1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/CodeGen/CalcSpillWeights.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/CodeGen/VirtRegMap.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "regalloc" 27 28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, 35 bool createSubRanges) { 36 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 37 if (VRM) 38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 39 40 LiveInterval &LI = LIS.createEmptyInterval(VReg); 41 if (Parent && !Parent->isSpillable()) 42 LI.markNotSpillable(); 43 if (createSubRanges) { 44 // Create empty subranges if the OldReg's interval has them. Do not create 45 // the main range here---it will be constructed later after the subranges 46 // have been finalized. 47 LiveInterval &OldLI = LIS.getInterval(OldReg); 48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 49 for (LiveInterval::SubRange &S : OldLI.subranges()) 50 LI.createSubRange(Alloc, S.LaneMask); 51 } 52 return LI; 53 } 54 55 Register LiveRangeEdit::createFrom(Register OldReg) { 56 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 57 if (VRM) { 58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 59 } 60 // FIXME: Getting the interval here actually computes it. 61 // In theory, this may not be what we want, but in practice 62 // the createEmptyIntervalFrom API is used when this is not 63 // the case. Generally speaking we just want to annotate the 64 // LiveInterval when it gets created but we cannot do that at 65 // the moment. 66 if (Parent && !Parent->isSpillable()) 67 LIS.getInterval(VReg).markNotSpillable(); 68 return VReg; 69 } 70 71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 72 const MachineInstr *DefMI, 73 AAResults *aa) { 74 assert(DefMI && "Missing instruction"); 75 ScannedRemattable = true; 76 if (!TII.isTriviallyReMaterializable(*DefMI, aa)) 77 return false; 78 Remattable.insert(VNI); 79 return true; 80 } 81 82 void LiveRangeEdit::scanRemattable(AAResults *aa) { 83 for (VNInfo *VNI : getParent().valnos) { 84 if (VNI->isUnused()) 85 continue; 86 unsigned Original = VRM->getOriginal(getReg()); 87 LiveInterval &OrigLI = LIS.getInterval(Original); 88 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 89 if (!OrigVNI) 90 continue; 91 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 92 if (!DefMI) 93 continue; 94 checkRematerializable(OrigVNI, DefMI, aa); 95 } 96 ScannedRemattable = true; 97 } 98 99 bool LiveRangeEdit::anyRematerializable(AAResults *aa) { 100 if (!ScannedRemattable) 101 scanRemattable(aa); 102 return !Remattable.empty(); 103 } 104 105 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 106 /// OrigIdx are also available with the same value at UseIdx. 107 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 108 SlotIndex OrigIdx, 109 SlotIndex UseIdx) const { 110 OrigIdx = OrigIdx.getRegSlot(true); 111 UseIdx = UseIdx.getRegSlot(true); 112 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 113 const MachineOperand &MO = OrigMI->getOperand(i); 114 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 115 continue; 116 117 // We can't remat physreg uses, unless it is a constant. 118 if (Register::isPhysicalRegister(MO.getReg())) { 119 if (MRI.isConstantPhysReg(MO.getReg())) 120 continue; 121 return false; 122 } 123 124 LiveInterval &li = LIS.getInterval(MO.getReg()); 125 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 126 if (!OVNI) 127 continue; 128 129 // Don't allow rematerialization immediately after the original def. 130 // It would be incorrect if OrigMI redefines the register. 131 // See PR14098. 132 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 133 return false; 134 135 if (OVNI != li.getVNInfoAt(UseIdx)) 136 return false; 137 } 138 return true; 139 } 140 141 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 142 SlotIndex UseIdx, bool cheapAsAMove) { 143 assert(ScannedRemattable && "Call anyRematerializable first"); 144 145 // Use scanRemattable info. 146 if (!Remattable.count(OrigVNI)) 147 return false; 148 149 // No defining instruction provided. 150 SlotIndex DefIdx; 151 assert(RM.OrigMI && "No defining instruction for remattable value"); 152 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 153 154 // If only cheap remats were requested, bail out early. 155 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 156 return false; 157 158 // Verify that all used registers are available with the same values. 159 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 160 return false; 161 162 return true; 163 } 164 165 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 166 MachineBasicBlock::iterator MI, 167 unsigned DestReg, 168 const Remat &RM, 169 const TargetRegisterInfo &tri, 170 bool Late) { 171 assert(RM.OrigMI && "Invalid remat"); 172 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 173 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 174 // to false anyway in case the isDead flag of RM.OrigMI's dest register 175 // is true. 176 (*--MI).getOperand(0).setIsDead(false); 177 Rematted.insert(RM.ParentVNI); 178 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 179 } 180 181 void LiveRangeEdit::eraseVirtReg(Register Reg) { 182 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 183 LIS.removeInterval(Reg); 184 } 185 186 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 187 SmallVectorImpl<MachineInstr*> &Dead) { 188 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 189 190 // Check that there is a single def and a single use. 191 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 192 MachineInstr *MI = MO.getParent(); 193 if (MO.isDef()) { 194 if (DefMI && DefMI != MI) 195 return false; 196 if (!MI->canFoldAsLoad()) 197 return false; 198 DefMI = MI; 199 } else if (!MO.isUndef()) { 200 if (UseMI && UseMI != MI) 201 return false; 202 // FIXME: Targets don't know how to fold subreg uses. 203 if (MO.getSubReg()) 204 return false; 205 UseMI = MI; 206 } 207 } 208 if (!DefMI || !UseMI) 209 return false; 210 211 // Since we're moving the DefMI load, make sure we're not extending any live 212 // ranges. 213 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 214 LIS.getInstructionIndex(*UseMI))) 215 return false; 216 217 // We also need to make sure it is safe to move the load. 218 // Assume there are stores between DefMI and UseMI. 219 bool SawStore = true; 220 if (!DefMI->isSafeToMove(nullptr, SawStore)) 221 return false; 222 223 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 224 << " into single use: " << *UseMI); 225 226 SmallVector<unsigned, 8> Ops; 227 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 228 return false; 229 230 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 231 if (!FoldMI) 232 return false; 233 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 234 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 235 // Update the call site info. 236 if (UseMI->shouldUpdateCallSiteInfo()) 237 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 238 UseMI->eraseFromParent(); 239 DefMI->addRegisterDead(LI->reg, nullptr); 240 Dead.push_back(DefMI); 241 ++NumDCEFoldedLoads; 242 return true; 243 } 244 245 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 246 const MachineOperand &MO) const { 247 const MachineInstr &MI = *MO.getParent(); 248 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 249 if (LI.Query(Idx).isKill()) 250 return true; 251 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 252 unsigned SubReg = MO.getSubReg(); 253 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 254 for (const LiveInterval::SubRange &S : LI.subranges()) { 255 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 256 return true; 257 } 258 return false; 259 } 260 261 /// Find all live intervals that need to shrink, then remove the instruction. 262 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, 263 AAResults *AA) { 264 assert(MI->allDefsAreDead() && "Def isn't really dead"); 265 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 266 267 // Never delete a bundled instruction. 268 if (MI->isBundled()) { 269 return; 270 } 271 // Never delete inline asm. 272 if (MI->isInlineAsm()) { 273 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 274 return; 275 } 276 277 // Use the same criteria as DeadMachineInstructionElim. 278 bool SawStore = false; 279 if (!MI->isSafeToMove(nullptr, SawStore)) { 280 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 281 return; 282 } 283 284 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 285 286 // Collect virtual registers to be erased after MI is gone. 287 SmallVector<unsigned, 8> RegsToErase; 288 bool ReadsPhysRegs = false; 289 bool isOrigDef = false; 290 unsigned Dest; 291 // Only optimize rematerialize case when the instruction has one def, since 292 // otherwise we could leave some dead defs in the code. This case is 293 // extremely rare. 294 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 295 MI->getDesc().getNumDefs() == 1) { 296 Dest = MI->getOperand(0).getReg(); 297 unsigned Original = VRM->getOriginal(Dest); 298 LiveInterval &OrigLI = LIS.getInterval(Original); 299 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 300 // The original live-range may have been shrunk to 301 // an empty live-range. It happens when it is dead, but 302 // we still keep it around to be able to rematerialize 303 // other values that depend on it. 304 if (OrigVNI) 305 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 306 } 307 308 // Check for live intervals that may shrink 309 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 310 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 311 if (!MOI->isReg()) 312 continue; 313 Register Reg = MOI->getReg(); 314 if (!Register::isVirtualRegister(Reg)) { 315 // Check if MI reads any unreserved physregs. 316 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 317 ReadsPhysRegs = true; 318 else if (MOI->isDef()) 319 LIS.removePhysRegDefAt(Reg, Idx); 320 continue; 321 } 322 LiveInterval &LI = LIS.getInterval(Reg); 323 324 // Shrink read registers, unless it is likely to be expensive and 325 // unlikely to change anything. We typically don't want to shrink the 326 // PIC base register that has lots of uses everywhere. 327 // Always shrink COPY uses that probably come from live range splitting. 328 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 329 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 330 ToShrink.insert(&LI); 331 332 // Remove defined value. 333 if (MOI->isDef()) { 334 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 335 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 336 LIS.removeVRegDefAt(LI, Idx); 337 if (LI.empty()) 338 RegsToErase.push_back(Reg); 339 } 340 } 341 342 // Currently, we don't support DCE of physreg live ranges. If MI reads 343 // any unreserved physregs, don't erase the instruction, but turn it into 344 // a KILL instead. This way, the physreg live ranges don't end up 345 // dangling. 346 // FIXME: It would be better to have something like shrinkToUses() for 347 // physregs. That could potentially enable more DCE and it would free up 348 // the physreg. It would not happen often, though. 349 if (ReadsPhysRegs) { 350 MI->setDesc(TII.get(TargetOpcode::KILL)); 351 // Remove all operands that aren't physregs. 352 for (unsigned i = MI->getNumOperands(); i; --i) { 353 const MachineOperand &MO = MI->getOperand(i-1); 354 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) 355 continue; 356 MI->RemoveOperand(i-1); 357 } 358 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 359 } else { 360 // If the dest of MI is an original reg and MI is reMaterializable, 361 // don't delete the inst. Replace the dest with a new reg, and keep 362 // the inst for remat of other siblings. The inst is saved in 363 // LiveRangeEdit::DeadRemats and will be deleted after all the 364 // allocations of the func are done. 365 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { 366 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 367 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 368 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 369 pop_back(); 370 DeadRemats->insert(MI); 371 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 372 MI->substituteRegister(Dest, NewLI.reg, 0, TRI); 373 MI->getOperand(0).setIsDead(true); 374 } else { 375 if (TheDelegate) 376 TheDelegate->LRE_WillEraseInstruction(MI); 377 LIS.RemoveMachineInstrFromMaps(*MI); 378 MI->eraseFromParent(); 379 ++NumDCEDeleted; 380 } 381 } 382 383 // Erase any virtregs that are now empty and unused. There may be <undef> 384 // uses around. Keep the empty live range in that case. 385 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 386 Register Reg = RegsToErase[i]; 387 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 388 ToShrink.remove(&LIS.getInterval(Reg)); 389 eraseVirtReg(Reg); 390 } 391 } 392 } 393 394 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 395 ArrayRef<Register> RegsBeingSpilled, 396 AAResults *AA) { 397 ToShrinkSet ToShrink; 398 399 for (;;) { 400 // Erase all dead defs. 401 while (!Dead.empty()) 402 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); 403 404 if (ToShrink.empty()) 405 break; 406 407 // Shrink just one live interval. Then delete new dead defs. 408 LiveInterval *LI = ToShrink.back(); 409 ToShrink.pop_back(); 410 if (foldAsLoad(LI, Dead)) 411 continue; 412 unsigned VReg = LI->reg; 413 if (TheDelegate) 414 TheDelegate->LRE_WillShrinkVirtReg(VReg); 415 if (!LIS.shrinkToUses(LI, &Dead)) 416 continue; 417 418 // Don't create new intervals for a register being spilled. 419 // The new intervals would have to be spilled anyway so its not worth it. 420 // Also they currently aren't spilled so creating them and not spilling 421 // them results in incorrect code. 422 bool BeingSpilled = false; 423 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 424 if (VReg == RegsBeingSpilled[i]) { 425 BeingSpilled = true; 426 break; 427 } 428 } 429 430 if (BeingSpilled) continue; 431 432 // LI may have been separated, create new intervals. 433 LI->RenumberValues(); 434 SmallVector<LiveInterval*, 8> SplitLIs; 435 LIS.splitSeparateComponents(*LI, SplitLIs); 436 if (!SplitLIs.empty()) 437 ++NumFracRanges; 438 439 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 440 for (const LiveInterval *SplitLI : SplitLIs) { 441 // If LI is an original interval that hasn't been split yet, make the new 442 // intervals their own originals instead of referring to LI. The original 443 // interval must contain all the split products, and LI doesn't. 444 if (Original != VReg && Original != 0) 445 VRM->setIsSplitFromReg(SplitLI->reg, Original); 446 if (TheDelegate) 447 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 448 } 449 } 450 } 451 452 // Keep track of new virtual registers created via 453 // MachineRegisterInfo::createVirtualRegister. 454 void 455 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { 456 if (VRM) 457 VRM->grow(); 458 459 NewRegs.push_back(VReg); 460 } 461 462 void 463 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 464 const MachineLoopInfo &Loops, 465 const MachineBlockFrequencyInfo &MBFI) { 466 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 467 for (unsigned I = 0, Size = size(); I < Size; ++I) { 468 LiveInterval &LI = LIS.getInterval(get(I)); 469 if (MRI.recomputeRegClass(LI.reg)) 470 LLVM_DEBUG({ 471 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 472 dbgs() << "Inflated " << printReg(LI.reg) << " to " 473 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 474 }); 475 VRAI.calculateSpillWeightAndHint(LI); 476 } 477 } 478