xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1  //===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Implementation of the LiveRangeCalc class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "LiveRangeCalc.h"
14  #include "llvm/ADT/BitVector.h"
15  #include "llvm/ADT/STLExtras.h"
16  #include "llvm/ADT/SetVector.h"
17  #include "llvm/ADT/SmallVector.h"
18  #include "llvm/CodeGen/LiveInterval.h"
19  #include "llvm/CodeGen/MachineBasicBlock.h"
20  #include "llvm/CodeGen/MachineDominators.h"
21  #include "llvm/CodeGen/MachineFunction.h"
22  #include "llvm/CodeGen/MachineInstr.h"
23  #include "llvm/CodeGen/MachineOperand.h"
24  #include "llvm/CodeGen/MachineRegisterInfo.h"
25  #include "llvm/CodeGen/SlotIndexes.h"
26  #include "llvm/CodeGen/TargetRegisterInfo.h"
27  #include "llvm/MC/LaneBitmask.h"
28  #include "llvm/Support/ErrorHandling.h"
29  #include "llvm/Support/raw_ostream.h"
30  #include <algorithm>
31  #include <cassert>
32  #include <iterator>
33  #include <tuple>
34  #include <utility>
35  
36  using namespace llvm;
37  
38  #define DEBUG_TYPE "regalloc"
39  
40  // Reserve an address that indicates a value that is known to be "undef".
41  static VNInfo UndefVNI(0xbad, SlotIndex());
42  
43  void LiveRangeCalc::resetLiveOutMap() {
44    unsigned NumBlocks = MF->getNumBlockIDs();
45    Seen.clear();
46    Seen.resize(NumBlocks);
47    EntryInfos.clear();
48    Map.resize(NumBlocks);
49  }
50  
51  void LiveRangeCalc::reset(const MachineFunction *mf,
52                            SlotIndexes *SI,
53                            MachineDominatorTree *MDT,
54                            VNInfo::Allocator *VNIA) {
55    MF = mf;
56    MRI = &MF->getRegInfo();
57    Indexes = SI;
58    DomTree = MDT;
59    Alloc = VNIA;
60    resetLiveOutMap();
61    LiveIn.clear();
62  }
63  
64  static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
65                            LiveRange &LR, const MachineOperand &MO) {
66    const MachineInstr &MI = *MO.getParent();
67    SlotIndex DefIdx =
68        Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
69  
70    // Create the def in LR. This may find an existing def.
71    LR.createDeadDef(DefIdx, Alloc);
72  }
73  
74  void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
75    assert(MRI && Indexes && "call reset() first");
76  
77    // Step 1: Create minimal live segments for every definition of Reg.
78    // Visit all def operands. If the same instruction has multiple defs of Reg,
79    // createDeadDef() will deduplicate.
80    const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
81    unsigned Reg = LI.reg;
82    for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
83      if (!MO.isDef() && !MO.readsReg())
84        continue;
85  
86      unsigned SubReg = MO.getSubReg();
87      if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
88        LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
89                                          : MRI->getMaxLaneMaskForVReg(Reg);
90        // If this is the first time we see a subregister def, initialize
91        // subranges by creating a copy of the main range.
92        if (!LI.hasSubRanges() && !LI.empty()) {
93          LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
94          LI.createSubRangeFrom(*Alloc, ClassMask, LI);
95        }
96  
97        LI.refineSubRanges(*Alloc, SubMask,
98                           [&MO, this](LiveInterval::SubRange &SR) {
99                             if (MO.isDef())
100                               createDeadDef(*Indexes, *Alloc, SR, MO);
101                           },
102                           *Indexes, TRI);
103      }
104  
105      // Create the def in the main liverange. We do not have to do this if
106      // subranges are tracked as we recreate the main range later in this case.
107      if (MO.isDef() && !LI.hasSubRanges())
108        createDeadDef(*Indexes, *Alloc, LI, MO);
109    }
110  
111    // We may have created empty live ranges for partially undefined uses, we
112    // can't keep them because we won't find defs in them later.
113    LI.removeEmptySubRanges();
114  
115    // Step 2: Extend live segments to all uses, constructing SSA form as
116    // necessary.
117    if (LI.hasSubRanges()) {
118      for (LiveInterval::SubRange &S : LI.subranges()) {
119        LiveRangeCalc SubLRC;
120        SubLRC.reset(MF, Indexes, DomTree, Alloc);
121        SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
122      }
123      LI.clear();
124      constructMainRangeFromSubranges(LI);
125    } else {
126      resetLiveOutMap();
127      extendToUses(LI, Reg, LaneBitmask::getAll());
128    }
129  }
130  
131  void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
132    // First create dead defs at all defs found in subranges.
133    LiveRange &MainRange = LI;
134    assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
135           "Expect empty main liverange");
136  
137    for (const LiveInterval::SubRange &SR : LI.subranges()) {
138      for (const VNInfo *VNI : SR.valnos) {
139        if (!VNI->isUnused() && !VNI->isPHIDef())
140          MainRange.createDeadDef(VNI->def, *Alloc);
141      }
142    }
143    resetLiveOutMap();
144    extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
145  }
146  
147  void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
148    assert(MRI && Indexes && "call reset() first");
149  
150    // Visit all def operands. If the same instruction has multiple defs of Reg,
151    // LR.createDeadDef() will deduplicate.
152    for (MachineOperand &MO : MRI->def_operands(Reg))
153      createDeadDef(*Indexes, *Alloc, LR, MO);
154  }
155  
156  void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
157                                   LiveInterval *LI) {
158    SmallVector<SlotIndex, 4> Undefs;
159    if (LI != nullptr)
160      LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
161  
162    // Visit all operands that read Reg. This may include partial defs.
163    bool IsSubRange = !Mask.all();
164    const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
165    for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
166      // Clear all kill flags. They will be reinserted after register allocation
167      // by LiveIntervals::addKillFlags().
168      if (MO.isUse())
169        MO.setIsKill(false);
170      // MO::readsReg returns "true" for subregister defs. This is for keeping
171      // liveness of the entire register (i.e. for the main range of the live
172      // interval). For subranges, definitions of non-overlapping subregisters
173      // do not count as uses.
174      if (!MO.readsReg() || (IsSubRange && MO.isDef()))
175        continue;
176  
177      unsigned SubReg = MO.getSubReg();
178      if (SubReg != 0) {
179        LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
180        if (MO.isDef())
181          SLM = ~SLM;
182        // Ignore uses not reading the current (sub)range.
183        if ((SLM & Mask).none())
184          continue;
185      }
186  
187      // Determine the actual place of the use.
188      const MachineInstr *MI = MO.getParent();
189      unsigned OpNo = (&MO - &MI->getOperand(0));
190      SlotIndex UseIdx;
191      if (MI->isPHI()) {
192        assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
193        // The actual place where a phi operand is used is the end of the pred
194        // MBB. PHI operands are paired: (Reg, PredMBB).
195        UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
196      } else {
197        // Check for early-clobber redefs.
198        bool isEarlyClobber = false;
199        unsigned DefIdx;
200        if (MO.isDef())
201          isEarlyClobber = MO.isEarlyClobber();
202        else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
203          // FIXME: This would be a lot easier if tied early-clobber uses also
204          // had an early-clobber flag.
205          isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
206        }
207        UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
208      }
209  
210      // MI is reading Reg. We may have visited MI before if it happens to be
211      // reading Reg multiple times. That is OK, extend() is idempotent.
212      extend(LR, UseIdx, Reg, Undefs);
213    }
214  }
215  
216  void LiveRangeCalc::updateFromLiveIns() {
217    LiveRangeUpdater Updater;
218    for (const LiveInBlock &I : LiveIn) {
219      if (!I.DomNode)
220        continue;
221      MachineBasicBlock *MBB = I.DomNode->getBlock();
222      assert(I.Value && "No live-in value found");
223      SlotIndex Start, End;
224      std::tie(Start, End) = Indexes->getMBBRange(MBB);
225  
226      if (I.Kill.isValid())
227        // Value is killed inside this block.
228        End = I.Kill;
229      else {
230        // The value is live-through, update LiveOut as well.
231        // Defer the Domtree lookup until it is needed.
232        assert(Seen.test(MBB->getNumber()));
233        Map[MBB] = LiveOutPair(I.Value, nullptr);
234      }
235      Updater.setDest(&I.LR);
236      Updater.add(Start, End, I.Value);
237    }
238    LiveIn.clear();
239  }
240  
241  void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
242                             ArrayRef<SlotIndex> Undefs) {
243    assert(Use.isValid() && "Invalid SlotIndex");
244    assert(Indexes && "Missing SlotIndexes");
245    assert(DomTree && "Missing dominator tree");
246  
247    MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
248    assert(UseMBB && "No MBB at Use");
249  
250    // Is there a def in the same MBB we can extend?
251    auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
252    if (EP.first != nullptr || EP.second)
253      return;
254  
255    // Find the single reaching def, or determine if Use is jointly dominated by
256    // multiple values, and we may need to create even more phi-defs to preserve
257    // VNInfo SSA form.  Perform a search for all predecessor blocks where we
258    // know the dominating VNInfo.
259    if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
260      return;
261  
262    // When there were multiple different values, we may need new PHIs.
263    calculateValues();
264  }
265  
266  // This function is called by a client after using the low-level API to add
267  // live-out and live-in blocks.  The unique value optimization is not
268  // available, SplitEditor::transferValues handles that case directly anyway.
269  void LiveRangeCalc::calculateValues() {
270    assert(Indexes && "Missing SlotIndexes");
271    assert(DomTree && "Missing dominator tree");
272    updateSSA();
273    updateFromLiveIns();
274  }
275  
276  bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
277                                   MachineBasicBlock &MBB, BitVector &DefOnEntry,
278                                   BitVector &UndefOnEntry) {
279    unsigned BN = MBB.getNumber();
280    if (DefOnEntry[BN])
281      return true;
282    if (UndefOnEntry[BN])
283      return false;
284  
285    auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
286      for (MachineBasicBlock *S : B.successors())
287        DefOnEntry[S->getNumber()] = true;
288      DefOnEntry[BN] = true;
289      return true;
290    };
291  
292    SetVector<unsigned> WorkList;
293    // Checking if the entry of MBB is reached by some def: add all predecessors
294    // that are potentially defined-on-exit to the work list.
295    for (MachineBasicBlock *P : MBB.predecessors())
296      WorkList.insert(P->getNumber());
297  
298    for (unsigned i = 0; i != WorkList.size(); ++i) {
299      // Determine if the exit from the block is reached by some def.
300      unsigned N = WorkList[i];
301      MachineBasicBlock &B = *MF->getBlockNumbered(N);
302      if (Seen[N]) {
303        const LiveOutPair &LOB = Map[&B];
304        if (LOB.first != nullptr && LOB.first != &UndefVNI)
305          return MarkDefined(B);
306      }
307      SlotIndex Begin, End;
308      std::tie(Begin, End) = Indexes->getMBBRange(&B);
309      // Treat End as not belonging to B.
310      // If LR has a segment S that starts at the next block, i.e. [End, ...),
311      // std::upper_bound will return the segment following S. Instead,
312      // S should be treated as the first segment that does not overlap B.
313      LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
314                                                End.getPrevSlot());
315      if (UB != LR.begin()) {
316        LiveRange::Segment &Seg = *std::prev(UB);
317        if (Seg.end > Begin) {
318          // There is a segment that overlaps B. If the range is not explicitly
319          // undefined between the end of the segment and the end of the block,
320          // treat the block as defined on exit. If it is, go to the next block
321          // on the work list.
322          if (LR.isUndefIn(Undefs, Seg.end, End))
323            continue;
324          return MarkDefined(B);
325        }
326      }
327  
328      // No segment overlaps with this block. If this block is not defined on
329      // entry, or it undefines the range, do not process its predecessors.
330      if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
331        UndefOnEntry[N] = true;
332        continue;
333      }
334      if (DefOnEntry[N])
335        return MarkDefined(B);
336  
337      // Still don't know: add all predecessors to the work list.
338      for (MachineBasicBlock *P : B.predecessors())
339        WorkList.insert(P->getNumber());
340    }
341  
342    UndefOnEntry[BN] = true;
343    return false;
344  }
345  
346  bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
347                                       SlotIndex Use, unsigned PhysReg,
348                                       ArrayRef<SlotIndex> Undefs) {
349    unsigned UseMBBNum = UseMBB.getNumber();
350  
351    // Block numbers where LR should be live-in.
352    SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
353  
354    // Remember if we have seen more than one value.
355    bool UniqueVNI = true;
356    VNInfo *TheVNI = nullptr;
357  
358    bool FoundUndef = false;
359  
360    // Using Seen as a visited set, perform a BFS for all reaching defs.
361    for (unsigned i = 0; i != WorkList.size(); ++i) {
362      MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
363  
364  #ifndef NDEBUG
365      if (MBB->pred_empty()) {
366        MBB->getParent()->verify();
367        errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo())
368               << " does not have a corresponding definition on every path:\n";
369        const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
370        if (MI != nullptr)
371          errs() << Use << " " << *MI;
372        report_fatal_error("Use not jointly dominated by defs.");
373      }
374  
375      if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
376          !MBB->isLiveIn(PhysReg)) {
377        MBB->getParent()->verify();
378        const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
379        errs() << "The register " << printReg(PhysReg, TRI)
380               << " needs to be live in to " << printMBBReference(*MBB)
381               << ", but is missing from the live-in list.\n";
382        report_fatal_error("Invalid global physical register");
383      }
384  #endif
385      FoundUndef |= MBB->pred_empty();
386  
387      for (MachineBasicBlock *Pred : MBB->predecessors()) {
388         // Is this a known live-out block?
389         if (Seen.test(Pred->getNumber())) {
390           if (VNInfo *VNI = Map[Pred].first) {
391             if (TheVNI && TheVNI != VNI)
392               UniqueVNI = false;
393             TheVNI = VNI;
394           }
395           continue;
396         }
397  
398         SlotIndex Start, End;
399         std::tie(Start, End) = Indexes->getMBBRange(Pred);
400  
401         // First time we see Pred.  Try to determine the live-out value, but set
402         // it as null if Pred is live-through with an unknown value.
403         auto EP = LR.extendInBlock(Undefs, Start, End);
404         VNInfo *VNI = EP.first;
405         FoundUndef |= EP.second;
406         setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
407         if (VNI) {
408           if (TheVNI && TheVNI != VNI)
409             UniqueVNI = false;
410           TheVNI = VNI;
411         }
412         if (VNI || EP.second)
413           continue;
414  
415         // No, we need a live-in value for Pred as well
416         if (Pred != &UseMBB)
417           WorkList.push_back(Pred->getNumber());
418         else
419            // Loopback to UseMBB, so value is really live through.
420           Use = SlotIndex();
421      }
422    }
423  
424    LiveIn.clear();
425    FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
426    if (!Undefs.empty() && FoundUndef)
427      UniqueVNI = false;
428  
429    // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
430    // neither require it. Skip the sorting overhead for small updates.
431    if (WorkList.size() > 4)
432      array_pod_sort(WorkList.begin(), WorkList.end());
433  
434    // If a unique reaching def was found, blit in the live ranges immediately.
435    if (UniqueVNI) {
436      assert(TheVNI != nullptr && TheVNI != &UndefVNI);
437      LiveRangeUpdater Updater(&LR);
438      for (unsigned BN : WorkList) {
439        SlotIndex Start, End;
440        std::tie(Start, End) = Indexes->getMBBRange(BN);
441        // Trim the live range in UseMBB.
442        if (BN == UseMBBNum && Use.isValid())
443          End = Use;
444        else
445          Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
446        Updater.add(Start, End, TheVNI);
447      }
448      return true;
449    }
450  
451    // Prepare the defined/undefined bit vectors.
452    EntryInfoMap::iterator Entry;
453    bool DidInsert;
454    std::tie(Entry, DidInsert) = EntryInfos.insert(
455        std::make_pair(&LR, std::make_pair(BitVector(), BitVector())));
456    if (DidInsert) {
457      // Initialize newly inserted entries.
458      unsigned N = MF->getNumBlockIDs();
459      Entry->second.first.resize(N);
460      Entry->second.second.resize(N);
461    }
462    BitVector &DefOnEntry = Entry->second.first;
463    BitVector &UndefOnEntry = Entry->second.second;
464  
465    // Multiple values were found, so transfer the work list to the LiveIn array
466    // where UpdateSSA will use it as a work list.
467    LiveIn.reserve(WorkList.size());
468    for (unsigned BN : WorkList) {
469      MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
470      if (!Undefs.empty() &&
471          !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
472        continue;
473      addLiveInBlock(LR, DomTree->getNode(MBB));
474      if (MBB == &UseMBB)
475        LiveIn.back().Kill = Use;
476    }
477  
478    return false;
479  }
480  
481  // This is essentially the same iterative algorithm that SSAUpdater uses,
482  // except we already have a dominator tree, so we don't have to recompute it.
483  void LiveRangeCalc::updateSSA() {
484    assert(Indexes && "Missing SlotIndexes");
485    assert(DomTree && "Missing dominator tree");
486  
487    // Interate until convergence.
488    bool Changed;
489    do {
490      Changed = false;
491      // Propagate live-out values down the dominator tree, inserting phi-defs
492      // when necessary.
493      for (LiveInBlock &I : LiveIn) {
494        MachineDomTreeNode *Node = I.DomNode;
495        // Skip block if the live-in value has already been determined.
496        if (!Node)
497          continue;
498        MachineBasicBlock *MBB = Node->getBlock();
499        MachineDomTreeNode *IDom = Node->getIDom();
500        LiveOutPair IDomValue;
501  
502        // We need a live-in value to a block with no immediate dominator?
503        // This is probably an unreachable block that has survived somehow.
504        bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
505  
506        // IDom dominates all of our predecessors, but it may not be their
507        // immediate dominator. Check if any of them have live-out values that are
508        // properly dominated by IDom. If so, we need a phi-def here.
509        if (!needPHI) {
510          IDomValue = Map[IDom->getBlock()];
511  
512          // Cache the DomTree node that defined the value.
513          if (IDomValue.first && IDomValue.first != &UndefVNI &&
514              !IDomValue.second) {
515            Map[IDom->getBlock()].second = IDomValue.second =
516              DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
517          }
518  
519          for (MachineBasicBlock *Pred : MBB->predecessors()) {
520            LiveOutPair &Value = Map[Pred];
521            if (!Value.first || Value.first == IDomValue.first)
522              continue;
523            if (Value.first == &UndefVNI) {
524              needPHI = true;
525              break;
526            }
527  
528            // Cache the DomTree node that defined the value.
529            if (!Value.second)
530              Value.second =
531                DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
532  
533            // This predecessor is carrying something other than IDomValue.
534            // It could be because IDomValue hasn't propagated yet, or it could be
535            // because MBB is in the dominance frontier of that value.
536            if (DomTree->dominates(IDom, Value.second)) {
537              needPHI = true;
538              break;
539            }
540          }
541        }
542  
543        // The value may be live-through even if Kill is set, as can happen when
544        // we are called from extendRange. In that case LiveOutSeen is true, and
545        // LiveOut indicates a foreign or missing value.
546        LiveOutPair &LOP = Map[MBB];
547  
548        // Create a phi-def if required.
549        if (needPHI) {
550          Changed = true;
551          assert(Alloc && "Need VNInfo allocator to create PHI-defs");
552          SlotIndex Start, End;
553          std::tie(Start, End) = Indexes->getMBBRange(MBB);
554          LiveRange &LR = I.LR;
555          VNInfo *VNI = LR.getNextValue(Start, *Alloc);
556          I.Value = VNI;
557          // This block is done, we know the final value.
558          I.DomNode = nullptr;
559  
560          // Add liveness since updateFromLiveIns now skips this node.
561          if (I.Kill.isValid()) {
562            if (VNI)
563              LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
564          } else {
565            if (VNI)
566              LR.addSegment(LiveInterval::Segment(Start, End, VNI));
567            LOP = LiveOutPair(VNI, Node);
568          }
569        } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
570          // No phi-def here. Remember incoming value.
571          I.Value = IDomValue.first;
572  
573          // If the IDomValue is killed in the block, don't propagate through.
574          if (I.Kill.isValid())
575            continue;
576  
577          // Propagate IDomValue if it isn't killed:
578          // MBB is live-out and doesn't define its own value.
579          if (LOP.first == IDomValue.first)
580            continue;
581          Changed = true;
582          LOP = IDomValue;
583        }
584      }
585    } while (Changed);
586  }
587  
588  bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
589                                         ArrayRef<SlotIndex> Defs,
590                                         const SlotIndexes &Indexes) {
591    const MachineFunction &MF = *MBB->getParent();
592    BitVector DefBlocks(MF.getNumBlockIDs());
593    for (SlotIndex I : Defs)
594      DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());
595  
596    SetVector<unsigned> PredQueue;
597    PredQueue.insert(MBB->getNumber());
598    for (unsigned i = 0; i != PredQueue.size(); ++i) {
599      unsigned BN = PredQueue[i];
600      if (DefBlocks[BN])
601        return true;
602      const MachineBasicBlock *B = MF.getBlockNumbered(BN);
603      for (const MachineBasicBlock *P : B->predecessors())
604        PredQueue.insert(P->getNumber());
605    }
606    return false;
607  }
608