.
2059   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
2060     return error(Twine("the name of machine basic block #") + Twine(Number) +
2061                  " isn't '" + Token.stringValue() + "'");
2062   return false;
2063 }
2064 
2065 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2066   MachineBasicBlock *MBB;
2067   if (parseMBBReference(MBB))
2068     return true;
2069   Dest = MachineOperand::CreateMBB(MBB);
2070   lex();
2071   return false;
2072 }
2073 
2074 bool MIParser::parseStackFrameIndex(int &FI) {
2075   assert(Token.is(MIToken::StackObject));
2076   unsigned ID;
2077   if (getUnsigned(ID))
2078     return true;
2079   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2080   if (ObjectInfo == PFS.StackObjectSlots.end())
2081     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2082                  "'");
2083   StringRef Name;
2084   if (const auto *Alloca =
2085           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2086     Name = Alloca->getName();
2087   if (!Token.stringValue().empty() && Token.stringValue() != Name)
2088     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2089                  "' isn't '" + Token.stringValue() + "'");
2090   lex();
2091   FI = ObjectInfo->second;
2092   return false;
2093 }
2094 
2095 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2096   int FI;
2097   if (parseStackFrameIndex(FI))
2098     return true;
2099   Dest = MachineOperand::CreateFI(FI);
2100   return false;
2101 }
2102 
2103 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2104   assert(Token.is(MIToken::FixedStackObject));
2105   unsigned ID;
2106   if (getUnsigned(ID))
2107     return true;
2108   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2109   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2110     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2111                  Twine(ID) + "'");
2112   lex();
2113   FI = ObjectInfo->second;
2114   return false;
2115 }
2116 
2117 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2118   int FI;
2119   if (parseFixedStackFrameIndex(FI))
2120     return true;
2121   Dest = MachineOperand::CreateFI(FI);
2122   return false;
2123 }
2124 
2125 static bool parseGlobalValue(const MIToken &Token,
2126                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2127                              ErrorCallbackType ErrCB) {
2128   switch (Token.kind()) {
2129   case MIToken::NamedGlobalValue: {
2130     const Module *M = PFS.MF.getFunction().getParent();
2131     GV = M->getNamedValue(Token.stringValue());
2132     if (!GV)
2133       return ErrCB(Token.location(), Twine("use of undefined global value '") +
2134                                          Token.range() + "'");
2135     break;
2136   }
2137   case MIToken::GlobalValue: {
2138     unsigned GVIdx;
2139     if (getUnsigned(Token, GVIdx, ErrCB))
2140       return true;
2141     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2142       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2143                                          Twine(GVIdx) + "'");
2144     GV = PFS.IRSlots.GlobalValues[GVIdx];
2145     break;
2146   }
2147   default:
2148     llvm_unreachable("The current token should be a global value");
2149   }
2150   return false;
2151 }
2152 
2153 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2154   return ::parseGlobalValue(
2155       Token, PFS, GV,
2156       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2157         return error(Loc, Msg);
2158       });
2159 }
2160 
2161 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2162   GlobalValue *GV = nullptr;
2163   if (parseGlobalValue(GV))
2164     return true;
2165   lex();
2166   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2167   if (parseOperandsOffset(Dest))
2168     return true;
2169   return false;
2170 }
2171 
2172 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2173   assert(Token.is(MIToken::ConstantPoolItem));
2174   unsigned ID;
2175   if (getUnsigned(ID))
2176     return true;
2177   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2178   if (ConstantInfo == PFS.ConstantPoolSlots.end())
2179     return error("use of undefined constant '%const." + Twine(ID) + "'");
2180   lex();
2181   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2182   if (parseOperandsOffset(Dest))
2183     return true;
2184   return false;
2185 }
2186 
2187 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2188   assert(Token.is(MIToken::JumpTableIndex));
2189   unsigned ID;
2190   if (getUnsigned(ID))
2191     return true;
2192   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2193   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2194     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2195   lex();
2196   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2197   return false;
2198 }
2199 
2200 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2201   assert(Token.is(MIToken::ExternalSymbol));
2202   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2203   lex();
2204   Dest = MachineOperand::CreateES(Symbol);
2205   if (parseOperandsOffset(Dest))
2206     return true;
2207   return false;
2208 }
2209 
2210 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2211   assert(Token.is(MIToken::MCSymbol));
2212   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2213   lex();
2214   Dest = MachineOperand::CreateMCSymbol(Symbol);
2215   if (parseOperandsOffset(Dest))
2216     return true;
2217   return false;
2218 }
2219 
2220 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2221   assert(Token.is(MIToken::SubRegisterIndex));
2222   StringRef Name = Token.stringValue();
2223   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2224   if (SubRegIndex == 0)
2225     return error(Twine("unknown subregister index '") + Name + "'");
2226   lex();
2227   Dest = MachineOperand::CreateImm(SubRegIndex);
2228   return false;
2229 }
2230 
2231 bool MIParser::parseMDNode(MDNode *&Node) {
2232   assert(Token.is(MIToken::exclaim));
2233 
2234   auto Loc = Token.location();
2235   lex();
2236   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2237     return error("expected metadata id after '!'");
2238   unsigned ID;
2239   if (getUnsigned(ID))
2240     return true;
2241   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2242   if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2243     NodeInfo = PFS.MachineMetadataNodes.find(ID);
2244     if (NodeInfo == PFS.MachineMetadataNodes.end())
2245       return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2246   }
2247   lex();
2248   Node = NodeInfo->second.get();
2249   return false;
2250 }
2251 
2252 bool MIParser::parseDIExpression(MDNode *&Expr) {
2253   assert(Token.is(MIToken::md_diexpr));
2254   lex();
2255 
2256   // FIXME: Share this parsing with the IL parser.
2257   SmallVector<uint64_t, 8> Elements;
2258 
2259   if (expectAndConsume(MIToken::lparen))
2260     return true;
2261 
2262   if (Token.isNot(MIToken::rparen)) {
2263     do {
2264       if (Token.is(MIToken::Identifier)) {
2265         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2266           lex();
2267           Elements.push_back(Op);
2268           continue;
2269         }
2270         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2271           lex();
2272           Elements.push_back(Enc);
2273           continue;
2274         }
2275         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2276       }
2277 
2278       if (Token.isNot(MIToken::IntegerLiteral) ||
2279           Token.integerValue().isSigned())
2280         return error("expected unsigned integer");
2281 
2282       auto &U = Token.integerValue();
2283       if (U.ugt(UINT64_MAX))
2284         return error("element too large, limit is " + Twine(UINT64_MAX));
2285       Elements.push_back(U.getZExtValue());
2286       lex();
2287 
2288     } while (consumeIfPresent(MIToken::comma));
2289   }
2290 
2291   if (expectAndConsume(MIToken::rparen))
2292     return true;
2293 
2294   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2295   return false;
2296 }
2297 
2298 bool MIParser::parseDILocation(MDNode *&Loc) {
2299   assert(Token.is(MIToken::md_dilocation));
2300   lex();
2301 
2302   bool HaveLine = false;
2303   unsigned Line = 0;
2304   unsigned Column = 0;
2305   MDNode *Scope = nullptr;
2306   MDNode *InlinedAt = nullptr;
2307   bool ImplicitCode = false;
2308 
2309   if (expectAndConsume(MIToken::lparen))
2310     return true;
2311 
2312   if (Token.isNot(MIToken::rparen)) {
2313     do {
2314       if (Token.is(MIToken::Identifier)) {
2315         if (Token.stringValue() == "line") {
2316           lex();
2317           if (expectAndConsume(MIToken::colon))
2318             return true;
2319           if (Token.isNot(MIToken::IntegerLiteral) ||
2320               Token.integerValue().isSigned())
2321             return error("expected unsigned integer");
2322           Line = Token.integerValue().getZExtValue();
2323           HaveLine = true;
2324           lex();
2325           continue;
2326         }
2327         if (Token.stringValue() == "column") {
2328           lex();
2329           if (expectAndConsume(MIToken::colon))
2330             return true;
2331           if (Token.isNot(MIToken::IntegerLiteral) ||
2332               Token.integerValue().isSigned())
2333             return error("expected unsigned integer");
2334           Column = Token.integerValue().getZExtValue();
2335           lex();
2336           continue;
2337         }
2338         if (Token.stringValue() == "scope") {
2339           lex();
2340           if (expectAndConsume(MIToken::colon))
2341             return true;
2342           if (parseMDNode(Scope))
2343             return error("expected metadata node");
2344           if (!isa<DIScope>(Scope))
2345             return error("expected DIScope node");
2346           continue;
2347         }
2348         if (Token.stringValue() == "inlinedAt") {
2349           lex();
2350           if (expectAndConsume(MIToken::colon))
2351             return true;
2352           if (Token.is(MIToken::exclaim)) {
2353             if (parseMDNode(InlinedAt))
2354               return true;
2355           } else if (Token.is(MIToken::md_dilocation)) {
2356             if (parseDILocation(InlinedAt))
2357               return true;
2358           } else
2359             return error("expected metadata node");
2360           if (!isa<DILocation>(InlinedAt))
2361             return error("expected DILocation node");
2362           continue;
2363         }
2364         if (Token.stringValue() == "isImplicitCode") {
2365           lex();
2366           if (expectAndConsume(MIToken::colon))
2367             return true;
2368           if (!Token.is(MIToken::Identifier))
2369             return error("expected true/false");
2370           // As far as I can see, we don't have any existing need for parsing
2371           // true/false in MIR yet. Do it ad-hoc until there's something else
2372           // that needs it.
2373           if (Token.stringValue() == "true")
2374             ImplicitCode = true;
2375           else if (Token.stringValue() == "false")
2376             ImplicitCode = false;
2377           else
2378             return error("expected true/false");
2379           lex();
2380           continue;
2381         }
2382       }
2383       return error(Twine("invalid DILocation argument '") +
2384                    Token.stringValue() + "'");
2385     } while (consumeIfPresent(MIToken::comma));
2386   }
2387 
2388   if (expectAndConsume(MIToken::rparen))
2389     return true;
2390 
2391   if (!HaveLine)
2392     return error("DILocation requires line number");
2393   if (!Scope)
2394     return error("DILocation requires a scope");
2395 
2396   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2397                         InlinedAt, ImplicitCode);
2398   return false;
2399 }
2400 
2401 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2402   MDNode *Node = nullptr;
2403   if (Token.is(MIToken::exclaim)) {
2404     if (parseMDNode(Node))
2405       return true;
2406   } else if (Token.is(MIToken::md_diexpr)) {
2407     if (parseDIExpression(Node))
2408       return true;
2409   }
2410   Dest = MachineOperand::CreateMetadata(Node);
2411   return false;
2412 }
2413 
2414 bool MIParser::parseCFIOffset(int &Offset) {
2415   if (Token.isNot(MIToken::IntegerLiteral))
2416     return error("expected a cfi offset");
2417   if (Token.integerValue().getMinSignedBits() > 32)
2418     return error("expected a 32 bit integer (the cfi offset is too large)");
2419   Offset = (int)Token.integerValue().getExtValue();
2420   lex();
2421   return false;
2422 }
2423 
2424 bool MIParser::parseCFIRegister(Register &Reg) {
2425   if (Token.isNot(MIToken::NamedRegister))
2426     return error("expected a cfi register");
2427   Register LLVMReg;
2428   if (parseNamedRegister(LLVMReg))
2429     return true;
2430   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2431   assert(TRI && "Expected target register info");
2432   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2433   if (DwarfReg < 0)
2434     return error("invalid DWARF register");
2435   Reg = (unsigned)DwarfReg;
2436   lex();
2437   return false;
2438 }
2439 
2440 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2441   if (Token.isNot(MIToken::IntegerLiteral))
2442     return error("expected a cfi address space literal");
2443   if (Token.integerValue().isSigned())
2444     return error("expected an unsigned integer (cfi address space)");
2445   AddressSpace = Token.integerValue().getZExtValue();
2446   lex();
2447   return false;
2448 }
2449 
2450 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2451   do {
2452     if (Token.isNot(MIToken::HexLiteral))
2453       return error("expected a hexadecimal literal");
2454     unsigned Value;
2455     if (getUnsigned(Value))
2456       return true;
2457     if (Value > UINT8_MAX)
2458       return error("expected a 8-bit integer (too large)");
2459     Values.push_back(static_cast<uint8_t>(Value));
2460     lex();
2461   } while (consumeIfPresent(MIToken::comma));
2462   return false;
2463 }
2464 
2465 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2466   auto Kind = Token.kind();
2467   lex();
2468   int Offset;
2469   Register Reg;
2470   unsigned AddressSpace;
2471   unsigned CFIIndex;
2472   switch (Kind) {
2473   case MIToken::kw_cfi_same_value:
2474     if (parseCFIRegister(Reg))
2475       return true;
2476     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2477     break;
2478   case MIToken::kw_cfi_offset:
2479     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2480         parseCFIOffset(Offset))
2481       return true;
2482     CFIIndex =
2483         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2484     break;
2485   case MIToken::kw_cfi_rel_offset:
2486     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2487         parseCFIOffset(Offset))
2488       return true;
2489     CFIIndex = MF.addFrameInst(
2490         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2491     break;
2492   case MIToken::kw_cfi_def_cfa_register:
2493     if (parseCFIRegister(Reg))
2494       return true;
2495     CFIIndex =
2496         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2497     break;
2498   case MIToken::kw_cfi_def_cfa_offset:
2499     if (parseCFIOffset(Offset))
2500       return true;
2501     CFIIndex =
2502         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2503     break;
2504   case MIToken::kw_cfi_adjust_cfa_offset:
2505     if (parseCFIOffset(Offset))
2506       return true;
2507     CFIIndex = MF.addFrameInst(
2508         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2509     break;
2510   case MIToken::kw_cfi_def_cfa:
2511     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2512         parseCFIOffset(Offset))
2513       return true;
2514     CFIIndex =
2515         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2516     break;
2517   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2518     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2519         parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2520         parseCFIAddressSpace(AddressSpace))
2521       return true;
2522     CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2523         nullptr, Reg, Offset, AddressSpace));
2524     break;
2525   case MIToken::kw_cfi_remember_state:
2526     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2527     break;
2528   case MIToken::kw_cfi_restore:
2529     if (parseCFIRegister(Reg))
2530       return true;
2531     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2532     break;
2533   case MIToken::kw_cfi_restore_state:
2534     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2535     break;
2536   case MIToken::kw_cfi_undefined:
2537     if (parseCFIRegister(Reg))
2538       return true;
2539     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2540     break;
2541   case MIToken::kw_cfi_register: {
2542     Register Reg2;
2543     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2544         parseCFIRegister(Reg2))
2545       return true;
2546 
2547     CFIIndex =
2548         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2549     break;
2550   }
2551   case MIToken::kw_cfi_window_save:
2552     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2553     break;
2554   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2555     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2556     break;
2557   case MIToken::kw_cfi_escape: {
2558     std::string Values;
2559     if (parseCFIEscapeValues(Values))
2560       return true;
2561     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2562     break;
2563   }
2564   default:
2565     // TODO: Parse the other CFI operands.
2566     llvm_unreachable("The current token should be a cfi operand");
2567   }
2568   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2569   return false;
2570 }
2571 
2572 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2573   switch (Token.kind()) {
2574   case MIToken::NamedIRBlock: {
2575     BB = dyn_cast_or_null<BasicBlock>(
2576         F.getValueSymbolTable()->lookup(Token.stringValue()));
2577     if (!BB)
2578       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2579     break;
2580   }
2581   case MIToken::IRBlock: {
2582     unsigned SlotNumber = 0;
2583     if (getUnsigned(SlotNumber))
2584       return true;
2585     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2586     if (!BB)
2587       return error(Twine("use of undefined IR block '%ir-block.") +
2588                    Twine(SlotNumber) + "'");
2589     break;
2590   }
2591   default:
2592     llvm_unreachable("The current token should be an IR block reference");
2593   }
2594   return false;
2595 }
2596 
2597 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2598   assert(Token.is(MIToken::kw_blockaddress));
2599   lex();
2600   if (expectAndConsume(MIToken::lparen))
2601     return true;
2602   if (Token.isNot(MIToken::GlobalValue) &&
2603       Token.isNot(MIToken::NamedGlobalValue))
2604     return error("expected a global value");
2605   GlobalValue *GV = nullptr;
2606   if (parseGlobalValue(GV))
2607     return true;
2608   auto *F = dyn_cast<Function>(GV);
2609   if (!F)
2610     return error("expected an IR function reference");
2611   lex();
2612   if (expectAndConsume(MIToken::comma))
2613     return true;
2614   BasicBlock *BB = nullptr;
2615   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2616     return error("expected an IR block reference");
2617   if (parseIRBlock(BB, *F))
2618     return true;
2619   lex();
2620   if (expectAndConsume(MIToken::rparen))
2621     return true;
2622   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2623   if (parseOperandsOffset(Dest))
2624     return true;
2625   return false;
2626 }
2627 
2628 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2629   assert(Token.is(MIToken::kw_intrinsic));
2630   lex();
2631   if (expectAndConsume(MIToken::lparen))
2632     return error("expected syntax intrinsic(@llvm.whatever)");
2633 
2634   if (Token.isNot(MIToken::NamedGlobalValue))
2635     return error("expected syntax intrinsic(@llvm.whatever)");
2636 
2637   std::string Name = std::string(Token.stringValue());
2638   lex();
2639 
2640   if (expectAndConsume(MIToken::rparen))
2641     return error("expected ')' to terminate intrinsic name");
2642 
2643   // Find out what intrinsic we're dealing with, first try the global namespace
2644   // and then the target's private intrinsics if that fails.
2645   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2646   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2647   if (ID == Intrinsic::not_intrinsic && TII)
2648     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2649 
2650   if (ID == Intrinsic::not_intrinsic)
2651     return error("unknown intrinsic name");
2652   Dest = MachineOperand::CreateIntrinsicID(ID);
2653 
2654   return false;
2655 }
2656 
2657 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2658   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2659   bool IsFloat = Token.is(MIToken::kw_floatpred);
2660   lex();
2661 
2662   if (expectAndConsume(MIToken::lparen))
2663     return error("expected syntax intpred(whatever) or floatpred(whatever");
2664 
2665   if (Token.isNot(MIToken::Identifier))
2666     return error("whatever");
2667 
2668   CmpInst::Predicate Pred;
2669   if (IsFloat) {
2670     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2671                .Case("false", CmpInst::FCMP_FALSE)
2672                .Case("oeq", CmpInst::FCMP_OEQ)
2673                .Case("ogt", CmpInst::FCMP_OGT)
2674                .Case("oge", CmpInst::FCMP_OGE)
2675                .Case("olt", CmpInst::FCMP_OLT)
2676                .Case("ole", CmpInst::FCMP_OLE)
2677                .Case("one", CmpInst::FCMP_ONE)
2678                .Case("ord", CmpInst::FCMP_ORD)
2679                .Case("uno", CmpInst::FCMP_UNO)
2680                .Case("ueq", CmpInst::FCMP_UEQ)
2681                .Case("ugt", CmpInst::FCMP_UGT)
2682                .Case("uge", CmpInst::FCMP_UGE)
2683                .Case("ult", CmpInst::FCMP_ULT)
2684                .Case("ule", CmpInst::FCMP_ULE)
2685                .Case("une", CmpInst::FCMP_UNE)
2686                .Case("true", CmpInst::FCMP_TRUE)
2687                .Default(CmpInst::BAD_FCMP_PREDICATE);
2688     if (!CmpInst::isFPPredicate(Pred))
2689       return error("invalid floating-point predicate");
2690   } else {
2691     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2692                .Case("eq", CmpInst::ICMP_EQ)
2693                .Case("ne", CmpInst::ICMP_NE)
2694                .Case("sgt", CmpInst::ICMP_SGT)
2695                .Case("sge", CmpInst::ICMP_SGE)
2696                .Case("slt", CmpInst::ICMP_SLT)
2697                .Case("sle", CmpInst::ICMP_SLE)
2698                .Case("ugt", CmpInst::ICMP_UGT)
2699                .Case("uge", CmpInst::ICMP_UGE)
2700                .Case("ult", CmpInst::ICMP_ULT)
2701                .Case("ule", CmpInst::ICMP_ULE)
2702                .Default(CmpInst::BAD_ICMP_PREDICATE);
2703     if (!CmpInst::isIntPredicate(Pred))
2704       return error("invalid integer predicate");
2705   }
2706 
2707   lex();
2708   Dest = MachineOperand::CreatePredicate(Pred);
2709   if (expectAndConsume(MIToken::rparen))
2710     return error("predicate should be terminated by ')'.");
2711 
2712   return false;
2713 }
2714 
2715 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2716   assert(Token.is(MIToken::kw_shufflemask));
2717 
2718   lex();
2719   if (expectAndConsume(MIToken::lparen))
2720     return error("expected syntax shufflemask(<integer or undef>, ...)");
2721 
2722   SmallVector<int, 32> ShufMask;
2723   do {
2724     if (Token.is(MIToken::kw_undef)) {
2725       ShufMask.push_back(-1);
2726     } else if (Token.is(MIToken::IntegerLiteral)) {
2727       const APSInt &Int = Token.integerValue();
2728       ShufMask.push_back(Int.getExtValue());
2729     } else
2730       return error("expected integer constant");
2731 
2732     lex();
2733   } while (consumeIfPresent(MIToken::comma));
2734 
2735   if (expectAndConsume(MIToken::rparen))
2736     return error("shufflemask should be terminated by ')'.");
2737 
2738   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2739   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2740   return false;
2741 }
2742 
2743 bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) {
2744   assert(Token.is(MIToken::kw_dbg_instr_ref));
2745 
2746   lex();
2747   if (expectAndConsume(MIToken::lparen))
2748     return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2749 
2750   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2751     return error("expected unsigned integer for instruction index");
2752   uint64_t InstrIdx = Token.integerValue().getZExtValue();
2753   assert(InstrIdx <= std::numeric_limits<unsigned>::max() &&
2754          "Instruction reference's instruction index is too large");
2755   lex();
2756 
2757   if (expectAndConsume(MIToken::comma))
2758     return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2759 
2760   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2761     return error("expected unsigned integer for operand index");
2762   uint64_t OpIdx = Token.integerValue().getZExtValue();
2763   assert(OpIdx <= std::numeric_limits<unsigned>::max() &&
2764          "Instruction reference's operand index is too large");
2765   lex();
2766 
2767   if (expectAndConsume(MIToken::rparen))
2768     return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2769 
2770   Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx);
2771   return false;
2772 }
2773 
2774 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2775   assert(Token.is(MIToken::kw_target_index));
2776   lex();
2777   if (expectAndConsume(MIToken::lparen))
2778     return true;
2779   if (Token.isNot(MIToken::Identifier))
2780     return error("expected the name of the target index");
2781   int Index = 0;
2782   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2783     return error("use of undefined target index '" + Token.stringValue() + "'");
2784   lex();
2785   if (expectAndConsume(MIToken::rparen))
2786     return true;
2787   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2788   if (parseOperandsOffset(Dest))
2789     return true;
2790   return false;
2791 }
2792 
2793 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2794   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2795   lex();
2796   if (expectAndConsume(MIToken::lparen))
2797     return true;
2798 
2799   uint32_t *Mask = MF.allocateRegMask();
2800   do {
2801     if (Token.isNot(MIToken::rparen)) {
2802       if (Token.isNot(MIToken::NamedRegister))
2803         return error("expected a named register");
2804       Register Reg;
2805       if (parseNamedRegister(Reg))
2806         return true;
2807       lex();
2808       Mask[Reg / 32] |= 1U << (Reg % 32);
2809     }
2810 
2811     // TODO: Report an error if the same register is used more than once.
2812   } while (consumeIfPresent(MIToken::comma));
2813 
2814   if (expectAndConsume(MIToken::rparen))
2815     return true;
2816   Dest = MachineOperand::CreateRegMask(Mask);
2817   return false;
2818 }
2819 
2820 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2821   assert(Token.is(MIToken::kw_liveout));
2822   uint32_t *Mask = MF.allocateRegMask();
2823   lex();
2824   if (expectAndConsume(MIToken::lparen))
2825     return true;
2826   while (true) {
2827     if (Token.isNot(MIToken::NamedRegister))
2828       return error("expected a named register");
2829     Register Reg;
2830     if (parseNamedRegister(Reg))
2831       return true;
2832     lex();
2833     Mask[Reg / 32] |= 1U << (Reg % 32);
2834     // TODO: Report an error if the same register is used more than once.
2835     if (Token.isNot(MIToken::comma))
2836       break;
2837     lex();
2838   }
2839   if (expectAndConsume(MIToken::rparen))
2840     return true;
2841   Dest = MachineOperand::CreateRegLiveOut(Mask);
2842   return false;
2843 }
2844 
2845 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2846                                    MachineOperand &Dest,
2847                                    std::optional<unsigned> &TiedDefIdx) {
2848   switch (Token.kind()) {
2849   case MIToken::kw_implicit:
2850   case MIToken::kw_implicit_define:
2851   case MIToken::kw_def:
2852   case MIToken::kw_dead:
2853   case MIToken::kw_killed:
2854   case MIToken::kw_undef:
2855   case MIToken::kw_internal:
2856   case MIToken::kw_early_clobber:
2857   case MIToken::kw_debug_use:
2858   case MIToken::kw_renamable:
2859   case MIToken::underscore:
2860   case MIToken::NamedRegister:
2861   case MIToken::VirtualRegister:
2862   case MIToken::NamedVirtualRegister:
2863     return parseRegisterOperand(Dest, TiedDefIdx);
2864   case MIToken::IntegerLiteral:
2865     return parseImmediateOperand(Dest);
2866   case MIToken::kw_half:
2867   case MIToken::kw_float:
2868   case MIToken::kw_double:
2869   case MIToken::kw_x86_fp80:
2870   case MIToken::kw_fp128:
2871   case MIToken::kw_ppc_fp128:
2872     return parseFPImmediateOperand(Dest);
2873   case MIToken::MachineBasicBlock:
2874     return parseMBBOperand(Dest);
2875   case MIToken::StackObject:
2876     return parseStackObjectOperand(Dest);
2877   case MIToken::FixedStackObject:
2878     return parseFixedStackObjectOperand(Dest);
2879   case MIToken::GlobalValue:
2880   case MIToken::NamedGlobalValue:
2881     return parseGlobalAddressOperand(Dest);
2882   case MIToken::ConstantPoolItem:
2883     return parseConstantPoolIndexOperand(Dest);
2884   case MIToken::JumpTableIndex:
2885     return parseJumpTableIndexOperand(Dest);
2886   case MIToken::ExternalSymbol:
2887     return parseExternalSymbolOperand(Dest);
2888   case MIToken::MCSymbol:
2889     return parseMCSymbolOperand(Dest);
2890   case MIToken::SubRegisterIndex:
2891     return parseSubRegisterIndexOperand(Dest);
2892   case MIToken::md_diexpr:
2893   case MIToken::exclaim:
2894     return parseMetadataOperand(Dest);
2895   case MIToken::kw_cfi_same_value:
2896   case MIToken::kw_cfi_offset:
2897   case MIToken::kw_cfi_rel_offset:
2898   case MIToken::kw_cfi_def_cfa_register:
2899   case MIToken::kw_cfi_def_cfa_offset:
2900   case MIToken::kw_cfi_adjust_cfa_offset:
2901   case MIToken::kw_cfi_escape:
2902   case MIToken::kw_cfi_def_cfa:
2903   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2904   case MIToken::kw_cfi_register:
2905   case MIToken::kw_cfi_remember_state:
2906   case MIToken::kw_cfi_restore:
2907   case MIToken::kw_cfi_restore_state:
2908   case MIToken::kw_cfi_undefined:
2909   case MIToken::kw_cfi_window_save:
2910   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2911     return parseCFIOperand(Dest);
2912   case MIToken::kw_blockaddress:
2913     return parseBlockAddressOperand(Dest);
2914   case MIToken::kw_intrinsic:
2915     return parseIntrinsicOperand(Dest);
2916   case MIToken::kw_target_index:
2917     return parseTargetIndexOperand(Dest);
2918   case MIToken::kw_liveout:
2919     return parseLiveoutRegisterMaskOperand(Dest);
2920   case MIToken::kw_floatpred:
2921   case MIToken::kw_intpred:
2922     return parsePredicateOperand(Dest);
2923   case MIToken::kw_shufflemask:
2924     return parseShuffleMaskOperand(Dest);
2925   case MIToken::kw_dbg_instr_ref:
2926     return parseDbgInstrRefOperand(Dest);
2927   case MIToken::Error:
2928     return true;
2929   case MIToken::Identifier:
2930     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2931       Dest = MachineOperand::CreateRegMask(RegMask);
2932       lex();
2933       break;
2934     } else if (Token.stringValue() == "CustomRegMask") {
2935       return parseCustomRegisterMaskOperand(Dest);
2936     } else
2937       return parseTypedImmediateOperand(Dest);
2938   case MIToken::dot: {
2939     const auto *TII = MF.getSubtarget().getInstrInfo();
2940     if (const auto *Formatter = TII->getMIRFormatter()) {
2941       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2942     }
2943     [[fallthrough]];
2944   }
2945   default:
2946     // FIXME: Parse the MCSymbol machine operand.
2947     return error("expected a machine operand");
2948   }
2949   return false;
2950 }
2951 
2952 bool MIParser::parseMachineOperandAndTargetFlags(
2953     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2954     std::optional<unsigned> &TiedDefIdx) {
2955   unsigned TF = 0;
2956   bool HasTargetFlags = false;
2957   if (Token.is(MIToken::kw_target_flags)) {
2958     HasTargetFlags = true;
2959     lex();
2960     if (expectAndConsume(MIToken::lparen))
2961       return true;
2962     if (Token.isNot(MIToken::Identifier))
2963       return error("expected the name of the target flag");
2964     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2965       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2966         return error("use of undefined target flag '" + Token.stringValue() +
2967                      "'");
2968     }
2969     lex();
2970     while (Token.is(MIToken::comma)) {
2971       lex();
2972       if (Token.isNot(MIToken::Identifier))
2973         return error("expected the name of the target flag");
2974       unsigned BitFlag = 0;
2975       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2976         return error("use of undefined target flag '" + Token.stringValue() +
2977                      "'");
2978       // TODO: Report an error when using a duplicate bit target flag.
2979       TF |= BitFlag;
2980       lex();
2981     }
2982     if (expectAndConsume(MIToken::rparen))
2983       return true;
2984   }
2985   auto Loc = Token.location();
2986   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2987     return true;
2988   if (!HasTargetFlags)
2989     return false;
2990   if (Dest.isReg())
2991     return error(Loc, "register operands can't have target flags");
2992   Dest.setTargetFlags(TF);
2993   return false;
2994 }
2995 
2996 bool MIParser::parseOffset(int64_t &Offset) {
2997   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2998     return false;
2999   StringRef Sign = Token.range();
3000   bool IsNegative = Token.is(MIToken::minus);
3001   lex();
3002   if (Token.isNot(MIToken::IntegerLiteral))
3003     return error("expected an integer literal after '" + Sign + "'");
3004   if (Token.integerValue().getMinSignedBits() > 64)
3005     return error("expected 64-bit integer (too large)");
3006   Offset = Token.integerValue().getExtValue();
3007   if (IsNegative)
3008     Offset = -Offset;
3009   lex();
3010   return false;
3011 }
3012 
3013 bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) {
3014   assert(Token.is(MIToken::kw_ir_block_address_taken));
3015   lex();
3016   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
3017     return error("expected basic block after 'ir_block_address_taken'");
3018 
3019   if (parseIRBlock(BB, MF.getFunction()))
3020     return true;
3021 
3022   lex();
3023   return false;
3024 }
3025 
3026 bool MIParser::parseAlignment(uint64_t &Alignment) {
3027   assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
3028   lex();
3029   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3030     return error("expected an integer literal after 'align'");
3031   if (getUint64(Alignment))
3032     return true;
3033   lex();
3034 
3035   if (!isPowerOf2_64(Alignment))
3036     return error("expected a power-of-2 literal after 'align'");
3037 
3038   return false;
3039 }
3040 
3041 bool MIParser::parseAddrspace(unsigned &Addrspace) {
3042   assert(Token.is(MIToken::kw_addrspace));
3043   lex();
3044   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3045     return error("expected an integer literal after 'addrspace'");
3046   if (getUnsigned(Addrspace))
3047     return true;
3048   lex();
3049   return false;
3050 }
3051 
3052 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
3053   int64_t Offset = 0;
3054   if (parseOffset(Offset))
3055     return true;
3056   Op.setOffset(Offset);
3057   return false;
3058 }
3059 
3060 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
3061                          const Value *&V, ErrorCallbackType ErrCB) {
3062   switch (Token.kind()) {
3063   case MIToken::NamedIRValue: {
3064     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
3065     break;
3066   }
3067   case MIToken::IRValue: {
3068     unsigned SlotNumber = 0;
3069     if (getUnsigned(Token, SlotNumber, ErrCB))
3070       return true;
3071     V = PFS.getIRValue(SlotNumber);
3072     break;
3073   }
3074   case MIToken::NamedGlobalValue:
3075   case MIToken::GlobalValue: {
3076     GlobalValue *GV = nullptr;
3077     if (parseGlobalValue(Token, PFS, GV, ErrCB))
3078       return true;
3079     V = GV;
3080     break;
3081   }
3082   case MIToken::QuotedIRValue: {
3083     const Constant *C = nullptr;
3084     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
3085       return true;
3086     V = C;
3087     break;
3088   }
3089   case MIToken::kw_unknown_address:
3090     V = nullptr;
3091     return false;
3092   default:
3093     llvm_unreachable("The current token should be an IR block reference");
3094   }
3095   if (!V)
3096     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
3097   return false;
3098 }
3099 
3100 bool MIParser::parseIRValue(const Value *&V) {
3101   return ::parseIRValue(
3102       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3103         return error(Loc, Msg);
3104       });
3105 }
3106 
3107 bool MIParser::getUint64(uint64_t &Result) {
3108   if (Token.hasIntegerValue()) {
3109     if (Token.integerValue().getActiveBits() > 64)
3110       return error("expected 64-bit integer (too large)");
3111     Result = Token.integerValue().getZExtValue();
3112     return false;
3113   }
3114   if (Token.is(MIToken::HexLiteral)) {
3115     APInt A;
3116     if (getHexUint(A))
3117       return true;
3118     if (A.getBitWidth() > 64)
3119       return error("expected 64-bit integer (too large)");
3120     Result = A.getZExtValue();
3121     return false;
3122   }
3123   return true;
3124 }
3125 
3126 bool MIParser::getHexUint(APInt &Result) {
3127   return ::getHexUint(Token, Result);
3128 }
3129 
3130 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3131   const auto OldFlags = Flags;
3132   switch (Token.kind()) {
3133   case MIToken::kw_volatile:
3134     Flags |= MachineMemOperand::MOVolatile;
3135     break;
3136   case MIToken::kw_non_temporal:
3137     Flags |= MachineMemOperand::MONonTemporal;
3138     break;
3139   case MIToken::kw_dereferenceable:
3140     Flags |= MachineMemOperand::MODereferenceable;
3141     break;
3142   case MIToken::kw_invariant:
3143     Flags |= MachineMemOperand::MOInvariant;
3144     break;
3145   case MIToken::StringConstant: {
3146     MachineMemOperand::Flags TF;
3147     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3148       return error("use of undefined target MMO flag '" + Token.stringValue() +
3149                    "'");
3150     Flags |= TF;
3151     break;
3152   }
3153   default:
3154     llvm_unreachable("The current token should be a memory operand flag");
3155   }
3156   if (OldFlags == Flags)
3157     // We know that the same flag is specified more than once when the flags
3158     // weren't modified.
3159     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3160   lex();
3161   return false;
3162 }
3163 
3164 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3165   switch (Token.kind()) {
3166   case MIToken::kw_stack:
3167     PSV = MF.getPSVManager().getStack();
3168     break;
3169   case MIToken::kw_got:
3170     PSV = MF.getPSVManager().getGOT();
3171     break;
3172   case MIToken::kw_jump_table:
3173     PSV = MF.getPSVManager().getJumpTable();
3174     break;
3175   case MIToken::kw_constant_pool:
3176     PSV = MF.getPSVManager().getConstantPool();
3177     break;
3178   case MIToken::FixedStackObject: {
3179     int FI;
3180     if (parseFixedStackFrameIndex(FI))
3181       return true;
3182     PSV = MF.getPSVManager().getFixedStack(FI);
3183     // The token was already consumed, so use return here instead of break.
3184     return false;
3185   }
3186   case MIToken::StackObject: {
3187     int FI;
3188     if (parseStackFrameIndex(FI))
3189       return true;
3190     PSV = MF.getPSVManager().getFixedStack(FI);
3191     // The token was already consumed, so use return here instead of break.
3192     return false;
3193   }
3194   case MIToken::kw_call_entry:
3195     lex();
3196     switch (Token.kind()) {
3197     case MIToken::GlobalValue:
3198     case MIToken::NamedGlobalValue: {
3199       GlobalValue *GV = nullptr;
3200       if (parseGlobalValue(GV))
3201         return true;
3202       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3203       break;
3204     }
3205     case MIToken::ExternalSymbol:
3206       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3207           MF.createExternalSymbolName(Token.stringValue()));
3208       break;
3209     default:
3210       return error(
3211           "expected a global value or an external symbol after 'call-entry'");
3212     }
3213     break;
3214   case MIToken::kw_custom: {
3215     lex();
3216     const auto *TII = MF.getSubtarget().getInstrInfo();
3217     if (const auto *Formatter = TII->getMIRFormatter()) {
3218       if (Formatter->parseCustomPseudoSourceValue(
3219               Token.stringValue(), MF, PFS, PSV,
3220               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3221                 return error(Loc, Msg);
3222               }))
3223         return true;
3224     } else
3225       return error("unable to parse target custom pseudo source value");
3226     break;
3227   }
3228   default:
3229     llvm_unreachable("The current token should be pseudo source value");
3230   }
3231   lex();
3232   return false;
3233 }
3234 
3235 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3236   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3237       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3238       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3239       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3240     const PseudoSourceValue *PSV = nullptr;
3241     if (parseMemoryPseudoSourceValue(PSV))
3242       return true;
3243     int64_t Offset = 0;
3244     if (parseOffset(Offset))
3245       return true;
3246     Dest = MachinePointerInfo(PSV, Offset);
3247     return false;
3248   }
3249   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3250       Token.isNot(MIToken::GlobalValue) &&
3251       Token.isNot(MIToken::NamedGlobalValue) &&
3252       Token.isNot(MIToken::QuotedIRValue) &&
3253       Token.isNot(MIToken::kw_unknown_address))
3254     return error("expected an IR value reference");
3255   const Value *V = nullptr;
3256   if (parseIRValue(V))
3257     return true;
3258   if (V && !V->getType()->isPointerTy())
3259     return error("expected a pointer IR value");
3260   lex();
3261   int64_t Offset = 0;
3262   if (parseOffset(Offset))
3263     return true;
3264   Dest = MachinePointerInfo(V, Offset);
3265   return false;
3266 }
3267 
3268 bool MIParser::parseOptionalScope(LLVMContext &Context,
3269                                   SyncScope::ID &SSID) {
3270   SSID = SyncScope::System;
3271   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3272     lex();
3273     if (expectAndConsume(MIToken::lparen))
3274       return error("expected '(' in syncscope");
3275 
3276     std::string SSN;
3277     if (parseStringConstant(SSN))
3278       return true;
3279 
3280     SSID = Context.getOrInsertSyncScopeID(SSN);
3281     if (expectAndConsume(MIToken::rparen))
3282       return error("expected ')' in syncscope");
3283   }
3284 
3285   return false;
3286 }
3287 
3288 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3289   Order = AtomicOrdering::NotAtomic;
3290   if (Token.isNot(MIToken::Identifier))
3291     return false;
3292 
3293   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3294               .Case("unordered", AtomicOrdering::Unordered)
3295               .Case("monotonic", AtomicOrdering::Monotonic)
3296               .Case("acquire", AtomicOrdering::Acquire)
3297               .Case("release", AtomicOrdering::Release)
3298               .Case("acq_rel", AtomicOrdering::AcquireRelease)
3299               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3300               .Default(AtomicOrdering::NotAtomic);
3301 
3302   if (Order != AtomicOrdering::NotAtomic) {
3303     lex();
3304     return false;
3305   }
3306 
3307   return error("expected an atomic scope, ordering or a size specification");
3308 }
3309 
3310 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3311   if (expectAndConsume(MIToken::lparen))
3312     return true;
3313   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3314   while (Token.isMemoryOperandFlag()) {
3315     if (parseMemoryOperandFlag(Flags))
3316       return true;
3317   }
3318   if (Token.isNot(MIToken::Identifier) ||
3319       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3320     return error("expected 'load' or 'store' memory operation");
3321   if (Token.stringValue() == "load")
3322     Flags |= MachineMemOperand::MOLoad;
3323   else
3324     Flags |= MachineMemOperand::MOStore;
3325   lex();
3326 
3327   // Optional 'store' for operands that both load and store.
3328   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3329     Flags |= MachineMemOperand::MOStore;
3330     lex();
3331   }
3332 
3333   // Optional synchronization scope.
3334   SyncScope::ID SSID;
3335   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3336     return true;
3337 
3338   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3339   AtomicOrdering Order, FailureOrder;
3340   if (parseOptionalAtomicOrdering(Order))
3341     return true;
3342 
3343   if (parseOptionalAtomicOrdering(FailureOrder))
3344     return true;
3345 
3346   LLT MemoryType;
3347   if (Token.isNot(MIToken::IntegerLiteral) &&
3348       Token.isNot(MIToken::kw_unknown_size) &&
3349       Token.isNot(MIToken::lparen))
3350     return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3351                  "memory operation");
3352 
3353   uint64_t Size = MemoryLocation::UnknownSize;
3354   if (Token.is(MIToken::IntegerLiteral)) {
3355     if (getUint64(Size))
3356       return true;
3357 
3358     // Convert from bytes to bits for storage.
3359     MemoryType = LLT::scalar(8 * Size);
3360     lex();
3361   } else if (Token.is(MIToken::kw_unknown_size)) {
3362     Size = MemoryLocation::UnknownSize;
3363     lex();
3364   } else {
3365     if (expectAndConsume(MIToken::lparen))
3366       return true;
3367     if (parseLowLevelType(Token.location(), MemoryType))
3368       return true;
3369     if (expectAndConsume(MIToken::rparen))
3370       return true;
3371 
3372     Size = MemoryType.getSizeInBytes();
3373   }
3374 
3375   MachinePointerInfo Ptr = MachinePointerInfo();
3376   if (Token.is(MIToken::Identifier)) {
3377     const char *Word =
3378         ((Flags & MachineMemOperand::MOLoad) &&
3379          (Flags & MachineMemOperand::MOStore))
3380             ? "on"
3381             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3382     if (Token.stringValue() != Word)
3383       return error(Twine("expected '") + Word + "'");
3384     lex();
3385 
3386     if (parseMachinePointerInfo(Ptr))
3387       return true;
3388   }
3389   uint64_t BaseAlignment =
3390       (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3391   AAMDNodes AAInfo;
3392   MDNode *Range = nullptr;
3393   while (consumeIfPresent(MIToken::comma)) {
3394     switch (Token.kind()) {
3395     case MIToken::kw_align: {
3396       // align is printed if it is different than size.
3397       uint64_t Alignment;
3398       if (parseAlignment(Alignment))
3399         return true;
3400       if (Ptr.Offset & (Alignment - 1)) {
3401         // MachineMemOperand::getAlign never returns a value greater than the
3402         // alignment of offset, so this just guards against hand-written MIR
3403         // that specifies a large "align" value when it should probably use
3404         // "basealign" instead.
3405         return error("specified alignment is more aligned than offset");
3406       }
3407       BaseAlignment = Alignment;
3408       break;
3409     }
3410     case MIToken::kw_basealign:
3411       // basealign is printed if it is different than align.
3412       if (parseAlignment(BaseAlignment))
3413         return true;
3414       break;
3415     case MIToken::kw_addrspace:
3416       if (parseAddrspace(Ptr.AddrSpace))
3417         return true;
3418       break;
3419     case MIToken::md_tbaa:
3420       lex();
3421       if (parseMDNode(AAInfo.TBAA))
3422         return true;
3423       break;
3424     case MIToken::md_alias_scope:
3425       lex();
3426       if (parseMDNode(AAInfo.Scope))
3427         return true;
3428       break;
3429     case MIToken::md_noalias:
3430       lex();
3431       if (parseMDNode(AAInfo.NoAlias))
3432         return true;
3433       break;
3434     case MIToken::md_range:
3435       lex();
3436       if (parseMDNode(Range))
3437         return true;
3438       break;
3439     // TODO: Report an error on duplicate metadata nodes.
3440     default:
3441       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3442                    "'!noalias' or '!range'");
3443     }
3444   }
3445   if (expectAndConsume(MIToken::rparen))
3446     return true;
3447   Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3448                                  AAInfo, Range, SSID, Order, FailureOrder);
3449   return false;
3450 }
3451 
3452 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3453   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3454           Token.is(MIToken::kw_post_instr_symbol)) &&
3455          "Invalid token for a pre- post-instruction symbol!");
3456   lex();
3457   if (Token.isNot(MIToken::MCSymbol))
3458     return error("expected a symbol after 'pre-instr-symbol'");
3459   Symbol = getOrCreateMCSymbol(Token.stringValue());
3460   lex();
3461   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3462       Token.is(MIToken::lbrace))
3463     return false;
3464   if (Token.isNot(MIToken::comma))
3465     return error("expected ',' before the next machine operand");
3466   lex();
3467   return false;
3468 }
3469 
3470 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3471   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3472          "Invalid token for a heap alloc marker!");
3473   lex();
3474   parseMDNode(Node);
3475   if (!Node)
3476     return error("expected a MDNode after 'heap-alloc-marker'");
3477   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3478       Token.is(MIToken::lbrace))
3479     return false;
3480   if (Token.isNot(MIToken::comma))
3481     return error("expected ',' before the next machine operand");
3482   lex();
3483   return false;
3484 }
3485 
3486 bool MIParser::parsePCSections(MDNode *&Node) {
3487   assert(Token.is(MIToken::kw_pcsections) &&
3488          "Invalid token for a PC sections!");
3489   lex();
3490   parseMDNode(Node);
3491   if (!Node)
3492     return error("expected a MDNode after 'pcsections'");
3493   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3494       Token.is(MIToken::lbrace))
3495     return false;
3496   if (Token.isNot(MIToken::comma))
3497     return error("expected ',' before the next machine operand");
3498   lex();
3499   return false;
3500 }
3501 
3502 static void initSlots2BasicBlocks(
3503     const Function &F,
3504     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3505   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3506   MST.incorporateFunction(F);
3507   for (const auto &BB : F) {
3508     if (BB.hasName())
3509       continue;
3510     int Slot = MST.getLocalSlot(&BB);
3511     if (Slot == -1)
3512       continue;
3513     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3514   }
3515 }
3516 
3517 static const BasicBlock *getIRBlockFromSlot(
3518     unsigned Slot,
3519     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3520   return Slots2BasicBlocks.lookup(Slot);
3521 }
3522 
3523 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3524   if (Slots2BasicBlocks.empty())
3525     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3526   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3527 }
3528 
3529 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3530   if (&F == &MF.getFunction())
3531     return getIRBlock(Slot);
3532   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3533   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3534   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3535 }
3536 
3537 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3538   // FIXME: Currently we can't recognize temporary or local symbols and call all
3539   // of the appropriate forms to create them. However, this handles basic cases
3540   // well as most of the special aspects are recognized by a prefix on their
3541   // name, and the input names should already be unique. For test cases, keeping
3542   // the symbol name out of the symbol table isn't terribly important.
3543   return MF.getContext().getOrCreateSymbol(Name);
3544 }
3545 
3546 bool MIParser::parseStringConstant(std::string &Result) {
3547   if (Token.isNot(MIToken::StringConstant))
3548     return error("expected string constant");
3549   Result = std::string(Token.stringValue());
3550   lex();
3551   return false;
3552 }
3553 
3554 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3555                                              StringRef Src,
3556                                              SMDiagnostic &Error) {
3557   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3558 }
3559 
3560 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3561                                     StringRef Src, SMDiagnostic &Error) {
3562   return MIParser(PFS, Error, Src).parseBasicBlocks();
3563 }
3564 
3565 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3566                              MachineBasicBlock *&MBB, StringRef Src,
3567                              SMDiagnostic &Error) {
3568   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3569 }
3570 
3571 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3572                                   Register &Reg, StringRef Src,
3573                                   SMDiagnostic &Error) {
3574   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3575 }
3576 
3577 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3578                                        Register &Reg, StringRef Src,
3579                                        SMDiagnostic &Error) {
3580   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3581 }
3582 
3583 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3584                                          VRegInfo *&Info, StringRef Src,
3585                                          SMDiagnostic &Error) {
3586   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3587 }
3588 
3589 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3590                                      int &FI, StringRef Src,
3591                                      SMDiagnostic &Error) {
3592   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3593 }
3594 
3595 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3596                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3597   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3598 }
3599 
3600 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3601                                 SMRange SrcRange, SMDiagnostic &Error) {
3602   return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3603 }
3604 
3605 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3606                                 PerFunctionMIParsingState &PFS, const Value *&V,
3607                                 ErrorCallbackType ErrorCallback) {
3608   MIToken Token;
3609   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3610     ErrorCallback(Loc, Msg);
3611   });
3612   V = nullptr;
3613 
3614   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3615 }
3616