xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveVariables.cpp (revision c8e7f78a3d28ff6e6223ed136ada8e1e2f34965e)
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariable analysis pass.  For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
15 //
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form.  This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function.  It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block).  If a physical
23 // register is not register allocatable, it is not tracked.  This is useful for
24 // things like the stack pointer and condition codes.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 using namespace llvm;
43 
44 char LiveVariables::ID = 0;
45 char &llvm::LiveVariablesID = LiveVariables::ID;
46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                 "Live Variable Analysis", false, false)
48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49 INITIALIZE_PASS_END(LiveVariables, "livevars",
50                 "Live Variable Analysis", false, false)
51 
52 
53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54   AU.addRequiredID(UnreachableMachineBlockElimID);
55   AU.setPreservesAll();
56   MachineFunctionPass::getAnalysisUsage(AU);
57 }
58 
59 MachineInstr *
60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61   for (MachineInstr *MI : Kills)
62     if (MI->getParent() == MBB)
63       return MI;
64   return nullptr;
65 }
66 
67 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
68 LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const {
69   dbgs() << "  Alive in blocks: ";
70   for (unsigned AB : AliveBlocks)
71     dbgs() << AB << ", ";
72   dbgs() << "\n  Killed by:";
73   if (Kills.empty())
74     dbgs() << " No instructions.\n";
75   else {
76     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
77       dbgs() << "\n    #" << i << ": " << *Kills[i];
78     dbgs() << "\n";
79   }
80 }
81 #endif
82 
83 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
84 LiveVariables::VarInfo &LiveVariables::getVarInfo(Register Reg) {
85   assert(Reg.isVirtual() && "getVarInfo: not a virtual register!");
86   VirtRegInfo.grow(Reg);
87   return VirtRegInfo[Reg];
88 }
89 
90 void LiveVariables::MarkVirtRegAliveInBlock(
91     VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB,
92     SmallVectorImpl<MachineBasicBlock *> &WorkList) {
93   unsigned BBNum = MBB->getNumber();
94 
95   // Check to see if this basic block is one of the killing blocks.  If so,
96   // remove it.
97   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
98     if (VRInfo.Kills[i]->getParent() == MBB) {
99       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
100       break;
101     }
102 
103   if (MBB == DefBlock) return;  // Terminate recursion
104 
105   if (VRInfo.AliveBlocks.test(BBNum))
106     return;  // We already know the block is live
107 
108   // Mark the variable known alive in this bb
109   VRInfo.AliveBlocks.set(BBNum);
110 
111   assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
112   WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
113 }
114 
115 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
116                                             MachineBasicBlock *DefBlock,
117                                             MachineBasicBlock *MBB) {
118   SmallVector<MachineBasicBlock *, 16> WorkList;
119   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
120 
121   while (!WorkList.empty()) {
122     MachineBasicBlock *Pred = WorkList.pop_back_val();
123     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
124   }
125 }
126 
127 void LiveVariables::HandleVirtRegUse(Register Reg, MachineBasicBlock *MBB,
128                                      MachineInstr &MI) {
129   assert(MRI->getVRegDef(Reg) && "Register use before def!");
130 
131   unsigned BBNum = MBB->getNumber();
132 
133   VarInfo &VRInfo = getVarInfo(Reg);
134 
135   // Check to see if this basic block is already a kill block.
136   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
137     // Yes, this register is killed in this basic block already. Increase the
138     // live range by updating the kill instruction.
139     VRInfo.Kills.back() = &MI;
140     return;
141   }
142 
143 #ifndef NDEBUG
144   for (MachineInstr *Kill : VRInfo.Kills)
145     assert(Kill->getParent() != MBB && "entry should be at end!");
146 #endif
147 
148   // This situation can occur:
149   //
150   //     ,------.
151   //     |      |
152   //     |      v
153   //     |   t2 = phi ... t1 ...
154   //     |      |
155   //     |      v
156   //     |   t1 = ...
157   //     |  ... = ... t1 ...
158   //     |      |
159   //     `------'
160   //
161   // where there is a use in a PHI node that's a predecessor to the defining
162   // block. We don't want to mark all predecessors as having the value "alive"
163   // in this case.
164   if (MBB == MRI->getVRegDef(Reg)->getParent())
165     return;
166 
167   // Add a new kill entry for this basic block. If this virtual register is
168   // already marked as alive in this basic block, that means it is alive in at
169   // least one of the successor blocks, it's not a kill.
170   if (!VRInfo.AliveBlocks.test(BBNum))
171     VRInfo.Kills.push_back(&MI);
172 
173   // Update all dominating blocks to mark them as "known live".
174   for (MachineBasicBlock *Pred : MBB->predecessors())
175     MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(Reg)->getParent(), Pred);
176 }
177 
178 void LiveVariables::HandleVirtRegDef(Register Reg, MachineInstr &MI) {
179   VarInfo &VRInfo = getVarInfo(Reg);
180 
181   if (VRInfo.AliveBlocks.empty())
182     // If vr is not alive in any block, then defaults to dead.
183     VRInfo.Kills.push_back(&MI);
184 }
185 
186 /// FindLastPartialDef - Return the last partial def of the specified register.
187 /// Also returns the sub-registers that're defined by the instruction.
188 MachineInstr *
189 LiveVariables::FindLastPartialDef(Register Reg,
190                                   SmallSet<unsigned, 4> &PartDefRegs) {
191   unsigned LastDefReg = 0;
192   unsigned LastDefDist = 0;
193   MachineInstr *LastDef = nullptr;
194   for (MCPhysReg SubReg : TRI->subregs(Reg)) {
195     MachineInstr *Def = PhysRegDef[SubReg];
196     if (!Def)
197       continue;
198     unsigned Dist = DistanceMap[Def];
199     if (Dist > LastDefDist) {
200       LastDefReg  = SubReg;
201       LastDef     = Def;
202       LastDefDist = Dist;
203     }
204   }
205 
206   if (!LastDef)
207     return nullptr;
208 
209   PartDefRegs.insert(LastDefReg);
210   for (MachineOperand &MO : LastDef->all_defs()) {
211     if (MO.getReg() == 0)
212       continue;
213     Register DefReg = MO.getReg();
214     if (TRI->isSubRegister(Reg, DefReg)) {
215       for (MCPhysReg SubReg : TRI->subregs_inclusive(DefReg))
216         PartDefRegs.insert(SubReg);
217     }
218   }
219   return LastDef;
220 }
221 
222 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
223 /// implicit defs to a machine instruction if there was an earlier def of its
224 /// super-register.
225 void LiveVariables::HandlePhysRegUse(Register Reg, MachineInstr &MI) {
226   MachineInstr *LastDef = PhysRegDef[Reg];
227   // If there was a previous use or a "full" def all is well.
228   if (!LastDef && !PhysRegUse[Reg]) {
229     // Otherwise, the last sub-register def implicitly defines this register.
230     // e.g.
231     // AH =
232     // AL = ... implicit-def EAX, implicit killed AH
233     //    = AH
234     // ...
235     //    = EAX
236     // All of the sub-registers must have been defined before the use of Reg!
237     SmallSet<unsigned, 4> PartDefRegs;
238     MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
239     // If LastPartialDef is NULL, it must be using a livein register.
240     if (LastPartialDef) {
241       LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
242                                                            true/*IsImp*/));
243       PhysRegDef[Reg] = LastPartialDef;
244       SmallSet<unsigned, 8> Processed;
245       for (MCPhysReg SubReg : TRI->subregs(Reg)) {
246         if (Processed.count(SubReg))
247           continue;
248         if (PartDefRegs.count(SubReg))
249           continue;
250         // This part of Reg was defined before the last partial def. It's killed
251         // here.
252         LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
253                                                              false/*IsDef*/,
254                                                              true/*IsImp*/));
255         PhysRegDef[SubReg] = LastPartialDef;
256         for (MCPhysReg SS : TRI->subregs(SubReg))
257           Processed.insert(SS);
258       }
259     }
260   } else if (LastDef && !PhysRegUse[Reg] &&
261              !LastDef->findRegisterDefOperand(Reg))
262     // Last def defines the super register, add an implicit def of reg.
263     LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
264                                                   true/*IsImp*/));
265 
266   // Remember this use.
267   for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
268     PhysRegUse[SubReg] = &MI;
269 }
270 
271 /// FindLastRefOrPartRef - Return the last reference or partial reference of
272 /// the specified register.
273 MachineInstr *LiveVariables::FindLastRefOrPartRef(Register Reg) {
274   MachineInstr *LastDef = PhysRegDef[Reg];
275   MachineInstr *LastUse = PhysRegUse[Reg];
276   if (!LastDef && !LastUse)
277     return nullptr;
278 
279   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
280   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
281   unsigned LastPartDefDist = 0;
282   for (MCPhysReg SubReg : TRI->subregs(Reg)) {
283     MachineInstr *Def = PhysRegDef[SubReg];
284     if (Def && Def != LastDef) {
285       // There was a def of this sub-register in between. This is a partial
286       // def, keep track of the last one.
287       unsigned Dist = DistanceMap[Def];
288       if (Dist > LastPartDefDist)
289         LastPartDefDist = Dist;
290     } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
291       unsigned Dist = DistanceMap[Use];
292       if (Dist > LastRefOrPartRefDist) {
293         LastRefOrPartRefDist = Dist;
294         LastRefOrPartRef = Use;
295       }
296     }
297   }
298 
299   return LastRefOrPartRef;
300 }
301 
302 bool LiveVariables::HandlePhysRegKill(Register Reg, MachineInstr *MI) {
303   MachineInstr *LastDef = PhysRegDef[Reg];
304   MachineInstr *LastUse = PhysRegUse[Reg];
305   if (!LastDef && !LastUse)
306     return false;
307 
308   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
309   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
310   // The whole register is used.
311   // AL =
312   // AH =
313   //
314   //    = AX
315   //    = AL, implicit killed AX
316   // AX =
317   //
318   // Or whole register is defined, but not used at all.
319   // dead AX =
320   // ...
321   // AX =
322   //
323   // Or whole register is defined, but only partly used.
324   // dead AX = implicit-def AL
325   //    = killed AL
326   // AX =
327   MachineInstr *LastPartDef = nullptr;
328   unsigned LastPartDefDist = 0;
329   SmallSet<unsigned, 8> PartUses;
330   for (MCPhysReg SubReg : TRI->subregs(Reg)) {
331     MachineInstr *Def = PhysRegDef[SubReg];
332     if (Def && Def != LastDef) {
333       // There was a def of this sub-register in between. This is a partial
334       // def, keep track of the last one.
335       unsigned Dist = DistanceMap[Def];
336       if (Dist > LastPartDefDist) {
337         LastPartDefDist = Dist;
338         LastPartDef = Def;
339       }
340       continue;
341     }
342     if (MachineInstr *Use = PhysRegUse[SubReg]) {
343       for (MCPhysReg SS : TRI->subregs_inclusive(SubReg))
344         PartUses.insert(SS);
345       unsigned Dist = DistanceMap[Use];
346       if (Dist > LastRefOrPartRefDist) {
347         LastRefOrPartRefDist = Dist;
348         LastRefOrPartRef = Use;
349       }
350     }
351   }
352 
353   if (!PhysRegUse[Reg]) {
354     // Partial uses. Mark register def dead and add implicit def of
355     // sub-registers which are used.
356     // dead EAX  = op  implicit-def AL
357     // That is, EAX def is dead but AL def extends pass it.
358     PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
359     for (MCPhysReg SubReg : TRI->subregs(Reg)) {
360       if (!PartUses.count(SubReg))
361         continue;
362       bool NeedDef = true;
363       if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
364         MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
365         if (MO) {
366           NeedDef = false;
367           assert(!MO->isDead());
368         }
369       }
370       if (NeedDef)
371         PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
372                                                  true/*IsDef*/, true/*IsImp*/));
373       MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
374       if (LastSubRef)
375         LastSubRef->addRegisterKilled(SubReg, TRI, true);
376       else {
377         LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
378         for (MCPhysReg SS : TRI->subregs_inclusive(SubReg))
379           PhysRegUse[SS] = LastRefOrPartRef;
380       }
381       for (MCPhysReg SS : TRI->subregs(SubReg))
382         PartUses.erase(SS);
383     }
384   } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
385     if (LastPartDef)
386       // The last partial def kills the register.
387       LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
388                                                 true/*IsImp*/, true/*IsKill*/));
389     else {
390       MachineOperand *MO =
391         LastRefOrPartRef->findRegisterDefOperand(Reg, false, false, TRI);
392       bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
393       // If the last reference is the last def, then it's not used at all.
394       // That is, unless we are currently processing the last reference itself.
395       LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
396       if (NeedEC) {
397         // If we are adding a subreg def and the superreg def is marked early
398         // clobber, add an early clobber marker to the subreg def.
399         MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
400         if (MO)
401           MO->setIsEarlyClobber();
402       }
403     }
404   } else
405     LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
406   return true;
407 }
408 
409 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
410   // Call HandlePhysRegKill() for all live registers clobbered by Mask.
411   // Clobbered registers are always dead, sp there is no need to use
412   // HandlePhysRegDef().
413   for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
414     // Skip dead regs.
415     if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
416       continue;
417     // Skip mask-preserved regs.
418     if (!MO.clobbersPhysReg(Reg))
419       continue;
420     // Kill the largest clobbered super-register.
421     // This avoids needless implicit operands.
422     unsigned Super = Reg;
423     for (MCPhysReg SR : TRI->superregs(Reg))
424       if ((PhysRegDef[SR] || PhysRegUse[SR]) && MO.clobbersPhysReg(SR))
425         Super = SR;
426     HandlePhysRegKill(Super, nullptr);
427   }
428 }
429 
430 void LiveVariables::HandlePhysRegDef(Register Reg, MachineInstr *MI,
431                                      SmallVectorImpl<unsigned> &Defs) {
432   // What parts of the register are previously defined?
433   SmallSet<unsigned, 32> Live;
434   if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
435     for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
436       Live.insert(SubReg);
437   } else {
438     for (MCPhysReg SubReg : TRI->subregs(Reg)) {
439       // If a register isn't itself defined, but all parts that make up of it
440       // are defined, then consider it also defined.
441       // e.g.
442       // AL =
443       // AH =
444       //    = AX
445       if (Live.count(SubReg))
446         continue;
447       if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
448         for (MCPhysReg SS : TRI->subregs_inclusive(SubReg))
449           Live.insert(SS);
450       }
451     }
452   }
453 
454   // Start from the largest piece, find the last time any part of the register
455   // is referenced.
456   HandlePhysRegKill(Reg, MI);
457   // Only some of the sub-registers are used.
458   for (MCPhysReg SubReg : TRI->subregs(Reg)) {
459     if (!Live.count(SubReg))
460       // Skip if this sub-register isn't defined.
461       continue;
462     HandlePhysRegKill(SubReg, MI);
463   }
464 
465   if (MI)
466     Defs.push_back(Reg);  // Remember this def.
467 }
468 
469 void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI,
470                                       SmallVectorImpl<unsigned> &Defs) {
471   while (!Defs.empty()) {
472     Register Reg = Defs.pop_back_val();
473     for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
474       PhysRegDef[SubReg] = &MI;
475       PhysRegUse[SubReg]  = nullptr;
476     }
477   }
478 }
479 
480 void LiveVariables::runOnInstr(MachineInstr &MI,
481                                SmallVectorImpl<unsigned> &Defs) {
482   assert(!MI.isDebugOrPseudoInstr());
483   // Process all of the operands of the instruction...
484   unsigned NumOperandsToProcess = MI.getNumOperands();
485 
486   // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
487   // of the uses.  They will be handled in other basic blocks.
488   if (MI.isPHI())
489     NumOperandsToProcess = 1;
490 
491   // Clear kill and dead markers. LV will recompute them.
492   SmallVector<unsigned, 4> UseRegs;
493   SmallVector<unsigned, 4> DefRegs;
494   SmallVector<unsigned, 1> RegMasks;
495   for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
496     MachineOperand &MO = MI.getOperand(i);
497     if (MO.isRegMask()) {
498       RegMasks.push_back(i);
499       continue;
500     }
501     if (!MO.isReg() || MO.getReg() == 0)
502       continue;
503     Register MOReg = MO.getReg();
504     if (MO.isUse()) {
505       if (!(MOReg.isPhysical() && MRI->isReserved(MOReg)))
506         MO.setIsKill(false);
507       if (MO.readsReg())
508         UseRegs.push_back(MOReg);
509     } else {
510       assert(MO.isDef());
511       // FIXME: We should not remove any dead flags. However the MIPS RDDSP
512       // instruction needs it at the moment: http://llvm.org/PR27116.
513       if (MOReg.isPhysical() && !MRI->isReserved(MOReg))
514         MO.setIsDead(false);
515       DefRegs.push_back(MOReg);
516     }
517   }
518 
519   MachineBasicBlock *MBB = MI.getParent();
520   // Process all uses.
521   for (unsigned MOReg : UseRegs) {
522     if (Register::isVirtualRegister(MOReg))
523       HandleVirtRegUse(MOReg, MBB, MI);
524     else if (!MRI->isReserved(MOReg))
525       HandlePhysRegUse(MOReg, MI);
526   }
527 
528   // Process all masked registers. (Call clobbers).
529   for (unsigned Mask : RegMasks)
530     HandleRegMask(MI.getOperand(Mask));
531 
532   // Process all defs.
533   for (unsigned MOReg : DefRegs) {
534     if (Register::isVirtualRegister(MOReg))
535       HandleVirtRegDef(MOReg, MI);
536     else if (!MRI->isReserved(MOReg))
537       HandlePhysRegDef(MOReg, &MI, Defs);
538   }
539   UpdatePhysRegDefs(MI, Defs);
540 }
541 
542 void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) {
543   // Mark live-in registers as live-in.
544   SmallVector<unsigned, 4> Defs;
545   for (const auto &LI : MBB->liveins()) {
546     assert(Register::isPhysicalRegister(LI.PhysReg) &&
547            "Cannot have a live-in virtual register!");
548     HandlePhysRegDef(LI.PhysReg, nullptr, Defs);
549   }
550 
551   // Loop over all of the instructions, processing them.
552   DistanceMap.clear();
553   unsigned Dist = 0;
554   for (MachineInstr &MI : *MBB) {
555     if (MI.isDebugOrPseudoInstr())
556       continue;
557     DistanceMap.insert(std::make_pair(&MI, Dist++));
558 
559     runOnInstr(MI, Defs);
560   }
561 
562   // Handle any virtual assignments from PHI nodes which might be at the
563   // bottom of this basic block.  We check all of our successor blocks to see
564   // if they have PHI nodes, and if so, we simulate an assignment at the end
565   // of the current block.
566   if (!PHIVarInfo[MBB->getNumber()].empty()) {
567     SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
568 
569     for (unsigned I : VarInfoVec)
570       // Mark it alive only in the block we are representing.
571       MarkVirtRegAliveInBlock(getVarInfo(I), MRI->getVRegDef(I)->getParent(),
572                               MBB);
573   }
574 
575   // MachineCSE may CSE instructions which write to non-allocatable physical
576   // registers across MBBs. Remember if any reserved register is liveout.
577   SmallSet<unsigned, 4> LiveOuts;
578   for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
579     if (SuccMBB->isEHPad())
580       continue;
581     for (const auto &LI : SuccMBB->liveins()) {
582       if (!TRI->isInAllocatableClass(LI.PhysReg))
583         // Ignore other live-ins, e.g. those that are live into landing pads.
584         LiveOuts.insert(LI.PhysReg);
585     }
586   }
587 
588   // Loop over PhysRegDef / PhysRegUse, killing any registers that are
589   // available at the end of the basic block.
590   for (unsigned i = 0; i != NumRegs; ++i)
591     if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
592       HandlePhysRegDef(i, nullptr, Defs);
593 }
594 
595 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
596   MF = &mf;
597   MRI = &mf.getRegInfo();
598   TRI = MF->getSubtarget().getRegisterInfo();
599 
600   const unsigned NumRegs = TRI->getNumRegs();
601   PhysRegDef.assign(NumRegs, nullptr);
602   PhysRegUse.assign(NumRegs, nullptr);
603   PHIVarInfo.resize(MF->getNumBlockIDs());
604   PHIJoins.clear();
605 
606   // FIXME: LiveIntervals will be updated to remove its dependence on
607   // LiveVariables to improve compilation time and eliminate bizarre pass
608   // dependencies. Until then, we can't change much in -O0.
609   if (!MRI->isSSA())
610     report_fatal_error("regalloc=... not currently supported with -O0");
611 
612   analyzePHINodes(mf);
613 
614   // Calculate live variable information in depth first order on the CFG of the
615   // function.  This guarantees that we will see the definition of a virtual
616   // register before its uses due to dominance properties of SSA (except for PHI
617   // nodes, which are treated as a special case).
618   MachineBasicBlock *Entry = &MF->front();
619   df_iterator_default_set<MachineBasicBlock*,16> Visited;
620 
621   for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
622     runOnBlock(MBB, NumRegs);
623 
624     PhysRegDef.assign(NumRegs, nullptr);
625     PhysRegUse.assign(NumRegs, nullptr);
626   }
627 
628   // Convert and transfer the dead / killed information we have gathered into
629   // VirtRegInfo onto MI's.
630   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
631     const Register Reg = Register::index2VirtReg(i);
632     for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
633       if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
634         VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
635       else
636         VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
637   }
638 
639   // Check to make sure there are no unreachable blocks in the MC CFG for the
640   // function.  If so, it is due to a bug in the instruction selector or some
641   // other part of the code generator if this happens.
642 #ifndef NDEBUG
643   for (const MachineBasicBlock &MBB : *MF)
644     assert(Visited.contains(&MBB) && "unreachable basic block found");
645 #endif
646 
647   PhysRegDef.clear();
648   PhysRegUse.clear();
649   PHIVarInfo.clear();
650 
651   return false;
652 }
653 
654 void LiveVariables::recomputeForSingleDefVirtReg(Register Reg) {
655   assert(Reg.isVirtual());
656 
657   VarInfo &VI = getVarInfo(Reg);
658   VI.AliveBlocks.clear();
659   VI.Kills.clear();
660 
661   MachineInstr &DefMI = *MRI->getUniqueVRegDef(Reg);
662   MachineBasicBlock &DefBB = *DefMI.getParent();
663 
664   // Handle the case where all uses have been removed.
665   if (MRI->use_nodbg_empty(Reg)) {
666     VI.Kills.push_back(&DefMI);
667     DefMI.addRegisterDead(Reg, nullptr);
668     return;
669   }
670   DefMI.clearRegisterDeads(Reg);
671 
672   // Initialize a worklist of BBs that Reg is live-to-end of. (Here
673   // "live-to-end" means Reg is live at the end of a block even if it is only
674   // live because of phi uses in a successor. This is different from isLiveOut()
675   // which does not consider phi uses.)
676   SmallVector<MachineBasicBlock *> LiveToEndBlocks;
677   SparseBitVector<> UseBlocks;
678   for (auto &UseMO : MRI->use_nodbg_operands(Reg)) {
679     UseMO.setIsKill(false);
680     MachineInstr &UseMI = *UseMO.getParent();
681     MachineBasicBlock &UseBB = *UseMI.getParent();
682     UseBlocks.set(UseBB.getNumber());
683     if (UseMI.isPHI()) {
684       // If Reg is used in a phi then it is live-to-end of the corresponding
685       // predecessor.
686       unsigned Idx = UseMO.getOperandNo();
687       LiveToEndBlocks.push_back(UseMI.getOperand(Idx + 1).getMBB());
688     } else if (&UseBB == &DefBB) {
689       // A non-phi use in the same BB as the single def must come after the def.
690     } else {
691       // Otherwise Reg must be live-to-end of all predecessors.
692       LiveToEndBlocks.append(UseBB.pred_begin(), UseBB.pred_end());
693     }
694   }
695 
696   // Iterate over the worklist adding blocks to AliveBlocks.
697   bool LiveToEndOfDefBB = false;
698   while (!LiveToEndBlocks.empty()) {
699     MachineBasicBlock &BB = *LiveToEndBlocks.pop_back_val();
700     if (&BB == &DefBB) {
701       LiveToEndOfDefBB = true;
702       continue;
703     }
704     if (VI.AliveBlocks.test(BB.getNumber()))
705       continue;
706     VI.AliveBlocks.set(BB.getNumber());
707     LiveToEndBlocks.append(BB.pred_begin(), BB.pred_end());
708   }
709 
710   // Recompute kill flags. For each block in which Reg is used but is not
711   // live-through, find the last instruction that uses Reg. Ignore phi nodes
712   // because they should not be included in Kills.
713   for (unsigned UseBBNum : UseBlocks) {
714     if (VI.AliveBlocks.test(UseBBNum))
715       continue;
716     MachineBasicBlock &UseBB = *MF->getBlockNumbered(UseBBNum);
717     if (&UseBB == &DefBB && LiveToEndOfDefBB)
718       continue;
719     for (auto &MI : reverse(UseBB)) {
720       if (MI.isDebugOrPseudoInstr())
721         continue;
722       if (MI.isPHI())
723         break;
724       if (MI.readsRegister(Reg)) {
725         assert(!MI.killsRegister(Reg));
726         MI.addRegisterKilled(Reg, nullptr);
727         VI.Kills.push_back(&MI);
728         break;
729       }
730     }
731   }
732 }
733 
734 /// replaceKillInstruction - Update register kill info by replacing a kill
735 /// instruction with a new one.
736 void LiveVariables::replaceKillInstruction(Register Reg, MachineInstr &OldMI,
737                                            MachineInstr &NewMI) {
738   VarInfo &VI = getVarInfo(Reg);
739   std::replace(VI.Kills.begin(), VI.Kills.end(), &OldMI, &NewMI);
740 }
741 
742 /// removeVirtualRegistersKilled - Remove all killed info for the specified
743 /// instruction.
744 void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) {
745   for (MachineOperand &MO : MI.operands()) {
746     if (MO.isReg() && MO.isKill()) {
747       MO.setIsKill(false);
748       Register Reg = MO.getReg();
749       if (Reg.isVirtual()) {
750         bool removed = getVarInfo(Reg).removeKill(MI);
751         assert(removed && "kill not in register's VarInfo?");
752         (void)removed;
753       }
754     }
755   }
756 }
757 
758 /// analyzePHINodes - Gather information about the PHI nodes in here. In
759 /// particular, we want to map the variable information of a virtual register
760 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
761 ///
762 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
763   for (const auto &MBB : Fn)
764     for (const auto &BBI : MBB) {
765       if (!BBI.isPHI())
766         break;
767       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
768         if (BBI.getOperand(i).readsReg())
769           PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()]
770             .push_back(BBI.getOperand(i).getReg());
771     }
772 }
773 
774 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
775                                       Register Reg, MachineRegisterInfo &MRI) {
776   unsigned Num = MBB.getNumber();
777 
778   // Reg is live-through.
779   if (AliveBlocks.test(Num))
780     return true;
781 
782   // Registers defined in MBB cannot be live in.
783   const MachineInstr *Def = MRI.getVRegDef(Reg);
784   if (Def && Def->getParent() == &MBB)
785     return false;
786 
787  // Reg was not defined in MBB, was it killed here?
788   return findKill(&MBB);
789 }
790 
791 bool LiveVariables::isLiveOut(Register Reg, const MachineBasicBlock &MBB) {
792   LiveVariables::VarInfo &VI = getVarInfo(Reg);
793 
794   SmallPtrSet<const MachineBasicBlock *, 8> Kills;
795   for (MachineInstr *MI : VI.Kills)
796     Kills.insert(MI->getParent());
797 
798   // Loop over all of the successors of the basic block, checking to see if
799   // the value is either live in the block, or if it is killed in the block.
800   for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
801     // Is it alive in this successor?
802     unsigned SuccIdx = SuccMBB->getNumber();
803     if (VI.AliveBlocks.test(SuccIdx))
804       return true;
805     // Or is it live because there is a use in a successor that kills it?
806     if (Kills.count(SuccMBB))
807       return true;
808   }
809 
810   return false;
811 }
812 
813 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
814 /// variables that are live out of DomBB will be marked as passing live through
815 /// BB.
816 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
817                                 MachineBasicBlock *DomBB,
818                                 MachineBasicBlock *SuccBB) {
819   const unsigned NumNew = BB->getNumber();
820 
821   DenseSet<unsigned> Defs, Kills;
822 
823   MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
824   for (; BBI != BBE && BBI->isPHI(); ++BBI) {
825     // Record the def of the PHI node.
826     Defs.insert(BBI->getOperand(0).getReg());
827 
828     // All registers used by PHI nodes in SuccBB must be live through BB.
829     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
830       if (BBI->getOperand(i+1).getMBB() == BB)
831         getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
832   }
833 
834   // Record all vreg defs and kills of all instructions in SuccBB.
835   for (; BBI != BBE; ++BBI) {
836     for (const MachineOperand &Op : BBI->operands()) {
837       if (Op.isReg() && Op.getReg().isVirtual()) {
838         if (Op.isDef())
839           Defs.insert(Op.getReg());
840         else if (Op.isKill())
841           Kills.insert(Op.getReg());
842       }
843     }
844   }
845 
846   // Update info for all live variables
847   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
848     Register Reg = Register::index2VirtReg(i);
849 
850     // If the Defs is defined in the successor it can't be live in BB.
851     if (Defs.count(Reg))
852       continue;
853 
854     // If the register is either killed in or live through SuccBB it's also live
855     // through BB.
856     VarInfo &VI = getVarInfo(Reg);
857     if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
858       VI.AliveBlocks.set(NumNew);
859   }
860 }
861 
862 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
863 /// variables that are live out of DomBB will be marked as passing live through
864 /// BB. LiveInSets[BB] is *not* updated (because it is not needed during
865 /// PHIElimination).
866 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
867                                 MachineBasicBlock *DomBB,
868                                 MachineBasicBlock *SuccBB,
869                                 std::vector<SparseBitVector<>> &LiveInSets) {
870   const unsigned NumNew = BB->getNumber();
871 
872   SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()];
873   for (unsigned R : BV) {
874     Register VirtReg = Register::index2VirtReg(R);
875     LiveVariables::VarInfo &VI = getVarInfo(VirtReg);
876     VI.AliveBlocks.set(NumNew);
877   }
878   // All registers used by PHI nodes in SuccBB must be live through BB.
879   for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
880          BBE = SuccBB->end();
881        BBI != BBE && BBI->isPHI(); ++BBI) {
882     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
883       if (BBI->getOperand(i + 1).getMBB() == BB &&
884           BBI->getOperand(i).readsReg())
885         getVarInfo(BBI->getOperand(i).getReg())
886           .AliveBlocks.set(NumNew);
887   }
888 }
889