xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeShrink.cpp (revision 4d846d260e2b9a3d4d0a701462568268cbfe7a5b)
1 //===- LiveRangeShrink.cpp - Move instructions to shrink live range -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 ///===---------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This pass moves instructions close to the definition of its operands to
11 /// shrink live range of the def instruction. The code motion is limited within
12 /// the basic block. The moved instruction should have 1 def, and more than one
13 /// uses, all of which are the only use of the def.
14 ///
15 ///===---------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <iterator>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "lrshrink"
36 
37 STATISTIC(NumInstrsHoistedToShrinkLiveRange,
38           "Number of insructions hoisted to shrink live range.");
39 
40 namespace {
41 
42 class LiveRangeShrink : public MachineFunctionPass {
43 public:
44   static char ID;
45 
46   LiveRangeShrink() : MachineFunctionPass(ID) {
47     initializeLiveRangeShrinkPass(*PassRegistry::getPassRegistry());
48   }
49 
50   void getAnalysisUsage(AnalysisUsage &AU) const override {
51     AU.setPreservesCFG();
52     MachineFunctionPass::getAnalysisUsage(AU);
53   }
54 
55   StringRef getPassName() const override { return "Live Range Shrink"; }
56 
57   bool runOnMachineFunction(MachineFunction &MF) override;
58 };
59 
60 } // end anonymous namespace
61 
62 char LiveRangeShrink::ID = 0;
63 
64 char &llvm::LiveRangeShrinkID = LiveRangeShrink::ID;
65 
66 INITIALIZE_PASS(LiveRangeShrink, "lrshrink", "Live Range Shrink Pass", false,
67                 false)
68 
69 using InstOrderMap = DenseMap<MachineInstr *, unsigned>;
70 
71 /// Returns \p New if it's dominated by \p Old, otherwise return \p Old.
72 /// \p M maintains a map from instruction to its dominating order that satisfies
73 /// M[A] > M[B] guarantees that A is dominated by B.
74 /// If \p New is not in \p M, return \p Old. Otherwise if \p Old is null, return
75 /// \p New.
76 static MachineInstr *FindDominatedInstruction(MachineInstr &New,
77                                               MachineInstr *Old,
78                                               const InstOrderMap &M) {
79   auto NewIter = M.find(&New);
80   if (NewIter == M.end())
81     return Old;
82   if (Old == nullptr)
83     return &New;
84   unsigned OrderOld = M.find(Old)->second;
85   unsigned OrderNew = NewIter->second;
86   if (OrderOld != OrderNew)
87     return OrderOld < OrderNew ? &New : Old;
88   // OrderOld == OrderNew, we need to iterate down from Old to see if it
89   // can reach New, if yes, New is dominated by Old.
90   for (MachineInstr *I = Old->getNextNode(); M.find(I)->second == OrderNew;
91        I = I->getNextNode())
92     if (I == &New)
93       return &New;
94   return Old;
95 }
96 
97 /// Builds Instruction to its dominating order number map \p M by traversing
98 /// from instruction \p Start.
99 static void BuildInstOrderMap(MachineBasicBlock::iterator Start,
100                               InstOrderMap &M) {
101   M.clear();
102   unsigned i = 0;
103   for (MachineInstr &I : make_range(Start, Start->getParent()->end()))
104     M[&I] = i++;
105 }
106 
107 bool LiveRangeShrink::runOnMachineFunction(MachineFunction &MF) {
108   if (skipFunction(MF.getFunction()))
109     return false;
110 
111   MachineRegisterInfo &MRI = MF.getRegInfo();
112 
113   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
114 
115   InstOrderMap IOM;
116   // Map from register to instruction order (value of IOM) where the
117   // register is used last. When moving instructions up, we need to
118   // make sure all its defs (including dead def) will not cross its
119   // last use when moving up.
120   DenseMap<unsigned, std::pair<unsigned, MachineInstr *>> UseMap;
121 
122   for (MachineBasicBlock &MBB : MF) {
123     if (MBB.empty())
124       continue;
125     bool SawStore = false;
126     BuildInstOrderMap(MBB.begin(), IOM);
127     UseMap.clear();
128 
129     for (MachineBasicBlock::iterator Next = MBB.begin(); Next != MBB.end();) {
130       MachineInstr &MI = *Next;
131       ++Next;
132       if (MI.isPHI() || MI.isDebugOrPseudoInstr())
133         continue;
134       if (MI.mayStore())
135         SawStore = true;
136 
137       unsigned CurrentOrder = IOM[&MI];
138       unsigned Barrier = 0;
139       MachineInstr *BarrierMI = nullptr;
140       for (const MachineOperand &MO : MI.operands()) {
141         if (!MO.isReg() || MO.isDebug())
142           continue;
143         if (MO.isUse())
144           UseMap[MO.getReg()] = std::make_pair(CurrentOrder, &MI);
145         else if (MO.isDead() && UseMap.count(MO.getReg()))
146           // Barrier is the last instruction where MO get used. MI should not
147           // be moved above Barrier.
148           if (Barrier < UseMap[MO.getReg()].first) {
149             Barrier = UseMap[MO.getReg()].first;
150             BarrierMI = UseMap[MO.getReg()].second;
151           }
152       }
153 
154       if (!MI.isSafeToMove(nullptr, SawStore)) {
155         // If MI has side effects, it should become a barrier for code motion.
156         // IOM is rebuild from the next instruction to prevent later
157         // instructions from being moved before this MI.
158         if (MI.hasUnmodeledSideEffects() && !MI.isPseudoProbe() &&
159             Next != MBB.end()) {
160           BuildInstOrderMap(Next, IOM);
161           SawStore = false;
162         }
163         continue;
164       }
165 
166       const MachineOperand *DefMO = nullptr;
167       MachineInstr *Insert = nullptr;
168 
169       // Number of live-ranges that will be shortened. We do not count
170       // live-ranges that are defined by a COPY as it could be coalesced later.
171       unsigned NumEligibleUse = 0;
172 
173       for (const MachineOperand &MO : MI.operands()) {
174         if (!MO.isReg() || MO.isDead() || MO.isDebug())
175           continue;
176         Register Reg = MO.getReg();
177         // Do not move the instruction if it def/uses a physical register,
178         // unless it is a constant physical register or a noreg.
179         if (!Register::isVirtualRegister(Reg)) {
180           if (!Reg || MRI.isConstantPhysReg(Reg))
181             continue;
182           Insert = nullptr;
183           break;
184         }
185         if (MO.isDef()) {
186           // Do not move if there is more than one def.
187           if (DefMO) {
188             Insert = nullptr;
189             break;
190           }
191           DefMO = &MO;
192         } else if (MRI.hasOneNonDBGUse(Reg) && MRI.hasOneDef(Reg) && DefMO &&
193                    MRI.getRegClass(DefMO->getReg()) ==
194                        MRI.getRegClass(MO.getReg())) {
195           // The heuristic does not handle different register classes yet
196           // (registers of different sizes, looser/tighter constraints). This
197           // is because it needs more accurate model to handle register
198           // pressure correctly.
199           MachineInstr &DefInstr = *MRI.def_instr_begin(Reg);
200           if (!DefInstr.isCopy())
201             NumEligibleUse++;
202           Insert = FindDominatedInstruction(DefInstr, Insert, IOM);
203         } else {
204           Insert = nullptr;
205           break;
206         }
207       }
208 
209       // If Barrier equals IOM[I], traverse forward to find if BarrierMI is
210       // after Insert, if yes, then we should not hoist.
211       for (MachineInstr *I = Insert; I && IOM[I] == Barrier;
212            I = I->getNextNode())
213         if (I == BarrierMI) {
214           Insert = nullptr;
215           break;
216         }
217       // Move the instruction when # of shrunk live range > 1.
218       if (DefMO && Insert && NumEligibleUse > 1 && Barrier <= IOM[Insert]) {
219         MachineBasicBlock::iterator I = std::next(Insert->getIterator());
220         // Skip all the PHI and debug instructions.
221         while (I != MBB.end() && (I->isPHI() || I->isDebugOrPseudoInstr()))
222           I = std::next(I);
223         if (I == MI.getIterator())
224           continue;
225 
226         // Update the dominator order to be the same as the insertion point.
227         // We do this to maintain a non-decreasing order without need to update
228         // all instruction orders after the insertion point.
229         unsigned NewOrder = IOM[&*I];
230         IOM[&MI] = NewOrder;
231         NumInstrsHoistedToShrinkLiveRange++;
232 
233         // Find MI's debug value following MI.
234         MachineBasicBlock::iterator EndIter = std::next(MI.getIterator());
235         if (MI.getOperand(0).isReg())
236           for (; EndIter != MBB.end() && EndIter->isDebugValue() &&
237                  EndIter->hasDebugOperandForReg(MI.getOperand(0).getReg());
238                ++EndIter, ++Next)
239             IOM[&*EndIter] = NewOrder;
240         MBB.splice(I, &MBB, MI.getIterator(), EndIter);
241       }
242     }
243   }
244   return false;
245 }
246