1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/CodeGen/CalcSpillWeights.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "regalloc" 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 31 void LiveRangeEdit::Delegate::anchor() { } 32 33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, 34 bool createSubRanges) { 35 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 if (Parent && !Parent->isSpillable()) 41 LI.markNotSpillable(); 42 if (createSubRanges) { 43 // Create empty subranges if the OldReg's interval has them. Do not create 44 // the main range here---it will be constructed later after the subranges 45 // have been finalized. 46 LiveInterval &OldLI = LIS.getInterval(OldReg); 47 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 48 for (LiveInterval::SubRange &S : OldLI.subranges()) 49 LI.createSubRange(Alloc, S.LaneMask); 50 } 51 return LI; 52 } 53 54 Register LiveRangeEdit::createFrom(Register OldReg) { 55 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 56 if (VRM) { 57 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 58 } 59 // FIXME: Getting the interval here actually computes it. 60 // In theory, this may not be what we want, but in practice 61 // the createEmptyIntervalFrom API is used when this is not 62 // the case. Generally speaking we just want to annotate the 63 // LiveInterval when it gets created but we cannot do that at 64 // the moment. 65 if (Parent && !Parent->isSpillable()) 66 LIS.getInterval(VReg).markNotSpillable(); 67 return VReg; 68 } 69 70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 71 const MachineInstr *DefMI) { 72 assert(DefMI && "Missing instruction"); 73 ScannedRemattable = true; 74 if (!TII.isTriviallyReMaterializable(*DefMI)) 75 return false; 76 Remattable.insert(VNI); 77 return true; 78 } 79 80 void LiveRangeEdit::scanRemattable() { 81 for (VNInfo *VNI : getParent().valnos) { 82 if (VNI->isUnused()) 83 continue; 84 unsigned Original = VRM->getOriginal(getReg()); 85 LiveInterval &OrigLI = LIS.getInterval(Original); 86 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 87 if (!OrigVNI) 88 continue; 89 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 90 if (!DefMI) 91 continue; 92 checkRematerializable(OrigVNI, DefMI); 93 } 94 ScannedRemattable = true; 95 } 96 97 bool LiveRangeEdit::anyRematerializable() { 98 if (!ScannedRemattable) 99 scanRemattable(); 100 return !Remattable.empty(); 101 } 102 103 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 104 /// OrigIdx are also available with the same value at UseIdx. 105 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 106 SlotIndex OrigIdx, 107 SlotIndex UseIdx) const { 108 OrigIdx = OrigIdx.getRegSlot(true); 109 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true)); 110 for (const MachineOperand &MO : OrigMI->operands()) { 111 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 112 continue; 113 114 // We can't remat physreg uses, unless it is a constant or target wants 115 // to ignore this use. 116 if (Register::isPhysicalRegister(MO.getReg())) { 117 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO)) 118 continue; 119 return false; 120 } 121 122 LiveInterval &li = LIS.getInterval(MO.getReg()); 123 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 124 if (!OVNI) 125 continue; 126 127 // Don't allow rematerialization immediately after the original def. 128 // It would be incorrect if OrigMI redefines the register. 129 // See PR14098. 130 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 131 return false; 132 133 if (OVNI != li.getVNInfoAt(UseIdx)) 134 return false; 135 136 // Check that subrange is live at UseIdx. 137 if (MO.getSubReg()) { 138 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 139 LaneBitmask LM = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 140 for (LiveInterval::SubRange &SR : li.subranges()) { 141 if ((SR.LaneMask & LM).none()) 142 continue; 143 if (!SR.liveAt(UseIdx)) 144 return false; 145 // Early exit if all used lanes are checked. No need to continue. 146 LM &= ~SR.LaneMask; 147 if (LM.none()) 148 break; 149 } 150 } 151 } 152 return true; 153 } 154 155 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 156 SlotIndex UseIdx, bool cheapAsAMove) { 157 assert(ScannedRemattable && "Call anyRematerializable first"); 158 159 // Use scanRemattable info. 160 if (!Remattable.count(OrigVNI)) 161 return false; 162 163 // No defining instruction provided. 164 SlotIndex DefIdx; 165 assert(RM.OrigMI && "No defining instruction for remattable value"); 166 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 167 168 // If only cheap remats were requested, bail out early. 169 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 170 return false; 171 172 // Verify that all used registers are available with the same values. 173 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 174 return false; 175 176 return true; 177 } 178 179 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 180 MachineBasicBlock::iterator MI, 181 unsigned DestReg, 182 const Remat &RM, 183 const TargetRegisterInfo &tri, 184 bool Late) { 185 assert(RM.OrigMI && "Invalid remat"); 186 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 187 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 188 // to false anyway in case the isDead flag of RM.OrigMI's dest register 189 // is true. 190 (*--MI).getOperand(0).setIsDead(false); 191 Rematted.insert(RM.ParentVNI); 192 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 193 } 194 195 void LiveRangeEdit::eraseVirtReg(Register Reg) { 196 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 197 LIS.removeInterval(Reg); 198 } 199 200 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 201 SmallVectorImpl<MachineInstr*> &Dead) { 202 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 203 204 // Check that there is a single def and a single use. 205 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) { 206 MachineInstr *MI = MO.getParent(); 207 if (MO.isDef()) { 208 if (DefMI && DefMI != MI) 209 return false; 210 if (!MI->canFoldAsLoad()) 211 return false; 212 DefMI = MI; 213 } else if (!MO.isUndef()) { 214 if (UseMI && UseMI != MI) 215 return false; 216 // FIXME: Targets don't know how to fold subreg uses. 217 if (MO.getSubReg()) 218 return false; 219 UseMI = MI; 220 } 221 } 222 if (!DefMI || !UseMI) 223 return false; 224 225 // Since we're moving the DefMI load, make sure we're not extending any live 226 // ranges. 227 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 228 LIS.getInstructionIndex(*UseMI))) 229 return false; 230 231 // We also need to make sure it is safe to move the load. 232 // Assume there are stores between DefMI and UseMI. 233 bool SawStore = true; 234 if (!DefMI->isSafeToMove(nullptr, SawStore)) 235 return false; 236 237 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 238 << " into single use: " << *UseMI); 239 240 SmallVector<unsigned, 8> Ops; 241 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second) 242 return false; 243 244 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 245 if (!FoldMI) 246 return false; 247 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 248 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 249 // Update the call site info. 250 if (UseMI->shouldUpdateCallSiteInfo()) 251 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 252 UseMI->eraseFromParent(); 253 DefMI->addRegisterDead(LI->reg(), nullptr); 254 Dead.push_back(DefMI); 255 ++NumDCEFoldedLoads; 256 return true; 257 } 258 259 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 260 const MachineOperand &MO) const { 261 const MachineInstr &MI = *MO.getParent(); 262 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 263 if (LI.Query(Idx).isKill()) 264 return true; 265 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 266 unsigned SubReg = MO.getSubReg(); 267 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 268 for (const LiveInterval::SubRange &S : LI.subranges()) { 269 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 270 return true; 271 } 272 return false; 273 } 274 275 /// Find all live intervals that need to shrink, then remove the instruction. 276 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 277 assert(MI->allDefsAreDead() && "Def isn't really dead"); 278 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 279 280 // Never delete a bundled instruction. 281 if (MI->isBundled()) { 282 return; 283 } 284 // Never delete inline asm. 285 if (MI->isInlineAsm()) { 286 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 287 return; 288 } 289 290 // Use the same criteria as DeadMachineInstructionElim. 291 bool SawStore = false; 292 if (!MI->isSafeToMove(nullptr, SawStore)) { 293 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 294 return; 295 } 296 297 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 298 299 // Collect virtual registers to be erased after MI is gone. 300 SmallVector<unsigned, 8> RegsToErase; 301 bool ReadsPhysRegs = false; 302 bool isOrigDef = false; 303 Register Dest; 304 unsigned DestSubReg; 305 // Only optimize rematerialize case when the instruction has one def, since 306 // otherwise we could leave some dead defs in the code. This case is 307 // extremely rare. 308 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 309 MI->getDesc().getNumDefs() == 1) { 310 Dest = MI->getOperand(0).getReg(); 311 DestSubReg = MI->getOperand(0).getSubReg(); 312 unsigned Original = VRM->getOriginal(Dest); 313 LiveInterval &OrigLI = LIS.getInterval(Original); 314 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 315 // The original live-range may have been shrunk to 316 // an empty live-range. It happens when it is dead, but 317 // we still keep it around to be able to rematerialize 318 // other values that depend on it. 319 if (OrigVNI) 320 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 321 } 322 323 bool HasLiveVRegUses = false; 324 325 // Check for live intervals that may shrink 326 for (const MachineOperand &MO : MI->operands()) { 327 if (!MO.isReg()) 328 continue; 329 Register Reg = MO.getReg(); 330 if (!Register::isVirtualRegister(Reg)) { 331 // Check if MI reads any unreserved physregs. 332 if (Reg && MO.readsReg() && !MRI.isReserved(Reg)) 333 ReadsPhysRegs = true; 334 else if (MO.isDef()) 335 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 336 continue; 337 } 338 LiveInterval &LI = LIS.getInterval(Reg); 339 340 // Shrink read registers, unless it is likely to be expensive and 341 // unlikely to change anything. We typically don't want to shrink the 342 // PIC base register that has lots of uses everywhere. 343 // Always shrink COPY uses that probably come from live range splitting. 344 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) || 345 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO)))) 346 ToShrink.insert(&LI); 347 else if (MO.readsReg()) 348 HasLiveVRegUses = true; 349 350 // Remove defined value. 351 if (MO.isDef()) { 352 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 353 TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); 354 LIS.removeVRegDefAt(LI, Idx); 355 if (LI.empty()) 356 RegsToErase.push_back(Reg); 357 } 358 } 359 360 // Currently, we don't support DCE of physreg live ranges. If MI reads 361 // any unreserved physregs, don't erase the instruction, but turn it into 362 // a KILL instead. This way, the physreg live ranges don't end up 363 // dangling. 364 // FIXME: It would be better to have something like shrinkToUses() for 365 // physregs. That could potentially enable more DCE and it would free up 366 // the physreg. It would not happen often, though. 367 if (ReadsPhysRegs) { 368 MI->setDesc(TII.get(TargetOpcode::KILL)); 369 // Remove all operands that aren't physregs. 370 for (unsigned i = MI->getNumOperands(); i; --i) { 371 const MachineOperand &MO = MI->getOperand(i-1); 372 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) 373 continue; 374 MI->removeOperand(i-1); 375 } 376 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 377 } else { 378 // If the dest of MI is an original reg and MI is reMaterializable, 379 // don't delete the inst. Replace the dest with a new reg, and keep 380 // the inst for remat of other siblings. The inst is saved in 381 // LiveRangeEdit::DeadRemats and will be deleted after all the 382 // allocations of the func are done. 383 // However, immediately delete instructions which have unshrunk virtual 384 // register uses. That may provoke RA to split an interval at the KILL 385 // and later result in an invalid live segment end. 386 if (isOrigDef && DeadRemats && !HasLiveVRegUses && 387 TII.isTriviallyReMaterializable(*MI)) { 388 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 389 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 390 VNInfo *VNI = NewLI.getNextValue(Idx, Alloc); 391 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 392 393 if (DestSubReg) { 394 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 395 auto *SR = NewLI.createSubRange( 396 Alloc, TRI->getSubRegIndexLaneMask(DestSubReg)); 397 SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), 398 SR->getNextValue(Idx, Alloc))); 399 } 400 401 pop_back(); 402 DeadRemats->insert(MI); 403 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 404 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI); 405 MI->getOperand(0).setIsDead(true); 406 } else { 407 if (TheDelegate) 408 TheDelegate->LRE_WillEraseInstruction(MI); 409 LIS.RemoveMachineInstrFromMaps(*MI); 410 MI->eraseFromParent(); 411 ++NumDCEDeleted; 412 } 413 } 414 415 // Erase any virtregs that are now empty and unused. There may be <undef> 416 // uses around. Keep the empty live range in that case. 417 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 418 Register Reg = RegsToErase[i]; 419 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 420 ToShrink.remove(&LIS.getInterval(Reg)); 421 eraseVirtReg(Reg); 422 } 423 } 424 } 425 426 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 427 ArrayRef<Register> RegsBeingSpilled) { 428 ToShrinkSet ToShrink; 429 430 for (;;) { 431 // Erase all dead defs. 432 while (!Dead.empty()) 433 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 434 435 if (ToShrink.empty()) 436 break; 437 438 // Shrink just one live interval. Then delete new dead defs. 439 LiveInterval *LI = ToShrink.pop_back_val(); 440 if (foldAsLoad(LI, Dead)) 441 continue; 442 unsigned VReg = LI->reg(); 443 if (TheDelegate) 444 TheDelegate->LRE_WillShrinkVirtReg(VReg); 445 if (!LIS.shrinkToUses(LI, &Dead)) 446 continue; 447 448 // Don't create new intervals for a register being spilled. 449 // The new intervals would have to be spilled anyway so its not worth it. 450 // Also they currently aren't spilled so creating them and not spilling 451 // them results in incorrect code. 452 if (llvm::is_contained(RegsBeingSpilled, VReg)) 453 continue; 454 455 // LI may have been separated, create new intervals. 456 LI->RenumberValues(); 457 SmallVector<LiveInterval*, 8> SplitLIs; 458 LIS.splitSeparateComponents(*LI, SplitLIs); 459 if (!SplitLIs.empty()) 460 ++NumFracRanges; 461 462 Register Original = VRM ? VRM->getOriginal(VReg) : Register(); 463 for (const LiveInterval *SplitLI : SplitLIs) { 464 // If LI is an original interval that hasn't been split yet, make the new 465 // intervals their own originals instead of referring to LI. The original 466 // interval must contain all the split products, and LI doesn't. 467 if (Original != VReg && Original != 0) 468 VRM->setIsSplitFromReg(SplitLI->reg(), Original); 469 if (TheDelegate) 470 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg); 471 } 472 } 473 } 474 475 // Keep track of new virtual registers created via 476 // MachineRegisterInfo::createVirtualRegister. 477 void 478 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { 479 if (VRM) 480 VRM->grow(); 481 482 NewRegs.push_back(VReg); 483 } 484 485 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 486 VirtRegAuxInfo &VRAI) { 487 for (unsigned I = 0, Size = size(); I < Size; ++I) { 488 LiveInterval &LI = LIS.getInterval(get(I)); 489 if (MRI.recomputeRegClass(LI.reg())) 490 LLVM_DEBUG({ 491 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 492 dbgs() << "Inflated " << printReg(LI.reg()) << " to " 493 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; 494 }); 495 VRAI.calculateSpillWeightAndHint(LI); 496 } 497 } 498