1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/CodeGen/CalcSpillWeights.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "regalloc" 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 STATISTIC(NumReMaterialization, "Number of instructions rematerialized"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, 35 bool createSubRanges) { 36 Register VReg = MRI.cloneVirtualRegister(OldReg); 37 if (VRM) 38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 39 40 LiveInterval &LI = LIS.createEmptyInterval(VReg); 41 if (Parent && !Parent->isSpillable()) 42 LI.markNotSpillable(); 43 if (createSubRanges) { 44 // Create empty subranges if the OldReg's interval has them. Do not create 45 // the main range here---it will be constructed later after the subranges 46 // have been finalized. 47 LiveInterval &OldLI = LIS.getInterval(OldReg); 48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 49 for (LiveInterval::SubRange &S : OldLI.subranges()) 50 LI.createSubRange(Alloc, S.LaneMask); 51 } 52 return LI; 53 } 54 55 Register LiveRangeEdit::createFrom(Register OldReg) { 56 Register VReg = MRI.cloneVirtualRegister(OldReg); 57 if (VRM) { 58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 59 } 60 // FIXME: Getting the interval here actually computes it. 61 // In theory, this may not be what we want, but in practice 62 // the createEmptyIntervalFrom API is used when this is not 63 // the case. Generally speaking we just want to annotate the 64 // LiveInterval when it gets created but we cannot do that at 65 // the moment. 66 if (Parent && !Parent->isSpillable()) 67 LIS.getInterval(VReg).markNotSpillable(); 68 return VReg; 69 } 70 71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 72 const MachineInstr *DefMI) { 73 assert(DefMI && "Missing instruction"); 74 ScannedRemattable = true; 75 if (!TII.isTriviallyReMaterializable(*DefMI)) 76 return false; 77 Remattable.insert(VNI); 78 return true; 79 } 80 81 void LiveRangeEdit::scanRemattable() { 82 for (VNInfo *VNI : getParent().valnos) { 83 if (VNI->isUnused()) 84 continue; 85 unsigned Original = VRM->getOriginal(getReg()); 86 LiveInterval &OrigLI = LIS.getInterval(Original); 87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 88 if (!OrigVNI) 89 continue; 90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 91 if (!DefMI) 92 continue; 93 checkRematerializable(OrigVNI, DefMI); 94 } 95 ScannedRemattable = true; 96 } 97 98 bool LiveRangeEdit::anyRematerializable() { 99 if (!ScannedRemattable) 100 scanRemattable(); 101 return !Remattable.empty(); 102 } 103 104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 105 /// OrigIdx are also available with the same value at UseIdx. 106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 107 SlotIndex OrigIdx, 108 SlotIndex UseIdx) const { 109 OrigIdx = OrigIdx.getRegSlot(true); 110 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true)); 111 for (const MachineOperand &MO : OrigMI->operands()) { 112 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 113 continue; 114 115 // We can't remat physreg uses, unless it is a constant or target wants 116 // to ignore this use. 117 if (MO.getReg().isPhysical()) { 118 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO)) 119 continue; 120 return false; 121 } 122 123 LiveInterval &li = LIS.getInterval(MO.getReg()); 124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 125 if (!OVNI) 126 continue; 127 128 // Don't allow rematerialization immediately after the original def. 129 // It would be incorrect if OrigMI redefines the register. 130 // See PR14098. 131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 132 return false; 133 134 if (OVNI != li.getVNInfoAt(UseIdx)) 135 return false; 136 137 // Check that subrange is live at UseIdx. 138 if (li.hasSubRanges()) { 139 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 140 unsigned SubReg = MO.getSubReg(); 141 LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 142 : MRI.getMaxLaneMaskForVReg(MO.getReg()); 143 for (LiveInterval::SubRange &SR : li.subranges()) { 144 if ((SR.LaneMask & LM).none()) 145 continue; 146 if (!SR.liveAt(UseIdx)) 147 return false; 148 // Early exit if all used lanes are checked. No need to continue. 149 LM &= ~SR.LaneMask; 150 if (LM.none()) 151 break; 152 } 153 } 154 } 155 return true; 156 } 157 158 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 159 SlotIndex UseIdx, bool cheapAsAMove) { 160 assert(ScannedRemattable && "Call anyRematerializable first"); 161 162 // Use scanRemattable info. 163 if (!Remattable.count(OrigVNI)) 164 return false; 165 166 // No defining instruction provided. 167 SlotIndex DefIdx; 168 assert(RM.OrigMI && "No defining instruction for remattable value"); 169 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 170 171 // If only cheap remats were requested, bail out early. 172 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 173 return false; 174 175 // Verify that all used registers are available with the same values. 176 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 177 return false; 178 179 return true; 180 } 181 182 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 183 MachineBasicBlock::iterator MI, 184 unsigned DestReg, 185 const Remat &RM, 186 const TargetRegisterInfo &tri, 187 bool Late, 188 unsigned SubIdx, 189 MachineInstr *ReplaceIndexMI) { 190 assert(RM.OrigMI && "Invalid remat"); 191 TII.reMaterialize(MBB, MI, DestReg, SubIdx, *RM.OrigMI, tri); 192 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 193 // to false anyway in case the isDead flag of RM.OrigMI's dest register 194 // is true. 195 (*--MI).getOperand(0).setIsDead(false); 196 Rematted.insert(RM.ParentVNI); 197 ++NumReMaterialization; 198 199 if (ReplaceIndexMI) 200 return LIS.ReplaceMachineInstrInMaps(*ReplaceIndexMI, *MI).getRegSlot(); 201 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 202 } 203 204 void LiveRangeEdit::eraseVirtReg(Register Reg) { 205 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 206 LIS.removeInterval(Reg); 207 } 208 209 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 210 SmallVectorImpl<MachineInstr*> &Dead) { 211 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 212 213 // Check that there is a single def and a single use. 214 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) { 215 MachineInstr *MI = MO.getParent(); 216 if (MO.isDef()) { 217 if (DefMI && DefMI != MI) 218 return false; 219 if (!MI->canFoldAsLoad()) 220 return false; 221 DefMI = MI; 222 } else if (!MO.isUndef()) { 223 if (UseMI && UseMI != MI) 224 return false; 225 // FIXME: Targets don't know how to fold subreg uses. 226 if (MO.getSubReg()) 227 return false; 228 UseMI = MI; 229 } 230 } 231 if (!DefMI || !UseMI) 232 return false; 233 234 // Since we're moving the DefMI load, make sure we're not extending any live 235 // ranges. 236 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 237 LIS.getInstructionIndex(*UseMI))) 238 return false; 239 240 // We also need to make sure it is safe to move the load. 241 // Assume there are stores between DefMI and UseMI. 242 bool SawStore = true; 243 if (!DefMI->isSafeToMove(nullptr, SawStore)) 244 return false; 245 246 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 247 << " into single use: " << *UseMI); 248 249 SmallVector<unsigned, 8> Ops; 250 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second) 251 return false; 252 253 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 254 if (!FoldMI) 255 return false; 256 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 257 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 258 // Update the call site info. 259 if (UseMI->shouldUpdateCallSiteInfo()) 260 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 261 UseMI->eraseFromParent(); 262 DefMI->addRegisterDead(LI->reg(), nullptr); 263 Dead.push_back(DefMI); 264 ++NumDCEFoldedLoads; 265 return true; 266 } 267 268 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 269 const MachineOperand &MO) const { 270 const MachineInstr &MI = *MO.getParent(); 271 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 272 if (LI.Query(Idx).isKill()) 273 return true; 274 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 275 unsigned SubReg = MO.getSubReg(); 276 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 277 for (const LiveInterval::SubRange &S : LI.subranges()) { 278 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 279 return true; 280 } 281 return false; 282 } 283 284 /// Find all live intervals that need to shrink, then remove the instruction. 285 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 286 assert(MI->allDefsAreDead() && "Def isn't really dead"); 287 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 288 289 // Never delete a bundled instruction. 290 if (MI->isBundled()) { 291 return; 292 } 293 // Never delete inline asm. 294 if (MI->isInlineAsm()) { 295 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 296 return; 297 } 298 299 // Use the same criteria as DeadMachineInstructionElim. 300 bool SawStore = false; 301 if (!MI->isSafeToMove(nullptr, SawStore)) { 302 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 303 return; 304 } 305 306 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 307 308 // Collect virtual registers to be erased after MI is gone. 309 SmallVector<unsigned, 8> RegsToErase; 310 bool ReadsPhysRegs = false; 311 bool isOrigDef = false; 312 Register Dest; 313 unsigned DestSubReg; 314 // Only optimize rematerialize case when the instruction has one def, since 315 // otherwise we could leave some dead defs in the code. This case is 316 // extremely rare. 317 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 318 MI->getDesc().getNumDefs() == 1) { 319 Dest = MI->getOperand(0).getReg(); 320 DestSubReg = MI->getOperand(0).getSubReg(); 321 Register Original = VRM->getOriginal(Dest); 322 LiveInterval &OrigLI = LIS.getInterval(Original); 323 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 324 // The original live-range may have been shrunk to 325 // an empty live-range. It happens when it is dead, but 326 // we still keep it around to be able to rematerialize 327 // other values that depend on it. 328 if (OrigVNI) 329 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 330 } 331 332 bool HasLiveVRegUses = false; 333 334 // Check for live intervals that may shrink 335 for (const MachineOperand &MO : MI->operands()) { 336 if (!MO.isReg()) 337 continue; 338 Register Reg = MO.getReg(); 339 if (!Reg.isVirtual()) { 340 // Check if MI reads any unreserved physregs. 341 if (Reg && MO.readsReg() && !MRI.isReserved(Reg)) 342 ReadsPhysRegs = true; 343 else if (MO.isDef()) 344 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 345 continue; 346 } 347 LiveInterval &LI = LIS.getInterval(Reg); 348 349 // Shrink read registers, unless it is likely to be expensive and 350 // unlikely to change anything. We typically don't want to shrink the 351 // PIC base register that has lots of uses everywhere. 352 // Always shrink COPY uses that probably come from live range splitting. 353 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) || 354 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO)))) 355 ToShrink.insert(&LI); 356 else if (MO.readsReg()) 357 HasLiveVRegUses = true; 358 359 // Remove defined value. 360 if (MO.isDef()) { 361 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 362 TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); 363 LIS.removeVRegDefAt(LI, Idx); 364 if (LI.empty()) 365 RegsToErase.push_back(Reg); 366 } 367 } 368 369 // Currently, we don't support DCE of physreg live ranges. If MI reads 370 // any unreserved physregs, don't erase the instruction, but turn it into 371 // a KILL instead. This way, the physreg live ranges don't end up 372 // dangling. 373 // FIXME: It would be better to have something like shrinkToUses() for 374 // physregs. That could potentially enable more DCE and it would free up 375 // the physreg. It would not happen often, though. 376 if (ReadsPhysRegs) { 377 MI->setDesc(TII.get(TargetOpcode::KILL)); 378 // Remove all operands that aren't physregs. 379 for (unsigned i = MI->getNumOperands(); i; --i) { 380 const MachineOperand &MO = MI->getOperand(i-1); 381 if (MO.isReg() && MO.getReg().isPhysical()) 382 continue; 383 MI->removeOperand(i-1); 384 } 385 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 386 } else { 387 // If the dest of MI is an original reg and MI is reMaterializable, 388 // don't delete the inst. Replace the dest with a new reg, and keep 389 // the inst for remat of other siblings. The inst is saved in 390 // LiveRangeEdit::DeadRemats and will be deleted after all the 391 // allocations of the func are done. 392 // However, immediately delete instructions which have unshrunk virtual 393 // register uses. That may provoke RA to split an interval at the KILL 394 // and later result in an invalid live segment end. 395 if (isOrigDef && DeadRemats && !HasLiveVRegUses && 396 TII.isTriviallyReMaterializable(*MI)) { 397 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 398 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 399 VNInfo *VNI = NewLI.getNextValue(Idx, Alloc); 400 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 401 402 if (DestSubReg) { 403 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 404 auto *SR = NewLI.createSubRange( 405 Alloc, TRI->getSubRegIndexLaneMask(DestSubReg)); 406 SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), 407 SR->getNextValue(Idx, Alloc))); 408 } 409 410 pop_back(); 411 DeadRemats->insert(MI); 412 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 413 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI); 414 MI->getOperand(0).setIsDead(true); 415 } else { 416 if (TheDelegate) 417 TheDelegate->LRE_WillEraseInstruction(MI); 418 LIS.RemoveMachineInstrFromMaps(*MI); 419 MI->eraseFromParent(); 420 ++NumDCEDeleted; 421 } 422 } 423 424 // Erase any virtregs that are now empty and unused. There may be <undef> 425 // uses around. Keep the empty live range in that case. 426 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 427 Register Reg = RegsToErase[i]; 428 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 429 ToShrink.remove(&LIS.getInterval(Reg)); 430 eraseVirtReg(Reg); 431 } 432 } 433 } 434 435 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 436 ArrayRef<Register> RegsBeingSpilled) { 437 ToShrinkSet ToShrink; 438 439 for (;;) { 440 // Erase all dead defs. 441 while (!Dead.empty()) 442 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 443 444 if (ToShrink.empty()) 445 break; 446 447 // Shrink just one live interval. Then delete new dead defs. 448 LiveInterval *LI = ToShrink.pop_back_val(); 449 if (foldAsLoad(LI, Dead)) 450 continue; 451 Register VReg = LI->reg(); 452 if (TheDelegate) 453 TheDelegate->LRE_WillShrinkVirtReg(VReg); 454 if (!LIS.shrinkToUses(LI, &Dead)) 455 continue; 456 457 // Don't create new intervals for a register being spilled. 458 // The new intervals would have to be spilled anyway so its not worth it. 459 // Also they currently aren't spilled so creating them and not spilling 460 // them results in incorrect code. 461 if (llvm::is_contained(RegsBeingSpilled, VReg)) 462 continue; 463 464 // LI may have been separated, create new intervals. 465 LI->RenumberValues(); 466 SmallVector<LiveInterval*, 8> SplitLIs; 467 LIS.splitSeparateComponents(*LI, SplitLIs); 468 if (!SplitLIs.empty()) 469 ++NumFracRanges; 470 471 Register Original = VRM ? VRM->getOriginal(VReg) : Register(); 472 for (const LiveInterval *SplitLI : SplitLIs) { 473 // If LI is an original interval that hasn't been split yet, make the new 474 // intervals their own originals instead of referring to LI. The original 475 // interval must contain all the split products, and LI doesn't. 476 if (Original != VReg && Original != 0) 477 VRM->setIsSplitFromReg(SplitLI->reg(), Original); 478 if (TheDelegate) 479 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg); 480 } 481 } 482 } 483 484 // Keep track of new virtual registers created via 485 // MachineRegisterInfo::createVirtualRegister. 486 void 487 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { 488 if (VRM) 489 VRM->grow(); 490 491 NewRegs.push_back(VReg); 492 } 493 494 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 495 VirtRegAuxInfo &VRAI) { 496 for (unsigned I = 0, Size = size(); I < Size; ++I) { 497 LiveInterval &LI = LIS.getInterval(get(I)); 498 if (MRI.recomputeRegClass(LI.reg())) 499 LLVM_DEBUG({ 500 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 501 dbgs() << "Inflated " << printReg(LI.reg()) << " to " 502 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; 503 }); 504 VRAI.calculateSpillWeightAndHint(LI); 505 } 506 } 507