1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/CodeGen/CalcSpillWeights.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "regalloc" 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 31 void LiveRangeEdit::Delegate::anchor() { } 32 33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg, 34 bool createSubRanges) { 35 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 if (Parent && !Parent->isSpillable()) 41 LI.markNotSpillable(); 42 if (createSubRanges) { 43 // Create empty subranges if the OldReg's interval has them. Do not create 44 // the main range here---it will be constructed later after the subranges 45 // have been finalized. 46 LiveInterval &OldLI = LIS.getInterval(OldReg); 47 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 48 for (LiveInterval::SubRange &S : OldLI.subranges()) 49 LI.createSubRange(Alloc, S.LaneMask); 50 } 51 return LI; 52 } 53 54 unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 55 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 56 if (VRM) { 57 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 58 } 59 // FIXME: Getting the interval here actually computes it. 60 // In theory, this may not be what we want, but in practice 61 // the createEmptyIntervalFrom API is used when this is not 62 // the case. Generally speaking we just want to annotate the 63 // LiveInterval when it gets created but we cannot do that at 64 // the moment. 65 if (Parent && !Parent->isSpillable()) 66 LIS.getInterval(VReg).markNotSpillable(); 67 return VReg; 68 } 69 70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 71 const MachineInstr *DefMI, 72 AliasAnalysis *aa) { 73 assert(DefMI && "Missing instruction"); 74 ScannedRemattable = true; 75 if (!TII.isTriviallyReMaterializable(*DefMI, aa)) 76 return false; 77 Remattable.insert(VNI); 78 return true; 79 } 80 81 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 82 for (VNInfo *VNI : getParent().valnos) { 83 if (VNI->isUnused()) 84 continue; 85 unsigned Original = VRM->getOriginal(getReg()); 86 LiveInterval &OrigLI = LIS.getInterval(Original); 87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 88 if (!OrigVNI) 89 continue; 90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 91 if (!DefMI) 92 continue; 93 checkRematerializable(OrigVNI, DefMI, aa); 94 } 95 ScannedRemattable = true; 96 } 97 98 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 99 if (!ScannedRemattable) 100 scanRemattable(aa); 101 return !Remattable.empty(); 102 } 103 104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 105 /// OrigIdx are also available with the same value at UseIdx. 106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 107 SlotIndex OrigIdx, 108 SlotIndex UseIdx) const { 109 OrigIdx = OrigIdx.getRegSlot(true); 110 UseIdx = UseIdx.getRegSlot(true); 111 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 112 const MachineOperand &MO = OrigMI->getOperand(i); 113 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 114 continue; 115 116 // We can't remat physreg uses, unless it is a constant. 117 if (Register::isPhysicalRegister(MO.getReg())) { 118 if (MRI.isConstantPhysReg(MO.getReg())) 119 continue; 120 return false; 121 } 122 123 LiveInterval &li = LIS.getInterval(MO.getReg()); 124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 125 if (!OVNI) 126 continue; 127 128 // Don't allow rematerialization immediately after the original def. 129 // It would be incorrect if OrigMI redefines the register. 130 // See PR14098. 131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 132 return false; 133 134 if (OVNI != li.getVNInfoAt(UseIdx)) 135 return false; 136 } 137 return true; 138 } 139 140 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 141 SlotIndex UseIdx, bool cheapAsAMove) { 142 assert(ScannedRemattable && "Call anyRematerializable first"); 143 144 // Use scanRemattable info. 145 if (!Remattable.count(OrigVNI)) 146 return false; 147 148 // No defining instruction provided. 149 SlotIndex DefIdx; 150 assert(RM.OrigMI && "No defining instruction for remattable value"); 151 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 152 153 // If only cheap remats were requested, bail out early. 154 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 155 return false; 156 157 // Verify that all used registers are available with the same values. 158 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 159 return false; 160 161 return true; 162 } 163 164 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 165 MachineBasicBlock::iterator MI, 166 unsigned DestReg, 167 const Remat &RM, 168 const TargetRegisterInfo &tri, 169 bool Late) { 170 assert(RM.OrigMI && "Invalid remat"); 171 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 172 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 173 // to false anyway in case the isDead flag of RM.OrigMI's dest register 174 // is true. 175 (*--MI).getOperand(0).setIsDead(false); 176 Rematted.insert(RM.ParentVNI); 177 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 178 } 179 180 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 181 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 182 LIS.removeInterval(Reg); 183 } 184 185 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 186 SmallVectorImpl<MachineInstr*> &Dead) { 187 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 188 189 // Check that there is a single def and a single use. 190 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 191 MachineInstr *MI = MO.getParent(); 192 if (MO.isDef()) { 193 if (DefMI && DefMI != MI) 194 return false; 195 if (!MI->canFoldAsLoad()) 196 return false; 197 DefMI = MI; 198 } else if (!MO.isUndef()) { 199 if (UseMI && UseMI != MI) 200 return false; 201 // FIXME: Targets don't know how to fold subreg uses. 202 if (MO.getSubReg()) 203 return false; 204 UseMI = MI; 205 } 206 } 207 if (!DefMI || !UseMI) 208 return false; 209 210 // Since we're moving the DefMI load, make sure we're not extending any live 211 // ranges. 212 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 213 LIS.getInstructionIndex(*UseMI))) 214 return false; 215 216 // We also need to make sure it is safe to move the load. 217 // Assume there are stores between DefMI and UseMI. 218 bool SawStore = true; 219 if (!DefMI->isSafeToMove(nullptr, SawStore)) 220 return false; 221 222 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 223 << " into single use: " << *UseMI); 224 225 SmallVector<unsigned, 8> Ops; 226 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 227 return false; 228 229 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 230 if (!FoldMI) 231 return false; 232 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 233 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 234 if (UseMI->isCall()) 235 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 236 UseMI->eraseFromParent(); 237 DefMI->addRegisterDead(LI->reg, nullptr); 238 Dead.push_back(DefMI); 239 ++NumDCEFoldedLoads; 240 return true; 241 } 242 243 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 244 const MachineOperand &MO) const { 245 const MachineInstr &MI = *MO.getParent(); 246 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 247 if (LI.Query(Idx).isKill()) 248 return true; 249 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 250 unsigned SubReg = MO.getSubReg(); 251 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 252 for (const LiveInterval::SubRange &S : LI.subranges()) { 253 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 254 return true; 255 } 256 return false; 257 } 258 259 /// Find all live intervals that need to shrink, then remove the instruction. 260 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, 261 AliasAnalysis *AA) { 262 assert(MI->allDefsAreDead() && "Def isn't really dead"); 263 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 264 265 // Never delete a bundled instruction. 266 if (MI->isBundled()) { 267 return; 268 } 269 // Never delete inline asm. 270 if (MI->isInlineAsm()) { 271 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 272 return; 273 } 274 275 // Use the same criteria as DeadMachineInstructionElim. 276 bool SawStore = false; 277 if (!MI->isSafeToMove(nullptr, SawStore)) { 278 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 279 return; 280 } 281 282 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 283 284 // Collect virtual registers to be erased after MI is gone. 285 SmallVector<unsigned, 8> RegsToErase; 286 bool ReadsPhysRegs = false; 287 bool isOrigDef = false; 288 unsigned Dest; 289 // Only optimize rematerialize case when the instruction has one def, since 290 // otherwise we could leave some dead defs in the code. This case is 291 // extremely rare. 292 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 293 MI->getDesc().getNumDefs() == 1) { 294 Dest = MI->getOperand(0).getReg(); 295 unsigned Original = VRM->getOriginal(Dest); 296 LiveInterval &OrigLI = LIS.getInterval(Original); 297 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 298 // The original live-range may have been shrunk to 299 // an empty live-range. It happens when it is dead, but 300 // we still keep it around to be able to rematerialize 301 // other values that depend on it. 302 if (OrigVNI) 303 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 304 } 305 306 // Check for live intervals that may shrink 307 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 308 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 309 if (!MOI->isReg()) 310 continue; 311 Register Reg = MOI->getReg(); 312 if (!Register::isVirtualRegister(Reg)) { 313 // Check if MI reads any unreserved physregs. 314 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 315 ReadsPhysRegs = true; 316 else if (MOI->isDef()) 317 LIS.removePhysRegDefAt(Reg, Idx); 318 continue; 319 } 320 LiveInterval &LI = LIS.getInterval(Reg); 321 322 // Shrink read registers, unless it is likely to be expensive and 323 // unlikely to change anything. We typically don't want to shrink the 324 // PIC base register that has lots of uses everywhere. 325 // Always shrink COPY uses that probably come from live range splitting. 326 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 327 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 328 ToShrink.insert(&LI); 329 330 // Remove defined value. 331 if (MOI->isDef()) { 332 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 333 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 334 LIS.removeVRegDefAt(LI, Idx); 335 if (LI.empty()) 336 RegsToErase.push_back(Reg); 337 } 338 } 339 340 // Currently, we don't support DCE of physreg live ranges. If MI reads 341 // any unreserved physregs, don't erase the instruction, but turn it into 342 // a KILL instead. This way, the physreg live ranges don't end up 343 // dangling. 344 // FIXME: It would be better to have something like shrinkToUses() for 345 // physregs. That could potentially enable more DCE and it would free up 346 // the physreg. It would not happen often, though. 347 if (ReadsPhysRegs) { 348 MI->setDesc(TII.get(TargetOpcode::KILL)); 349 // Remove all operands that aren't physregs. 350 for (unsigned i = MI->getNumOperands(); i; --i) { 351 const MachineOperand &MO = MI->getOperand(i-1); 352 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) 353 continue; 354 MI->RemoveOperand(i-1); 355 } 356 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 357 } else { 358 // If the dest of MI is an original reg and MI is reMaterializable, 359 // don't delete the inst. Replace the dest with a new reg, and keep 360 // the inst for remat of other siblings. The inst is saved in 361 // LiveRangeEdit::DeadRemats and will be deleted after all the 362 // allocations of the func are done. 363 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { 364 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 365 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 366 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 367 pop_back(); 368 DeadRemats->insert(MI); 369 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 370 MI->substituteRegister(Dest, NewLI.reg, 0, TRI); 371 MI->getOperand(0).setIsDead(true); 372 } else { 373 if (TheDelegate) 374 TheDelegate->LRE_WillEraseInstruction(MI); 375 LIS.RemoveMachineInstrFromMaps(*MI); 376 MI->eraseFromParent(); 377 ++NumDCEDeleted; 378 } 379 } 380 381 // Erase any virtregs that are now empty and unused. There may be <undef> 382 // uses around. Keep the empty live range in that case. 383 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 384 unsigned Reg = RegsToErase[i]; 385 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 386 ToShrink.remove(&LIS.getInterval(Reg)); 387 eraseVirtReg(Reg); 388 } 389 } 390 } 391 392 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 393 ArrayRef<unsigned> RegsBeingSpilled, 394 AliasAnalysis *AA) { 395 ToShrinkSet ToShrink; 396 397 for (;;) { 398 // Erase all dead defs. 399 while (!Dead.empty()) 400 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); 401 402 if (ToShrink.empty()) 403 break; 404 405 // Shrink just one live interval. Then delete new dead defs. 406 LiveInterval *LI = ToShrink.back(); 407 ToShrink.pop_back(); 408 if (foldAsLoad(LI, Dead)) 409 continue; 410 unsigned VReg = LI->reg; 411 if (TheDelegate) 412 TheDelegate->LRE_WillShrinkVirtReg(VReg); 413 if (!LIS.shrinkToUses(LI, &Dead)) 414 continue; 415 416 // Don't create new intervals for a register being spilled. 417 // The new intervals would have to be spilled anyway so its not worth it. 418 // Also they currently aren't spilled so creating them and not spilling 419 // them results in incorrect code. 420 bool BeingSpilled = false; 421 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 422 if (VReg == RegsBeingSpilled[i]) { 423 BeingSpilled = true; 424 break; 425 } 426 } 427 428 if (BeingSpilled) continue; 429 430 // LI may have been separated, create new intervals. 431 LI->RenumberValues(); 432 SmallVector<LiveInterval*, 8> SplitLIs; 433 LIS.splitSeparateComponents(*LI, SplitLIs); 434 if (!SplitLIs.empty()) 435 ++NumFracRanges; 436 437 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 438 for (const LiveInterval *SplitLI : SplitLIs) { 439 // If LI is an original interval that hasn't been split yet, make the new 440 // intervals their own originals instead of referring to LI. The original 441 // interval must contain all the split products, and LI doesn't. 442 if (Original != VReg && Original != 0) 443 VRM->setIsSplitFromReg(SplitLI->reg, Original); 444 if (TheDelegate) 445 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 446 } 447 } 448 } 449 450 // Keep track of new virtual registers created via 451 // MachineRegisterInfo::createVirtualRegister. 452 void 453 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 454 { 455 if (VRM) 456 VRM->grow(); 457 458 NewRegs.push_back(VReg); 459 } 460 461 void 462 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 463 const MachineLoopInfo &Loops, 464 const MachineBlockFrequencyInfo &MBFI) { 465 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 466 for (unsigned I = 0, Size = size(); I < Size; ++I) { 467 LiveInterval &LI = LIS.getInterval(get(I)); 468 if (MRI.recomputeRegClass(LI.reg)) 469 LLVM_DEBUG({ 470 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 471 dbgs() << "Inflated " << printReg(LI.reg) << " to " 472 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 473 }); 474 VRAI.calculateSpillWeightAndHint(LI); 475 } 476 } 477