1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/MemoryLocation.h" 25 #include "llvm/AsmParser/Parser.h" 26 #include "llvm/AsmParser/SlotMapping.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MIRFormatter.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/RegisterBank.h" 39 #include "llvm/CodeGen/RegisterBankInfo.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/MC/LaneBitmask.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCDwarf.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Support/SourceMgr.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <cassert> 72 #include <cctype> 73 #include <cstddef> 74 #include <cstdint> 75 #include <limits> 76 #include <string> 77 #include <utility> 78 79 using namespace llvm; 80 81 void PerTargetMIParsingState::setTarget( 82 const TargetSubtargetInfo &NewSubtarget) { 83 84 // If the subtarget changed, over conservatively assume everything is invalid. 85 if (&Subtarget == &NewSubtarget) 86 return; 87 88 Names2InstrOpCodes.clear(); 89 Names2Regs.clear(); 90 Names2RegMasks.clear(); 91 Names2SubRegIndices.clear(); 92 Names2TargetIndices.clear(); 93 Names2DirectTargetFlags.clear(); 94 Names2BitmaskTargetFlags.clear(); 95 Names2MMOTargetFlags.clear(); 96 97 initNames2RegClasses(); 98 initNames2RegBanks(); 99 } 100 101 void PerTargetMIParsingState::initNames2Regs() { 102 if (!Names2Regs.empty()) 103 return; 104 105 // The '%noreg' register is the register 0. 106 Names2Regs.insert(std::make_pair("noreg", 0)); 107 const auto *TRI = Subtarget.getRegisterInfo(); 108 assert(TRI && "Expected target register info"); 109 110 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 111 bool WasInserted = 112 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 113 .second; 114 (void)WasInserted; 115 assert(WasInserted && "Expected registers to be unique case-insensitively"); 116 } 117 } 118 119 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 120 Register &Reg) { 121 initNames2Regs(); 122 auto RegInfo = Names2Regs.find(RegName); 123 if (RegInfo == Names2Regs.end()) 124 return true; 125 Reg = RegInfo->getValue(); 126 return false; 127 } 128 129 void PerTargetMIParsingState::initNames2InstrOpCodes() { 130 if (!Names2InstrOpCodes.empty()) 131 return; 132 const auto *TII = Subtarget.getInstrInfo(); 133 assert(TII && "Expected target instruction info"); 134 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 135 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 136 } 137 138 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 139 unsigned &OpCode) { 140 initNames2InstrOpCodes(); 141 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 142 if (InstrInfo == Names2InstrOpCodes.end()) 143 return true; 144 OpCode = InstrInfo->getValue(); 145 return false; 146 } 147 148 void PerTargetMIParsingState::initNames2RegMasks() { 149 if (!Names2RegMasks.empty()) 150 return; 151 const auto *TRI = Subtarget.getRegisterInfo(); 152 assert(TRI && "Expected target register info"); 153 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 154 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 155 assert(RegMasks.size() == RegMaskNames.size()); 156 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 157 Names2RegMasks.insert( 158 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 159 } 160 161 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 162 initNames2RegMasks(); 163 auto RegMaskInfo = Names2RegMasks.find(Identifier); 164 if (RegMaskInfo == Names2RegMasks.end()) 165 return nullptr; 166 return RegMaskInfo->getValue(); 167 } 168 169 void PerTargetMIParsingState::initNames2SubRegIndices() { 170 if (!Names2SubRegIndices.empty()) 171 return; 172 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 173 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 174 Names2SubRegIndices.insert( 175 std::make_pair(TRI->getSubRegIndexName(I), I)); 176 } 177 178 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 179 initNames2SubRegIndices(); 180 auto SubRegInfo = Names2SubRegIndices.find(Name); 181 if (SubRegInfo == Names2SubRegIndices.end()) 182 return 0; 183 return SubRegInfo->getValue(); 184 } 185 186 void PerTargetMIParsingState::initNames2TargetIndices() { 187 if (!Names2TargetIndices.empty()) 188 return; 189 const auto *TII = Subtarget.getInstrInfo(); 190 assert(TII && "Expected target instruction info"); 191 auto Indices = TII->getSerializableTargetIndices(); 192 for (const auto &I : Indices) 193 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 194 } 195 196 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 197 initNames2TargetIndices(); 198 auto IndexInfo = Names2TargetIndices.find(Name); 199 if (IndexInfo == Names2TargetIndices.end()) 200 return true; 201 Index = IndexInfo->second; 202 return false; 203 } 204 205 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 206 if (!Names2DirectTargetFlags.empty()) 207 return; 208 209 const auto *TII = Subtarget.getInstrInfo(); 210 assert(TII && "Expected target instruction info"); 211 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 212 for (const auto &I : Flags) 213 Names2DirectTargetFlags.insert( 214 std::make_pair(StringRef(I.second), I.first)); 215 } 216 217 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 218 unsigned &Flag) { 219 initNames2DirectTargetFlags(); 220 auto FlagInfo = Names2DirectTargetFlags.find(Name); 221 if (FlagInfo == Names2DirectTargetFlags.end()) 222 return true; 223 Flag = FlagInfo->second; 224 return false; 225 } 226 227 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 228 if (!Names2BitmaskTargetFlags.empty()) 229 return; 230 231 const auto *TII = Subtarget.getInstrInfo(); 232 assert(TII && "Expected target instruction info"); 233 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 234 for (const auto &I : Flags) 235 Names2BitmaskTargetFlags.insert( 236 std::make_pair(StringRef(I.second), I.first)); 237 } 238 239 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 240 unsigned &Flag) { 241 initNames2BitmaskTargetFlags(); 242 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 243 if (FlagInfo == Names2BitmaskTargetFlags.end()) 244 return true; 245 Flag = FlagInfo->second; 246 return false; 247 } 248 249 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 250 if (!Names2MMOTargetFlags.empty()) 251 return; 252 253 const auto *TII = Subtarget.getInstrInfo(); 254 assert(TII && "Expected target instruction info"); 255 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 256 for (const auto &I : Flags) 257 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 258 } 259 260 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 261 MachineMemOperand::Flags &Flag) { 262 initNames2MMOTargetFlags(); 263 auto FlagInfo = Names2MMOTargetFlags.find(Name); 264 if (FlagInfo == Names2MMOTargetFlags.end()) 265 return true; 266 Flag = FlagInfo->second; 267 return false; 268 } 269 270 void PerTargetMIParsingState::initNames2RegClasses() { 271 if (!Names2RegClasses.empty()) 272 return; 273 274 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 275 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 276 const auto *RC = TRI->getRegClass(I); 277 Names2RegClasses.insert( 278 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 279 } 280 } 281 282 void PerTargetMIParsingState::initNames2RegBanks() { 283 if (!Names2RegBanks.empty()) 284 return; 285 286 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 287 // If the target does not support GlobalISel, we may not have a 288 // register bank info. 289 if (!RBI) 290 return; 291 292 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 293 const auto &RegBank = RBI->getRegBank(I); 294 Names2RegBanks.insert( 295 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 296 } 297 } 298 299 const TargetRegisterClass * 300 PerTargetMIParsingState::getRegClass(StringRef Name) { 301 auto RegClassInfo = Names2RegClasses.find(Name); 302 if (RegClassInfo == Names2RegClasses.end()) 303 return nullptr; 304 return RegClassInfo->getValue(); 305 } 306 307 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 308 auto RegBankInfo = Names2RegBanks.find(Name); 309 if (RegBankInfo == Names2RegBanks.end()) 310 return nullptr; 311 return RegBankInfo->getValue(); 312 } 313 314 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 315 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 316 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 317 } 318 319 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 320 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 321 if (I.second) { 322 MachineRegisterInfo &MRI = MF.getRegInfo(); 323 VRegInfo *Info = new (Allocator) VRegInfo; 324 Info->VReg = MRI.createIncompleteVirtualRegister(); 325 I.first->second = Info; 326 } 327 return *I.first->second; 328 } 329 330 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 331 assert(RegName != "" && "Expected named reg."); 332 333 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 334 if (I.second) { 335 VRegInfo *Info = new (Allocator) VRegInfo; 336 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 337 I.first->second = Info; 338 } 339 return *I.first->second; 340 } 341 342 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 343 DenseMap<unsigned, const Value *> &Slots2Values) { 344 int Slot = MST.getLocalSlot(V); 345 if (Slot == -1) 346 return; 347 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 348 } 349 350 /// Creates the mapping from slot numbers to function's unnamed IR values. 351 static void initSlots2Values(const Function &F, 352 DenseMap<unsigned, const Value *> &Slots2Values) { 353 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 354 MST.incorporateFunction(F); 355 for (const auto &Arg : F.args()) 356 mapValueToSlot(&Arg, MST, Slots2Values); 357 for (const auto &BB : F) { 358 mapValueToSlot(&BB, MST, Slots2Values); 359 for (const auto &I : BB) 360 mapValueToSlot(&I, MST, Slots2Values); 361 } 362 } 363 364 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 365 if (Slots2Values.empty()) 366 initSlots2Values(MF.getFunction(), Slots2Values); 367 return Slots2Values.lookup(Slot); 368 } 369 370 namespace { 371 372 /// A wrapper struct around the 'MachineOperand' struct that includes a source 373 /// range and other attributes. 374 struct ParsedMachineOperand { 375 MachineOperand Operand; 376 StringRef::iterator Begin; 377 StringRef::iterator End; 378 std::optional<unsigned> TiedDefIdx; 379 380 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 381 StringRef::iterator End, 382 std::optional<unsigned> &TiedDefIdx) 383 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 384 if (TiedDefIdx) 385 assert(Operand.isReg() && Operand.isUse() && 386 "Only used register operands can be tied"); 387 } 388 }; 389 390 class MIParser { 391 MachineFunction &MF; 392 SMDiagnostic &Error; 393 StringRef Source, CurrentSource; 394 SMRange SourceRange; 395 MIToken Token; 396 PerFunctionMIParsingState &PFS; 397 /// Maps from slot numbers to function's unnamed basic blocks. 398 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 399 400 public: 401 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 402 StringRef Source); 403 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 404 StringRef Source, SMRange SourceRange); 405 406 /// \p SkipChar gives the number of characters to skip before looking 407 /// for the next token. 408 void lex(unsigned SkipChar = 0); 409 410 /// Report an error at the current location with the given message. 411 /// 412 /// This function always return true. 413 bool error(const Twine &Msg); 414 415 /// Report an error at the given location with the given message. 416 /// 417 /// This function always return true. 418 bool error(StringRef::iterator Loc, const Twine &Msg); 419 420 bool 421 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 422 bool parseBasicBlocks(); 423 bool parse(MachineInstr *&MI); 424 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 425 bool parseStandaloneNamedRegister(Register &Reg); 426 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 427 bool parseStandaloneRegister(Register &Reg); 428 bool parseStandaloneStackObject(int &FI); 429 bool parseStandaloneMDNode(MDNode *&Node); 430 bool parseMachineMetadata(); 431 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 432 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 433 bool parseMetadata(Metadata *&MD); 434 435 bool 436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 437 bool parseBasicBlock(MachineBasicBlock &MBB, 438 MachineBasicBlock *&AddFalthroughFrom); 439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 441 442 bool parseNamedRegister(Register &Reg); 443 bool parseVirtualRegister(VRegInfo *&Info); 444 bool parseNamedVirtualRegister(VRegInfo *&Info); 445 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 446 bool parseRegisterFlag(unsigned &Flags); 447 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 448 bool parseSubRegisterIndex(unsigned &SubReg); 449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 450 bool parseRegisterOperand(MachineOperand &Dest, 451 std::optional<unsigned> &TiedDefIdx, 452 bool IsDef = false); 453 bool parseImmediateOperand(MachineOperand &Dest); 454 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 455 const Constant *&C); 456 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 457 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 458 bool parseTypedImmediateOperand(MachineOperand &Dest); 459 bool parseFPImmediateOperand(MachineOperand &Dest); 460 bool parseMBBReference(MachineBasicBlock *&MBB); 461 bool parseMBBOperand(MachineOperand &Dest); 462 bool parseStackFrameIndex(int &FI); 463 bool parseStackObjectOperand(MachineOperand &Dest); 464 bool parseFixedStackFrameIndex(int &FI); 465 bool parseFixedStackObjectOperand(MachineOperand &Dest); 466 bool parseGlobalValue(GlobalValue *&GV); 467 bool parseGlobalAddressOperand(MachineOperand &Dest); 468 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 469 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 470 bool parseJumpTableIndexOperand(MachineOperand &Dest); 471 bool parseExternalSymbolOperand(MachineOperand &Dest); 472 bool parseMCSymbolOperand(MachineOperand &Dest); 473 [[nodiscard]] bool parseMDNode(MDNode *&Node); 474 bool parseDIExpression(MDNode *&Expr); 475 bool parseDILocation(MDNode *&Expr); 476 bool parseMetadataOperand(MachineOperand &Dest); 477 bool parseCFIOffset(int &Offset); 478 bool parseCFIRegister(Register &Reg); 479 bool parseCFIAddressSpace(unsigned &AddressSpace); 480 bool parseCFIEscapeValues(std::string& Values); 481 bool parseCFIOperand(MachineOperand &Dest); 482 bool parseIRBlock(BasicBlock *&BB, const Function &F); 483 bool parseBlockAddressOperand(MachineOperand &Dest); 484 bool parseIntrinsicOperand(MachineOperand &Dest); 485 bool parsePredicateOperand(MachineOperand &Dest); 486 bool parseShuffleMaskOperand(MachineOperand &Dest); 487 bool parseTargetIndexOperand(MachineOperand &Dest); 488 bool parseDbgInstrRefOperand(MachineOperand &Dest); 489 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 490 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 491 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 492 MachineOperand &Dest, 493 std::optional<unsigned> &TiedDefIdx); 494 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 495 const unsigned OpIdx, 496 MachineOperand &Dest, 497 std::optional<unsigned> &TiedDefIdx); 498 bool parseOffset(int64_t &Offset); 499 bool parseIRBlockAddressTaken(BasicBlock *&BB); 500 bool parseAlignment(uint64_t &Alignment); 501 bool parseAddrspace(unsigned &Addrspace); 502 bool parseSectionID(std::optional<MBBSectionID> &SID); 503 bool parseBBID(std::optional<unsigned> &BBID); 504 bool parseOperandsOffset(MachineOperand &Op); 505 bool parseIRValue(const Value *&V); 506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 508 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 513 bool parseHeapAllocMarker(MDNode *&Node); 514 bool parsePCSections(MDNode *&Node); 515 516 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 517 MachineOperand &Dest, const MIRFormatter &MF); 518 519 private: 520 /// Convert the integer literal in the current token into an unsigned integer. 521 /// 522 /// Return true if an error occurred. 523 bool getUnsigned(unsigned &Result); 524 525 /// Convert the integer literal in the current token into an uint64. 526 /// 527 /// Return true if an error occurred. 528 bool getUint64(uint64_t &Result); 529 530 /// Convert the hexadecimal literal in the current token into an unsigned 531 /// APInt with a minimum bitwidth required to represent the value. 532 /// 533 /// Return true if the literal does not represent an integer value. 534 bool getHexUint(APInt &Result); 535 536 /// If the current token is of the given kind, consume it and return false. 537 /// Otherwise report an error and return true. 538 bool expectAndConsume(MIToken::TokenKind TokenKind); 539 540 /// If the current token is of the given kind, consume it and return true. 541 /// Otherwise return false. 542 bool consumeIfPresent(MIToken::TokenKind TokenKind); 543 544 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 545 546 bool assignRegisterTies(MachineInstr &MI, 547 ArrayRef<ParsedMachineOperand> Operands); 548 549 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 550 const MCInstrDesc &MCID); 551 552 const BasicBlock *getIRBlock(unsigned Slot); 553 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 554 555 /// Get or create an MCSymbol for a given name. 556 MCSymbol *getOrCreateMCSymbol(StringRef Name); 557 558 /// parseStringConstant 559 /// ::= StringConstant 560 bool parseStringConstant(std::string &Result); 561 562 /// Map the location in the MI string to the corresponding location specified 563 /// in `SourceRange`. 564 SMLoc mapSMLoc(StringRef::iterator Loc); 565 }; 566 567 } // end anonymous namespace 568 569 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 570 StringRef Source) 571 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 572 {} 573 574 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 575 StringRef Source, SMRange SourceRange) 576 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 577 SourceRange(SourceRange), PFS(PFS) {} 578 579 void MIParser::lex(unsigned SkipChar) { 580 CurrentSource = lexMIToken( 581 CurrentSource.slice(SkipChar, StringRef::npos), Token, 582 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 583 } 584 585 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 586 587 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 588 const SourceMgr &SM = *PFS.SM; 589 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 590 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 591 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 592 // Create an ordinary diagnostic when the source manager's buffer is the 593 // source string. 594 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 595 return true; 596 } 597 // Create a diagnostic for a YAML string literal. 598 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 599 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 600 Source, std::nullopt, std::nullopt); 601 return true; 602 } 603 604 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 605 assert(SourceRange.isValid() && "Invalid source range"); 606 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 607 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 608 (Loc - Source.data())); 609 } 610 611 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 612 ErrorCallbackType; 613 614 static const char *toString(MIToken::TokenKind TokenKind) { 615 switch (TokenKind) { 616 case MIToken::comma: 617 return "','"; 618 case MIToken::equal: 619 return "'='"; 620 case MIToken::colon: 621 return "':'"; 622 case MIToken::lparen: 623 return "'('"; 624 case MIToken::rparen: 625 return "')'"; 626 default: 627 return "<unknown token>"; 628 } 629 } 630 631 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 632 if (Token.isNot(TokenKind)) 633 return error(Twine("expected ") + toString(TokenKind)); 634 lex(); 635 return false; 636 } 637 638 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 639 if (Token.isNot(TokenKind)) 640 return false; 641 lex(); 642 return true; 643 } 644 645 // Parse Machine Basic Block Section ID. 646 bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) { 647 assert(Token.is(MIToken::kw_bbsections)); 648 lex(); 649 if (Token.is(MIToken::IntegerLiteral)) { 650 unsigned Value = 0; 651 if (getUnsigned(Value)) 652 return error("Unknown Section ID"); 653 SID = MBBSectionID{Value}; 654 } else { 655 const StringRef &S = Token.stringValue(); 656 if (S == "Exception") 657 SID = MBBSectionID::ExceptionSectionID; 658 else if (S == "Cold") 659 SID = MBBSectionID::ColdSectionID; 660 else 661 return error("Unknown Section ID"); 662 } 663 lex(); 664 return false; 665 } 666 667 // Parse Machine Basic Block ID. 668 bool MIParser::parseBBID(std::optional<unsigned> &BBID) { 669 assert(Token.is(MIToken::kw_bb_id)); 670 lex(); 671 unsigned Value = 0; 672 if (getUnsigned(Value)) 673 return error("Unknown BB ID"); 674 BBID = Value; 675 lex(); 676 return false; 677 } 678 679 bool MIParser::parseBasicBlockDefinition( 680 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 681 assert(Token.is(MIToken::MachineBasicBlockLabel)); 682 unsigned ID = 0; 683 if (getUnsigned(ID)) 684 return true; 685 auto Loc = Token.location(); 686 auto Name = Token.stringValue(); 687 lex(); 688 bool MachineBlockAddressTaken = false; 689 BasicBlock *AddressTakenIRBlock = nullptr; 690 bool IsLandingPad = false; 691 bool IsInlineAsmBrIndirectTarget = false; 692 bool IsEHFuncletEntry = false; 693 std::optional<MBBSectionID> SectionID; 694 uint64_t Alignment = 0; 695 std::optional<unsigned> BBID; 696 BasicBlock *BB = nullptr; 697 if (consumeIfPresent(MIToken::lparen)) { 698 do { 699 // TODO: Report an error when multiple same attributes are specified. 700 switch (Token.kind()) { 701 case MIToken::kw_machine_block_address_taken: 702 MachineBlockAddressTaken = true; 703 lex(); 704 break; 705 case MIToken::kw_ir_block_address_taken: 706 if (parseIRBlockAddressTaken(AddressTakenIRBlock)) 707 return true; 708 break; 709 case MIToken::kw_landing_pad: 710 IsLandingPad = true; 711 lex(); 712 break; 713 case MIToken::kw_inlineasm_br_indirect_target: 714 IsInlineAsmBrIndirectTarget = true; 715 lex(); 716 break; 717 case MIToken::kw_ehfunclet_entry: 718 IsEHFuncletEntry = true; 719 lex(); 720 break; 721 case MIToken::kw_align: 722 if (parseAlignment(Alignment)) 723 return true; 724 break; 725 case MIToken::IRBlock: 726 case MIToken::NamedIRBlock: 727 // TODO: Report an error when both name and ir block are specified. 728 if (parseIRBlock(BB, MF.getFunction())) 729 return true; 730 lex(); 731 break; 732 case MIToken::kw_bbsections: 733 if (parseSectionID(SectionID)) 734 return true; 735 break; 736 case MIToken::kw_bb_id: 737 if (parseBBID(BBID)) 738 return true; 739 break; 740 default: 741 break; 742 } 743 } while (consumeIfPresent(MIToken::comma)); 744 if (expectAndConsume(MIToken::rparen)) 745 return true; 746 } 747 if (expectAndConsume(MIToken::colon)) 748 return true; 749 750 if (!Name.empty()) { 751 BB = dyn_cast_or_null<BasicBlock>( 752 MF.getFunction().getValueSymbolTable()->lookup(Name)); 753 if (!BB) 754 return error(Loc, Twine("basic block '") + Name + 755 "' is not defined in the function '" + 756 MF.getName() + "'"); 757 } 758 auto *MBB = MF.CreateMachineBasicBlock(BB); 759 MF.insert(MF.end(), MBB); 760 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 761 if (!WasInserted) 762 return error(Loc, Twine("redefinition of machine basic block with id #") + 763 Twine(ID)); 764 if (Alignment) 765 MBB->setAlignment(Align(Alignment)); 766 if (MachineBlockAddressTaken) 767 MBB->setMachineBlockAddressTaken(); 768 if (AddressTakenIRBlock) 769 MBB->setAddressTakenIRBlock(AddressTakenIRBlock); 770 MBB->setIsEHPad(IsLandingPad); 771 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget); 772 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 773 if (SectionID) { 774 MBB->setSectionID(*SectionID); 775 MF.setBBSectionsType(BasicBlockSection::List); 776 } 777 if (BBID.has_value()) { 778 // BBSectionsType is set to `List` if any basic blocks has `SectionID`. 779 // Here, we set it to `Labels` if it hasn't been set above. 780 if (!MF.hasBBSections()) 781 MF.setBBSectionsType(BasicBlockSection::Labels); 782 MBB->setBBID(BBID.value()); 783 } 784 return false; 785 } 786 787 bool MIParser::parseBasicBlockDefinitions( 788 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 789 lex(); 790 // Skip until the first machine basic block. 791 while (Token.is(MIToken::Newline)) 792 lex(); 793 if (Token.isErrorOrEOF()) 794 return Token.isError(); 795 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 796 return error("expected a basic block definition before instructions"); 797 unsigned BraceDepth = 0; 798 do { 799 if (parseBasicBlockDefinition(MBBSlots)) 800 return true; 801 bool IsAfterNewline = false; 802 // Skip until the next machine basic block. 803 while (true) { 804 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 805 Token.isErrorOrEOF()) 806 break; 807 else if (Token.is(MIToken::MachineBasicBlockLabel)) 808 return error("basic block definition should be located at the start of " 809 "the line"); 810 else if (consumeIfPresent(MIToken::Newline)) { 811 IsAfterNewline = true; 812 continue; 813 } 814 IsAfterNewline = false; 815 if (Token.is(MIToken::lbrace)) 816 ++BraceDepth; 817 if (Token.is(MIToken::rbrace)) { 818 if (!BraceDepth) 819 return error("extraneous closing brace ('}')"); 820 --BraceDepth; 821 } 822 lex(); 823 } 824 // Verify that we closed all of the '{' at the end of a file or a block. 825 if (!Token.isError() && BraceDepth) 826 return error("expected '}'"); // FIXME: Report a note that shows '{'. 827 } while (!Token.isErrorOrEOF()); 828 return Token.isError(); 829 } 830 831 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 832 assert(Token.is(MIToken::kw_liveins)); 833 lex(); 834 if (expectAndConsume(MIToken::colon)) 835 return true; 836 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 837 return false; 838 do { 839 if (Token.isNot(MIToken::NamedRegister)) 840 return error("expected a named register"); 841 Register Reg; 842 if (parseNamedRegister(Reg)) 843 return true; 844 lex(); 845 LaneBitmask Mask = LaneBitmask::getAll(); 846 if (consumeIfPresent(MIToken::colon)) { 847 // Parse lane mask. 848 if (Token.isNot(MIToken::IntegerLiteral) && 849 Token.isNot(MIToken::HexLiteral)) 850 return error("expected a lane mask"); 851 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 852 "Use correct get-function for lane mask"); 853 LaneBitmask::Type V; 854 if (getUint64(V)) 855 return error("invalid lane mask value"); 856 Mask = LaneBitmask(V); 857 lex(); 858 } 859 MBB.addLiveIn(Reg, Mask); 860 } while (consumeIfPresent(MIToken::comma)); 861 return false; 862 } 863 864 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 865 assert(Token.is(MIToken::kw_successors)); 866 lex(); 867 if (expectAndConsume(MIToken::colon)) 868 return true; 869 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 870 return false; 871 do { 872 if (Token.isNot(MIToken::MachineBasicBlock)) 873 return error("expected a machine basic block reference"); 874 MachineBasicBlock *SuccMBB = nullptr; 875 if (parseMBBReference(SuccMBB)) 876 return true; 877 lex(); 878 unsigned Weight = 0; 879 if (consumeIfPresent(MIToken::lparen)) { 880 if (Token.isNot(MIToken::IntegerLiteral) && 881 Token.isNot(MIToken::HexLiteral)) 882 return error("expected an integer literal after '('"); 883 if (getUnsigned(Weight)) 884 return true; 885 lex(); 886 if (expectAndConsume(MIToken::rparen)) 887 return true; 888 } 889 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 890 } while (consumeIfPresent(MIToken::comma)); 891 MBB.normalizeSuccProbs(); 892 return false; 893 } 894 895 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 896 MachineBasicBlock *&AddFalthroughFrom) { 897 // Skip the definition. 898 assert(Token.is(MIToken::MachineBasicBlockLabel)); 899 lex(); 900 if (consumeIfPresent(MIToken::lparen)) { 901 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 902 lex(); 903 consumeIfPresent(MIToken::rparen); 904 } 905 consumeIfPresent(MIToken::colon); 906 907 // Parse the liveins and successors. 908 // N.B: Multiple lists of successors and liveins are allowed and they're 909 // merged into one. 910 // Example: 911 // liveins: $edi 912 // liveins: $esi 913 // 914 // is equivalent to 915 // liveins: $edi, $esi 916 bool ExplicitSuccessors = false; 917 while (true) { 918 if (Token.is(MIToken::kw_successors)) { 919 if (parseBasicBlockSuccessors(MBB)) 920 return true; 921 ExplicitSuccessors = true; 922 } else if (Token.is(MIToken::kw_liveins)) { 923 if (parseBasicBlockLiveins(MBB)) 924 return true; 925 } else if (consumeIfPresent(MIToken::Newline)) { 926 continue; 927 } else 928 break; 929 if (!Token.isNewlineOrEOF()) 930 return error("expected line break at the end of a list"); 931 lex(); 932 } 933 934 // Parse the instructions. 935 bool IsInBundle = false; 936 MachineInstr *PrevMI = nullptr; 937 while (!Token.is(MIToken::MachineBasicBlockLabel) && 938 !Token.is(MIToken::Eof)) { 939 if (consumeIfPresent(MIToken::Newline)) 940 continue; 941 if (consumeIfPresent(MIToken::rbrace)) { 942 // The first parsing pass should verify that all closing '}' have an 943 // opening '{'. 944 assert(IsInBundle); 945 IsInBundle = false; 946 continue; 947 } 948 MachineInstr *MI = nullptr; 949 if (parse(MI)) 950 return true; 951 MBB.insert(MBB.end(), MI); 952 if (IsInBundle) { 953 PrevMI->setFlag(MachineInstr::BundledSucc); 954 MI->setFlag(MachineInstr::BundledPred); 955 } 956 PrevMI = MI; 957 if (Token.is(MIToken::lbrace)) { 958 if (IsInBundle) 959 return error("nested instruction bundles are not allowed"); 960 lex(); 961 // This instruction is the start of the bundle. 962 MI->setFlag(MachineInstr::BundledSucc); 963 IsInBundle = true; 964 if (!Token.is(MIToken::Newline)) 965 // The next instruction can be on the same line. 966 continue; 967 } 968 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 969 lex(); 970 } 971 972 // Construct successor list by searching for basic block machine operands. 973 if (!ExplicitSuccessors) { 974 SmallVector<MachineBasicBlock*,4> Successors; 975 bool IsFallthrough; 976 guessSuccessors(MBB, Successors, IsFallthrough); 977 for (MachineBasicBlock *Succ : Successors) 978 MBB.addSuccessor(Succ); 979 980 if (IsFallthrough) { 981 AddFalthroughFrom = &MBB; 982 } else { 983 MBB.normalizeSuccProbs(); 984 } 985 } 986 987 return false; 988 } 989 990 bool MIParser::parseBasicBlocks() { 991 lex(); 992 // Skip until the first machine basic block. 993 while (Token.is(MIToken::Newline)) 994 lex(); 995 if (Token.isErrorOrEOF()) 996 return Token.isError(); 997 // The first parsing pass should have verified that this token is a MBB label 998 // in the 'parseBasicBlockDefinitions' method. 999 assert(Token.is(MIToken::MachineBasicBlockLabel)); 1000 MachineBasicBlock *AddFalthroughFrom = nullptr; 1001 do { 1002 MachineBasicBlock *MBB = nullptr; 1003 if (parseMBBReference(MBB)) 1004 return true; 1005 if (AddFalthroughFrom) { 1006 if (!AddFalthroughFrom->isSuccessor(MBB)) 1007 AddFalthroughFrom->addSuccessor(MBB); 1008 AddFalthroughFrom->normalizeSuccProbs(); 1009 AddFalthroughFrom = nullptr; 1010 } 1011 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 1012 return true; 1013 // The method 'parseBasicBlock' should parse the whole block until the next 1014 // block or the end of file. 1015 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 1016 } while (Token.isNot(MIToken::Eof)); 1017 return false; 1018 } 1019 1020 bool MIParser::parse(MachineInstr *&MI) { 1021 // Parse any register operands before '=' 1022 MachineOperand MO = MachineOperand::CreateImm(0); 1023 SmallVector<ParsedMachineOperand, 8> Operands; 1024 while (Token.isRegister() || Token.isRegisterFlag()) { 1025 auto Loc = Token.location(); 1026 std::optional<unsigned> TiedDefIdx; 1027 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 1028 return true; 1029 Operands.push_back( 1030 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1031 if (Token.isNot(MIToken::comma)) 1032 break; 1033 lex(); 1034 } 1035 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 1036 return true; 1037 1038 unsigned OpCode, Flags = 0; 1039 if (Token.isError() || parseInstruction(OpCode, Flags)) 1040 return true; 1041 1042 // Parse the remaining machine operands. 1043 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1044 Token.isNot(MIToken::kw_post_instr_symbol) && 1045 Token.isNot(MIToken::kw_heap_alloc_marker) && 1046 Token.isNot(MIToken::kw_pcsections) && 1047 Token.isNot(MIToken::kw_cfi_type) && 1048 Token.isNot(MIToken::kw_debug_location) && 1049 Token.isNot(MIToken::kw_debug_instr_number) && 1050 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1051 auto Loc = Token.location(); 1052 std::optional<unsigned> TiedDefIdx; 1053 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1054 return true; 1055 Operands.push_back( 1056 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1057 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1058 Token.is(MIToken::lbrace)) 1059 break; 1060 if (Token.isNot(MIToken::comma)) 1061 return error("expected ',' before the next machine operand"); 1062 lex(); 1063 } 1064 1065 MCSymbol *PreInstrSymbol = nullptr; 1066 if (Token.is(MIToken::kw_pre_instr_symbol)) 1067 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1068 return true; 1069 MCSymbol *PostInstrSymbol = nullptr; 1070 if (Token.is(MIToken::kw_post_instr_symbol)) 1071 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1072 return true; 1073 MDNode *HeapAllocMarker = nullptr; 1074 if (Token.is(MIToken::kw_heap_alloc_marker)) 1075 if (parseHeapAllocMarker(HeapAllocMarker)) 1076 return true; 1077 MDNode *PCSections = nullptr; 1078 if (Token.is(MIToken::kw_pcsections)) 1079 if (parsePCSections(PCSections)) 1080 return true; 1081 1082 unsigned CFIType = 0; 1083 if (Token.is(MIToken::kw_cfi_type)) { 1084 lex(); 1085 if (Token.isNot(MIToken::IntegerLiteral)) 1086 return error("expected an integer literal after 'cfi-type'"); 1087 // getUnsigned is sufficient for 32-bit integers. 1088 if (getUnsigned(CFIType)) 1089 return true; 1090 lex(); 1091 // Lex past trailing comma if present. 1092 if (Token.is(MIToken::comma)) 1093 lex(); 1094 } 1095 1096 unsigned InstrNum = 0; 1097 if (Token.is(MIToken::kw_debug_instr_number)) { 1098 lex(); 1099 if (Token.isNot(MIToken::IntegerLiteral)) 1100 return error("expected an integer literal after 'debug-instr-number'"); 1101 if (getUnsigned(InstrNum)) 1102 return true; 1103 lex(); 1104 // Lex past trailing comma if present. 1105 if (Token.is(MIToken::comma)) 1106 lex(); 1107 } 1108 1109 DebugLoc DebugLocation; 1110 if (Token.is(MIToken::kw_debug_location)) { 1111 lex(); 1112 MDNode *Node = nullptr; 1113 if (Token.is(MIToken::exclaim)) { 1114 if (parseMDNode(Node)) 1115 return true; 1116 } else if (Token.is(MIToken::md_dilocation)) { 1117 if (parseDILocation(Node)) 1118 return true; 1119 } else 1120 return error("expected a metadata node after 'debug-location'"); 1121 if (!isa<DILocation>(Node)) 1122 return error("referenced metadata is not a DILocation"); 1123 DebugLocation = DebugLoc(Node); 1124 } 1125 1126 // Parse the machine memory operands. 1127 SmallVector<MachineMemOperand *, 2> MemOperands; 1128 if (Token.is(MIToken::coloncolon)) { 1129 lex(); 1130 while (!Token.isNewlineOrEOF()) { 1131 MachineMemOperand *MemOp = nullptr; 1132 if (parseMachineMemoryOperand(MemOp)) 1133 return true; 1134 MemOperands.push_back(MemOp); 1135 if (Token.isNewlineOrEOF()) 1136 break; 1137 if (Token.isNot(MIToken::comma)) 1138 return error("expected ',' before the next machine memory operand"); 1139 lex(); 1140 } 1141 } 1142 1143 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1144 if (!MCID.isVariadic()) { 1145 // FIXME: Move the implicit operand verification to the machine verifier. 1146 if (verifyImplicitOperands(Operands, MCID)) 1147 return true; 1148 } 1149 1150 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1151 MI->setFlags(Flags); 1152 1153 unsigned NumExplicitOps = 0; 1154 for (const auto &Operand : Operands) { 1155 bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit(); 1156 if (!IsImplicitOp) { 1157 if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() && 1158 !Operand.Operand.isValidExcessOperand()) 1159 return error(Operand.Begin, "too many operands for instruction"); 1160 1161 ++NumExplicitOps; 1162 } 1163 1164 MI->addOperand(MF, Operand.Operand); 1165 } 1166 1167 if (assignRegisterTies(*MI, Operands)) 1168 return true; 1169 if (PreInstrSymbol) 1170 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1171 if (PostInstrSymbol) 1172 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1173 if (HeapAllocMarker) 1174 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1175 if (PCSections) 1176 MI->setPCSections(MF, PCSections); 1177 if (CFIType) 1178 MI->setCFIType(MF, CFIType); 1179 if (!MemOperands.empty()) 1180 MI->setMemRefs(MF, MemOperands); 1181 if (InstrNum) 1182 MI->setDebugInstrNum(InstrNum); 1183 return false; 1184 } 1185 1186 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1187 lex(); 1188 if (Token.isNot(MIToken::MachineBasicBlock)) 1189 return error("expected a machine basic block reference"); 1190 if (parseMBBReference(MBB)) 1191 return true; 1192 lex(); 1193 if (Token.isNot(MIToken::Eof)) 1194 return error( 1195 "expected end of string after the machine basic block reference"); 1196 return false; 1197 } 1198 1199 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1200 lex(); 1201 if (Token.isNot(MIToken::NamedRegister)) 1202 return error("expected a named register"); 1203 if (parseNamedRegister(Reg)) 1204 return true; 1205 lex(); 1206 if (Token.isNot(MIToken::Eof)) 1207 return error("expected end of string after the register reference"); 1208 return false; 1209 } 1210 1211 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1212 lex(); 1213 if (Token.isNot(MIToken::VirtualRegister)) 1214 return error("expected a virtual register"); 1215 if (parseVirtualRegister(Info)) 1216 return true; 1217 lex(); 1218 if (Token.isNot(MIToken::Eof)) 1219 return error("expected end of string after the register reference"); 1220 return false; 1221 } 1222 1223 bool MIParser::parseStandaloneRegister(Register &Reg) { 1224 lex(); 1225 if (Token.isNot(MIToken::NamedRegister) && 1226 Token.isNot(MIToken::VirtualRegister)) 1227 return error("expected either a named or virtual register"); 1228 1229 VRegInfo *Info; 1230 if (parseRegister(Reg, Info)) 1231 return true; 1232 1233 lex(); 1234 if (Token.isNot(MIToken::Eof)) 1235 return error("expected end of string after the register reference"); 1236 return false; 1237 } 1238 1239 bool MIParser::parseStandaloneStackObject(int &FI) { 1240 lex(); 1241 if (Token.isNot(MIToken::StackObject)) 1242 return error("expected a stack object"); 1243 if (parseStackFrameIndex(FI)) 1244 return true; 1245 if (Token.isNot(MIToken::Eof)) 1246 return error("expected end of string after the stack object reference"); 1247 return false; 1248 } 1249 1250 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1251 lex(); 1252 if (Token.is(MIToken::exclaim)) { 1253 if (parseMDNode(Node)) 1254 return true; 1255 } else if (Token.is(MIToken::md_diexpr)) { 1256 if (parseDIExpression(Node)) 1257 return true; 1258 } else if (Token.is(MIToken::md_dilocation)) { 1259 if (parseDILocation(Node)) 1260 return true; 1261 } else 1262 return error("expected a metadata node"); 1263 if (Token.isNot(MIToken::Eof)) 1264 return error("expected end of string after the metadata node"); 1265 return false; 1266 } 1267 1268 bool MIParser::parseMachineMetadata() { 1269 lex(); 1270 if (Token.isNot(MIToken::exclaim)) 1271 return error("expected a metadata node"); 1272 1273 lex(); 1274 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1275 return error("expected metadata id after '!'"); 1276 unsigned ID = 0; 1277 if (getUnsigned(ID)) 1278 return true; 1279 lex(); 1280 if (expectAndConsume(MIToken::equal)) 1281 return true; 1282 bool IsDistinct = Token.is(MIToken::kw_distinct); 1283 if (IsDistinct) 1284 lex(); 1285 if (Token.isNot(MIToken::exclaim)) 1286 return error("expected a metadata node"); 1287 lex(); 1288 1289 MDNode *MD; 1290 if (parseMDTuple(MD, IsDistinct)) 1291 return true; 1292 1293 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1294 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1295 FI->second.first->replaceAllUsesWith(MD); 1296 PFS.MachineForwardRefMDNodes.erase(FI); 1297 1298 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1299 } else { 1300 if (PFS.MachineMetadataNodes.count(ID)) 1301 return error("Metadata id is already used"); 1302 PFS.MachineMetadataNodes[ID].reset(MD); 1303 } 1304 1305 return false; 1306 } 1307 1308 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1309 SmallVector<Metadata *, 16> Elts; 1310 if (parseMDNodeVector(Elts)) 1311 return true; 1312 MD = (IsDistinct ? MDTuple::getDistinct 1313 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1314 return false; 1315 } 1316 1317 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1318 if (Token.isNot(MIToken::lbrace)) 1319 return error("expected '{' here"); 1320 lex(); 1321 1322 if (Token.is(MIToken::rbrace)) { 1323 lex(); 1324 return false; 1325 } 1326 1327 do { 1328 Metadata *MD; 1329 if (parseMetadata(MD)) 1330 return true; 1331 1332 Elts.push_back(MD); 1333 1334 if (Token.isNot(MIToken::comma)) 1335 break; 1336 lex(); 1337 } while (true); 1338 1339 if (Token.isNot(MIToken::rbrace)) 1340 return error("expected end of metadata node"); 1341 lex(); 1342 1343 return false; 1344 } 1345 1346 // ::= !42 1347 // ::= !"string" 1348 bool MIParser::parseMetadata(Metadata *&MD) { 1349 if (Token.isNot(MIToken::exclaim)) 1350 return error("expected '!' here"); 1351 lex(); 1352 1353 if (Token.is(MIToken::StringConstant)) { 1354 std::string Str; 1355 if (parseStringConstant(Str)) 1356 return true; 1357 MD = MDString::get(MF.getFunction().getContext(), Str); 1358 return false; 1359 } 1360 1361 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1362 return error("expected metadata id after '!'"); 1363 1364 SMLoc Loc = mapSMLoc(Token.location()); 1365 1366 unsigned ID = 0; 1367 if (getUnsigned(ID)) 1368 return true; 1369 lex(); 1370 1371 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1372 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1373 MD = NodeInfo->second.get(); 1374 return false; 1375 } 1376 // Check machine metadata. 1377 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1378 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1379 MD = NodeInfo->second.get(); 1380 return false; 1381 } 1382 // Forward reference. 1383 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1384 FwdRef = std::make_pair( 1385 MDTuple::getTemporary(MF.getFunction().getContext(), std::nullopt), Loc); 1386 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1387 MD = FwdRef.first.get(); 1388 1389 return false; 1390 } 1391 1392 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1393 assert(MO.isImplicit()); 1394 return MO.isDef() ? "implicit-def" : "implicit"; 1395 } 1396 1397 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1398 Register Reg) { 1399 assert(Reg.isPhysical() && "expected phys reg"); 1400 return StringRef(TRI->getName(Reg)).lower(); 1401 } 1402 1403 /// Return true if the parsed machine operands contain a given machine operand. 1404 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1405 ArrayRef<ParsedMachineOperand> Operands) { 1406 for (const auto &I : Operands) { 1407 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1414 const MCInstrDesc &MCID) { 1415 if (MCID.isCall()) 1416 // We can't verify call instructions as they can contain arbitrary implicit 1417 // register and register mask operands. 1418 return false; 1419 1420 // Gather all the expected implicit operands. 1421 SmallVector<MachineOperand, 4> ImplicitOperands; 1422 for (MCPhysReg ImpDef : MCID.implicit_defs()) 1423 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true)); 1424 for (MCPhysReg ImpUse : MCID.implicit_uses()) 1425 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true)); 1426 1427 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1428 assert(TRI && "Expected target register info"); 1429 for (const auto &I : ImplicitOperands) { 1430 if (isImplicitOperandIn(I, Operands)) 1431 continue; 1432 return error(Operands.empty() ? Token.location() : Operands.back().End, 1433 Twine("missing implicit register operand '") + 1434 printImplicitRegisterFlag(I) + " $" + 1435 getRegisterName(TRI, I.getReg()) + "'"); 1436 } 1437 return false; 1438 } 1439 1440 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1441 // Allow frame and fast math flags for OPCODE 1442 while (Token.is(MIToken::kw_frame_setup) || 1443 Token.is(MIToken::kw_frame_destroy) || 1444 Token.is(MIToken::kw_nnan) || 1445 Token.is(MIToken::kw_ninf) || 1446 Token.is(MIToken::kw_nsz) || 1447 Token.is(MIToken::kw_arcp) || 1448 Token.is(MIToken::kw_contract) || 1449 Token.is(MIToken::kw_afn) || 1450 Token.is(MIToken::kw_reassoc) || 1451 Token.is(MIToken::kw_nuw) || 1452 Token.is(MIToken::kw_nsw) || 1453 Token.is(MIToken::kw_exact) || 1454 Token.is(MIToken::kw_nofpexcept) || 1455 Token.is(MIToken::kw_unpredictable)) { 1456 // Mine frame and fast math flags 1457 if (Token.is(MIToken::kw_frame_setup)) 1458 Flags |= MachineInstr::FrameSetup; 1459 if (Token.is(MIToken::kw_frame_destroy)) 1460 Flags |= MachineInstr::FrameDestroy; 1461 if (Token.is(MIToken::kw_nnan)) 1462 Flags |= MachineInstr::FmNoNans; 1463 if (Token.is(MIToken::kw_ninf)) 1464 Flags |= MachineInstr::FmNoInfs; 1465 if (Token.is(MIToken::kw_nsz)) 1466 Flags |= MachineInstr::FmNsz; 1467 if (Token.is(MIToken::kw_arcp)) 1468 Flags |= MachineInstr::FmArcp; 1469 if (Token.is(MIToken::kw_contract)) 1470 Flags |= MachineInstr::FmContract; 1471 if (Token.is(MIToken::kw_afn)) 1472 Flags |= MachineInstr::FmAfn; 1473 if (Token.is(MIToken::kw_reassoc)) 1474 Flags |= MachineInstr::FmReassoc; 1475 if (Token.is(MIToken::kw_nuw)) 1476 Flags |= MachineInstr::NoUWrap; 1477 if (Token.is(MIToken::kw_nsw)) 1478 Flags |= MachineInstr::NoSWrap; 1479 if (Token.is(MIToken::kw_exact)) 1480 Flags |= MachineInstr::IsExact; 1481 if (Token.is(MIToken::kw_nofpexcept)) 1482 Flags |= MachineInstr::NoFPExcept; 1483 if (Token.is(MIToken::kw_unpredictable)) 1484 Flags |= MachineInstr::Unpredictable; 1485 1486 lex(); 1487 } 1488 if (Token.isNot(MIToken::Identifier)) 1489 return error("expected a machine instruction"); 1490 StringRef InstrName = Token.stringValue(); 1491 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1492 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1493 lex(); 1494 return false; 1495 } 1496 1497 bool MIParser::parseNamedRegister(Register &Reg) { 1498 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1499 StringRef Name = Token.stringValue(); 1500 if (PFS.Target.getRegisterByName(Name, Reg)) 1501 return error(Twine("unknown register name '") + Name + "'"); 1502 return false; 1503 } 1504 1505 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1506 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1507 StringRef Name = Token.stringValue(); 1508 // TODO: Check that the VReg name is not the same as a physical register name. 1509 // If it is, then print a warning (when warnings are implemented). 1510 Info = &PFS.getVRegInfoNamed(Name); 1511 return false; 1512 } 1513 1514 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1515 if (Token.is(MIToken::NamedVirtualRegister)) 1516 return parseNamedVirtualRegister(Info); 1517 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1518 unsigned ID; 1519 if (getUnsigned(ID)) 1520 return true; 1521 Info = &PFS.getVRegInfo(ID); 1522 return false; 1523 } 1524 1525 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1526 switch (Token.kind()) { 1527 case MIToken::underscore: 1528 Reg = 0; 1529 return false; 1530 case MIToken::NamedRegister: 1531 return parseNamedRegister(Reg); 1532 case MIToken::NamedVirtualRegister: 1533 case MIToken::VirtualRegister: 1534 if (parseVirtualRegister(Info)) 1535 return true; 1536 Reg = Info->VReg; 1537 return false; 1538 // TODO: Parse other register kinds. 1539 default: 1540 llvm_unreachable("The current token should be a register"); 1541 } 1542 } 1543 1544 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1545 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1546 return error("expected '_', register class, or register bank name"); 1547 StringRef::iterator Loc = Token.location(); 1548 StringRef Name = Token.stringValue(); 1549 1550 // Was it a register class? 1551 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1552 if (RC) { 1553 lex(); 1554 1555 switch (RegInfo.Kind) { 1556 case VRegInfo::UNKNOWN: 1557 case VRegInfo::NORMAL: 1558 RegInfo.Kind = VRegInfo::NORMAL; 1559 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1560 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1561 return error(Loc, Twine("conflicting register classes, previously: ") + 1562 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1563 } 1564 RegInfo.D.RC = RC; 1565 RegInfo.Explicit = true; 1566 return false; 1567 1568 case VRegInfo::GENERIC: 1569 case VRegInfo::REGBANK: 1570 return error(Loc, "register class specification on generic register"); 1571 } 1572 llvm_unreachable("Unexpected register kind"); 1573 } 1574 1575 // Should be a register bank or a generic register. 1576 const RegisterBank *RegBank = nullptr; 1577 if (Name != "_") { 1578 RegBank = PFS.Target.getRegBank(Name); 1579 if (!RegBank) 1580 return error(Loc, "expected '_', register class, or register bank name"); 1581 } 1582 1583 lex(); 1584 1585 switch (RegInfo.Kind) { 1586 case VRegInfo::UNKNOWN: 1587 case VRegInfo::GENERIC: 1588 case VRegInfo::REGBANK: 1589 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1590 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1591 return error(Loc, "conflicting generic register banks"); 1592 RegInfo.D.RegBank = RegBank; 1593 RegInfo.Explicit = true; 1594 return false; 1595 1596 case VRegInfo::NORMAL: 1597 return error(Loc, "register bank specification on normal register"); 1598 } 1599 llvm_unreachable("Unexpected register kind"); 1600 } 1601 1602 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1603 const unsigned OldFlags = Flags; 1604 switch (Token.kind()) { 1605 case MIToken::kw_implicit: 1606 Flags |= RegState::Implicit; 1607 break; 1608 case MIToken::kw_implicit_define: 1609 Flags |= RegState::ImplicitDefine; 1610 break; 1611 case MIToken::kw_def: 1612 Flags |= RegState::Define; 1613 break; 1614 case MIToken::kw_dead: 1615 Flags |= RegState::Dead; 1616 break; 1617 case MIToken::kw_killed: 1618 Flags |= RegState::Kill; 1619 break; 1620 case MIToken::kw_undef: 1621 Flags |= RegState::Undef; 1622 break; 1623 case MIToken::kw_internal: 1624 Flags |= RegState::InternalRead; 1625 break; 1626 case MIToken::kw_early_clobber: 1627 Flags |= RegState::EarlyClobber; 1628 break; 1629 case MIToken::kw_debug_use: 1630 Flags |= RegState::Debug; 1631 break; 1632 case MIToken::kw_renamable: 1633 Flags |= RegState::Renamable; 1634 break; 1635 default: 1636 llvm_unreachable("The current token should be a register flag"); 1637 } 1638 if (OldFlags == Flags) 1639 // We know that the same flag is specified more than once when the flags 1640 // weren't modified. 1641 return error("duplicate '" + Token.stringValue() + "' register flag"); 1642 lex(); 1643 return false; 1644 } 1645 1646 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1647 assert(Token.is(MIToken::dot)); 1648 lex(); 1649 if (Token.isNot(MIToken::Identifier)) 1650 return error("expected a subregister index after '.'"); 1651 auto Name = Token.stringValue(); 1652 SubReg = PFS.Target.getSubRegIndex(Name); 1653 if (!SubReg) 1654 return error(Twine("use of unknown subregister index '") + Name + "'"); 1655 lex(); 1656 return false; 1657 } 1658 1659 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1660 if (!consumeIfPresent(MIToken::kw_tied_def)) 1661 return true; 1662 if (Token.isNot(MIToken::IntegerLiteral)) 1663 return error("expected an integer literal after 'tied-def'"); 1664 if (getUnsigned(TiedDefIdx)) 1665 return true; 1666 lex(); 1667 if (expectAndConsume(MIToken::rparen)) 1668 return true; 1669 return false; 1670 } 1671 1672 bool MIParser::assignRegisterTies(MachineInstr &MI, 1673 ArrayRef<ParsedMachineOperand> Operands) { 1674 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1675 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1676 if (!Operands[I].TiedDefIdx) 1677 continue; 1678 // The parser ensures that this operand is a register use, so we just have 1679 // to check the tied-def operand. 1680 unsigned DefIdx = *Operands[I].TiedDefIdx; 1681 if (DefIdx >= E) 1682 return error(Operands[I].Begin, 1683 Twine("use of invalid tied-def operand index '" + 1684 Twine(DefIdx) + "'; instruction has only ") + 1685 Twine(E) + " operands"); 1686 const auto &DefOperand = Operands[DefIdx].Operand; 1687 if (!DefOperand.isReg() || !DefOperand.isDef()) 1688 // FIXME: add note with the def operand. 1689 return error(Operands[I].Begin, 1690 Twine("use of invalid tied-def operand index '") + 1691 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1692 " isn't a defined register"); 1693 // Check that the tied-def operand wasn't tied elsewhere. 1694 for (const auto &TiedPair : TiedRegisterPairs) { 1695 if (TiedPair.first == DefIdx) 1696 return error(Operands[I].Begin, 1697 Twine("the tied-def operand #") + Twine(DefIdx) + 1698 " is already tied with another register operand"); 1699 } 1700 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1701 } 1702 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1703 // indices must be less than tied max. 1704 for (const auto &TiedPair : TiedRegisterPairs) 1705 MI.tieOperands(TiedPair.first, TiedPair.second); 1706 return false; 1707 } 1708 1709 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1710 std::optional<unsigned> &TiedDefIdx, 1711 bool IsDef) { 1712 unsigned Flags = IsDef ? RegState::Define : 0; 1713 while (Token.isRegisterFlag()) { 1714 if (parseRegisterFlag(Flags)) 1715 return true; 1716 } 1717 if (!Token.isRegister()) 1718 return error("expected a register after register flags"); 1719 Register Reg; 1720 VRegInfo *RegInfo; 1721 if (parseRegister(Reg, RegInfo)) 1722 return true; 1723 lex(); 1724 unsigned SubReg = 0; 1725 if (Token.is(MIToken::dot)) { 1726 if (parseSubRegisterIndex(SubReg)) 1727 return true; 1728 if (!Reg.isVirtual()) 1729 return error("subregister index expects a virtual register"); 1730 } 1731 if (Token.is(MIToken::colon)) { 1732 if (!Reg.isVirtual()) 1733 return error("register class specification expects a virtual register"); 1734 lex(); 1735 if (parseRegisterClassOrBank(*RegInfo)) 1736 return true; 1737 } 1738 MachineRegisterInfo &MRI = MF.getRegInfo(); 1739 if ((Flags & RegState::Define) == 0) { 1740 if (consumeIfPresent(MIToken::lparen)) { 1741 unsigned Idx; 1742 if (!parseRegisterTiedDefIndex(Idx)) 1743 TiedDefIdx = Idx; 1744 else { 1745 // Try a redundant low-level type. 1746 LLT Ty; 1747 if (parseLowLevelType(Token.location(), Ty)) 1748 return error("expected tied-def or low-level type after '('"); 1749 1750 if (expectAndConsume(MIToken::rparen)) 1751 return true; 1752 1753 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1754 return error("inconsistent type for generic virtual register"); 1755 1756 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1757 MRI.setType(Reg, Ty); 1758 } 1759 } 1760 } else if (consumeIfPresent(MIToken::lparen)) { 1761 // Virtual registers may have a tpe with GlobalISel. 1762 if (!Reg.isVirtual()) 1763 return error("unexpected type on physical register"); 1764 1765 LLT Ty; 1766 if (parseLowLevelType(Token.location(), Ty)) 1767 return true; 1768 1769 if (expectAndConsume(MIToken::rparen)) 1770 return true; 1771 1772 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1773 return error("inconsistent type for generic virtual register"); 1774 1775 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1776 MRI.setType(Reg, Ty); 1777 } else if (Reg.isVirtual()) { 1778 // Generic virtual registers must have a type. 1779 // If we end up here this means the type hasn't been specified and 1780 // this is bad! 1781 if (RegInfo->Kind == VRegInfo::GENERIC || 1782 RegInfo->Kind == VRegInfo::REGBANK) 1783 return error("generic virtual registers must have a type"); 1784 } 1785 1786 if (Flags & RegState::Define) { 1787 if (Flags & RegState::Kill) 1788 return error("cannot have a killed def operand"); 1789 } else { 1790 if (Flags & RegState::Dead) 1791 return error("cannot have a dead use operand"); 1792 } 1793 1794 Dest = MachineOperand::CreateReg( 1795 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1796 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1797 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1798 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1799 1800 return false; 1801 } 1802 1803 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1804 assert(Token.is(MIToken::IntegerLiteral)); 1805 const APSInt &Int = Token.integerValue(); 1806 if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value()) 1807 Dest = MachineOperand::CreateImm(*SImm); 1808 else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value()) 1809 Dest = MachineOperand::CreateImm(*UImm); 1810 else 1811 return error("integer literal is too large to be an immediate operand"); 1812 lex(); 1813 return false; 1814 } 1815 1816 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1817 const unsigned OpIdx, 1818 MachineOperand &Dest, 1819 const MIRFormatter &MF) { 1820 assert(Token.is(MIToken::dot)); 1821 auto Loc = Token.location(); // record start position 1822 size_t Len = 1; // for "." 1823 lex(); 1824 1825 // Handle the case that mnemonic starts with number. 1826 if (Token.is(MIToken::IntegerLiteral)) { 1827 Len += Token.range().size(); 1828 lex(); 1829 } 1830 1831 StringRef Src; 1832 if (Token.is(MIToken::comma)) 1833 Src = StringRef(Loc, Len); 1834 else { 1835 assert(Token.is(MIToken::Identifier)); 1836 Src = StringRef(Loc, Len + Token.stringValue().size()); 1837 } 1838 int64_t Val; 1839 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1840 [this](StringRef::iterator Loc, const Twine &Msg) 1841 -> bool { return error(Loc, Msg); })) 1842 return true; 1843 1844 Dest = MachineOperand::CreateImm(Val); 1845 if (!Token.is(MIToken::comma)) 1846 lex(); 1847 return false; 1848 } 1849 1850 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1851 PerFunctionMIParsingState &PFS, const Constant *&C, 1852 ErrorCallbackType ErrCB) { 1853 auto Source = StringValue.str(); // The source has to be null terminated. 1854 SMDiagnostic Err; 1855 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1856 &PFS.IRSlots); 1857 if (!C) 1858 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1859 return false; 1860 } 1861 1862 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1863 const Constant *&C) { 1864 return ::parseIRConstant( 1865 Loc, StringValue, PFS, C, 1866 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1867 return error(Loc, Msg); 1868 }); 1869 } 1870 1871 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1872 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1873 return true; 1874 lex(); 1875 return false; 1876 } 1877 1878 // See LLT implementation for bit size limits. 1879 static bool verifyScalarSize(uint64_t Size) { 1880 return Size != 0 && isUInt<16>(Size); 1881 } 1882 1883 static bool verifyVectorElementCount(uint64_t NumElts) { 1884 return NumElts != 0 && isUInt<16>(NumElts); 1885 } 1886 1887 static bool verifyAddrSpace(uint64_t AddrSpace) { 1888 return isUInt<24>(AddrSpace); 1889 } 1890 1891 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1892 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1893 StringRef SizeStr = Token.range().drop_front(); 1894 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1895 return error("expected integers after 's'/'p' type character"); 1896 } 1897 1898 if (Token.range().front() == 's') { 1899 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1900 if (!verifyScalarSize(ScalarSize)) 1901 return error("invalid size for scalar type"); 1902 1903 Ty = LLT::scalar(ScalarSize); 1904 lex(); 1905 return false; 1906 } else if (Token.range().front() == 'p') { 1907 const DataLayout &DL = MF.getDataLayout(); 1908 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1909 if (!verifyAddrSpace(AS)) 1910 return error("invalid address space number"); 1911 1912 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1913 lex(); 1914 return false; 1915 } 1916 1917 // Now we're looking for a vector. 1918 if (Token.isNot(MIToken::less)) 1919 return error(Loc, 1920 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1921 lex(); 1922 1923 if (Token.isNot(MIToken::IntegerLiteral)) 1924 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1925 uint64_t NumElements = Token.integerValue().getZExtValue(); 1926 if (!verifyVectorElementCount(NumElements)) 1927 return error("invalid number of vector elements"); 1928 1929 lex(); 1930 1931 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1932 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1933 lex(); 1934 1935 if (Token.range().front() != 's' && Token.range().front() != 'p') 1936 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1937 StringRef SizeStr = Token.range().drop_front(); 1938 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1939 return error("expected integers after 's'/'p' type character"); 1940 1941 if (Token.range().front() == 's') { 1942 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1943 if (!verifyScalarSize(ScalarSize)) 1944 return error("invalid size for scalar type"); 1945 Ty = LLT::scalar(ScalarSize); 1946 } else if (Token.range().front() == 'p') { 1947 const DataLayout &DL = MF.getDataLayout(); 1948 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1949 if (!verifyAddrSpace(AS)) 1950 return error("invalid address space number"); 1951 1952 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1953 } else 1954 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1955 lex(); 1956 1957 if (Token.isNot(MIToken::greater)) 1958 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1959 lex(); 1960 1961 Ty = LLT::fixed_vector(NumElements, Ty); 1962 return false; 1963 } 1964 1965 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1966 assert(Token.is(MIToken::Identifier)); 1967 StringRef TypeStr = Token.range(); 1968 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1969 TypeStr.front() != 'p') 1970 return error( 1971 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1972 StringRef SizeStr = Token.range().drop_front(); 1973 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1974 return error("expected integers after 'i'/'s'/'p' type character"); 1975 1976 auto Loc = Token.location(); 1977 lex(); 1978 if (Token.isNot(MIToken::IntegerLiteral)) { 1979 if (Token.isNot(MIToken::Identifier) || 1980 !(Token.range() == "true" || Token.range() == "false")) 1981 return error("expected an integer literal"); 1982 } 1983 const Constant *C = nullptr; 1984 if (parseIRConstant(Loc, C)) 1985 return true; 1986 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1987 return false; 1988 } 1989 1990 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1991 auto Loc = Token.location(); 1992 lex(); 1993 if (Token.isNot(MIToken::FloatingPointLiteral) && 1994 Token.isNot(MIToken::HexLiteral)) 1995 return error("expected a floating point literal"); 1996 const Constant *C = nullptr; 1997 if (parseIRConstant(Loc, C)) 1998 return true; 1999 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 2000 return false; 2001 } 2002 2003 static bool getHexUint(const MIToken &Token, APInt &Result) { 2004 assert(Token.is(MIToken::HexLiteral)); 2005 StringRef S = Token.range(); 2006 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2007 // This could be a floating point literal with a special prefix. 2008 if (!isxdigit(S[2])) 2009 return true; 2010 StringRef V = S.substr(2); 2011 APInt A(V.size()*4, V, 16); 2012 2013 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2014 // sure it isn't the case before constructing result. 2015 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2016 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2017 return false; 2018 } 2019 2020 static bool getUnsigned(const MIToken &Token, unsigned &Result, 2021 ErrorCallbackType ErrCB) { 2022 if (Token.hasIntegerValue()) { 2023 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 2024 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 2025 if (Val64 == Limit) 2026 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 2027 Result = Val64; 2028 return false; 2029 } 2030 if (Token.is(MIToken::HexLiteral)) { 2031 APInt A; 2032 if (getHexUint(Token, A)) 2033 return true; 2034 if (A.getBitWidth() > 32) 2035 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 2036 Result = A.getZExtValue(); 2037 return false; 2038 } 2039 return true; 2040 } 2041 2042 bool MIParser::getUnsigned(unsigned &Result) { 2043 return ::getUnsigned( 2044 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2045 return error(Loc, Msg); 2046 }); 2047 } 2048 2049 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 2050 assert(Token.is(MIToken::MachineBasicBlock) || 2051 Token.is(MIToken::MachineBasicBlockLabel)); 2052 unsigned Number; 2053 if (getUnsigned(Number)) 2054 return true; 2055 auto MBBInfo = PFS.MBBSlots.find(Number); 2056 if (MBBInfo == PFS.MBBSlots.end()) 2057 return error(Twine("use of undefined machine basic block #") + 2058 Twine(Number)); 2059 MBB = MBBInfo->second; 2060 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 2061 // we drop the <irname> from the bb.<id>.<irname> format. 2062 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 2063 return error(Twine("the name of machine basic block #") + Twine(Number) + 2064 " isn't '" + Token.stringValue() + "'"); 2065 return false; 2066 } 2067 2068 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 2069 MachineBasicBlock *MBB; 2070 if (parseMBBReference(MBB)) 2071 return true; 2072 Dest = MachineOperand::CreateMBB(MBB); 2073 lex(); 2074 return false; 2075 } 2076 2077 bool MIParser::parseStackFrameIndex(int &FI) { 2078 assert(Token.is(MIToken::StackObject)); 2079 unsigned ID; 2080 if (getUnsigned(ID)) 2081 return true; 2082 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 2083 if (ObjectInfo == PFS.StackObjectSlots.end()) 2084 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 2085 "'"); 2086 StringRef Name; 2087 if (const auto *Alloca = 2088 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2089 Name = Alloca->getName(); 2090 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2091 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2092 "' isn't '" + Token.stringValue() + "'"); 2093 lex(); 2094 FI = ObjectInfo->second; 2095 return false; 2096 } 2097 2098 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2099 int FI; 2100 if (parseStackFrameIndex(FI)) 2101 return true; 2102 Dest = MachineOperand::CreateFI(FI); 2103 return false; 2104 } 2105 2106 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2107 assert(Token.is(MIToken::FixedStackObject)); 2108 unsigned ID; 2109 if (getUnsigned(ID)) 2110 return true; 2111 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2112 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2113 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2114 Twine(ID) + "'"); 2115 lex(); 2116 FI = ObjectInfo->second; 2117 return false; 2118 } 2119 2120 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2121 int FI; 2122 if (parseFixedStackFrameIndex(FI)) 2123 return true; 2124 Dest = MachineOperand::CreateFI(FI); 2125 return false; 2126 } 2127 2128 static bool parseGlobalValue(const MIToken &Token, 2129 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2130 ErrorCallbackType ErrCB) { 2131 switch (Token.kind()) { 2132 case MIToken::NamedGlobalValue: { 2133 const Module *M = PFS.MF.getFunction().getParent(); 2134 GV = M->getNamedValue(Token.stringValue()); 2135 if (!GV) 2136 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2137 Token.range() + "'"); 2138 break; 2139 } 2140 case MIToken::GlobalValue: { 2141 unsigned GVIdx; 2142 if (getUnsigned(Token, GVIdx, ErrCB)) 2143 return true; 2144 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2145 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2146 Twine(GVIdx) + "'"); 2147 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2148 break; 2149 } 2150 default: 2151 llvm_unreachable("The current token should be a global value"); 2152 } 2153 return false; 2154 } 2155 2156 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2157 return ::parseGlobalValue( 2158 Token, PFS, GV, 2159 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2160 return error(Loc, Msg); 2161 }); 2162 } 2163 2164 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2165 GlobalValue *GV = nullptr; 2166 if (parseGlobalValue(GV)) 2167 return true; 2168 lex(); 2169 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2170 if (parseOperandsOffset(Dest)) 2171 return true; 2172 return false; 2173 } 2174 2175 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2176 assert(Token.is(MIToken::ConstantPoolItem)); 2177 unsigned ID; 2178 if (getUnsigned(ID)) 2179 return true; 2180 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2181 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2182 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2183 lex(); 2184 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2185 if (parseOperandsOffset(Dest)) 2186 return true; 2187 return false; 2188 } 2189 2190 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2191 assert(Token.is(MIToken::JumpTableIndex)); 2192 unsigned ID; 2193 if (getUnsigned(ID)) 2194 return true; 2195 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2196 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2197 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2198 lex(); 2199 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2200 return false; 2201 } 2202 2203 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2204 assert(Token.is(MIToken::ExternalSymbol)); 2205 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2206 lex(); 2207 Dest = MachineOperand::CreateES(Symbol); 2208 if (parseOperandsOffset(Dest)) 2209 return true; 2210 return false; 2211 } 2212 2213 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2214 assert(Token.is(MIToken::MCSymbol)); 2215 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2216 lex(); 2217 Dest = MachineOperand::CreateMCSymbol(Symbol); 2218 if (parseOperandsOffset(Dest)) 2219 return true; 2220 return false; 2221 } 2222 2223 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2224 assert(Token.is(MIToken::SubRegisterIndex)); 2225 StringRef Name = Token.stringValue(); 2226 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2227 if (SubRegIndex == 0) 2228 return error(Twine("unknown subregister index '") + Name + "'"); 2229 lex(); 2230 Dest = MachineOperand::CreateImm(SubRegIndex); 2231 return false; 2232 } 2233 2234 bool MIParser::parseMDNode(MDNode *&Node) { 2235 assert(Token.is(MIToken::exclaim)); 2236 2237 auto Loc = Token.location(); 2238 lex(); 2239 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2240 return error("expected metadata id after '!'"); 2241 unsigned ID; 2242 if (getUnsigned(ID)) 2243 return true; 2244 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2245 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2246 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2247 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2248 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2249 } 2250 lex(); 2251 Node = NodeInfo->second.get(); 2252 return false; 2253 } 2254 2255 bool MIParser::parseDIExpression(MDNode *&Expr) { 2256 assert(Token.is(MIToken::md_diexpr)); 2257 lex(); 2258 2259 // FIXME: Share this parsing with the IL parser. 2260 SmallVector<uint64_t, 8> Elements; 2261 2262 if (expectAndConsume(MIToken::lparen)) 2263 return true; 2264 2265 if (Token.isNot(MIToken::rparen)) { 2266 do { 2267 if (Token.is(MIToken::Identifier)) { 2268 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2269 lex(); 2270 Elements.push_back(Op); 2271 continue; 2272 } 2273 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2274 lex(); 2275 Elements.push_back(Enc); 2276 continue; 2277 } 2278 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2279 } 2280 2281 if (Token.isNot(MIToken::IntegerLiteral) || 2282 Token.integerValue().isSigned()) 2283 return error("expected unsigned integer"); 2284 2285 auto &U = Token.integerValue(); 2286 if (U.ugt(UINT64_MAX)) 2287 return error("element too large, limit is " + Twine(UINT64_MAX)); 2288 Elements.push_back(U.getZExtValue()); 2289 lex(); 2290 2291 } while (consumeIfPresent(MIToken::comma)); 2292 } 2293 2294 if (expectAndConsume(MIToken::rparen)) 2295 return true; 2296 2297 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2298 return false; 2299 } 2300 2301 bool MIParser::parseDILocation(MDNode *&Loc) { 2302 assert(Token.is(MIToken::md_dilocation)); 2303 lex(); 2304 2305 bool HaveLine = false; 2306 unsigned Line = 0; 2307 unsigned Column = 0; 2308 MDNode *Scope = nullptr; 2309 MDNode *InlinedAt = nullptr; 2310 bool ImplicitCode = false; 2311 2312 if (expectAndConsume(MIToken::lparen)) 2313 return true; 2314 2315 if (Token.isNot(MIToken::rparen)) { 2316 do { 2317 if (Token.is(MIToken::Identifier)) { 2318 if (Token.stringValue() == "line") { 2319 lex(); 2320 if (expectAndConsume(MIToken::colon)) 2321 return true; 2322 if (Token.isNot(MIToken::IntegerLiteral) || 2323 Token.integerValue().isSigned()) 2324 return error("expected unsigned integer"); 2325 Line = Token.integerValue().getZExtValue(); 2326 HaveLine = true; 2327 lex(); 2328 continue; 2329 } 2330 if (Token.stringValue() == "column") { 2331 lex(); 2332 if (expectAndConsume(MIToken::colon)) 2333 return true; 2334 if (Token.isNot(MIToken::IntegerLiteral) || 2335 Token.integerValue().isSigned()) 2336 return error("expected unsigned integer"); 2337 Column = Token.integerValue().getZExtValue(); 2338 lex(); 2339 continue; 2340 } 2341 if (Token.stringValue() == "scope") { 2342 lex(); 2343 if (expectAndConsume(MIToken::colon)) 2344 return true; 2345 if (parseMDNode(Scope)) 2346 return error("expected metadata node"); 2347 if (!isa<DIScope>(Scope)) 2348 return error("expected DIScope node"); 2349 continue; 2350 } 2351 if (Token.stringValue() == "inlinedAt") { 2352 lex(); 2353 if (expectAndConsume(MIToken::colon)) 2354 return true; 2355 if (Token.is(MIToken::exclaim)) { 2356 if (parseMDNode(InlinedAt)) 2357 return true; 2358 } else if (Token.is(MIToken::md_dilocation)) { 2359 if (parseDILocation(InlinedAt)) 2360 return true; 2361 } else 2362 return error("expected metadata node"); 2363 if (!isa<DILocation>(InlinedAt)) 2364 return error("expected DILocation node"); 2365 continue; 2366 } 2367 if (Token.stringValue() == "isImplicitCode") { 2368 lex(); 2369 if (expectAndConsume(MIToken::colon)) 2370 return true; 2371 if (!Token.is(MIToken::Identifier)) 2372 return error("expected true/false"); 2373 // As far as I can see, we don't have any existing need for parsing 2374 // true/false in MIR yet. Do it ad-hoc until there's something else 2375 // that needs it. 2376 if (Token.stringValue() == "true") 2377 ImplicitCode = true; 2378 else if (Token.stringValue() == "false") 2379 ImplicitCode = false; 2380 else 2381 return error("expected true/false"); 2382 lex(); 2383 continue; 2384 } 2385 } 2386 return error(Twine("invalid DILocation argument '") + 2387 Token.stringValue() + "'"); 2388 } while (consumeIfPresent(MIToken::comma)); 2389 } 2390 2391 if (expectAndConsume(MIToken::rparen)) 2392 return true; 2393 2394 if (!HaveLine) 2395 return error("DILocation requires line number"); 2396 if (!Scope) 2397 return error("DILocation requires a scope"); 2398 2399 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2400 InlinedAt, ImplicitCode); 2401 return false; 2402 } 2403 2404 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2405 MDNode *Node = nullptr; 2406 if (Token.is(MIToken::exclaim)) { 2407 if (parseMDNode(Node)) 2408 return true; 2409 } else if (Token.is(MIToken::md_diexpr)) { 2410 if (parseDIExpression(Node)) 2411 return true; 2412 } 2413 Dest = MachineOperand::CreateMetadata(Node); 2414 return false; 2415 } 2416 2417 bool MIParser::parseCFIOffset(int &Offset) { 2418 if (Token.isNot(MIToken::IntegerLiteral)) 2419 return error("expected a cfi offset"); 2420 if (Token.integerValue().getSignificantBits() > 32) 2421 return error("expected a 32 bit integer (the cfi offset is too large)"); 2422 Offset = (int)Token.integerValue().getExtValue(); 2423 lex(); 2424 return false; 2425 } 2426 2427 bool MIParser::parseCFIRegister(Register &Reg) { 2428 if (Token.isNot(MIToken::NamedRegister)) 2429 return error("expected a cfi register"); 2430 Register LLVMReg; 2431 if (parseNamedRegister(LLVMReg)) 2432 return true; 2433 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2434 assert(TRI && "Expected target register info"); 2435 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2436 if (DwarfReg < 0) 2437 return error("invalid DWARF register"); 2438 Reg = (unsigned)DwarfReg; 2439 lex(); 2440 return false; 2441 } 2442 2443 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2444 if (Token.isNot(MIToken::IntegerLiteral)) 2445 return error("expected a cfi address space literal"); 2446 if (Token.integerValue().isSigned()) 2447 return error("expected an unsigned integer (cfi address space)"); 2448 AddressSpace = Token.integerValue().getZExtValue(); 2449 lex(); 2450 return false; 2451 } 2452 2453 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2454 do { 2455 if (Token.isNot(MIToken::HexLiteral)) 2456 return error("expected a hexadecimal literal"); 2457 unsigned Value; 2458 if (getUnsigned(Value)) 2459 return true; 2460 if (Value > UINT8_MAX) 2461 return error("expected a 8-bit integer (too large)"); 2462 Values.push_back(static_cast<uint8_t>(Value)); 2463 lex(); 2464 } while (consumeIfPresent(MIToken::comma)); 2465 return false; 2466 } 2467 2468 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2469 auto Kind = Token.kind(); 2470 lex(); 2471 int Offset; 2472 Register Reg; 2473 unsigned AddressSpace; 2474 unsigned CFIIndex; 2475 switch (Kind) { 2476 case MIToken::kw_cfi_same_value: 2477 if (parseCFIRegister(Reg)) 2478 return true; 2479 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2480 break; 2481 case MIToken::kw_cfi_offset: 2482 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2483 parseCFIOffset(Offset)) 2484 return true; 2485 CFIIndex = 2486 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2487 break; 2488 case MIToken::kw_cfi_rel_offset: 2489 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2490 parseCFIOffset(Offset)) 2491 return true; 2492 CFIIndex = MF.addFrameInst( 2493 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2494 break; 2495 case MIToken::kw_cfi_def_cfa_register: 2496 if (parseCFIRegister(Reg)) 2497 return true; 2498 CFIIndex = 2499 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2500 break; 2501 case MIToken::kw_cfi_def_cfa_offset: 2502 if (parseCFIOffset(Offset)) 2503 return true; 2504 CFIIndex = 2505 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2506 break; 2507 case MIToken::kw_cfi_adjust_cfa_offset: 2508 if (parseCFIOffset(Offset)) 2509 return true; 2510 CFIIndex = MF.addFrameInst( 2511 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2512 break; 2513 case MIToken::kw_cfi_def_cfa: 2514 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2515 parseCFIOffset(Offset)) 2516 return true; 2517 CFIIndex = 2518 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2519 break; 2520 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2521 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2522 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2523 parseCFIAddressSpace(AddressSpace)) 2524 return true; 2525 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2526 nullptr, Reg, Offset, AddressSpace, SMLoc())); 2527 break; 2528 case MIToken::kw_cfi_remember_state: 2529 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2530 break; 2531 case MIToken::kw_cfi_restore: 2532 if (parseCFIRegister(Reg)) 2533 return true; 2534 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2535 break; 2536 case MIToken::kw_cfi_restore_state: 2537 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2538 break; 2539 case MIToken::kw_cfi_undefined: 2540 if (parseCFIRegister(Reg)) 2541 return true; 2542 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2543 break; 2544 case MIToken::kw_cfi_register: { 2545 Register Reg2; 2546 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2547 parseCFIRegister(Reg2)) 2548 return true; 2549 2550 CFIIndex = 2551 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2552 break; 2553 } 2554 case MIToken::kw_cfi_window_save: 2555 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2556 break; 2557 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2558 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2559 break; 2560 case MIToken::kw_cfi_escape: { 2561 std::string Values; 2562 if (parseCFIEscapeValues(Values)) 2563 return true; 2564 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2565 break; 2566 } 2567 default: 2568 // TODO: Parse the other CFI operands. 2569 llvm_unreachable("The current token should be a cfi operand"); 2570 } 2571 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2572 return false; 2573 } 2574 2575 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2576 switch (Token.kind()) { 2577 case MIToken::NamedIRBlock: { 2578 BB = dyn_cast_or_null<BasicBlock>( 2579 F.getValueSymbolTable()->lookup(Token.stringValue())); 2580 if (!BB) 2581 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2582 break; 2583 } 2584 case MIToken::IRBlock: { 2585 unsigned SlotNumber = 0; 2586 if (getUnsigned(SlotNumber)) 2587 return true; 2588 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2589 if (!BB) 2590 return error(Twine("use of undefined IR block '%ir-block.") + 2591 Twine(SlotNumber) + "'"); 2592 break; 2593 } 2594 default: 2595 llvm_unreachable("The current token should be an IR block reference"); 2596 } 2597 return false; 2598 } 2599 2600 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2601 assert(Token.is(MIToken::kw_blockaddress)); 2602 lex(); 2603 if (expectAndConsume(MIToken::lparen)) 2604 return true; 2605 if (Token.isNot(MIToken::GlobalValue) && 2606 Token.isNot(MIToken::NamedGlobalValue)) 2607 return error("expected a global value"); 2608 GlobalValue *GV = nullptr; 2609 if (parseGlobalValue(GV)) 2610 return true; 2611 auto *F = dyn_cast<Function>(GV); 2612 if (!F) 2613 return error("expected an IR function reference"); 2614 lex(); 2615 if (expectAndConsume(MIToken::comma)) 2616 return true; 2617 BasicBlock *BB = nullptr; 2618 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2619 return error("expected an IR block reference"); 2620 if (parseIRBlock(BB, *F)) 2621 return true; 2622 lex(); 2623 if (expectAndConsume(MIToken::rparen)) 2624 return true; 2625 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2626 if (parseOperandsOffset(Dest)) 2627 return true; 2628 return false; 2629 } 2630 2631 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2632 assert(Token.is(MIToken::kw_intrinsic)); 2633 lex(); 2634 if (expectAndConsume(MIToken::lparen)) 2635 return error("expected syntax intrinsic(@llvm.whatever)"); 2636 2637 if (Token.isNot(MIToken::NamedGlobalValue)) 2638 return error("expected syntax intrinsic(@llvm.whatever)"); 2639 2640 std::string Name = std::string(Token.stringValue()); 2641 lex(); 2642 2643 if (expectAndConsume(MIToken::rparen)) 2644 return error("expected ')' to terminate intrinsic name"); 2645 2646 // Find out what intrinsic we're dealing with, first try the global namespace 2647 // and then the target's private intrinsics if that fails. 2648 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2649 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2650 if (ID == Intrinsic::not_intrinsic && TII) 2651 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2652 2653 if (ID == Intrinsic::not_intrinsic) 2654 return error("unknown intrinsic name"); 2655 Dest = MachineOperand::CreateIntrinsicID(ID); 2656 2657 return false; 2658 } 2659 2660 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2661 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2662 bool IsFloat = Token.is(MIToken::kw_floatpred); 2663 lex(); 2664 2665 if (expectAndConsume(MIToken::lparen)) 2666 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2667 2668 if (Token.isNot(MIToken::Identifier)) 2669 return error("whatever"); 2670 2671 CmpInst::Predicate Pred; 2672 if (IsFloat) { 2673 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2674 .Case("false", CmpInst::FCMP_FALSE) 2675 .Case("oeq", CmpInst::FCMP_OEQ) 2676 .Case("ogt", CmpInst::FCMP_OGT) 2677 .Case("oge", CmpInst::FCMP_OGE) 2678 .Case("olt", CmpInst::FCMP_OLT) 2679 .Case("ole", CmpInst::FCMP_OLE) 2680 .Case("one", CmpInst::FCMP_ONE) 2681 .Case("ord", CmpInst::FCMP_ORD) 2682 .Case("uno", CmpInst::FCMP_UNO) 2683 .Case("ueq", CmpInst::FCMP_UEQ) 2684 .Case("ugt", CmpInst::FCMP_UGT) 2685 .Case("uge", CmpInst::FCMP_UGE) 2686 .Case("ult", CmpInst::FCMP_ULT) 2687 .Case("ule", CmpInst::FCMP_ULE) 2688 .Case("une", CmpInst::FCMP_UNE) 2689 .Case("true", CmpInst::FCMP_TRUE) 2690 .Default(CmpInst::BAD_FCMP_PREDICATE); 2691 if (!CmpInst::isFPPredicate(Pred)) 2692 return error("invalid floating-point predicate"); 2693 } else { 2694 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2695 .Case("eq", CmpInst::ICMP_EQ) 2696 .Case("ne", CmpInst::ICMP_NE) 2697 .Case("sgt", CmpInst::ICMP_SGT) 2698 .Case("sge", CmpInst::ICMP_SGE) 2699 .Case("slt", CmpInst::ICMP_SLT) 2700 .Case("sle", CmpInst::ICMP_SLE) 2701 .Case("ugt", CmpInst::ICMP_UGT) 2702 .Case("uge", CmpInst::ICMP_UGE) 2703 .Case("ult", CmpInst::ICMP_ULT) 2704 .Case("ule", CmpInst::ICMP_ULE) 2705 .Default(CmpInst::BAD_ICMP_PREDICATE); 2706 if (!CmpInst::isIntPredicate(Pred)) 2707 return error("invalid integer predicate"); 2708 } 2709 2710 lex(); 2711 Dest = MachineOperand::CreatePredicate(Pred); 2712 if (expectAndConsume(MIToken::rparen)) 2713 return error("predicate should be terminated by ')'."); 2714 2715 return false; 2716 } 2717 2718 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2719 assert(Token.is(MIToken::kw_shufflemask)); 2720 2721 lex(); 2722 if (expectAndConsume(MIToken::lparen)) 2723 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2724 2725 SmallVector<int, 32> ShufMask; 2726 do { 2727 if (Token.is(MIToken::kw_undef)) { 2728 ShufMask.push_back(-1); 2729 } else if (Token.is(MIToken::IntegerLiteral)) { 2730 const APSInt &Int = Token.integerValue(); 2731 ShufMask.push_back(Int.getExtValue()); 2732 } else 2733 return error("expected integer constant"); 2734 2735 lex(); 2736 } while (consumeIfPresent(MIToken::comma)); 2737 2738 if (expectAndConsume(MIToken::rparen)) 2739 return error("shufflemask should be terminated by ')'."); 2740 2741 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2742 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2743 return false; 2744 } 2745 2746 bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) { 2747 assert(Token.is(MIToken::kw_dbg_instr_ref)); 2748 2749 lex(); 2750 if (expectAndConsume(MIToken::lparen)) 2751 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); 2752 2753 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative()) 2754 return error("expected unsigned integer for instruction index"); 2755 uint64_t InstrIdx = Token.integerValue().getZExtValue(); 2756 assert(InstrIdx <= std::numeric_limits<unsigned>::max() && 2757 "Instruction reference's instruction index is too large"); 2758 lex(); 2759 2760 if (expectAndConsume(MIToken::comma)) 2761 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); 2762 2763 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative()) 2764 return error("expected unsigned integer for operand index"); 2765 uint64_t OpIdx = Token.integerValue().getZExtValue(); 2766 assert(OpIdx <= std::numeric_limits<unsigned>::max() && 2767 "Instruction reference's operand index is too large"); 2768 lex(); 2769 2770 if (expectAndConsume(MIToken::rparen)) 2771 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); 2772 2773 Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx); 2774 return false; 2775 } 2776 2777 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2778 assert(Token.is(MIToken::kw_target_index)); 2779 lex(); 2780 if (expectAndConsume(MIToken::lparen)) 2781 return true; 2782 if (Token.isNot(MIToken::Identifier)) 2783 return error("expected the name of the target index"); 2784 int Index = 0; 2785 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2786 return error("use of undefined target index '" + Token.stringValue() + "'"); 2787 lex(); 2788 if (expectAndConsume(MIToken::rparen)) 2789 return true; 2790 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2791 if (parseOperandsOffset(Dest)) 2792 return true; 2793 return false; 2794 } 2795 2796 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2797 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2798 lex(); 2799 if (expectAndConsume(MIToken::lparen)) 2800 return true; 2801 2802 uint32_t *Mask = MF.allocateRegMask(); 2803 do { 2804 if (Token.isNot(MIToken::rparen)) { 2805 if (Token.isNot(MIToken::NamedRegister)) 2806 return error("expected a named register"); 2807 Register Reg; 2808 if (parseNamedRegister(Reg)) 2809 return true; 2810 lex(); 2811 Mask[Reg / 32] |= 1U << (Reg % 32); 2812 } 2813 2814 // TODO: Report an error if the same register is used more than once. 2815 } while (consumeIfPresent(MIToken::comma)); 2816 2817 if (expectAndConsume(MIToken::rparen)) 2818 return true; 2819 Dest = MachineOperand::CreateRegMask(Mask); 2820 return false; 2821 } 2822 2823 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2824 assert(Token.is(MIToken::kw_liveout)); 2825 uint32_t *Mask = MF.allocateRegMask(); 2826 lex(); 2827 if (expectAndConsume(MIToken::lparen)) 2828 return true; 2829 while (true) { 2830 if (Token.isNot(MIToken::NamedRegister)) 2831 return error("expected a named register"); 2832 Register Reg; 2833 if (parseNamedRegister(Reg)) 2834 return true; 2835 lex(); 2836 Mask[Reg / 32] |= 1U << (Reg % 32); 2837 // TODO: Report an error if the same register is used more than once. 2838 if (Token.isNot(MIToken::comma)) 2839 break; 2840 lex(); 2841 } 2842 if (expectAndConsume(MIToken::rparen)) 2843 return true; 2844 Dest = MachineOperand::CreateRegLiveOut(Mask); 2845 return false; 2846 } 2847 2848 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2849 MachineOperand &Dest, 2850 std::optional<unsigned> &TiedDefIdx) { 2851 switch (Token.kind()) { 2852 case MIToken::kw_implicit: 2853 case MIToken::kw_implicit_define: 2854 case MIToken::kw_def: 2855 case MIToken::kw_dead: 2856 case MIToken::kw_killed: 2857 case MIToken::kw_undef: 2858 case MIToken::kw_internal: 2859 case MIToken::kw_early_clobber: 2860 case MIToken::kw_debug_use: 2861 case MIToken::kw_renamable: 2862 case MIToken::underscore: 2863 case MIToken::NamedRegister: 2864 case MIToken::VirtualRegister: 2865 case MIToken::NamedVirtualRegister: 2866 return parseRegisterOperand(Dest, TiedDefIdx); 2867 case MIToken::IntegerLiteral: 2868 return parseImmediateOperand(Dest); 2869 case MIToken::kw_half: 2870 case MIToken::kw_float: 2871 case MIToken::kw_double: 2872 case MIToken::kw_x86_fp80: 2873 case MIToken::kw_fp128: 2874 case MIToken::kw_ppc_fp128: 2875 return parseFPImmediateOperand(Dest); 2876 case MIToken::MachineBasicBlock: 2877 return parseMBBOperand(Dest); 2878 case MIToken::StackObject: 2879 return parseStackObjectOperand(Dest); 2880 case MIToken::FixedStackObject: 2881 return parseFixedStackObjectOperand(Dest); 2882 case MIToken::GlobalValue: 2883 case MIToken::NamedGlobalValue: 2884 return parseGlobalAddressOperand(Dest); 2885 case MIToken::ConstantPoolItem: 2886 return parseConstantPoolIndexOperand(Dest); 2887 case MIToken::JumpTableIndex: 2888 return parseJumpTableIndexOperand(Dest); 2889 case MIToken::ExternalSymbol: 2890 return parseExternalSymbolOperand(Dest); 2891 case MIToken::MCSymbol: 2892 return parseMCSymbolOperand(Dest); 2893 case MIToken::SubRegisterIndex: 2894 return parseSubRegisterIndexOperand(Dest); 2895 case MIToken::md_diexpr: 2896 case MIToken::exclaim: 2897 return parseMetadataOperand(Dest); 2898 case MIToken::kw_cfi_same_value: 2899 case MIToken::kw_cfi_offset: 2900 case MIToken::kw_cfi_rel_offset: 2901 case MIToken::kw_cfi_def_cfa_register: 2902 case MIToken::kw_cfi_def_cfa_offset: 2903 case MIToken::kw_cfi_adjust_cfa_offset: 2904 case MIToken::kw_cfi_escape: 2905 case MIToken::kw_cfi_def_cfa: 2906 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2907 case MIToken::kw_cfi_register: 2908 case MIToken::kw_cfi_remember_state: 2909 case MIToken::kw_cfi_restore: 2910 case MIToken::kw_cfi_restore_state: 2911 case MIToken::kw_cfi_undefined: 2912 case MIToken::kw_cfi_window_save: 2913 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2914 return parseCFIOperand(Dest); 2915 case MIToken::kw_blockaddress: 2916 return parseBlockAddressOperand(Dest); 2917 case MIToken::kw_intrinsic: 2918 return parseIntrinsicOperand(Dest); 2919 case MIToken::kw_target_index: 2920 return parseTargetIndexOperand(Dest); 2921 case MIToken::kw_liveout: 2922 return parseLiveoutRegisterMaskOperand(Dest); 2923 case MIToken::kw_floatpred: 2924 case MIToken::kw_intpred: 2925 return parsePredicateOperand(Dest); 2926 case MIToken::kw_shufflemask: 2927 return parseShuffleMaskOperand(Dest); 2928 case MIToken::kw_dbg_instr_ref: 2929 return parseDbgInstrRefOperand(Dest); 2930 case MIToken::Error: 2931 return true; 2932 case MIToken::Identifier: 2933 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2934 Dest = MachineOperand::CreateRegMask(RegMask); 2935 lex(); 2936 break; 2937 } else if (Token.stringValue() == "CustomRegMask") { 2938 return parseCustomRegisterMaskOperand(Dest); 2939 } else 2940 return parseTypedImmediateOperand(Dest); 2941 case MIToken::dot: { 2942 const auto *TII = MF.getSubtarget().getInstrInfo(); 2943 if (const auto *Formatter = TII->getMIRFormatter()) { 2944 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2945 } 2946 [[fallthrough]]; 2947 } 2948 default: 2949 // FIXME: Parse the MCSymbol machine operand. 2950 return error("expected a machine operand"); 2951 } 2952 return false; 2953 } 2954 2955 bool MIParser::parseMachineOperandAndTargetFlags( 2956 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2957 std::optional<unsigned> &TiedDefIdx) { 2958 unsigned TF = 0; 2959 bool HasTargetFlags = false; 2960 if (Token.is(MIToken::kw_target_flags)) { 2961 HasTargetFlags = true; 2962 lex(); 2963 if (expectAndConsume(MIToken::lparen)) 2964 return true; 2965 if (Token.isNot(MIToken::Identifier)) 2966 return error("expected the name of the target flag"); 2967 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2968 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2969 return error("use of undefined target flag '" + Token.stringValue() + 2970 "'"); 2971 } 2972 lex(); 2973 while (Token.is(MIToken::comma)) { 2974 lex(); 2975 if (Token.isNot(MIToken::Identifier)) 2976 return error("expected the name of the target flag"); 2977 unsigned BitFlag = 0; 2978 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2979 return error("use of undefined target flag '" + Token.stringValue() + 2980 "'"); 2981 // TODO: Report an error when using a duplicate bit target flag. 2982 TF |= BitFlag; 2983 lex(); 2984 } 2985 if (expectAndConsume(MIToken::rparen)) 2986 return true; 2987 } 2988 auto Loc = Token.location(); 2989 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2990 return true; 2991 if (!HasTargetFlags) 2992 return false; 2993 if (Dest.isReg()) 2994 return error(Loc, "register operands can't have target flags"); 2995 Dest.setTargetFlags(TF); 2996 return false; 2997 } 2998 2999 bool MIParser::parseOffset(int64_t &Offset) { 3000 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 3001 return false; 3002 StringRef Sign = Token.range(); 3003 bool IsNegative = Token.is(MIToken::minus); 3004 lex(); 3005 if (Token.isNot(MIToken::IntegerLiteral)) 3006 return error("expected an integer literal after '" + Sign + "'"); 3007 if (Token.integerValue().getSignificantBits() > 64) 3008 return error("expected 64-bit integer (too large)"); 3009 Offset = Token.integerValue().getExtValue(); 3010 if (IsNegative) 3011 Offset = -Offset; 3012 lex(); 3013 return false; 3014 } 3015 3016 bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) { 3017 assert(Token.is(MIToken::kw_ir_block_address_taken)); 3018 lex(); 3019 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 3020 return error("expected basic block after 'ir_block_address_taken'"); 3021 3022 if (parseIRBlock(BB, MF.getFunction())) 3023 return true; 3024 3025 lex(); 3026 return false; 3027 } 3028 3029 bool MIParser::parseAlignment(uint64_t &Alignment) { 3030 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 3031 lex(); 3032 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 3033 return error("expected an integer literal after 'align'"); 3034 if (getUint64(Alignment)) 3035 return true; 3036 lex(); 3037 3038 if (!isPowerOf2_64(Alignment)) 3039 return error("expected a power-of-2 literal after 'align'"); 3040 3041 return false; 3042 } 3043 3044 bool MIParser::parseAddrspace(unsigned &Addrspace) { 3045 assert(Token.is(MIToken::kw_addrspace)); 3046 lex(); 3047 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 3048 return error("expected an integer literal after 'addrspace'"); 3049 if (getUnsigned(Addrspace)) 3050 return true; 3051 lex(); 3052 return false; 3053 } 3054 3055 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 3056 int64_t Offset = 0; 3057 if (parseOffset(Offset)) 3058 return true; 3059 Op.setOffset(Offset); 3060 return false; 3061 } 3062 3063 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 3064 const Value *&V, ErrorCallbackType ErrCB) { 3065 switch (Token.kind()) { 3066 case MIToken::NamedIRValue: { 3067 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 3068 break; 3069 } 3070 case MIToken::IRValue: { 3071 unsigned SlotNumber = 0; 3072 if (getUnsigned(Token, SlotNumber, ErrCB)) 3073 return true; 3074 V = PFS.getIRValue(SlotNumber); 3075 break; 3076 } 3077 case MIToken::NamedGlobalValue: 3078 case MIToken::GlobalValue: { 3079 GlobalValue *GV = nullptr; 3080 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 3081 return true; 3082 V = GV; 3083 break; 3084 } 3085 case MIToken::QuotedIRValue: { 3086 const Constant *C = nullptr; 3087 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 3088 return true; 3089 V = C; 3090 break; 3091 } 3092 case MIToken::kw_unknown_address: 3093 V = nullptr; 3094 return false; 3095 default: 3096 llvm_unreachable("The current token should be an IR block reference"); 3097 } 3098 if (!V) 3099 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 3100 return false; 3101 } 3102 3103 bool MIParser::parseIRValue(const Value *&V) { 3104 return ::parseIRValue( 3105 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3106 return error(Loc, Msg); 3107 }); 3108 } 3109 3110 bool MIParser::getUint64(uint64_t &Result) { 3111 if (Token.hasIntegerValue()) { 3112 if (Token.integerValue().getActiveBits() > 64) 3113 return error("expected 64-bit integer (too large)"); 3114 Result = Token.integerValue().getZExtValue(); 3115 return false; 3116 } 3117 if (Token.is(MIToken::HexLiteral)) { 3118 APInt A; 3119 if (getHexUint(A)) 3120 return true; 3121 if (A.getBitWidth() > 64) 3122 return error("expected 64-bit integer (too large)"); 3123 Result = A.getZExtValue(); 3124 return false; 3125 } 3126 return true; 3127 } 3128 3129 bool MIParser::getHexUint(APInt &Result) { 3130 return ::getHexUint(Token, Result); 3131 } 3132 3133 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3134 const auto OldFlags = Flags; 3135 switch (Token.kind()) { 3136 case MIToken::kw_volatile: 3137 Flags |= MachineMemOperand::MOVolatile; 3138 break; 3139 case MIToken::kw_non_temporal: 3140 Flags |= MachineMemOperand::MONonTemporal; 3141 break; 3142 case MIToken::kw_dereferenceable: 3143 Flags |= MachineMemOperand::MODereferenceable; 3144 break; 3145 case MIToken::kw_invariant: 3146 Flags |= MachineMemOperand::MOInvariant; 3147 break; 3148 case MIToken::StringConstant: { 3149 MachineMemOperand::Flags TF; 3150 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3151 return error("use of undefined target MMO flag '" + Token.stringValue() + 3152 "'"); 3153 Flags |= TF; 3154 break; 3155 } 3156 default: 3157 llvm_unreachable("The current token should be a memory operand flag"); 3158 } 3159 if (OldFlags == Flags) 3160 // We know that the same flag is specified more than once when the flags 3161 // weren't modified. 3162 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3163 lex(); 3164 return false; 3165 } 3166 3167 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3168 switch (Token.kind()) { 3169 case MIToken::kw_stack: 3170 PSV = MF.getPSVManager().getStack(); 3171 break; 3172 case MIToken::kw_got: 3173 PSV = MF.getPSVManager().getGOT(); 3174 break; 3175 case MIToken::kw_jump_table: 3176 PSV = MF.getPSVManager().getJumpTable(); 3177 break; 3178 case MIToken::kw_constant_pool: 3179 PSV = MF.getPSVManager().getConstantPool(); 3180 break; 3181 case MIToken::FixedStackObject: { 3182 int FI; 3183 if (parseFixedStackFrameIndex(FI)) 3184 return true; 3185 PSV = MF.getPSVManager().getFixedStack(FI); 3186 // The token was already consumed, so use return here instead of break. 3187 return false; 3188 } 3189 case MIToken::StackObject: { 3190 int FI; 3191 if (parseStackFrameIndex(FI)) 3192 return true; 3193 PSV = MF.getPSVManager().getFixedStack(FI); 3194 // The token was already consumed, so use return here instead of break. 3195 return false; 3196 } 3197 case MIToken::kw_call_entry: 3198 lex(); 3199 switch (Token.kind()) { 3200 case MIToken::GlobalValue: 3201 case MIToken::NamedGlobalValue: { 3202 GlobalValue *GV = nullptr; 3203 if (parseGlobalValue(GV)) 3204 return true; 3205 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3206 break; 3207 } 3208 case MIToken::ExternalSymbol: 3209 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3210 MF.createExternalSymbolName(Token.stringValue())); 3211 break; 3212 default: 3213 return error( 3214 "expected a global value or an external symbol after 'call-entry'"); 3215 } 3216 break; 3217 case MIToken::kw_custom: { 3218 lex(); 3219 const auto *TII = MF.getSubtarget().getInstrInfo(); 3220 if (const auto *Formatter = TII->getMIRFormatter()) { 3221 if (Formatter->parseCustomPseudoSourceValue( 3222 Token.stringValue(), MF, PFS, PSV, 3223 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3224 return error(Loc, Msg); 3225 })) 3226 return true; 3227 } else 3228 return error("unable to parse target custom pseudo source value"); 3229 break; 3230 } 3231 default: 3232 llvm_unreachable("The current token should be pseudo source value"); 3233 } 3234 lex(); 3235 return false; 3236 } 3237 3238 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3239 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3240 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3241 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3242 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3243 const PseudoSourceValue *PSV = nullptr; 3244 if (parseMemoryPseudoSourceValue(PSV)) 3245 return true; 3246 int64_t Offset = 0; 3247 if (parseOffset(Offset)) 3248 return true; 3249 Dest = MachinePointerInfo(PSV, Offset); 3250 return false; 3251 } 3252 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3253 Token.isNot(MIToken::GlobalValue) && 3254 Token.isNot(MIToken::NamedGlobalValue) && 3255 Token.isNot(MIToken::QuotedIRValue) && 3256 Token.isNot(MIToken::kw_unknown_address)) 3257 return error("expected an IR value reference"); 3258 const Value *V = nullptr; 3259 if (parseIRValue(V)) 3260 return true; 3261 if (V && !V->getType()->isPointerTy()) 3262 return error("expected a pointer IR value"); 3263 lex(); 3264 int64_t Offset = 0; 3265 if (parseOffset(Offset)) 3266 return true; 3267 Dest = MachinePointerInfo(V, Offset); 3268 return false; 3269 } 3270 3271 bool MIParser::parseOptionalScope(LLVMContext &Context, 3272 SyncScope::ID &SSID) { 3273 SSID = SyncScope::System; 3274 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3275 lex(); 3276 if (expectAndConsume(MIToken::lparen)) 3277 return error("expected '(' in syncscope"); 3278 3279 std::string SSN; 3280 if (parseStringConstant(SSN)) 3281 return true; 3282 3283 SSID = Context.getOrInsertSyncScopeID(SSN); 3284 if (expectAndConsume(MIToken::rparen)) 3285 return error("expected ')' in syncscope"); 3286 } 3287 3288 return false; 3289 } 3290 3291 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3292 Order = AtomicOrdering::NotAtomic; 3293 if (Token.isNot(MIToken::Identifier)) 3294 return false; 3295 3296 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3297 .Case("unordered", AtomicOrdering::Unordered) 3298 .Case("monotonic", AtomicOrdering::Monotonic) 3299 .Case("acquire", AtomicOrdering::Acquire) 3300 .Case("release", AtomicOrdering::Release) 3301 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3302 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3303 .Default(AtomicOrdering::NotAtomic); 3304 3305 if (Order != AtomicOrdering::NotAtomic) { 3306 lex(); 3307 return false; 3308 } 3309 3310 return error("expected an atomic scope, ordering or a size specification"); 3311 } 3312 3313 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3314 if (expectAndConsume(MIToken::lparen)) 3315 return true; 3316 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3317 while (Token.isMemoryOperandFlag()) { 3318 if (parseMemoryOperandFlag(Flags)) 3319 return true; 3320 } 3321 if (Token.isNot(MIToken::Identifier) || 3322 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3323 return error("expected 'load' or 'store' memory operation"); 3324 if (Token.stringValue() == "load") 3325 Flags |= MachineMemOperand::MOLoad; 3326 else 3327 Flags |= MachineMemOperand::MOStore; 3328 lex(); 3329 3330 // Optional 'store' for operands that both load and store. 3331 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3332 Flags |= MachineMemOperand::MOStore; 3333 lex(); 3334 } 3335 3336 // Optional synchronization scope. 3337 SyncScope::ID SSID; 3338 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3339 return true; 3340 3341 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3342 AtomicOrdering Order, FailureOrder; 3343 if (parseOptionalAtomicOrdering(Order)) 3344 return true; 3345 3346 if (parseOptionalAtomicOrdering(FailureOrder)) 3347 return true; 3348 3349 LLT MemoryType; 3350 if (Token.isNot(MIToken::IntegerLiteral) && 3351 Token.isNot(MIToken::kw_unknown_size) && 3352 Token.isNot(MIToken::lparen)) 3353 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3354 "memory operation"); 3355 3356 uint64_t Size = MemoryLocation::UnknownSize; 3357 if (Token.is(MIToken::IntegerLiteral)) { 3358 if (getUint64(Size)) 3359 return true; 3360 3361 // Convert from bytes to bits for storage. 3362 MemoryType = LLT::scalar(8 * Size); 3363 lex(); 3364 } else if (Token.is(MIToken::kw_unknown_size)) { 3365 Size = MemoryLocation::UnknownSize; 3366 lex(); 3367 } else { 3368 if (expectAndConsume(MIToken::lparen)) 3369 return true; 3370 if (parseLowLevelType(Token.location(), MemoryType)) 3371 return true; 3372 if (expectAndConsume(MIToken::rparen)) 3373 return true; 3374 3375 Size = MemoryType.getSizeInBytes(); 3376 } 3377 3378 MachinePointerInfo Ptr = MachinePointerInfo(); 3379 if (Token.is(MIToken::Identifier)) { 3380 const char *Word = 3381 ((Flags & MachineMemOperand::MOLoad) && 3382 (Flags & MachineMemOperand::MOStore)) 3383 ? "on" 3384 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3385 if (Token.stringValue() != Word) 3386 return error(Twine("expected '") + Word + "'"); 3387 lex(); 3388 3389 if (parseMachinePointerInfo(Ptr)) 3390 return true; 3391 } 3392 uint64_t BaseAlignment = 3393 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3394 AAMDNodes AAInfo; 3395 MDNode *Range = nullptr; 3396 while (consumeIfPresent(MIToken::comma)) { 3397 switch (Token.kind()) { 3398 case MIToken::kw_align: { 3399 // align is printed if it is different than size. 3400 uint64_t Alignment; 3401 if (parseAlignment(Alignment)) 3402 return true; 3403 if (Ptr.Offset & (Alignment - 1)) { 3404 // MachineMemOperand::getAlign never returns a value greater than the 3405 // alignment of offset, so this just guards against hand-written MIR 3406 // that specifies a large "align" value when it should probably use 3407 // "basealign" instead. 3408 return error("specified alignment is more aligned than offset"); 3409 } 3410 BaseAlignment = Alignment; 3411 break; 3412 } 3413 case MIToken::kw_basealign: 3414 // basealign is printed if it is different than align. 3415 if (parseAlignment(BaseAlignment)) 3416 return true; 3417 break; 3418 case MIToken::kw_addrspace: 3419 if (parseAddrspace(Ptr.AddrSpace)) 3420 return true; 3421 break; 3422 case MIToken::md_tbaa: 3423 lex(); 3424 if (parseMDNode(AAInfo.TBAA)) 3425 return true; 3426 break; 3427 case MIToken::md_alias_scope: 3428 lex(); 3429 if (parseMDNode(AAInfo.Scope)) 3430 return true; 3431 break; 3432 case MIToken::md_noalias: 3433 lex(); 3434 if (parseMDNode(AAInfo.NoAlias)) 3435 return true; 3436 break; 3437 case MIToken::md_range: 3438 lex(); 3439 if (parseMDNode(Range)) 3440 return true; 3441 break; 3442 // TODO: Report an error on duplicate metadata nodes. 3443 default: 3444 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3445 "'!noalias' or '!range'"); 3446 } 3447 } 3448 if (expectAndConsume(MIToken::rparen)) 3449 return true; 3450 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3451 AAInfo, Range, SSID, Order, FailureOrder); 3452 return false; 3453 } 3454 3455 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3456 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3457 Token.is(MIToken::kw_post_instr_symbol)) && 3458 "Invalid token for a pre- post-instruction symbol!"); 3459 lex(); 3460 if (Token.isNot(MIToken::MCSymbol)) 3461 return error("expected a symbol after 'pre-instr-symbol'"); 3462 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3463 lex(); 3464 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3465 Token.is(MIToken::lbrace)) 3466 return false; 3467 if (Token.isNot(MIToken::comma)) 3468 return error("expected ',' before the next machine operand"); 3469 lex(); 3470 return false; 3471 } 3472 3473 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3474 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3475 "Invalid token for a heap alloc marker!"); 3476 lex(); 3477 if (parseMDNode(Node)) 3478 return true; 3479 if (!Node) 3480 return error("expected a MDNode after 'heap-alloc-marker'"); 3481 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3482 Token.is(MIToken::lbrace)) 3483 return false; 3484 if (Token.isNot(MIToken::comma)) 3485 return error("expected ',' before the next machine operand"); 3486 lex(); 3487 return false; 3488 } 3489 3490 bool MIParser::parsePCSections(MDNode *&Node) { 3491 assert(Token.is(MIToken::kw_pcsections) && 3492 "Invalid token for a PC sections!"); 3493 lex(); 3494 if (parseMDNode(Node)) 3495 return true; 3496 if (!Node) 3497 return error("expected a MDNode after 'pcsections'"); 3498 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3499 Token.is(MIToken::lbrace)) 3500 return false; 3501 if (Token.isNot(MIToken::comma)) 3502 return error("expected ',' before the next machine operand"); 3503 lex(); 3504 return false; 3505 } 3506 3507 static void initSlots2BasicBlocks( 3508 const Function &F, 3509 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3510 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3511 MST.incorporateFunction(F); 3512 for (const auto &BB : F) { 3513 if (BB.hasName()) 3514 continue; 3515 int Slot = MST.getLocalSlot(&BB); 3516 if (Slot == -1) 3517 continue; 3518 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3519 } 3520 } 3521 3522 static const BasicBlock *getIRBlockFromSlot( 3523 unsigned Slot, 3524 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3525 return Slots2BasicBlocks.lookup(Slot); 3526 } 3527 3528 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3529 if (Slots2BasicBlocks.empty()) 3530 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3531 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3532 } 3533 3534 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3535 if (&F == &MF.getFunction()) 3536 return getIRBlock(Slot); 3537 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3538 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3539 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3540 } 3541 3542 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3543 // FIXME: Currently we can't recognize temporary or local symbols and call all 3544 // of the appropriate forms to create them. However, this handles basic cases 3545 // well as most of the special aspects are recognized by a prefix on their 3546 // name, and the input names should already be unique. For test cases, keeping 3547 // the symbol name out of the symbol table isn't terribly important. 3548 return MF.getContext().getOrCreateSymbol(Name); 3549 } 3550 3551 bool MIParser::parseStringConstant(std::string &Result) { 3552 if (Token.isNot(MIToken::StringConstant)) 3553 return error("expected string constant"); 3554 Result = std::string(Token.stringValue()); 3555 lex(); 3556 return false; 3557 } 3558 3559 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3560 StringRef Src, 3561 SMDiagnostic &Error) { 3562 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3563 } 3564 3565 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3566 StringRef Src, SMDiagnostic &Error) { 3567 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3568 } 3569 3570 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3571 MachineBasicBlock *&MBB, StringRef Src, 3572 SMDiagnostic &Error) { 3573 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3574 } 3575 3576 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3577 Register &Reg, StringRef Src, 3578 SMDiagnostic &Error) { 3579 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3580 } 3581 3582 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3583 Register &Reg, StringRef Src, 3584 SMDiagnostic &Error) { 3585 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3586 } 3587 3588 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3589 VRegInfo *&Info, StringRef Src, 3590 SMDiagnostic &Error) { 3591 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3592 } 3593 3594 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3595 int &FI, StringRef Src, 3596 SMDiagnostic &Error) { 3597 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3598 } 3599 3600 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3601 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3602 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3603 } 3604 3605 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3606 SMRange SrcRange, SMDiagnostic &Error) { 3607 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3608 } 3609 3610 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3611 PerFunctionMIParsingState &PFS, const Value *&V, 3612 ErrorCallbackType ErrorCallback) { 3613 MIToken Token; 3614 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3615 ErrorCallback(Loc, Msg); 3616 }); 3617 V = nullptr; 3618 3619 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3620 } 3621