1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeEdit class represents changes done to a virtual register when it 10 // is spilled or split. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/LiveRangeEdit.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/CodeGen/CalcSpillWeights.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "regalloc" 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 STATISTIC(NumReMaterialization, "Number of instructions rematerialized"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, 35 bool createSubRanges) { 36 Register VReg = MRI.cloneVirtualRegister(OldReg); 37 if (VRM) 38 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 39 40 LiveInterval &LI = LIS.createEmptyInterval(VReg); 41 if (Parent && !Parent->isSpillable()) 42 LI.markNotSpillable(); 43 if (createSubRanges) { 44 // Create empty subranges if the OldReg's interval has them. Do not create 45 // the main range here---it will be constructed later after the subranges 46 // have been finalized. 47 LiveInterval &OldLI = LIS.getInterval(OldReg); 48 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 49 for (LiveInterval::SubRange &S : OldLI.subranges()) 50 LI.createSubRange(Alloc, S.LaneMask); 51 } 52 return LI; 53 } 54 55 Register LiveRangeEdit::createFrom(Register OldReg) { 56 Register VReg = MRI.cloneVirtualRegister(OldReg); 57 if (VRM) { 58 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 59 } 60 // FIXME: Getting the interval here actually computes it. 61 // In theory, this may not be what we want, but in practice 62 // the createEmptyIntervalFrom API is used when this is not 63 // the case. Generally speaking we just want to annotate the 64 // LiveInterval when it gets created but we cannot do that at 65 // the moment. 66 if (Parent && !Parent->isSpillable()) 67 LIS.getInterval(VReg).markNotSpillable(); 68 return VReg; 69 } 70 71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 72 const MachineInstr *DefMI) { 73 assert(DefMI && "Missing instruction"); 74 ScannedRemattable = true; 75 if (!TII.isTriviallyReMaterializable(*DefMI)) 76 return false; 77 Remattable.insert(VNI); 78 return true; 79 } 80 81 void LiveRangeEdit::scanRemattable() { 82 for (VNInfo *VNI : getParent().valnos) { 83 if (VNI->isUnused()) 84 continue; 85 Register Original = VRM->getOriginal(getReg()); 86 LiveInterval &OrigLI = LIS.getInterval(Original); 87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 88 if (!OrigVNI) 89 continue; 90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 91 if (!DefMI) 92 continue; 93 checkRematerializable(OrigVNI, DefMI); 94 } 95 ScannedRemattable = true; 96 } 97 98 bool LiveRangeEdit::anyRematerializable() { 99 if (!ScannedRemattable) 100 scanRemattable(); 101 return !Remattable.empty(); 102 } 103 104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 105 /// OrigIdx are also available with the same value at UseIdx. 106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 107 SlotIndex OrigIdx, 108 SlotIndex UseIdx) const { 109 OrigIdx = OrigIdx.getRegSlot(true); 110 UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true)); 111 for (const MachineOperand &MO : OrigMI->operands()) { 112 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 113 continue; 114 115 // We can't remat physreg uses, unless it is a constant or target wants 116 // to ignore this use. 117 if (MO.getReg().isPhysical()) { 118 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO)) 119 continue; 120 return false; 121 } 122 123 LiveInterval &li = LIS.getInterval(MO.getReg()); 124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 125 if (!OVNI) 126 continue; 127 128 // Don't allow rematerialization immediately after the original def. 129 // It would be incorrect if OrigMI redefines the register. 130 // See PR14098. 131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 132 return false; 133 134 if (OVNI != li.getVNInfoAt(UseIdx)) 135 return false; 136 137 // Check that subrange is live at UseIdx. 138 if (li.hasSubRanges()) { 139 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 140 unsigned SubReg = MO.getSubReg(); 141 LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 142 : MRI.getMaxLaneMaskForVReg(MO.getReg()); 143 for (LiveInterval::SubRange &SR : li.subranges()) { 144 if ((SR.LaneMask & LM).none()) 145 continue; 146 if (!SR.liveAt(UseIdx)) 147 return false; 148 // Early exit if all used lanes are checked. No need to continue. 149 LM &= ~SR.LaneMask; 150 if (LM.none()) 151 break; 152 } 153 } 154 } 155 return true; 156 } 157 158 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 159 SlotIndex UseIdx, bool cheapAsAMove) { 160 assert(ScannedRemattable && "Call anyRematerializable first"); 161 162 // Use scanRemattable info. 163 if (!Remattable.count(OrigVNI)) 164 return false; 165 166 // No defining instruction provided. 167 SlotIndex DefIdx; 168 assert(RM.OrigMI && "No defining instruction for remattable value"); 169 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 170 171 // If only cheap remats were requested, bail out early. 172 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 173 return false; 174 175 // Verify that all used registers are available with the same values. 176 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 177 return false; 178 179 return true; 180 } 181 182 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 183 MachineBasicBlock::iterator MI, 184 Register DestReg, const Remat &RM, 185 const TargetRegisterInfo &tri, 186 bool Late, unsigned SubIdx, 187 MachineInstr *ReplaceIndexMI) { 188 assert(RM.OrigMI && "Invalid remat"); 189 TII.reMaterialize(MBB, MI, DestReg, SubIdx, *RM.OrigMI, tri); 190 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 191 // to false anyway in case the isDead flag of RM.OrigMI's dest register 192 // is true. 193 (*--MI).getOperand(0).setIsDead(false); 194 Rematted.insert(RM.ParentVNI); 195 ++NumReMaterialization; 196 197 if (ReplaceIndexMI) 198 return LIS.ReplaceMachineInstrInMaps(*ReplaceIndexMI, *MI).getRegSlot(); 199 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 200 } 201 202 void LiveRangeEdit::eraseVirtReg(Register Reg) { 203 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 204 LIS.removeInterval(Reg); 205 } 206 207 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 208 SmallVectorImpl<MachineInstr*> &Dead) { 209 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 210 211 // Check that there is a single def and a single use. 212 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) { 213 MachineInstr *MI = MO.getParent(); 214 if (MO.isDef()) { 215 if (DefMI && DefMI != MI) 216 return false; 217 if (!MI->canFoldAsLoad()) 218 return false; 219 DefMI = MI; 220 } else if (!MO.isUndef()) { 221 if (UseMI && UseMI != MI) 222 return false; 223 // FIXME: Targets don't know how to fold subreg uses. 224 if (MO.getSubReg()) 225 return false; 226 UseMI = MI; 227 } 228 } 229 if (!DefMI || !UseMI) 230 return false; 231 232 // Since we're moving the DefMI load, make sure we're not extending any live 233 // ranges. 234 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 235 LIS.getInstructionIndex(*UseMI))) 236 return false; 237 238 // We also need to make sure it is safe to move the load. 239 // Assume there are stores between DefMI and UseMI. 240 bool SawStore = true; 241 if (!DefMI->isSafeToMove(nullptr, SawStore)) 242 return false; 243 244 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI 245 << " into single use: " << *UseMI); 246 247 SmallVector<unsigned, 8> Ops; 248 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second) 249 return false; 250 251 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 252 if (!FoldMI) 253 return false; 254 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); 255 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 256 // Update the call site info. 257 if (UseMI->shouldUpdateCallSiteInfo()) 258 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); 259 UseMI->eraseFromParent(); 260 DefMI->addRegisterDead(LI->reg(), nullptr); 261 Dead.push_back(DefMI); 262 ++NumDCEFoldedLoads; 263 return true; 264 } 265 266 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 267 const MachineOperand &MO) const { 268 const MachineInstr &MI = *MO.getParent(); 269 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 270 if (LI.Query(Idx).isKill()) 271 return true; 272 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 273 unsigned SubReg = MO.getSubReg(); 274 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 275 for (const LiveInterval::SubRange &S : LI.subranges()) { 276 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) 277 return true; 278 } 279 return false; 280 } 281 282 /// Find all live intervals that need to shrink, then remove the instruction. 283 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 284 assert(MI->allDefsAreDead() && "Def isn't really dead"); 285 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 286 287 // Never delete a bundled instruction. 288 if (MI->isBundled()) { 289 // TODO: Handle deleting copy bundles 290 LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t' 291 << *MI); 292 return; 293 } 294 295 // Never delete inline asm. 296 if (MI->isInlineAsm()) { 297 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 298 return; 299 } 300 301 // Use the same criteria as DeadMachineInstructionElim. 302 bool SawStore = false; 303 if (!MI->isSafeToMove(nullptr, SawStore)) { 304 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 305 return; 306 } 307 308 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 309 310 // Collect virtual registers to be erased after MI is gone. 311 SmallVector<Register, 8> RegsToErase; 312 bool ReadsPhysRegs = false; 313 bool isOrigDef = false; 314 Register Dest; 315 unsigned DestSubReg; 316 // Only optimize rematerialize case when the instruction has one def, since 317 // otherwise we could leave some dead defs in the code. This case is 318 // extremely rare. 319 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 320 MI->getDesc().getNumDefs() == 1) { 321 Dest = MI->getOperand(0).getReg(); 322 DestSubReg = MI->getOperand(0).getSubReg(); 323 Register Original = VRM->getOriginal(Dest); 324 LiveInterval &OrigLI = LIS.getInterval(Original); 325 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 326 // The original live-range may have been shrunk to 327 // an empty live-range. It happens when it is dead, but 328 // we still keep it around to be able to rematerialize 329 // other values that depend on it. 330 if (OrigVNI) 331 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 332 } 333 334 bool HasLiveVRegUses = false; 335 336 // Check for live intervals that may shrink 337 for (const MachineOperand &MO : MI->operands()) { 338 if (!MO.isReg()) 339 continue; 340 Register Reg = MO.getReg(); 341 if (!Reg.isVirtual()) { 342 // Check if MI reads any unreserved physregs. 343 if (Reg && MO.readsReg() && !MRI.isReserved(Reg)) 344 ReadsPhysRegs = true; 345 else if (MO.isDef()) 346 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 347 continue; 348 } 349 LiveInterval &LI = LIS.getInterval(Reg); 350 351 // Shrink read registers, unless it is likely to be expensive and 352 // unlikely to change anything. We typically don't want to shrink the 353 // PIC base register that has lots of uses everywhere. 354 // Always shrink COPY uses that probably come from live range splitting. 355 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) || 356 (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO)))) 357 ToShrink.insert(&LI); 358 else if (MO.readsReg()) 359 HasLiveVRegUses = true; 360 361 // Remove defined value. 362 if (MO.isDef()) { 363 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 364 TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); 365 LIS.removeVRegDefAt(LI, Idx); 366 if (LI.empty()) 367 RegsToErase.push_back(Reg); 368 } 369 } 370 371 // Currently, we don't support DCE of physreg live ranges. If MI reads 372 // any unreserved physregs, don't erase the instruction, but turn it into 373 // a KILL instead. This way, the physreg live ranges don't end up 374 // dangling. 375 // FIXME: It would be better to have something like shrinkToUses() for 376 // physregs. That could potentially enable more DCE and it would free up 377 // the physreg. It would not happen often, though. 378 if (ReadsPhysRegs) { 379 MI->setDesc(TII.get(TargetOpcode::KILL)); 380 // Remove all operands that aren't physregs. 381 for (unsigned i = MI->getNumOperands(); i; --i) { 382 const MachineOperand &MO = MI->getOperand(i-1); 383 if (MO.isReg() && MO.getReg().isPhysical()) 384 continue; 385 MI->removeOperand(i-1); 386 } 387 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 388 } else { 389 // If the dest of MI is an original reg and MI is reMaterializable, 390 // don't delete the inst. Replace the dest with a new reg, and keep 391 // the inst for remat of other siblings. The inst is saved in 392 // LiveRangeEdit::DeadRemats and will be deleted after all the 393 // allocations of the func are done. 394 // However, immediately delete instructions which have unshrunk virtual 395 // register uses. That may provoke RA to split an interval at the KILL 396 // and later result in an invalid live segment end. 397 if (isOrigDef && DeadRemats && !HasLiveVRegUses && 398 TII.isTriviallyReMaterializable(*MI)) { 399 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); 400 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); 401 VNInfo *VNI = NewLI.getNextValue(Idx, Alloc); 402 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 403 404 if (DestSubReg) { 405 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 406 auto *SR = NewLI.createSubRange( 407 Alloc, TRI->getSubRegIndexLaneMask(DestSubReg)); 408 SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), 409 SR->getNextValue(Idx, Alloc))); 410 } 411 412 pop_back(); 413 DeadRemats->insert(MI); 414 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 415 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI); 416 MI->getOperand(0).setIsDead(true); 417 } else { 418 if (TheDelegate) 419 TheDelegate->LRE_WillEraseInstruction(MI); 420 LIS.RemoveMachineInstrFromMaps(*MI); 421 MI->eraseFromParent(); 422 ++NumDCEDeleted; 423 } 424 } 425 426 // Erase any virtregs that are now empty and unused. There may be <undef> 427 // uses around. Keep the empty live range in that case. 428 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 429 Register Reg = RegsToErase[i]; 430 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 431 ToShrink.remove(&LIS.getInterval(Reg)); 432 eraseVirtReg(Reg); 433 } 434 } 435 } 436 437 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 438 ArrayRef<Register> RegsBeingSpilled) { 439 ToShrinkSet ToShrink; 440 441 for (;;) { 442 // Erase all dead defs. 443 while (!Dead.empty()) 444 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 445 446 if (ToShrink.empty()) 447 break; 448 449 // Shrink just one live interval. Then delete new dead defs. 450 LiveInterval *LI = ToShrink.pop_back_val(); 451 if (foldAsLoad(LI, Dead)) 452 continue; 453 Register VReg = LI->reg(); 454 if (TheDelegate) 455 TheDelegate->LRE_WillShrinkVirtReg(VReg); 456 if (!LIS.shrinkToUses(LI, &Dead)) 457 continue; 458 459 // Don't create new intervals for a register being spilled. 460 // The new intervals would have to be spilled anyway so its not worth it. 461 // Also they currently aren't spilled so creating them and not spilling 462 // them results in incorrect code. 463 if (llvm::is_contained(RegsBeingSpilled, VReg)) 464 continue; 465 466 // LI may have been separated, create new intervals. 467 LI->RenumberValues(); 468 SmallVector<LiveInterval*, 8> SplitLIs; 469 LIS.splitSeparateComponents(*LI, SplitLIs); 470 if (!SplitLIs.empty()) 471 ++NumFracRanges; 472 473 Register Original = VRM ? VRM->getOriginal(VReg) : Register(); 474 for (const LiveInterval *SplitLI : SplitLIs) { 475 // If LI is an original interval that hasn't been split yet, make the new 476 // intervals their own originals instead of referring to LI. The original 477 // interval must contain all the split products, and LI doesn't. 478 if (Original != VReg && Original != 0) 479 VRM->setIsSplitFromReg(SplitLI->reg(), Original); 480 if (TheDelegate) 481 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg); 482 } 483 } 484 } 485 486 // Keep track of new virtual registers created via 487 // MachineRegisterInfo::createVirtualRegister. 488 void 489 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { 490 if (VRM) 491 VRM->grow(); 492 493 NewRegs.push_back(VReg); 494 } 495 496 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 497 VirtRegAuxInfo &VRAI) { 498 for (unsigned I = 0, Size = size(); I < Size; ++I) { 499 LiveInterval &LI = LIS.getInterval(get(I)); 500 if (MRI.recomputeRegClass(LI.reg())) 501 LLVM_DEBUG({ 502 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 503 dbgs() << "Inflated " << printReg(LI.reg()) << " to " 504 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; 505 }); 506 VRAI.calculateSpillWeightAndHint(LI); 507 } 508 } 509