1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LiveInterval analysis pass which is used 10 /// by the Linear Scan Register allocator. This pass linearizes the 11 /// basic blocks of the function in DFS order and computes live intervals for 12 /// each virtual and physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervalCalc.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/MC/LaneBitmask.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "regalloc" 59 60 AnalysisKey LiveIntervalsAnalysis::Key; 61 62 LiveIntervalsAnalysis::Result 63 LiveIntervalsAnalysis::run(MachineFunction &MF, 64 MachineFunctionAnalysisManager &MFAM) { 65 return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(MF), 66 MFAM.getResult<MachineDominatorTreeAnalysis>(MF)); 67 } 68 69 PreservedAnalyses 70 LiveIntervalsPrinterPass::run(MachineFunction &MF, 71 MachineFunctionAnalysisManager &MFAM) { 72 OS << "Live intervals for machine function: " << MF.getName() << ":\n"; 73 MFAM.getResult<LiveIntervalsAnalysis>(MF).print(OS); 74 return PreservedAnalyses::all(); 75 } 76 77 char LiveIntervalsWrapperPass::ID = 0; 78 char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID; 79 INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals", 80 "Live Interval Analysis", false, false) 81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 82 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 83 INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals", 84 "Live Interval Analysis", false, false) 85 86 bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) { 87 LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); 88 LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 89 LIS.analyze(MF); 90 LLVM_DEBUG(dump()); 91 return false; 92 } 93 94 #ifndef NDEBUG 95 static cl::opt<bool> EnablePrecomputePhysRegs( 96 "precompute-phys-liveness", cl::Hidden, 97 cl::desc("Eagerly compute live intervals for all physreg units.")); 98 #else 99 static bool EnablePrecomputePhysRegs = false; 100 #endif // NDEBUG 101 102 namespace llvm { 103 104 cl::opt<bool> UseSegmentSetForPhysRegs( 105 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 106 cl::desc( 107 "Use segment set for the computation of the live ranges of physregs.")); 108 109 } // end namespace llvm 110 111 void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 112 AU.setPreservesCFG(); 113 AU.addPreserved<LiveVariablesWrapperPass>(); 114 AU.addPreservedID(MachineLoopInfoID); 115 AU.addRequiredTransitiveID(MachineDominatorsID); 116 AU.addPreservedID(MachineDominatorsID); 117 AU.addPreserved<SlotIndexesWrapperPass>(); 118 AU.addRequiredTransitive<SlotIndexesWrapperPass>(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 122 LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) { 123 initializeLiveIntervalsWrapperPassPass(*PassRegistry::getPassRegistry()); 124 } 125 126 LiveIntervals::~LiveIntervals() { clear(); } 127 128 void LiveIntervals::clear() { 129 // Free the live intervals themselves. 130 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 131 delete VirtRegIntervals[Register::index2VirtReg(i)]; 132 VirtRegIntervals.clear(); 133 RegMaskSlots.clear(); 134 RegMaskBits.clear(); 135 RegMaskBlocks.clear(); 136 137 for (LiveRange *LR : RegUnitRanges) 138 delete LR; 139 RegUnitRanges.clear(); 140 141 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 142 VNInfoAllocator.Reset(); 143 } 144 145 void LiveIntervals::analyze(MachineFunction &fn) { 146 MF = &fn; 147 MRI = &MF->getRegInfo(); 148 TRI = MF->getSubtarget().getRegisterInfo(); 149 TII = MF->getSubtarget().getInstrInfo(); 150 151 if (!LICalc) 152 LICalc = std::make_unique<LiveIntervalCalc>(); 153 154 // Allocate space for all virtual registers. 155 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 156 157 computeVirtRegs(); 158 computeRegMasks(); 159 computeLiveInRegUnits(); 160 161 if (EnablePrecomputePhysRegs) { 162 // For stress testing, precompute live ranges of all physical register 163 // units, including reserved registers. 164 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 165 getRegUnit(i); 166 } 167 } 168 169 void LiveIntervals::print(raw_ostream &OS) const { 170 OS << "********** INTERVALS **********\n"; 171 172 // Dump the regunits. 173 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 174 if (LiveRange *LR = RegUnitRanges[Unit]) 175 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 176 177 // Dump the virtregs. 178 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 179 Register Reg = Register::index2VirtReg(i); 180 if (hasInterval(Reg)) 181 OS << getInterval(Reg) << '\n'; 182 } 183 184 OS << "RegMasks:"; 185 for (SlotIndex Idx : RegMaskSlots) 186 OS << ' ' << Idx; 187 OS << '\n'; 188 189 printInstrs(OS); 190 } 191 192 void LiveIntervals::printInstrs(raw_ostream &OS) const { 193 OS << "********** MACHINEINSTRS **********\n"; 194 MF->print(OS, Indexes); 195 } 196 197 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 198 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 199 printInstrs(dbgs()); 200 } 201 #endif 202 203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 204 LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); } 205 #endif 206 207 LiveInterval *LiveIntervals::createInterval(Register reg) { 208 float Weight = reg.isPhysical() ? huge_valf : 0.0F; 209 return new LiveInterval(reg, Weight); 210 } 211 212 /// Compute the live interval of a virtual register, based on defs and uses. 213 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 214 assert(LICalc && "LICalc not initialized."); 215 assert(LI.empty() && "Should only compute empty intervals."); 216 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 217 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg())); 218 return computeDeadValues(LI, nullptr); 219 } 220 221 void LiveIntervals::computeVirtRegs() { 222 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 223 Register Reg = Register::index2VirtReg(i); 224 if (MRI->reg_nodbg_empty(Reg)) 225 continue; 226 LiveInterval &LI = createEmptyInterval(Reg); 227 bool NeedSplit = computeVirtRegInterval(LI); 228 if (NeedSplit) { 229 SmallVector<LiveInterval*, 8> SplitLIs; 230 splitSeparateComponents(LI, SplitLIs); 231 } 232 } 233 } 234 235 void LiveIntervals::computeRegMasks() { 236 RegMaskBlocks.resize(MF->getNumBlockIDs()); 237 238 // Find all instructions with regmask operands. 239 for (const MachineBasicBlock &MBB : *MF) { 240 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 241 RMB.first = RegMaskSlots.size(); 242 243 // Some block starts, such as EH funclets, create masks. 244 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 245 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 246 RegMaskBits.push_back(Mask); 247 } 248 249 // Unwinders may clobber additional registers. 250 // FIXME: This functionality can possibly be merged into 251 // MachineBasicBlock::getBeginClobberMask(). 252 if (MBB.isEHPad()) 253 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) { 254 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 255 RegMaskBits.push_back(Mask); 256 } 257 258 for (const MachineInstr &MI : MBB) { 259 for (const MachineOperand &MO : MI.operands()) { 260 if (!MO.isRegMask()) 261 continue; 262 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 263 RegMaskBits.push_back(MO.getRegMask()); 264 } 265 } 266 267 // Some block ends, such as funclet returns, create masks. Put the mask on 268 // the last instruction of the block, because MBB slot index intervals are 269 // half-open. 270 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 271 assert(!MBB.empty() && "empty return block?"); 272 RegMaskSlots.push_back( 273 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 274 RegMaskBits.push_back(Mask); 275 } 276 277 // Compute the number of register mask instructions in this block. 278 RMB.second = RegMaskSlots.size() - RMB.first; 279 } 280 } 281 282 //===----------------------------------------------------------------------===// 283 // Register Unit Liveness 284 //===----------------------------------------------------------------------===// 285 // 286 // Fixed interference typically comes from ABI boundaries: Function arguments 287 // and return values are passed in fixed registers, and so are exception 288 // pointers entering landing pads. Certain instructions require values to be 289 // present in specific registers. That is also represented through fixed 290 // interference. 291 // 292 293 /// Compute the live range of a register unit, based on the uses and defs of 294 /// aliasing registers. The range should be empty, or contain only dead 295 /// phi-defs from ABI blocks. 296 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 297 assert(LICalc && "LICalc not initialized."); 298 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 299 300 // The physregs aliasing Unit are the roots and their super-registers. 301 // Create all values as dead defs before extending to uses. Note that roots 302 // may share super-registers. That's OK because createDeadDefs() is 303 // idempotent. It is very rare for a register unit to have multiple roots, so 304 // uniquing super-registers is probably not worthwhile. 305 bool IsReserved = false; 306 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 307 bool IsRootReserved = true; 308 for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) { 309 if (!MRI->reg_empty(Reg)) 310 LICalc->createDeadDefs(LR, Reg); 311 // A register unit is considered reserved if all its roots and all their 312 // super registers are reserved. 313 if (!MRI->isReserved(Reg)) 314 IsRootReserved = false; 315 } 316 IsReserved |= IsRootReserved; 317 } 318 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 319 "reserved computation mismatch"); 320 321 // Now extend LR to reach all uses. 322 // Ignore uses of reserved registers. We only track defs of those. 323 if (!IsReserved) { 324 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 325 for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) { 326 if (!MRI->reg_empty(Reg)) 327 LICalc->extendToUses(LR, Reg); 328 } 329 } 330 } 331 332 // Flush the segment set to the segment vector. 333 if (UseSegmentSetForPhysRegs) 334 LR.flushSegmentSet(); 335 } 336 337 /// Precompute the live ranges of any register units that are live-in to an ABI 338 /// block somewhere. Register values can appear without a corresponding def when 339 /// entering the entry block or a landing pad. 340 void LiveIntervals::computeLiveInRegUnits() { 341 RegUnitRanges.resize(TRI->getNumRegUnits()); 342 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 343 344 // Keep track of the live range sets allocated. 345 SmallVector<unsigned, 8> NewRanges; 346 347 // Check all basic blocks for live-ins. 348 for (const MachineBasicBlock &MBB : *MF) { 349 // We only care about ABI blocks: Entry + landing pads. 350 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 351 continue; 352 353 // Create phi-defs at Begin for all live-in registers. 354 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 355 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 356 for (const auto &LI : MBB.liveins()) { 357 for (MCRegUnit Unit : TRI->regunits(LI.PhysReg)) { 358 LiveRange *LR = RegUnitRanges[Unit]; 359 if (!LR) { 360 // Use segment set to speed-up initial computation of the live range. 361 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 362 NewRanges.push_back(Unit); 363 } 364 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 365 (void)VNI; 366 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 367 } 368 } 369 LLVM_DEBUG(dbgs() << '\n'); 370 } 371 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 372 373 // Compute the 'normal' part of the ranges. 374 for (unsigned Unit : NewRanges) 375 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 376 } 377 378 static void createSegmentsForValues(LiveRange &LR, 379 iterator_range<LiveInterval::vni_iterator> VNIs) { 380 for (VNInfo *VNI : VNIs) { 381 if (VNI->isUnused()) 382 continue; 383 SlotIndex Def = VNI->def; 384 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 385 } 386 } 387 388 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, 389 ShrinkToUsesWorkList &WorkList, 390 Register Reg, LaneBitmask LaneMask) { 391 // Keep track of the PHIs that are in use. 392 SmallPtrSet<VNInfo*, 8> UsedPHIs; 393 // Blocks that have already been added to WorkList as live-out. 394 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 395 396 auto getSubRange = [](const LiveInterval &I, LaneBitmask M) 397 -> const LiveRange& { 398 if (M.none()) 399 return I; 400 for (const LiveInterval::SubRange &SR : I.subranges()) { 401 if ((SR.LaneMask & M).any()) { 402 assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); 403 return SR; 404 } 405 } 406 llvm_unreachable("Subrange for mask not found"); 407 }; 408 409 const LiveInterval &LI = getInterval(Reg); 410 const LiveRange &OldRange = getSubRange(LI, LaneMask); 411 412 // Extend intervals to reach all uses in WorkList. 413 while (!WorkList.empty()) { 414 SlotIndex Idx = WorkList.back().first; 415 VNInfo *VNI = WorkList.back().second; 416 WorkList.pop_back(); 417 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); 418 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); 419 420 // Extend the live range for VNI to be live at Idx. 421 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { 422 assert(ExtVNI == VNI && "Unexpected existing value number"); 423 (void)ExtVNI; 424 // Is this a PHIDef we haven't seen before? 425 if (!VNI->isPHIDef() || VNI->def != BlockStart || 426 !UsedPHIs.insert(VNI).second) 427 continue; 428 // The PHI is live, make sure the predecessors are live-out. 429 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 430 if (!LiveOut.insert(Pred).second) 431 continue; 432 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 433 // A predecessor is not required to have a live-out value for a PHI. 434 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 435 WorkList.push_back(std::make_pair(Stop, PVNI)); 436 } 437 continue; 438 } 439 440 // VNI is live-in to MBB. 441 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 442 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 443 444 // Make sure VNI is live-out from the predecessors. 445 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 446 if (!LiveOut.insert(Pred).second) 447 continue; 448 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 449 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { 450 assert(OldVNI == VNI && "Wrong value out of predecessor"); 451 (void)OldVNI; 452 WorkList.push_back(std::make_pair(Stop, VNI)); 453 } else { 454 #ifndef NDEBUG 455 // There was no old VNI. Verify that Stop is jointly dominated 456 // by <undef>s for this live range. 457 assert(LaneMask.any() && 458 "Missing value out of predecessor for main range"); 459 SmallVector<SlotIndex,8> Undefs; 460 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 461 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && 462 "Missing value out of predecessor for subrange"); 463 #endif 464 } 465 } 466 } 467 } 468 469 bool LiveIntervals::shrinkToUses(LiveInterval *li, 470 SmallVectorImpl<MachineInstr*> *dead) { 471 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); 472 assert(li->reg().isVirtual() && "Can only shrink virtual registers"); 473 474 // Shrink subregister live ranges. 475 bool NeedsCleanup = false; 476 for (LiveInterval::SubRange &S : li->subranges()) { 477 shrinkToUses(S, li->reg()); 478 if (S.empty()) 479 NeedsCleanup = true; 480 } 481 if (NeedsCleanup) 482 li->removeEmptySubRanges(); 483 484 // Find all the values used, including PHI kills. 485 ShrinkToUsesWorkList WorkList; 486 487 // Visit all instructions reading li->reg(). 488 Register Reg = li->reg(); 489 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 490 if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) 491 continue; 492 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 493 LiveQueryResult LRQ = li->Query(Idx); 494 VNInfo *VNI = LRQ.valueIn(); 495 if (!VNI) { 496 // This shouldn't happen: readsVirtualRegister returns true, but there is 497 // no live value. It is likely caused by a target getting <undef> flags 498 // wrong. 499 LLVM_DEBUG( 500 dbgs() << Idx << '\t' << UseMI 501 << "Warning: Instr claims to read non-existent value in " 502 << *li << '\n'); 503 continue; 504 } 505 // Special case: An early-clobber tied operand reads and writes the 506 // register one slot early. 507 if (VNInfo *DefVNI = LRQ.valueDefined()) 508 Idx = DefVNI->def; 509 510 WorkList.push_back(std::make_pair(Idx, VNI)); 511 } 512 513 // Create new live ranges with only minimal live segments per def. 514 LiveRange NewLR; 515 createSegmentsForValues(NewLR, li->vnis()); 516 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); 517 518 // Move the trimmed segments back. 519 li->segments.swap(NewLR.segments); 520 521 // Handle dead values. 522 bool CanSeparate = computeDeadValues(*li, dead); 523 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 524 return CanSeparate; 525 } 526 527 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 528 SmallVectorImpl<MachineInstr*> *dead) { 529 bool MayHaveSplitComponents = false; 530 531 for (VNInfo *VNI : LI.valnos) { 532 if (VNI->isUnused()) 533 continue; 534 SlotIndex Def = VNI->def; 535 LiveRange::iterator I = LI.FindSegmentContaining(Def); 536 assert(I != LI.end() && "Missing segment for VNI"); 537 538 // Is the register live before? Otherwise we may have to add a read-undef 539 // flag for subregister defs. 540 Register VReg = LI.reg(); 541 if (MRI->shouldTrackSubRegLiveness(VReg)) { 542 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 543 MachineInstr *MI = getInstructionFromIndex(Def); 544 MI->setRegisterDefReadUndef(VReg); 545 } 546 } 547 548 if (I->end != Def.getDeadSlot()) 549 continue; 550 if (VNI->isPHIDef()) { 551 // This is a dead PHI. Remove it. 552 VNI->markUnused(); 553 LI.removeSegment(I); 554 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 555 } else { 556 // This is a dead def. Make sure the instruction knows. 557 MachineInstr *MI = getInstructionFromIndex(Def); 558 assert(MI && "No instruction defining live value"); 559 MI->addRegisterDead(LI.reg(), TRI); 560 561 if (dead && MI->allDefsAreDead()) { 562 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 563 dead->push_back(MI); 564 } 565 } 566 MayHaveSplitComponents = true; 567 } 568 return MayHaveSplitComponents; 569 } 570 571 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { 572 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); 573 assert(Reg.isVirtual() && "Can only shrink virtual registers"); 574 // Find all the values used, including PHI kills. 575 ShrinkToUsesWorkList WorkList; 576 577 // Visit all instructions reading Reg. 578 SlotIndex LastIdx; 579 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 580 // Skip "undef" uses. 581 if (!MO.readsReg()) 582 continue; 583 // Maybe the operand is for a subregister we don't care about. 584 unsigned SubReg = MO.getSubReg(); 585 if (SubReg != 0) { 586 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 587 if ((LaneMask & SR.LaneMask).none()) 588 continue; 589 } 590 // We only need to visit each instruction once. 591 MachineInstr *UseMI = MO.getParent(); 592 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 593 if (Idx == LastIdx) 594 continue; 595 LastIdx = Idx; 596 597 LiveQueryResult LRQ = SR.Query(Idx); 598 VNInfo *VNI = LRQ.valueIn(); 599 // For Subranges it is possible that only undef values are left in that 600 // part of the subregister, so there is no real liverange at the use 601 if (!VNI) 602 continue; 603 604 // Special case: An early-clobber tied operand reads and writes the 605 // register one slot early. 606 if (VNInfo *DefVNI = LRQ.valueDefined()) 607 Idx = DefVNI->def; 608 609 WorkList.push_back(std::make_pair(Idx, VNI)); 610 } 611 612 // Create a new live ranges with only minimal live segments per def. 613 LiveRange NewLR; 614 createSegmentsForValues(NewLR, SR.vnis()); 615 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); 616 617 // Move the trimmed ranges back. 618 SR.segments.swap(NewLR.segments); 619 620 // Remove dead PHI value numbers 621 for (VNInfo *VNI : SR.valnos) { 622 if (VNI->isUnused()) 623 continue; 624 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 625 assert(Segment != nullptr && "Missing segment for VNI"); 626 if (Segment->end != VNI->def.getDeadSlot()) 627 continue; 628 if (VNI->isPHIDef()) { 629 // This is a dead PHI. Remove it. 630 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def 631 << " may separate interval\n"); 632 VNI->markUnused(); 633 SR.removeSegment(*Segment); 634 } 635 } 636 637 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 638 } 639 640 void LiveIntervals::extendToIndices(LiveRange &LR, 641 ArrayRef<SlotIndex> Indices, 642 ArrayRef<SlotIndex> Undefs) { 643 assert(LICalc && "LICalc not initialized."); 644 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 645 for (SlotIndex Idx : Indices) 646 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 647 } 648 649 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 650 SmallVectorImpl<SlotIndex> *EndPoints) { 651 LiveQueryResult LRQ = LR.Query(Kill); 652 VNInfo *VNI = LRQ.valueOutOrDead(); 653 if (!VNI) 654 return; 655 656 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 657 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 658 659 // If VNI isn't live out from KillMBB, the value is trivially pruned. 660 if (LRQ.endPoint() < MBBEnd) { 661 LR.removeSegment(Kill, LRQ.endPoint()); 662 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 663 return; 664 } 665 666 // VNI is live out of KillMBB. 667 LR.removeSegment(Kill, MBBEnd); 668 if (EndPoints) EndPoints->push_back(MBBEnd); 669 670 // Find all blocks that are reachable from KillMBB without leaving VNI's live 671 // range. It is possible that KillMBB itself is reachable, so start a DFS 672 // from each successor. 673 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 674 VisitedTy Visited; 675 for (MachineBasicBlock *Succ : KillMBB->successors()) { 676 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 677 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 678 I != E;) { 679 MachineBasicBlock *MBB = *I; 680 681 // Check if VNI is live in to MBB. 682 SlotIndex MBBStart, MBBEnd; 683 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 684 LiveQueryResult LRQ = LR.Query(MBBStart); 685 if (LRQ.valueIn() != VNI) { 686 // This block isn't part of the VNI segment. Prune the search. 687 I.skipChildren(); 688 continue; 689 } 690 691 // Prune the search if VNI is killed in MBB. 692 if (LRQ.endPoint() < MBBEnd) { 693 LR.removeSegment(MBBStart, LRQ.endPoint()); 694 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 695 I.skipChildren(); 696 continue; 697 } 698 699 // VNI is live through MBB. 700 LR.removeSegment(MBBStart, MBBEnd); 701 if (EndPoints) EndPoints->push_back(MBBEnd); 702 ++I; 703 } 704 } 705 } 706 707 //===----------------------------------------------------------------------===// 708 // Register allocator hooks. 709 // 710 711 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 712 // Keep track of regunit ranges. 713 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 714 715 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 716 Register Reg = Register::index2VirtReg(i); 717 if (MRI->reg_nodbg_empty(Reg)) 718 continue; 719 const LiveInterval &LI = getInterval(Reg); 720 if (LI.empty()) 721 continue; 722 723 // Target may have not allocated this yet. 724 Register PhysReg = VRM->getPhys(Reg); 725 if (!PhysReg) 726 continue; 727 728 // Find the regunit intervals for the assigned register. They may overlap 729 // the virtual register live range, cancelling any kills. 730 RU.clear(); 731 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 732 const LiveRange &RURange = getRegUnit(Unit); 733 if (RURange.empty()) 734 continue; 735 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 736 } 737 // Every instruction that kills Reg corresponds to a segment range end 738 // point. 739 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 740 ++RI) { 741 // A block index indicates an MBB edge. 742 if (RI->end.isBlock()) 743 continue; 744 MachineInstr *MI = getInstructionFromIndex(RI->end); 745 if (!MI) 746 continue; 747 748 // Check if any of the regunits are live beyond the end of RI. That could 749 // happen when a physreg is defined as a copy of a virtreg: 750 // 751 // %eax = COPY %5 752 // FOO %5 <--- MI, cancel kill because %eax is live. 753 // BAR killed %eax 754 // 755 // There should be no kill flag on FOO when %5 is rewritten as %eax. 756 for (auto &RUP : RU) { 757 const LiveRange &RURange = *RUP.first; 758 LiveRange::const_iterator &I = RUP.second; 759 if (I == RURange.end()) 760 continue; 761 I = RURange.advanceTo(I, RI->end); 762 if (I == RURange.end() || I->start >= RI->end) 763 continue; 764 // I is overlapping RI. 765 goto CancelKill; 766 } 767 768 if (MRI->subRegLivenessEnabled()) { 769 // When reading a partial undefined value we must not add a kill flag. 770 // The regalloc might have used the undef lane for something else. 771 // Example: 772 // %1 = ... ; R32: %1 773 // %2:high16 = ... ; R64: %2 774 // = read killed %2 ; R64: %2 775 // = read %1 ; R32: %1 776 // The <kill> flag is correct for %2, but the register allocator may 777 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 778 // are actually never written by %2. After assignment the <kill> 779 // flag at the read instruction is invalid. 780 LaneBitmask DefinedLanesMask; 781 if (LI.hasSubRanges()) { 782 // Compute a mask of lanes that are defined. 783 DefinedLanesMask = LaneBitmask::getNone(); 784 for (const LiveInterval::SubRange &SR : LI.subranges()) 785 for (const LiveRange::Segment &Segment : SR.segments) { 786 if (Segment.start >= RI->end) 787 break; 788 if (Segment.end == RI->end) { 789 DefinedLanesMask |= SR.LaneMask; 790 break; 791 } 792 } 793 } else 794 DefinedLanesMask = LaneBitmask::getAll(); 795 796 bool IsFullWrite = false; 797 for (const MachineOperand &MO : MI->operands()) { 798 if (!MO.isReg() || MO.getReg() != Reg) 799 continue; 800 if (MO.isUse()) { 801 // Reading any undefined lanes? 802 unsigned SubReg = MO.getSubReg(); 803 LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 804 : MRI->getMaxLaneMaskForVReg(Reg); 805 if ((UseMask & ~DefinedLanesMask).any()) 806 goto CancelKill; 807 } else if (MO.getSubReg() == 0) { 808 // Writing to the full register? 809 assert(MO.isDef()); 810 IsFullWrite = true; 811 } 812 } 813 814 // If an instruction writes to a subregister, a new segment starts in 815 // the LiveInterval. But as this is only overriding part of the register 816 // adding kill-flags is not correct here after registers have been 817 // assigned. 818 if (!IsFullWrite) { 819 // Next segment has to be adjacent in the subregister write case. 820 LiveRange::const_iterator N = std::next(RI); 821 if (N != LI.end() && N->start == RI->end) 822 goto CancelKill; 823 } 824 } 825 826 MI->addRegisterKilled(Reg, nullptr); 827 continue; 828 CancelKill: 829 MI->clearRegisterKills(Reg, nullptr); 830 } 831 } 832 } 833 834 MachineBasicBlock* 835 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 836 assert(!LI.empty() && "LiveInterval is empty."); 837 838 // A local live range must be fully contained inside the block, meaning it is 839 // defined and killed at instructions, not at block boundaries. It is not 840 // live in or out of any block. 841 // 842 // It is technically possible to have a PHI-defined live range identical to a 843 // single block, but we are going to return false in that case. 844 845 SlotIndex Start = LI.beginIndex(); 846 if (Start.isBlock()) 847 return nullptr; 848 849 SlotIndex Stop = LI.endIndex(); 850 if (Stop.isBlock()) 851 return nullptr; 852 853 // getMBBFromIndex doesn't need to search the MBB table when both indexes 854 // belong to proper instructions. 855 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 856 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 857 return MBB1 == MBB2 ? MBB1 : nullptr; 858 } 859 860 bool 861 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 862 for (const VNInfo *PHI : LI.valnos) { 863 if (PHI->isUnused() || !PHI->isPHIDef()) 864 continue; 865 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 866 // Conservatively return true instead of scanning huge predecessor lists. 867 if (PHIMBB->pred_size() > 100) 868 return true; 869 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 870 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 871 return true; 872 } 873 return false; 874 } 875 876 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 877 const MachineBlockFrequencyInfo *MBFI, 878 const MachineInstr &MI) { 879 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 880 } 881 882 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 883 const MachineBlockFrequencyInfo *MBFI, 884 const MachineBasicBlock *MBB) { 885 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB); 886 } 887 888 LiveRange::Segment 889 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { 890 LiveInterval &Interval = getOrCreateEmptyInterval(Reg); 891 VNInfo *VN = Interval.getNextValue( 892 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 893 getVNInfoAllocator()); 894 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 895 getMBBEndIdx(startInst.getParent()), VN); 896 Interval.addSegment(S); 897 898 return S; 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Register mask functions 903 //===----------------------------------------------------------------------===// 904 /// Check whether use of reg in MI is live-through. Live-through means that 905 /// the value is alive on exit from Machine instruction. The example of such 906 /// use is a deopt value in statepoint instruction. 907 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { 908 if (MI->getOpcode() != TargetOpcode::STATEPOINT) 909 return false; 910 StatepointOpers SO(MI); 911 if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) 912 return false; 913 for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; 914 ++Idx) { 915 const MachineOperand &MO = MI->getOperand(Idx); 916 if (MO.isReg() && MO.getReg() == Reg) 917 return true; 918 } 919 return false; 920 } 921 922 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI, 923 BitVector &UsableRegs) { 924 if (LI.empty()) 925 return false; 926 LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end(); 927 928 // Use a smaller arrays for local live ranges. 929 ArrayRef<SlotIndex> Slots; 930 ArrayRef<const uint32_t*> Bits; 931 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 932 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 933 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 934 } else { 935 Slots = getRegMaskSlots(); 936 Bits = getRegMaskBits(); 937 } 938 939 // We are going to enumerate all the register mask slots contained in LI. 940 // Start with a binary search of RegMaskSlots to find a starting point. 941 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start); 942 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 943 944 // No slots in range, LI begins after the last call. 945 if (SlotI == SlotE) 946 return false; 947 948 bool Found = false; 949 // Utility to union regmasks. 950 auto unionBitMask = [&](unsigned Idx) { 951 if (!Found) { 952 // This is the first overlap. Initialize UsableRegs to all ones. 953 UsableRegs.clear(); 954 UsableRegs.resize(TRI->getNumRegs(), true); 955 Found = true; 956 } 957 // Remove usable registers clobbered by this mask. 958 UsableRegs.clearBitsNotInMask(Bits[Idx]); 959 }; 960 while (true) { 961 assert(*SlotI >= LiveI->start); 962 // Loop over all slots overlapping this segment. 963 while (*SlotI < LiveI->end) { 964 // *SlotI overlaps LI. Collect mask bits. 965 unionBitMask(SlotI - Slots.begin()); 966 if (++SlotI == SlotE) 967 return Found; 968 } 969 // If segment ends with live-through use we need to collect its regmask. 970 if (*SlotI == LiveI->end) 971 if (MachineInstr *MI = getInstructionFromIndex(*SlotI)) 972 if (hasLiveThroughUse(MI, LI.reg())) 973 unionBitMask(SlotI++ - Slots.begin()); 974 // *SlotI is beyond the current LI segment. 975 // Special advance implementation to not miss next LiveI->end. 976 if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) 977 return Found; 978 while (LiveI->end < *SlotI) 979 ++LiveI; 980 // Advance SlotI until it overlaps. 981 while (*SlotI < LiveI->start) 982 if (++SlotI == SlotE) 983 return Found; 984 } 985 } 986 987 //===----------------------------------------------------------------------===// 988 // IntervalUpdate class. 989 //===----------------------------------------------------------------------===// 990 991 /// Toolkit used by handleMove to trim or extend live intervals. 992 class LiveIntervals::HMEditor { 993 private: 994 LiveIntervals& LIS; 995 const MachineRegisterInfo& MRI; 996 const TargetRegisterInfo& TRI; 997 SlotIndex OldIdx; 998 SlotIndex NewIdx; 999 SmallPtrSet<LiveRange*, 8> Updated; 1000 bool UpdateFlags; 1001 1002 public: 1003 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 1004 const TargetRegisterInfo& TRI, 1005 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 1006 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 1007 UpdateFlags(UpdateFlags) {} 1008 1009 // FIXME: UpdateFlags is a workaround that creates live intervals for all 1010 // physregs, even those that aren't needed for regalloc, in order to update 1011 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 1012 // flags, and postRA passes will use a live register utility instead. 1013 LiveRange *getRegUnitLI(unsigned Unit) { 1014 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 1015 return &LIS.getRegUnit(Unit); 1016 return LIS.getCachedRegUnit(Unit); 1017 } 1018 1019 /// Update all live ranges touched by MI, assuming a move from OldIdx to 1020 /// NewIdx. 1021 void updateAllRanges(MachineInstr *MI) { 1022 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " 1023 << *MI); 1024 bool hasRegMask = false; 1025 for (MachineOperand &MO : MI->operands()) { 1026 if (MO.isRegMask()) 1027 hasRegMask = true; 1028 if (!MO.isReg()) 1029 continue; 1030 if (MO.isUse()) { 1031 if (!MO.readsReg()) 1032 continue; 1033 // Aggressively clear all kill flags. 1034 // They are reinserted by VirtRegRewriter. 1035 MO.setIsKill(false); 1036 } 1037 1038 Register Reg = MO.getReg(); 1039 if (!Reg) 1040 continue; 1041 if (Reg.isVirtual()) { 1042 LiveInterval &LI = LIS.getInterval(Reg); 1043 if (LI.hasSubRanges()) { 1044 unsigned SubReg = MO.getSubReg(); 1045 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1046 : MRI.getMaxLaneMaskForVReg(Reg); 1047 for (LiveInterval::SubRange &S : LI.subranges()) { 1048 if ((S.LaneMask & LaneMask).none()) 1049 continue; 1050 updateRange(S, Reg, S.LaneMask); 1051 } 1052 } 1053 updateRange(LI, Reg, LaneBitmask::getNone()); 1054 // If main range has a hole and we are moving a subrange use across 1055 // the hole updateRange() cannot properly handle it since it only 1056 // gets the LiveRange and not the whole LiveInterval. As a result 1057 // we may end up with a main range not covering all subranges. 1058 // This is extremely rare case, so let's check and reconstruct the 1059 // main range. 1060 if (LI.hasSubRanges()) { 1061 unsigned SubReg = MO.getSubReg(); 1062 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1063 : MRI.getMaxLaneMaskForVReg(Reg); 1064 for (LiveInterval::SubRange &S : LI.subranges()) { 1065 if ((S.LaneMask & LaneMask).none() || LI.covers(S)) 1066 continue; 1067 LI.clear(); 1068 LIS.constructMainRangeFromSubranges(LI); 1069 break; 1070 } 1071 } 1072 1073 continue; 1074 } 1075 1076 // For physregs, only update the regunits that actually have a 1077 // precomputed live range. 1078 for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg())) 1079 if (LiveRange *LR = getRegUnitLI(Unit)) 1080 updateRange(*LR, Unit, LaneBitmask::getNone()); 1081 } 1082 if (hasRegMask) 1083 updateRegMaskSlots(); 1084 } 1085 1086 private: 1087 /// Update a single live range, assuming an instruction has been moved from 1088 /// OldIdx to NewIdx. 1089 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1090 if (!Updated.insert(&LR).second) 1091 return; 1092 LLVM_DEBUG({ 1093 dbgs() << " "; 1094 if (Reg.isVirtual()) { 1095 dbgs() << printReg(Reg); 1096 if (LaneMask.any()) 1097 dbgs() << " L" << PrintLaneMask(LaneMask); 1098 } else { 1099 dbgs() << printRegUnit(Reg, &TRI); 1100 } 1101 dbgs() << ":\t" << LR << '\n'; 1102 }); 1103 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1104 handleMoveDown(LR); 1105 else 1106 handleMoveUp(LR, Reg, LaneMask); 1107 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); 1108 LR.verify(); 1109 } 1110 1111 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1112 /// to NewIdx (OldIdx < NewIdx). 1113 void handleMoveDown(LiveRange &LR) { 1114 LiveRange::iterator E = LR.end(); 1115 // Segment going into OldIdx. 1116 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1117 1118 // No value live before or after OldIdx? Nothing to do. 1119 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1120 return; 1121 1122 LiveRange::iterator OldIdxOut; 1123 // Do we have a value live-in to OldIdx? 1124 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1125 // If the live-in value already extends to NewIdx, there is nothing to do. 1126 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1127 return; 1128 // Aggressively remove all kill flags from the old kill point. 1129 // Kill flags shouldn't be used while live intervals exist, they will be 1130 // reinserted by VirtRegRewriter. 1131 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1132 for (MachineOperand &MOP : mi_bundle_ops(*KillMI)) 1133 if (MOP.isReg() && MOP.isUse()) 1134 MOP.setIsKill(false); 1135 1136 // Is there a def before NewIdx which is not OldIdx? 1137 LiveRange::iterator Next = std::next(OldIdxIn); 1138 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1139 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1140 // If we are here then OldIdx was just a use but not a def. We only have 1141 // to ensure liveness extends to NewIdx. 1142 LiveRange::iterator NewIdxIn = 1143 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1144 // Extend the segment before NewIdx if necessary. 1145 if (NewIdxIn == E || 1146 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1147 LiveRange::iterator Prev = std::prev(NewIdxIn); 1148 Prev->end = NewIdx.getRegSlot(); 1149 } 1150 // Extend OldIdxIn. 1151 OldIdxIn->end = Next->start; 1152 return; 1153 } 1154 1155 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1156 // invalid by overlapping ranges. 1157 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1158 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1159 // If this was not a kill, then there was no def and we're done. 1160 if (!isKill) 1161 return; 1162 1163 // Did we have a Def at OldIdx? 1164 OldIdxOut = Next; 1165 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1166 return; 1167 } else { 1168 OldIdxOut = OldIdxIn; 1169 } 1170 1171 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1172 // to the segment starting there. 1173 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1174 "No def?"); 1175 VNInfo *OldIdxVNI = OldIdxOut->valno; 1176 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1177 1178 // If the defined value extends beyond NewIdx, just move the beginning 1179 // of the segment to NewIdx. 1180 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1181 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1182 OldIdxVNI->def = NewIdxDef; 1183 OldIdxOut->start = OldIdxVNI->def; 1184 return; 1185 } 1186 1187 // If we are here then we have a Definition at OldIdx which ends before 1188 // NewIdx. 1189 1190 // Is there an existing Def at NewIdx? 1191 LiveRange::iterator AfterNewIdx 1192 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1193 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1194 if (!OldIdxDefIsDead && 1195 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1196 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1197 VNInfo *DefVNI; 1198 if (OldIdxOut != LR.begin() && 1199 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1200 OldIdxOut->start)) { 1201 // There is no gap between OldIdxOut and its predecessor anymore, 1202 // merge them. 1203 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1204 DefVNI = OldIdxVNI; 1205 IPrev->end = OldIdxOut->end; 1206 } else { 1207 // The value is live in to OldIdx 1208 LiveRange::iterator INext = std::next(OldIdxOut); 1209 assert(INext != E && "Must have following segment"); 1210 // We merge OldIdxOut and its successor. As we're dealing with subreg 1211 // reordering, there is always a successor to OldIdxOut in the same BB 1212 // We don't need INext->valno anymore and will reuse for the new segment 1213 // we create later. 1214 DefVNI = OldIdxVNI; 1215 INext->start = OldIdxOut->end; 1216 INext->valno->def = INext->start; 1217 } 1218 // If NewIdx is behind the last segment, extend that and append a new one. 1219 if (AfterNewIdx == E) { 1220 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1221 // one position. 1222 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1223 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1224 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1225 // The last segment is undefined now, reuse it for a dead def. 1226 LiveRange::iterator NewSegment = std::prev(E); 1227 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1228 DefVNI); 1229 DefVNI->def = NewIdxDef; 1230 1231 LiveRange::iterator Prev = std::prev(NewSegment); 1232 Prev->end = NewIdxDef; 1233 } else { 1234 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1235 // one position. 1236 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1237 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1238 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1239 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1240 // We have two cases: 1241 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1242 // Case 1: NewIdx is inside a liverange. Split this liverange at 1243 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1244 LiveRange::iterator NewSegment = AfterNewIdx; 1245 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1246 Prev->valno->def = NewIdxDef; 1247 1248 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1249 DefVNI->def = Prev->start; 1250 } else { 1251 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1252 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1253 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1254 DefVNI->def = NewIdxDef; 1255 assert(DefVNI != AfterNewIdx->valno); 1256 } 1257 } 1258 return; 1259 } 1260 1261 if (AfterNewIdx != E && 1262 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1263 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1264 // that value. 1265 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1266 LR.removeValNo(OldIdxVNI); 1267 } else { 1268 // There was no existing def at NewIdx. We need to create a dead def 1269 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1270 // a new segment at the place where we want to construct the dead def. 1271 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1272 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1273 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1274 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1275 // We can reuse OldIdxVNI now. 1276 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1277 VNInfo *NewSegmentVNI = OldIdxVNI; 1278 NewSegmentVNI->def = NewIdxDef; 1279 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1280 NewSegmentVNI); 1281 } 1282 } 1283 1284 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1285 /// to NewIdx (NewIdx < OldIdx). 1286 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1287 LiveRange::iterator E = LR.end(); 1288 // Segment going into OldIdx. 1289 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1290 1291 // No value live before or after OldIdx? Nothing to do. 1292 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1293 return; 1294 1295 LiveRange::iterator OldIdxOut; 1296 // Do we have a value live-in to OldIdx? 1297 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1298 // If the live-in value isn't killed here, then we have no Def at 1299 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1300 // to do. 1301 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1302 if (!isKill) 1303 return; 1304 1305 // At this point we have to move OldIdxIn->end back to the nearest 1306 // previous use or (dead-)def but no further than NewIdx. 1307 SlotIndex DefBeforeOldIdx 1308 = std::max(OldIdxIn->start.getDeadSlot(), 1309 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1310 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1311 1312 // Did we have a Def at OldIdx? If not we are done now. 1313 OldIdxOut = std::next(OldIdxIn); 1314 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1315 return; 1316 } else { 1317 OldIdxOut = OldIdxIn; 1318 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1319 } 1320 1321 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1322 // to the segment starting there. 1323 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1324 "No def?"); 1325 VNInfo *OldIdxVNI = OldIdxOut->valno; 1326 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1327 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1328 1329 // Is there an existing def at NewIdx? 1330 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1331 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1332 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1333 assert(NewIdxOut->valno != OldIdxVNI && 1334 "Same value defined more than once?"); 1335 // If OldIdx was a dead def remove it. 1336 if (!OldIdxDefIsDead) { 1337 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1338 // NewIdx so it can take its place. 1339 OldIdxVNI->def = NewIdxDef; 1340 OldIdxOut->start = NewIdxDef; 1341 LR.removeValNo(NewIdxOut->valno); 1342 } else { 1343 // Simply remove the dead def at OldIdx. 1344 LR.removeValNo(OldIdxVNI); 1345 } 1346 } else { 1347 // Previously nothing was live after NewIdx, so all we have to do now is 1348 // move the begin of OldIdxOut to NewIdx. 1349 if (!OldIdxDefIsDead) { 1350 // Do we have any intermediate Defs between OldIdx and NewIdx? 1351 if (OldIdxIn != E && 1352 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1353 // OldIdx is not a dead def and NewIdx is before predecessor start. 1354 LiveRange::iterator NewIdxIn = NewIdxOut; 1355 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1356 const SlotIndex SplitPos = NewIdxDef; 1357 OldIdxVNI = OldIdxIn->valno; 1358 1359 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end; 1360 LiveRange::iterator Prev = std::prev(OldIdxIn); 1361 if (OldIdxIn != LR.begin() && 1362 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) { 1363 // If the segment before OldIdx read a value defined earlier than 1364 // NewIdx, the moved instruction also reads and forwards that 1365 // value. Extend the lifetime of the new def point. 1366 1367 // Extend to where the previous range started, unless there is 1368 // another redef first. 1369 NewDefEndPoint = std::min(OldIdxIn->start, 1370 std::next(NewIdxOut)->start); 1371 } 1372 1373 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1374 OldIdxOut->valno->def = OldIdxIn->start; 1375 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1376 OldIdxOut->valno); 1377 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1378 // We Slide [NewIdxIn, OldIdxIn) down one position. 1379 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1380 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1381 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1382 // NewIdxIn is now considered undef so we can reuse it for the moved 1383 // value. 1384 LiveRange::iterator NewSegment = NewIdxIn; 1385 LiveRange::iterator Next = std::next(NewSegment); 1386 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1387 // There is no gap between NewSegment and its predecessor. 1388 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1389 Next->valno); 1390 1391 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); 1392 Next->valno->def = SplitPos; 1393 } else { 1394 // There is a gap between NewSegment and its predecessor 1395 // Value becomes live in. 1396 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1397 NewSegment->valno->def = SplitPos; 1398 } 1399 } else { 1400 // Leave the end point of a live def. 1401 OldIdxOut->start = NewIdxDef; 1402 OldIdxVNI->def = NewIdxDef; 1403 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1404 OldIdxIn->end = NewIdxDef; 1405 } 1406 } else if (OldIdxIn != E 1407 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) 1408 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { 1409 // OldIdxVNI is a dead def that has been moved into the middle of 1410 // another value in LR. That can happen when LR is a whole register, 1411 // but the dead def is a write to a subreg that is dead at NewIdx. 1412 // The dead def may have been moved across other values 1413 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1414 // down one position. 1415 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1416 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1417 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1418 // Modify the segment at NewIdxOut and the following segment to meet at 1419 // the point of the dead def, with the following segment getting 1420 // OldIdxVNI as its value number. 1421 *NewIdxOut = LiveRange::Segment( 1422 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); 1423 *(NewIdxOut + 1) = LiveRange::Segment( 1424 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); 1425 OldIdxVNI->def = NewIdxDef; 1426 // Modify subsequent segments to be defined by the moved def OldIdxVNI. 1427 for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) 1428 Idx->valno = OldIdxVNI; 1429 // Aggressively remove all dead flags from the former dead definition. 1430 // Kill/dead flags shouldn't be used while live intervals exist; they 1431 // will be reinserted by VirtRegRewriter. 1432 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) 1433 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1434 if (MO->isReg() && !MO->isUse()) 1435 MO->setIsDead(false); 1436 } else { 1437 // OldIdxVNI is a dead def. It may have been moved across other values 1438 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1439 // down one position. 1440 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1441 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1442 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1443 // OldIdxVNI can be reused now to build a new dead def segment. 1444 LiveRange::iterator NewSegment = NewIdxOut; 1445 VNInfo *NewSegmentVNI = OldIdxVNI; 1446 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1447 NewSegmentVNI); 1448 NewSegmentVNI->def = NewIdxDef; 1449 } 1450 } 1451 } 1452 1453 void updateRegMaskSlots() { 1454 SmallVectorImpl<SlotIndex>::iterator RI = 1455 llvm::lower_bound(LIS.RegMaskSlots, OldIdx); 1456 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1457 "No RegMask at OldIdx."); 1458 *RI = NewIdx.getRegSlot(); 1459 assert((RI == LIS.RegMaskSlots.begin() || 1460 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1461 "Cannot move regmask instruction above another call"); 1462 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1463 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1464 "Cannot move regmask instruction below another call"); 1465 } 1466 1467 // Return the last use of reg between NewIdx and OldIdx. 1468 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg, 1469 LaneBitmask LaneMask) { 1470 if (Reg.isVirtual()) { 1471 SlotIndex LastUse = Before; 1472 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1473 if (MO.isUndef()) 1474 continue; 1475 unsigned SubReg = MO.getSubReg(); 1476 if (SubReg != 0 && LaneMask.any() 1477 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1478 continue; 1479 1480 const MachineInstr &MI = *MO.getParent(); 1481 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1482 if (InstSlot > LastUse && InstSlot < OldIdx) 1483 LastUse = InstSlot.getRegSlot(); 1484 } 1485 return LastUse; 1486 } 1487 1488 // This is a regunit interval, so scanning the use list could be very 1489 // expensive. Scan upwards from OldIdx instead. 1490 assert(Before < OldIdx && "Expected upwards move"); 1491 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1492 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1493 1494 // OldIdx may not correspond to an instruction any longer, so set MII to 1495 // point to the next instruction after OldIdx, or MBB->end(). 1496 MachineBasicBlock::iterator MII = MBB->end(); 1497 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1498 Indexes->getNextNonNullIndex(OldIdx))) 1499 if (MI->getParent() == MBB) 1500 MII = MI; 1501 1502 MachineBasicBlock::iterator Begin = MBB->begin(); 1503 while (MII != Begin) { 1504 if ((--MII)->isDebugOrPseudoInstr()) 1505 continue; 1506 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1507 1508 // Stop searching when Before is reached. 1509 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1510 return Before; 1511 1512 // Check if MII uses Reg. 1513 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1514 if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() && 1515 TRI.hasRegUnit(MO->getReg(), Reg)) 1516 return Idx.getRegSlot(); 1517 } 1518 // Didn't reach Before. It must be the first instruction in the block. 1519 return Before; 1520 } 1521 }; 1522 1523 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1524 // It is fine to move a bundle as a whole, but not an individual instruction 1525 // inside it. 1526 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && 1527 "Cannot move instruction in bundle"); 1528 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1529 Indexes->removeMachineInstrFromMaps(MI); 1530 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1531 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1532 OldIndex < getMBBEndIdx(MI.getParent()) && 1533 "Cannot handle moves across basic block boundaries."); 1534 1535 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1536 HME.updateAllRanges(&MI); 1537 } 1538 1539 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, 1540 bool UpdateFlags) { 1541 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && 1542 "Bundle start is not a bundle"); 1543 SmallVector<SlotIndex, 16> ToProcess; 1544 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart); 1545 auto BundleEnd = getBundleEnd(BundleStart.getIterator()); 1546 1547 auto I = BundleStart.getIterator(); 1548 I++; 1549 while (I != BundleEnd) { 1550 if (!Indexes->hasIndex(*I)) 1551 continue; 1552 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true); 1553 ToProcess.push_back(OldIndex); 1554 Indexes->removeMachineInstrFromMaps(*I, true); 1555 I++; 1556 } 1557 for (SlotIndex OldIndex : ToProcess) { 1558 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1559 HME.updateAllRanges(&BundleStart); 1560 } 1561 1562 // Fix up dead defs 1563 const SlotIndex Index = getInstructionIndex(BundleStart); 1564 for (MachineOperand &MO : BundleStart.operands()) { 1565 if (!MO.isReg()) 1566 continue; 1567 Register Reg = MO.getReg(); 1568 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { 1569 LiveInterval &LI = getInterval(Reg); 1570 LiveQueryResult LRQ = LI.Query(Index); 1571 if (LRQ.isDeadDef()) 1572 MO.setIsDead(); 1573 } 1574 } 1575 } 1576 1577 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1578 const MachineBasicBlock::iterator End, 1579 const SlotIndex EndIdx, LiveRange &LR, 1580 const Register Reg, 1581 LaneBitmask LaneMask) { 1582 LiveInterval::iterator LII = LR.find(EndIdx); 1583 SlotIndex lastUseIdx; 1584 if (LII != LR.end() && LII->start < EndIdx) { 1585 lastUseIdx = LII->end; 1586 } else if (LII == LR.begin()) { 1587 // We may not have a liverange at all if this is a subregister untouched 1588 // between \p Begin and \p End. 1589 } else { 1590 --LII; 1591 } 1592 1593 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1594 --I; 1595 MachineInstr &MI = *I; 1596 if (MI.isDebugOrPseudoInstr()) 1597 continue; 1598 1599 SlotIndex instrIdx = getInstructionIndex(MI); 1600 bool isStartValid = getInstructionFromIndex(LII->start); 1601 bool isEndValid = getInstructionFromIndex(LII->end); 1602 1603 // FIXME: This doesn't currently handle early-clobber or multiple removed 1604 // defs inside of the region to repair. 1605 for (const MachineOperand &MO : MI.operands()) { 1606 if (!MO.isReg() || MO.getReg() != Reg) 1607 continue; 1608 1609 unsigned SubReg = MO.getSubReg(); 1610 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1611 if ((Mask & LaneMask).none()) 1612 continue; 1613 1614 if (MO.isDef()) { 1615 if (!isStartValid) { 1616 if (LII->end.isDead()) { 1617 LII = LR.removeSegment(LII, true); 1618 if (LII != LR.begin()) 1619 --LII; 1620 } else { 1621 LII->start = instrIdx.getRegSlot(); 1622 LII->valno->def = instrIdx.getRegSlot(); 1623 if (MO.getSubReg() && !MO.isUndef()) 1624 lastUseIdx = instrIdx.getRegSlot(); 1625 else 1626 lastUseIdx = SlotIndex(); 1627 continue; 1628 } 1629 } 1630 1631 if (!lastUseIdx.isValid()) { 1632 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1633 LiveRange::Segment S(instrIdx.getRegSlot(), 1634 instrIdx.getDeadSlot(), VNI); 1635 LII = LR.addSegment(S); 1636 } else if (LII->start != instrIdx.getRegSlot()) { 1637 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1638 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1639 LII = LR.addSegment(S); 1640 } 1641 1642 if (MO.getSubReg() && !MO.isUndef()) 1643 lastUseIdx = instrIdx.getRegSlot(); 1644 else 1645 lastUseIdx = SlotIndex(); 1646 } else if (MO.isUse()) { 1647 // FIXME: This should probably be handled outside of this branch, 1648 // either as part of the def case (for defs inside of the region) or 1649 // after the loop over the region. 1650 if (!isEndValid && !LII->end.isBlock()) 1651 LII->end = instrIdx.getRegSlot(); 1652 if (!lastUseIdx.isValid()) 1653 lastUseIdx = instrIdx.getRegSlot(); 1654 } 1655 } 1656 } 1657 1658 bool isStartValid = getInstructionFromIndex(LII->start); 1659 if (!isStartValid && LII->end.isDead()) 1660 LR.removeSegment(*LII, true); 1661 } 1662 1663 void 1664 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1665 MachineBasicBlock::iterator Begin, 1666 MachineBasicBlock::iterator End, 1667 ArrayRef<Register> OrigRegs) { 1668 // Find anchor points, which are at the beginning/end of blocks or at 1669 // instructions that already have indexes. 1670 while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin))) 1671 --Begin; 1672 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1673 ++End; 1674 1675 SlotIndex EndIdx; 1676 if (End == MBB->end()) 1677 EndIdx = getMBBEndIdx(MBB).getPrevSlot(); 1678 else 1679 EndIdx = getInstructionIndex(*End); 1680 1681 Indexes->repairIndexesInRange(MBB, Begin, End); 1682 1683 // Make sure a live interval exists for all register operands in the range. 1684 SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end()); 1685 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1686 --I; 1687 MachineInstr &MI = *I; 1688 if (MI.isDebugOrPseudoInstr()) 1689 continue; 1690 for (const MachineOperand &MO : MI.operands()) { 1691 if (MO.isReg() && MO.getReg().isVirtual()) { 1692 Register Reg = MO.getReg(); 1693 if (MO.getSubReg() && hasInterval(Reg) && 1694 MRI->shouldTrackSubRegLiveness(Reg)) { 1695 LiveInterval &LI = getInterval(Reg); 1696 if (!LI.hasSubRanges()) { 1697 // If the new instructions refer to subregs but the old instructions 1698 // did not, throw away any old live interval so it will be 1699 // recomputed with subranges. 1700 removeInterval(Reg); 1701 } else if (MO.isDef()) { 1702 // Similarly if a subreg def has no precise subrange match then 1703 // assume we need to recompute all subranges. 1704 unsigned SubReg = MO.getSubReg(); 1705 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1706 if (llvm::none_of(LI.subranges(), 1707 [Mask](LiveInterval::SubRange &SR) { 1708 return SR.LaneMask == Mask; 1709 })) { 1710 removeInterval(Reg); 1711 } 1712 } 1713 } 1714 if (!hasInterval(Reg)) { 1715 createAndComputeVirtRegInterval(Reg); 1716 // Don't bother to repair a freshly calculated live interval. 1717 llvm::erase(RegsToRepair, Reg); 1718 } 1719 } 1720 } 1721 } 1722 1723 for (Register Reg : RegsToRepair) { 1724 if (!Reg.isVirtual()) 1725 continue; 1726 1727 LiveInterval &LI = getInterval(Reg); 1728 // FIXME: Should we support undefs that gain defs? 1729 if (!LI.hasAtLeastOneValue()) 1730 continue; 1731 1732 for (LiveInterval::SubRange &S : LI.subranges()) 1733 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask); 1734 LI.removeEmptySubRanges(); 1735 1736 repairOldRegInRange(Begin, End, EndIdx, LI, Reg); 1737 } 1738 } 1739 1740 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { 1741 for (MCRegUnit Unit : TRI->regunits(Reg)) { 1742 if (LiveRange *LR = getCachedRegUnit(Unit)) 1743 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1744 LR->removeValNo(VNI); 1745 } 1746 } 1747 1748 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1749 // LI may not have the main range computed yet, but its subranges may 1750 // be present. 1751 VNInfo *VNI = LI.getVNInfoAt(Pos); 1752 if (VNI != nullptr) { 1753 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1754 LI.removeValNo(VNI); 1755 } 1756 1757 // Also remove the value defined in subranges. 1758 for (LiveInterval::SubRange &S : LI.subranges()) { 1759 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1760 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1761 S.removeValNo(SVNI); 1762 } 1763 LI.removeEmptySubRanges(); 1764 } 1765 1766 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1767 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1768 ConnectedVNInfoEqClasses ConEQ(*this); 1769 unsigned NumComp = ConEQ.Classify(LI); 1770 if (NumComp <= 1) 1771 return; 1772 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1773 Register Reg = LI.reg(); 1774 for (unsigned I = 1; I < NumComp; ++I) { 1775 Register NewVReg = MRI->cloneVirtualRegister(Reg); 1776 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1777 SplitLIs.push_back(&NewLI); 1778 } 1779 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1780 } 1781 1782 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1783 assert(LICalc && "LICalc not initialized."); 1784 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1785 LICalc->constructMainRangeFromSubranges(LI); 1786 } 1787