1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LiveInterval analysis pass which is used 10 /// by the Linear Scan Register allocator. This pass linearizes the 11 /// basic blocks of the function in DFS order and computes live intervals for 12 /// each virtual and physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervalCalc.h" 25 #include "llvm/CodeGen/LiveVariables.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/MC/LaneBitmask.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/BlockFrequency.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "regalloc" 60 61 char LiveIntervals::ID = 0; 62 char &llvm::LiveIntervalsID = LiveIntervals::ID; 63 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 64 "Live Interval Analysis", false, false) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 67 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 68 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 69 "Live Interval Analysis", false, false) 70 71 #ifndef NDEBUG 72 static cl::opt<bool> EnablePrecomputePhysRegs( 73 "precompute-phys-liveness", cl::Hidden, 74 cl::desc("Eagerly compute live intervals for all physreg units.")); 75 #else 76 static bool EnablePrecomputePhysRegs = false; 77 #endif // NDEBUG 78 79 namespace llvm { 80 81 cl::opt<bool> UseSegmentSetForPhysRegs( 82 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 83 cl::desc( 84 "Use segment set for the computation of the live ranges of physregs.")); 85 86 } // end namespace llvm 87 88 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 89 AU.setPreservesCFG(); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addPreserved<AAResultsWrapperPass>(); 92 AU.addPreserved<LiveVariables>(); 93 AU.addPreservedID(MachineLoopInfoID); 94 AU.addRequiredTransitiveID(MachineDominatorsID); 95 AU.addPreservedID(MachineDominatorsID); 96 AU.addPreserved<SlotIndexes>(); 97 AU.addRequiredTransitive<SlotIndexes>(); 98 MachineFunctionPass::getAnalysisUsage(AU); 99 } 100 101 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { 102 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 103 } 104 105 LiveIntervals::~LiveIntervals() { delete LICalc; } 106 107 void LiveIntervals::releaseMemory() { 108 // Free the live intervals themselves. 109 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 110 delete VirtRegIntervals[Register::index2VirtReg(i)]; 111 VirtRegIntervals.clear(); 112 RegMaskSlots.clear(); 113 RegMaskBits.clear(); 114 RegMaskBlocks.clear(); 115 116 for (LiveRange *LR : RegUnitRanges) 117 delete LR; 118 RegUnitRanges.clear(); 119 120 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 121 VNInfoAllocator.Reset(); 122 } 123 124 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 125 MF = &fn; 126 MRI = &MF->getRegInfo(); 127 TRI = MF->getSubtarget().getRegisterInfo(); 128 TII = MF->getSubtarget().getInstrInfo(); 129 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 130 Indexes = &getAnalysis<SlotIndexes>(); 131 DomTree = &getAnalysis<MachineDominatorTree>(); 132 133 if (!LICalc) 134 LICalc = new LiveIntervalCalc(); 135 136 // Allocate space for all virtual registers. 137 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 138 139 computeVirtRegs(); 140 computeRegMasks(); 141 computeLiveInRegUnits(); 142 143 if (EnablePrecomputePhysRegs) { 144 // For stress testing, precompute live ranges of all physical register 145 // units, including reserved registers. 146 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 147 getRegUnit(i); 148 } 149 LLVM_DEBUG(dump()); 150 return true; 151 } 152 153 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 154 OS << "********** INTERVALS **********\n"; 155 156 // Dump the regunits. 157 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 158 if (LiveRange *LR = RegUnitRanges[Unit]) 159 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 160 161 // Dump the virtregs. 162 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 163 Register Reg = Register::index2VirtReg(i); 164 if (hasInterval(Reg)) 165 OS << getInterval(Reg) << '\n'; 166 } 167 168 OS << "RegMasks:"; 169 for (SlotIndex Idx : RegMaskSlots) 170 OS << ' ' << Idx; 171 OS << '\n'; 172 173 printInstrs(OS); 174 } 175 176 void LiveIntervals::printInstrs(raw_ostream &OS) const { 177 OS << "********** MACHINEINSTRS **********\n"; 178 MF->print(OS, Indexes); 179 } 180 181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 182 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 183 printInstrs(dbgs()); 184 } 185 #endif 186 187 LiveInterval *LiveIntervals::createInterval(Register reg) { 188 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F; 189 return new LiveInterval(reg, Weight); 190 } 191 192 /// Compute the live interval of a virtual register, based on defs and uses. 193 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 194 assert(LICalc && "LICalc not initialized."); 195 assert(LI.empty() && "Should only compute empty intervals."); 196 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 197 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg())); 198 return computeDeadValues(LI, nullptr); 199 } 200 201 void LiveIntervals::computeVirtRegs() { 202 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 203 Register Reg = Register::index2VirtReg(i); 204 if (MRI->reg_nodbg_empty(Reg)) 205 continue; 206 LiveInterval &LI = createEmptyInterval(Reg); 207 bool NeedSplit = computeVirtRegInterval(LI); 208 if (NeedSplit) { 209 SmallVector<LiveInterval*, 8> SplitLIs; 210 splitSeparateComponents(LI, SplitLIs); 211 } 212 } 213 } 214 215 void LiveIntervals::computeRegMasks() { 216 RegMaskBlocks.resize(MF->getNumBlockIDs()); 217 218 // Find all instructions with regmask operands. 219 for (const MachineBasicBlock &MBB : *MF) { 220 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 221 RMB.first = RegMaskSlots.size(); 222 223 // Some block starts, such as EH funclets, create masks. 224 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 225 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 226 RegMaskBits.push_back(Mask); 227 } 228 229 // Unwinders may clobber additional registers. 230 // FIXME: This functionality can possibly be merged into 231 // MachineBasicBlock::getBeginClobberMask(). 232 if (MBB.isEHPad()) 233 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) { 234 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 235 RegMaskBits.push_back(Mask); 236 } 237 238 for (const MachineInstr &MI : MBB) { 239 for (const MachineOperand &MO : MI.operands()) { 240 if (!MO.isRegMask()) 241 continue; 242 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 243 RegMaskBits.push_back(MO.getRegMask()); 244 } 245 } 246 247 // Some block ends, such as funclet returns, create masks. Put the mask on 248 // the last instruction of the block, because MBB slot index intervals are 249 // half-open. 250 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 251 assert(!MBB.empty() && "empty return block?"); 252 RegMaskSlots.push_back( 253 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 254 RegMaskBits.push_back(Mask); 255 } 256 257 // Compute the number of register mask instructions in this block. 258 RMB.second = RegMaskSlots.size() - RMB.first; 259 } 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Register Unit Liveness 264 //===----------------------------------------------------------------------===// 265 // 266 // Fixed interference typically comes from ABI boundaries: Function arguments 267 // and return values are passed in fixed registers, and so are exception 268 // pointers entering landing pads. Certain instructions require values to be 269 // present in specific registers. That is also represented through fixed 270 // interference. 271 // 272 273 /// Compute the live range of a register unit, based on the uses and defs of 274 /// aliasing registers. The range should be empty, or contain only dead 275 /// phi-defs from ABI blocks. 276 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 277 assert(LICalc && "LICalc not initialized."); 278 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 279 280 // The physregs aliasing Unit are the roots and their super-registers. 281 // Create all values as dead defs before extending to uses. Note that roots 282 // may share super-registers. That's OK because createDeadDefs() is 283 // idempotent. It is very rare for a register unit to have multiple roots, so 284 // uniquing super-registers is probably not worthwhile. 285 bool IsReserved = false; 286 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 287 bool IsRootReserved = true; 288 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 289 Super.isValid(); ++Super) { 290 MCRegister Reg = *Super; 291 if (!MRI->reg_empty(Reg)) 292 LICalc->createDeadDefs(LR, Reg); 293 // A register unit is considered reserved if all its roots and all their 294 // super registers are reserved. 295 if (!MRI->isReserved(Reg)) 296 IsRootReserved = false; 297 } 298 IsReserved |= IsRootReserved; 299 } 300 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 301 "reserved computation mismatch"); 302 303 // Now extend LR to reach all uses. 304 // Ignore uses of reserved registers. We only track defs of those. 305 if (!IsReserved) { 306 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 307 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 308 Super.isValid(); ++Super) { 309 MCRegister Reg = *Super; 310 if (!MRI->reg_empty(Reg)) 311 LICalc->extendToUses(LR, Reg); 312 } 313 } 314 } 315 316 // Flush the segment set to the segment vector. 317 if (UseSegmentSetForPhysRegs) 318 LR.flushSegmentSet(); 319 } 320 321 /// Precompute the live ranges of any register units that are live-in to an ABI 322 /// block somewhere. Register values can appear without a corresponding def when 323 /// entering the entry block or a landing pad. 324 void LiveIntervals::computeLiveInRegUnits() { 325 RegUnitRanges.resize(TRI->getNumRegUnits()); 326 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 327 328 // Keep track of the live range sets allocated. 329 SmallVector<unsigned, 8> NewRanges; 330 331 // Check all basic blocks for live-ins. 332 for (const MachineBasicBlock &MBB : *MF) { 333 // We only care about ABI blocks: Entry + landing pads. 334 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 335 continue; 336 337 // Create phi-defs at Begin for all live-in registers. 338 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 339 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 340 for (const auto &LI : MBB.liveins()) { 341 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { 342 unsigned Unit = *Units; 343 LiveRange *LR = RegUnitRanges[Unit]; 344 if (!LR) { 345 // Use segment set to speed-up initial computation of the live range. 346 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 347 NewRanges.push_back(Unit); 348 } 349 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 350 (void)VNI; 351 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 352 } 353 } 354 LLVM_DEBUG(dbgs() << '\n'); 355 } 356 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 357 358 // Compute the 'normal' part of the ranges. 359 for (unsigned Unit : NewRanges) 360 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 361 } 362 363 static void createSegmentsForValues(LiveRange &LR, 364 iterator_range<LiveInterval::vni_iterator> VNIs) { 365 for (VNInfo *VNI : VNIs) { 366 if (VNI->isUnused()) 367 continue; 368 SlotIndex Def = VNI->def; 369 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 370 } 371 } 372 373 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, 374 ShrinkToUsesWorkList &WorkList, 375 Register Reg, LaneBitmask LaneMask) { 376 // Keep track of the PHIs that are in use. 377 SmallPtrSet<VNInfo*, 8> UsedPHIs; 378 // Blocks that have already been added to WorkList as live-out. 379 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 380 381 auto getSubRange = [](const LiveInterval &I, LaneBitmask M) 382 -> const LiveRange& { 383 if (M.none()) 384 return I; 385 for (const LiveInterval::SubRange &SR : I.subranges()) { 386 if ((SR.LaneMask & M).any()) { 387 assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); 388 return SR; 389 } 390 } 391 llvm_unreachable("Subrange for mask not found"); 392 }; 393 394 const LiveInterval &LI = getInterval(Reg); 395 const LiveRange &OldRange = getSubRange(LI, LaneMask); 396 397 // Extend intervals to reach all uses in WorkList. 398 while (!WorkList.empty()) { 399 SlotIndex Idx = WorkList.back().first; 400 VNInfo *VNI = WorkList.back().second; 401 WorkList.pop_back(); 402 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); 403 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); 404 405 // Extend the live range for VNI to be live at Idx. 406 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { 407 assert(ExtVNI == VNI && "Unexpected existing value number"); 408 (void)ExtVNI; 409 // Is this a PHIDef we haven't seen before? 410 if (!VNI->isPHIDef() || VNI->def != BlockStart || 411 !UsedPHIs.insert(VNI).second) 412 continue; 413 // The PHI is live, make sure the predecessors are live-out. 414 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 415 if (!LiveOut.insert(Pred).second) 416 continue; 417 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 418 // A predecessor is not required to have a live-out value for a PHI. 419 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 420 WorkList.push_back(std::make_pair(Stop, PVNI)); 421 } 422 continue; 423 } 424 425 // VNI is live-in to MBB. 426 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 427 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 428 429 // Make sure VNI is live-out from the predecessors. 430 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 431 if (!LiveOut.insert(Pred).second) 432 continue; 433 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 434 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { 435 assert(OldVNI == VNI && "Wrong value out of predecessor"); 436 (void)OldVNI; 437 WorkList.push_back(std::make_pair(Stop, VNI)); 438 } else { 439 #ifndef NDEBUG 440 // There was no old VNI. Verify that Stop is jointly dominated 441 // by <undef>s for this live range. 442 assert(LaneMask.any() && 443 "Missing value out of predecessor for main range"); 444 SmallVector<SlotIndex,8> Undefs; 445 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 446 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && 447 "Missing value out of predecessor for subrange"); 448 #endif 449 } 450 } 451 } 452 } 453 454 bool LiveIntervals::shrinkToUses(LiveInterval *li, 455 SmallVectorImpl<MachineInstr*> *dead) { 456 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); 457 assert(Register::isVirtualRegister(li->reg()) && 458 "Can only shrink virtual registers"); 459 460 // Shrink subregister live ranges. 461 bool NeedsCleanup = false; 462 for (LiveInterval::SubRange &S : li->subranges()) { 463 shrinkToUses(S, li->reg()); 464 if (S.empty()) 465 NeedsCleanup = true; 466 } 467 if (NeedsCleanup) 468 li->removeEmptySubRanges(); 469 470 // Find all the values used, including PHI kills. 471 ShrinkToUsesWorkList WorkList; 472 473 // Visit all instructions reading li->reg(). 474 Register Reg = li->reg(); 475 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 476 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg)) 477 continue; 478 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 479 LiveQueryResult LRQ = li->Query(Idx); 480 VNInfo *VNI = LRQ.valueIn(); 481 if (!VNI) { 482 // This shouldn't happen: readsVirtualRegister returns true, but there is 483 // no live value. It is likely caused by a target getting <undef> flags 484 // wrong. 485 LLVM_DEBUG( 486 dbgs() << Idx << '\t' << UseMI 487 << "Warning: Instr claims to read non-existent value in " 488 << *li << '\n'); 489 continue; 490 } 491 // Special case: An early-clobber tied operand reads and writes the 492 // register one slot early. 493 if (VNInfo *DefVNI = LRQ.valueDefined()) 494 Idx = DefVNI->def; 495 496 WorkList.push_back(std::make_pair(Idx, VNI)); 497 } 498 499 // Create new live ranges with only minimal live segments per def. 500 LiveRange NewLR; 501 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); 502 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); 503 504 // Move the trimmed segments back. 505 li->segments.swap(NewLR.segments); 506 507 // Handle dead values. 508 bool CanSeparate = computeDeadValues(*li, dead); 509 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 510 return CanSeparate; 511 } 512 513 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 514 SmallVectorImpl<MachineInstr*> *dead) { 515 bool MayHaveSplitComponents = false; 516 bool HaveDeadDef = false; 517 518 for (VNInfo *VNI : LI.valnos) { 519 if (VNI->isUnused()) 520 continue; 521 SlotIndex Def = VNI->def; 522 LiveRange::iterator I = LI.FindSegmentContaining(Def); 523 assert(I != LI.end() && "Missing segment for VNI"); 524 525 // Is the register live before? Otherwise we may have to add a read-undef 526 // flag for subregister defs. 527 Register VReg = LI.reg(); 528 if (MRI->shouldTrackSubRegLiveness(VReg)) { 529 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 530 MachineInstr *MI = getInstructionFromIndex(Def); 531 MI->setRegisterDefReadUndef(VReg); 532 } 533 } 534 535 if (I->end != Def.getDeadSlot()) 536 continue; 537 if (VNI->isPHIDef()) { 538 // This is a dead PHI. Remove it. 539 VNI->markUnused(); 540 LI.removeSegment(I); 541 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 542 MayHaveSplitComponents = true; 543 } else { 544 // This is a dead def. Make sure the instruction knows. 545 MachineInstr *MI = getInstructionFromIndex(Def); 546 assert(MI && "No instruction defining live value"); 547 MI->addRegisterDead(LI.reg(), TRI); 548 if (HaveDeadDef) 549 MayHaveSplitComponents = true; 550 HaveDeadDef = true; 551 552 if (dead && MI->allDefsAreDead()) { 553 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 554 dead->push_back(MI); 555 } 556 } 557 } 558 return MayHaveSplitComponents; 559 } 560 561 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { 562 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); 563 assert(Register::isVirtualRegister(Reg) && 564 "Can only shrink virtual registers"); 565 // Find all the values used, including PHI kills. 566 ShrinkToUsesWorkList WorkList; 567 568 // Visit all instructions reading Reg. 569 SlotIndex LastIdx; 570 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 571 // Skip "undef" uses. 572 if (!MO.readsReg()) 573 continue; 574 // Maybe the operand is for a subregister we don't care about. 575 unsigned SubReg = MO.getSubReg(); 576 if (SubReg != 0) { 577 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 578 if ((LaneMask & SR.LaneMask).none()) 579 continue; 580 } 581 // We only need to visit each instruction once. 582 MachineInstr *UseMI = MO.getParent(); 583 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 584 if (Idx == LastIdx) 585 continue; 586 LastIdx = Idx; 587 588 LiveQueryResult LRQ = SR.Query(Idx); 589 VNInfo *VNI = LRQ.valueIn(); 590 // For Subranges it is possible that only undef values are left in that 591 // part of the subregister, so there is no real liverange at the use 592 if (!VNI) 593 continue; 594 595 // Special case: An early-clobber tied operand reads and writes the 596 // register one slot early. 597 if (VNInfo *DefVNI = LRQ.valueDefined()) 598 Idx = DefVNI->def; 599 600 WorkList.push_back(std::make_pair(Idx, VNI)); 601 } 602 603 // Create a new live ranges with only minimal live segments per def. 604 LiveRange NewLR; 605 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); 606 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); 607 608 // Move the trimmed ranges back. 609 SR.segments.swap(NewLR.segments); 610 611 // Remove dead PHI value numbers 612 for (VNInfo *VNI : SR.valnos) { 613 if (VNI->isUnused()) 614 continue; 615 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 616 assert(Segment != nullptr && "Missing segment for VNI"); 617 if (Segment->end != VNI->def.getDeadSlot()) 618 continue; 619 if (VNI->isPHIDef()) { 620 // This is a dead PHI. Remove it. 621 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def 622 << " may separate interval\n"); 623 VNI->markUnused(); 624 SR.removeSegment(*Segment); 625 } 626 } 627 628 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 629 } 630 631 void LiveIntervals::extendToIndices(LiveRange &LR, 632 ArrayRef<SlotIndex> Indices, 633 ArrayRef<SlotIndex> Undefs) { 634 assert(LICalc && "LICalc not initialized."); 635 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 636 for (SlotIndex Idx : Indices) 637 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 638 } 639 640 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 641 SmallVectorImpl<SlotIndex> *EndPoints) { 642 LiveQueryResult LRQ = LR.Query(Kill); 643 VNInfo *VNI = LRQ.valueOutOrDead(); 644 if (!VNI) 645 return; 646 647 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 648 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 649 650 // If VNI isn't live out from KillMBB, the value is trivially pruned. 651 if (LRQ.endPoint() < MBBEnd) { 652 LR.removeSegment(Kill, LRQ.endPoint()); 653 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 654 return; 655 } 656 657 // VNI is live out of KillMBB. 658 LR.removeSegment(Kill, MBBEnd); 659 if (EndPoints) EndPoints->push_back(MBBEnd); 660 661 // Find all blocks that are reachable from KillMBB without leaving VNI's live 662 // range. It is possible that KillMBB itself is reachable, so start a DFS 663 // from each successor. 664 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 665 VisitedTy Visited; 666 for (MachineBasicBlock *Succ : KillMBB->successors()) { 667 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 668 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 669 I != E;) { 670 MachineBasicBlock *MBB = *I; 671 672 // Check if VNI is live in to MBB. 673 SlotIndex MBBStart, MBBEnd; 674 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 675 LiveQueryResult LRQ = LR.Query(MBBStart); 676 if (LRQ.valueIn() != VNI) { 677 // This block isn't part of the VNI segment. Prune the search. 678 I.skipChildren(); 679 continue; 680 } 681 682 // Prune the search if VNI is killed in MBB. 683 if (LRQ.endPoint() < MBBEnd) { 684 LR.removeSegment(MBBStart, LRQ.endPoint()); 685 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 686 I.skipChildren(); 687 continue; 688 } 689 690 // VNI is live through MBB. 691 LR.removeSegment(MBBStart, MBBEnd); 692 if (EndPoints) EndPoints->push_back(MBBEnd); 693 ++I; 694 } 695 } 696 } 697 698 //===----------------------------------------------------------------------===// 699 // Register allocator hooks. 700 // 701 702 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 703 // Keep track of regunit ranges. 704 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 705 // Keep track of subregister ranges. 706 SmallVector<std::pair<const LiveInterval::SubRange*, 707 LiveRange::const_iterator>, 4> SRs; 708 709 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 710 Register Reg = Register::index2VirtReg(i); 711 if (MRI->reg_nodbg_empty(Reg)) 712 continue; 713 const LiveInterval &LI = getInterval(Reg); 714 if (LI.empty()) 715 continue; 716 717 // Find the regunit intervals for the assigned register. They may overlap 718 // the virtual register live range, cancelling any kills. 719 RU.clear(); 720 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid(); 721 ++Unit) { 722 const LiveRange &RURange = getRegUnit(*Unit); 723 if (RURange.empty()) 724 continue; 725 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 726 } 727 728 if (MRI->subRegLivenessEnabled()) { 729 SRs.clear(); 730 for (const LiveInterval::SubRange &SR : LI.subranges()) { 731 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); 732 } 733 } 734 735 // Every instruction that kills Reg corresponds to a segment range end 736 // point. 737 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 738 ++RI) { 739 // A block index indicates an MBB edge. 740 if (RI->end.isBlock()) 741 continue; 742 MachineInstr *MI = getInstructionFromIndex(RI->end); 743 if (!MI) 744 continue; 745 746 // Check if any of the regunits are live beyond the end of RI. That could 747 // happen when a physreg is defined as a copy of a virtreg: 748 // 749 // %eax = COPY %5 750 // FOO %5 <--- MI, cancel kill because %eax is live. 751 // BAR killed %eax 752 // 753 // There should be no kill flag on FOO when %5 is rewritten as %eax. 754 for (auto &RUP : RU) { 755 const LiveRange &RURange = *RUP.first; 756 LiveRange::const_iterator &I = RUP.second; 757 if (I == RURange.end()) 758 continue; 759 I = RURange.advanceTo(I, RI->end); 760 if (I == RURange.end() || I->start >= RI->end) 761 continue; 762 // I is overlapping RI. 763 goto CancelKill; 764 } 765 766 if (MRI->subRegLivenessEnabled()) { 767 // When reading a partial undefined value we must not add a kill flag. 768 // The regalloc might have used the undef lane for something else. 769 // Example: 770 // %1 = ... ; R32: %1 771 // %2:high16 = ... ; R64: %2 772 // = read killed %2 ; R64: %2 773 // = read %1 ; R32: %1 774 // The <kill> flag is correct for %2, but the register allocator may 775 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 776 // are actually never written by %2. After assignment the <kill> 777 // flag at the read instruction is invalid. 778 LaneBitmask DefinedLanesMask; 779 if (!SRs.empty()) { 780 // Compute a mask of lanes that are defined. 781 DefinedLanesMask = LaneBitmask::getNone(); 782 for (auto &SRP : SRs) { 783 const LiveInterval::SubRange &SR = *SRP.first; 784 LiveRange::const_iterator &I = SRP.second; 785 if (I == SR.end()) 786 continue; 787 I = SR.advanceTo(I, RI->end); 788 if (I == SR.end() || I->start >= RI->end) 789 continue; 790 // I is overlapping RI 791 DefinedLanesMask |= SR.LaneMask; 792 } 793 } else 794 DefinedLanesMask = LaneBitmask::getAll(); 795 796 bool IsFullWrite = false; 797 for (const MachineOperand &MO : MI->operands()) { 798 if (!MO.isReg() || MO.getReg() != Reg) 799 continue; 800 if (MO.isUse()) { 801 // Reading any undefined lanes? 802 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 803 if ((UseMask & ~DefinedLanesMask).any()) 804 goto CancelKill; 805 } else if (MO.getSubReg() == 0) { 806 // Writing to the full register? 807 assert(MO.isDef()); 808 IsFullWrite = true; 809 } 810 } 811 812 // If an instruction writes to a subregister, a new segment starts in 813 // the LiveInterval. But as this is only overriding part of the register 814 // adding kill-flags is not correct here after registers have been 815 // assigned. 816 if (!IsFullWrite) { 817 // Next segment has to be adjacent in the subregister write case. 818 LiveRange::const_iterator N = std::next(RI); 819 if (N != LI.end() && N->start == RI->end) 820 goto CancelKill; 821 } 822 } 823 824 MI->addRegisterKilled(Reg, nullptr); 825 continue; 826 CancelKill: 827 MI->clearRegisterKills(Reg, nullptr); 828 } 829 } 830 } 831 832 MachineBasicBlock* 833 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 834 // A local live range must be fully contained inside the block, meaning it is 835 // defined and killed at instructions, not at block boundaries. It is not 836 // live in or out of any block. 837 // 838 // It is technically possible to have a PHI-defined live range identical to a 839 // single block, but we are going to return false in that case. 840 841 SlotIndex Start = LI.beginIndex(); 842 if (Start.isBlock()) 843 return nullptr; 844 845 SlotIndex Stop = LI.endIndex(); 846 if (Stop.isBlock()) 847 return nullptr; 848 849 // getMBBFromIndex doesn't need to search the MBB table when both indexes 850 // belong to proper instructions. 851 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 852 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 853 return MBB1 == MBB2 ? MBB1 : nullptr; 854 } 855 856 bool 857 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 858 for (const VNInfo *PHI : LI.valnos) { 859 if (PHI->isUnused() || !PHI->isPHIDef()) 860 continue; 861 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 862 // Conservatively return true instead of scanning huge predecessor lists. 863 if (PHIMBB->pred_size() > 100) 864 return true; 865 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 866 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 867 return true; 868 } 869 return false; 870 } 871 872 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 873 const MachineBlockFrequencyInfo *MBFI, 874 const MachineInstr &MI) { 875 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 876 } 877 878 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 879 const MachineBlockFrequencyInfo *MBFI, 880 const MachineBasicBlock *MBB) { 881 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB); 882 } 883 884 LiveRange::Segment 885 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { 886 LiveInterval &Interval = createEmptyInterval(Reg); 887 VNInfo *VN = Interval.getNextValue( 888 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 889 getVNInfoAllocator()); 890 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 891 getMBBEndIdx(startInst.getParent()), VN); 892 Interval.addSegment(S); 893 894 return S; 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Register mask functions 899 //===----------------------------------------------------------------------===// 900 901 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, 902 BitVector &UsableRegs) { 903 if (LI.empty()) 904 return false; 905 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); 906 907 // Use a smaller arrays for local live ranges. 908 ArrayRef<SlotIndex> Slots; 909 ArrayRef<const uint32_t*> Bits; 910 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 911 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 912 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 913 } else { 914 Slots = getRegMaskSlots(); 915 Bits = getRegMaskBits(); 916 } 917 918 // We are going to enumerate all the register mask slots contained in LI. 919 // Start with a binary search of RegMaskSlots to find a starting point. 920 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start); 921 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 922 923 // No slots in range, LI begins after the last call. 924 if (SlotI == SlotE) 925 return false; 926 927 bool Found = false; 928 while (true) { 929 assert(*SlotI >= LiveI->start); 930 // Loop over all slots overlapping this segment. 931 while (*SlotI < LiveI->end) { 932 // *SlotI overlaps LI. Collect mask bits. 933 if (!Found) { 934 // This is the first overlap. Initialize UsableRegs to all ones. 935 UsableRegs.clear(); 936 UsableRegs.resize(TRI->getNumRegs(), true); 937 Found = true; 938 } 939 // Remove usable registers clobbered by this mask. 940 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); 941 if (++SlotI == SlotE) 942 return Found; 943 } 944 // *SlotI is beyond the current LI segment. 945 LiveI = LI.advanceTo(LiveI, *SlotI); 946 if (LiveI == LiveE) 947 return Found; 948 // Advance SlotI until it overlaps. 949 while (*SlotI < LiveI->start) 950 if (++SlotI == SlotE) 951 return Found; 952 } 953 } 954 955 //===----------------------------------------------------------------------===// 956 // IntervalUpdate class. 957 //===----------------------------------------------------------------------===// 958 959 /// Toolkit used by handleMove to trim or extend live intervals. 960 class LiveIntervals::HMEditor { 961 private: 962 LiveIntervals& LIS; 963 const MachineRegisterInfo& MRI; 964 const TargetRegisterInfo& TRI; 965 SlotIndex OldIdx; 966 SlotIndex NewIdx; 967 SmallPtrSet<LiveRange*, 8> Updated; 968 bool UpdateFlags; 969 970 public: 971 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 972 const TargetRegisterInfo& TRI, 973 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 974 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 975 UpdateFlags(UpdateFlags) {} 976 977 // FIXME: UpdateFlags is a workaround that creates live intervals for all 978 // physregs, even those that aren't needed for regalloc, in order to update 979 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 980 // flags, and postRA passes will use a live register utility instead. 981 LiveRange *getRegUnitLI(unsigned Unit) { 982 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 983 return &LIS.getRegUnit(Unit); 984 return LIS.getCachedRegUnit(Unit); 985 } 986 987 /// Update all live ranges touched by MI, assuming a move from OldIdx to 988 /// NewIdx. 989 void updateAllRanges(MachineInstr *MI) { 990 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " 991 << *MI); 992 bool hasRegMask = false; 993 for (MachineOperand &MO : MI->operands()) { 994 if (MO.isRegMask()) 995 hasRegMask = true; 996 if (!MO.isReg()) 997 continue; 998 if (MO.isUse()) { 999 if (!MO.readsReg()) 1000 continue; 1001 // Aggressively clear all kill flags. 1002 // They are reinserted by VirtRegRewriter. 1003 MO.setIsKill(false); 1004 } 1005 1006 Register Reg = MO.getReg(); 1007 if (!Reg) 1008 continue; 1009 if (Register::isVirtualRegister(Reg)) { 1010 LiveInterval &LI = LIS.getInterval(Reg); 1011 if (LI.hasSubRanges()) { 1012 unsigned SubReg = MO.getSubReg(); 1013 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1014 : MRI.getMaxLaneMaskForVReg(Reg); 1015 for (LiveInterval::SubRange &S : LI.subranges()) { 1016 if ((S.LaneMask & LaneMask).none()) 1017 continue; 1018 updateRange(S, Reg, S.LaneMask); 1019 } 1020 } 1021 updateRange(LI, Reg, LaneBitmask::getNone()); 1022 // If main range has a hole and we are moving a subrange use across 1023 // the hole updateRange() cannot properly handle it since it only 1024 // gets the LiveRange and not the whole LiveInterval. As a result 1025 // we may end up with a main range not covering all subranges. 1026 // This is extremely rare case, so let's check and reconstruct the 1027 // main range. 1028 for (LiveInterval::SubRange &S : LI.subranges()) { 1029 if (LI.covers(S)) 1030 continue; 1031 LI.clear(); 1032 LIS.constructMainRangeFromSubranges(LI); 1033 break; 1034 } 1035 1036 continue; 1037 } 1038 1039 // For physregs, only update the regunits that actually have a 1040 // precomputed live range. 1041 for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid(); 1042 ++Units) 1043 if (LiveRange *LR = getRegUnitLI(*Units)) 1044 updateRange(*LR, *Units, LaneBitmask::getNone()); 1045 } 1046 if (hasRegMask) 1047 updateRegMaskSlots(); 1048 } 1049 1050 private: 1051 /// Update a single live range, assuming an instruction has been moved from 1052 /// OldIdx to NewIdx. 1053 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1054 if (!Updated.insert(&LR).second) 1055 return; 1056 LLVM_DEBUG({ 1057 dbgs() << " "; 1058 if (Register::isVirtualRegister(Reg)) { 1059 dbgs() << printReg(Reg); 1060 if (LaneMask.any()) 1061 dbgs() << " L" << PrintLaneMask(LaneMask); 1062 } else { 1063 dbgs() << printRegUnit(Reg, &TRI); 1064 } 1065 dbgs() << ":\t" << LR << '\n'; 1066 }); 1067 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1068 handleMoveDown(LR); 1069 else 1070 handleMoveUp(LR, Reg, LaneMask); 1071 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); 1072 LR.verify(); 1073 } 1074 1075 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1076 /// to NewIdx (OldIdx < NewIdx). 1077 void handleMoveDown(LiveRange &LR) { 1078 LiveRange::iterator E = LR.end(); 1079 // Segment going into OldIdx. 1080 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1081 1082 // No value live before or after OldIdx? Nothing to do. 1083 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1084 return; 1085 1086 LiveRange::iterator OldIdxOut; 1087 // Do we have a value live-in to OldIdx? 1088 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1089 // If the live-in value already extends to NewIdx, there is nothing to do. 1090 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1091 return; 1092 // Aggressively remove all kill flags from the old kill point. 1093 // Kill flags shouldn't be used while live intervals exist, they will be 1094 // reinserted by VirtRegRewriter. 1095 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1096 for (MachineOperand &MOP : mi_bundle_ops(*KillMI)) 1097 if (MOP.isReg() && MOP.isUse()) 1098 MOP.setIsKill(false); 1099 1100 // Is there a def before NewIdx which is not OldIdx? 1101 LiveRange::iterator Next = std::next(OldIdxIn); 1102 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1103 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1104 // If we are here then OldIdx was just a use but not a def. We only have 1105 // to ensure liveness extends to NewIdx. 1106 LiveRange::iterator NewIdxIn = 1107 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1108 // Extend the segment before NewIdx if necessary. 1109 if (NewIdxIn == E || 1110 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1111 LiveRange::iterator Prev = std::prev(NewIdxIn); 1112 Prev->end = NewIdx.getRegSlot(); 1113 } 1114 // Extend OldIdxIn. 1115 OldIdxIn->end = Next->start; 1116 return; 1117 } 1118 1119 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1120 // invalid by overlapping ranges. 1121 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1122 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1123 // If this was not a kill, then there was no def and we're done. 1124 if (!isKill) 1125 return; 1126 1127 // Did we have a Def at OldIdx? 1128 OldIdxOut = Next; 1129 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1130 return; 1131 } else { 1132 OldIdxOut = OldIdxIn; 1133 } 1134 1135 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1136 // to the segment starting there. 1137 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1138 "No def?"); 1139 VNInfo *OldIdxVNI = OldIdxOut->valno; 1140 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1141 1142 // If the defined value extends beyond NewIdx, just move the beginning 1143 // of the segment to NewIdx. 1144 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1145 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1146 OldIdxVNI->def = NewIdxDef; 1147 OldIdxOut->start = OldIdxVNI->def; 1148 return; 1149 } 1150 1151 // If we are here then we have a Definition at OldIdx which ends before 1152 // NewIdx. 1153 1154 // Is there an existing Def at NewIdx? 1155 LiveRange::iterator AfterNewIdx 1156 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1157 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1158 if (!OldIdxDefIsDead && 1159 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1160 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1161 VNInfo *DefVNI; 1162 if (OldIdxOut != LR.begin() && 1163 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1164 OldIdxOut->start)) { 1165 // There is no gap between OldIdxOut and its predecessor anymore, 1166 // merge them. 1167 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1168 DefVNI = OldIdxVNI; 1169 IPrev->end = OldIdxOut->end; 1170 } else { 1171 // The value is live in to OldIdx 1172 LiveRange::iterator INext = std::next(OldIdxOut); 1173 assert(INext != E && "Must have following segment"); 1174 // We merge OldIdxOut and its successor. As we're dealing with subreg 1175 // reordering, there is always a successor to OldIdxOut in the same BB 1176 // We don't need INext->valno anymore and will reuse for the new segment 1177 // we create later. 1178 DefVNI = OldIdxVNI; 1179 INext->start = OldIdxOut->end; 1180 INext->valno->def = INext->start; 1181 } 1182 // If NewIdx is behind the last segment, extend that and append a new one. 1183 if (AfterNewIdx == E) { 1184 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1185 // one position. 1186 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1187 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1188 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1189 // The last segment is undefined now, reuse it for a dead def. 1190 LiveRange::iterator NewSegment = std::prev(E); 1191 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1192 DefVNI); 1193 DefVNI->def = NewIdxDef; 1194 1195 LiveRange::iterator Prev = std::prev(NewSegment); 1196 Prev->end = NewIdxDef; 1197 } else { 1198 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1199 // one position. 1200 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1201 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1202 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1203 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1204 // We have two cases: 1205 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1206 // Case 1: NewIdx is inside a liverange. Split this liverange at 1207 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1208 LiveRange::iterator NewSegment = AfterNewIdx; 1209 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1210 Prev->valno->def = NewIdxDef; 1211 1212 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1213 DefVNI->def = Prev->start; 1214 } else { 1215 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1216 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1217 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1218 DefVNI->def = NewIdxDef; 1219 assert(DefVNI != AfterNewIdx->valno); 1220 } 1221 } 1222 return; 1223 } 1224 1225 if (AfterNewIdx != E && 1226 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1227 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1228 // that value. 1229 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1230 LR.removeValNo(OldIdxVNI); 1231 } else { 1232 // There was no existing def at NewIdx. We need to create a dead def 1233 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1234 // a new segment at the place where we want to construct the dead def. 1235 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1236 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1237 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1238 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1239 // We can reuse OldIdxVNI now. 1240 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1241 VNInfo *NewSegmentVNI = OldIdxVNI; 1242 NewSegmentVNI->def = NewIdxDef; 1243 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1244 NewSegmentVNI); 1245 } 1246 } 1247 1248 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1249 /// to NewIdx (NewIdx < OldIdx). 1250 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1251 LiveRange::iterator E = LR.end(); 1252 // Segment going into OldIdx. 1253 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1254 1255 // No value live before or after OldIdx? Nothing to do. 1256 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1257 return; 1258 1259 LiveRange::iterator OldIdxOut; 1260 // Do we have a value live-in to OldIdx? 1261 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1262 // If the live-in value isn't killed here, then we have no Def at 1263 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1264 // to do. 1265 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1266 if (!isKill) 1267 return; 1268 1269 // At this point we have to move OldIdxIn->end back to the nearest 1270 // previous use or (dead-)def but no further than NewIdx. 1271 SlotIndex DefBeforeOldIdx 1272 = std::max(OldIdxIn->start.getDeadSlot(), 1273 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1274 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1275 1276 // Did we have a Def at OldIdx? If not we are done now. 1277 OldIdxOut = std::next(OldIdxIn); 1278 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1279 return; 1280 } else { 1281 OldIdxOut = OldIdxIn; 1282 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1283 } 1284 1285 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1286 // to the segment starting there. 1287 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1288 "No def?"); 1289 VNInfo *OldIdxVNI = OldIdxOut->valno; 1290 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1291 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1292 1293 // Is there an existing def at NewIdx? 1294 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1295 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1296 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1297 assert(NewIdxOut->valno != OldIdxVNI && 1298 "Same value defined more than once?"); 1299 // If OldIdx was a dead def remove it. 1300 if (!OldIdxDefIsDead) { 1301 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1302 // NewIdx so it can take its place. 1303 OldIdxVNI->def = NewIdxDef; 1304 OldIdxOut->start = NewIdxDef; 1305 LR.removeValNo(NewIdxOut->valno); 1306 } else { 1307 // Simply remove the dead def at OldIdx. 1308 LR.removeValNo(OldIdxVNI); 1309 } 1310 } else { 1311 // Previously nothing was live after NewIdx, so all we have to do now is 1312 // move the begin of OldIdxOut to NewIdx. 1313 if (!OldIdxDefIsDead) { 1314 // Do we have any intermediate Defs between OldIdx and NewIdx? 1315 if (OldIdxIn != E && 1316 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1317 // OldIdx is not a dead def and NewIdx is before predecessor start. 1318 LiveRange::iterator NewIdxIn = NewIdxOut; 1319 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1320 const SlotIndex SplitPos = NewIdxDef; 1321 OldIdxVNI = OldIdxIn->valno; 1322 1323 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end; 1324 LiveRange::iterator Prev = std::prev(OldIdxIn); 1325 if (OldIdxIn != LR.begin() && 1326 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) { 1327 // If the segment before OldIdx read a value defined earlier than 1328 // NewIdx, the moved instruction also reads and forwards that 1329 // value. Extend the lifetime of the new def point. 1330 1331 // Extend to where the previous range started, unless there is 1332 // another redef first. 1333 NewDefEndPoint = std::min(OldIdxIn->start, 1334 std::next(NewIdxOut)->start); 1335 } 1336 1337 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1338 OldIdxOut->valno->def = OldIdxIn->start; 1339 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1340 OldIdxOut->valno); 1341 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1342 // We Slide [NewIdxIn, OldIdxIn) down one position. 1343 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1344 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1345 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1346 // NewIdxIn is now considered undef so we can reuse it for the moved 1347 // value. 1348 LiveRange::iterator NewSegment = NewIdxIn; 1349 LiveRange::iterator Next = std::next(NewSegment); 1350 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1351 // There is no gap between NewSegment and its predecessor. 1352 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1353 Next->valno); 1354 1355 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); 1356 Next->valno->def = SplitPos; 1357 } else { 1358 // There is a gap between NewSegment and its predecessor 1359 // Value becomes live in. 1360 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1361 NewSegment->valno->def = SplitPos; 1362 } 1363 } else { 1364 // Leave the end point of a live def. 1365 OldIdxOut->start = NewIdxDef; 1366 OldIdxVNI->def = NewIdxDef; 1367 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1368 OldIdxIn->end = NewIdxDef; 1369 } 1370 } else if (OldIdxIn != E 1371 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) 1372 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { 1373 // OldIdxVNI is a dead def that has been moved into the middle of 1374 // another value in LR. That can happen when LR is a whole register, 1375 // but the dead def is a write to a subreg that is dead at NewIdx. 1376 // The dead def may have been moved across other values 1377 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1378 // down one position. 1379 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1380 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1381 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1382 // Modify the segment at NewIdxOut and the following segment to meet at 1383 // the point of the dead def, with the following segment getting 1384 // OldIdxVNI as its value number. 1385 *NewIdxOut = LiveRange::Segment( 1386 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); 1387 *(NewIdxOut + 1) = LiveRange::Segment( 1388 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); 1389 OldIdxVNI->def = NewIdxDef; 1390 // Modify subsequent segments to be defined by the moved def OldIdxVNI. 1391 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) 1392 Idx->valno = OldIdxVNI; 1393 // Aggressively remove all dead flags from the former dead definition. 1394 // Kill/dead flags shouldn't be used while live intervals exist; they 1395 // will be reinserted by VirtRegRewriter. 1396 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) 1397 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1398 if (MO->isReg() && !MO->isUse()) 1399 MO->setIsDead(false); 1400 } else { 1401 // OldIdxVNI is a dead def. It may have been moved across other values 1402 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1403 // down one position. 1404 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1405 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1406 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1407 // OldIdxVNI can be reused now to build a new dead def segment. 1408 LiveRange::iterator NewSegment = NewIdxOut; 1409 VNInfo *NewSegmentVNI = OldIdxVNI; 1410 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1411 NewSegmentVNI); 1412 NewSegmentVNI->def = NewIdxDef; 1413 } 1414 } 1415 } 1416 1417 void updateRegMaskSlots() { 1418 SmallVectorImpl<SlotIndex>::iterator RI = 1419 llvm::lower_bound(LIS.RegMaskSlots, OldIdx); 1420 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1421 "No RegMask at OldIdx."); 1422 *RI = NewIdx.getRegSlot(); 1423 assert((RI == LIS.RegMaskSlots.begin() || 1424 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1425 "Cannot move regmask instruction above another call"); 1426 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1427 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1428 "Cannot move regmask instruction below another call"); 1429 } 1430 1431 // Return the last use of reg between NewIdx and OldIdx. 1432 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg, 1433 LaneBitmask LaneMask) { 1434 if (Register::isVirtualRegister(Reg)) { 1435 SlotIndex LastUse = Before; 1436 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1437 if (MO.isUndef()) 1438 continue; 1439 unsigned SubReg = MO.getSubReg(); 1440 if (SubReg != 0 && LaneMask.any() 1441 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1442 continue; 1443 1444 const MachineInstr &MI = *MO.getParent(); 1445 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1446 if (InstSlot > LastUse && InstSlot < OldIdx) 1447 LastUse = InstSlot.getRegSlot(); 1448 } 1449 return LastUse; 1450 } 1451 1452 // This is a regunit interval, so scanning the use list could be very 1453 // expensive. Scan upwards from OldIdx instead. 1454 assert(Before < OldIdx && "Expected upwards move"); 1455 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1456 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1457 1458 // OldIdx may not correspond to an instruction any longer, so set MII to 1459 // point to the next instruction after OldIdx, or MBB->end(). 1460 MachineBasicBlock::iterator MII = MBB->end(); 1461 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1462 Indexes->getNextNonNullIndex(OldIdx))) 1463 if (MI->getParent() == MBB) 1464 MII = MI; 1465 1466 MachineBasicBlock::iterator Begin = MBB->begin(); 1467 while (MII != Begin) { 1468 if ((--MII)->isDebugInstr()) 1469 continue; 1470 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1471 1472 // Stop searching when Before is reached. 1473 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1474 return Before; 1475 1476 // Check if MII uses Reg. 1477 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1478 if (MO->isReg() && !MO->isUndef() && 1479 Register::isPhysicalRegister(MO->getReg()) && 1480 TRI.hasRegUnit(MO->getReg(), Reg)) 1481 return Idx.getRegSlot(); 1482 } 1483 // Didn't reach Before. It must be the first instruction in the block. 1484 return Before; 1485 } 1486 }; 1487 1488 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1489 // It is fine to move a bundle as a whole, but not an individual instruction 1490 // inside it. 1491 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && 1492 "Cannot move instruction in bundle"); 1493 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1494 Indexes->removeMachineInstrFromMaps(MI); 1495 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1496 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1497 OldIndex < getMBBEndIdx(MI.getParent()) && 1498 "Cannot handle moves across basic block boundaries."); 1499 1500 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1501 HME.updateAllRanges(&MI); 1502 } 1503 1504 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, 1505 bool UpdateFlags) { 1506 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && 1507 "Bundle start is not a bundle"); 1508 SmallVector<SlotIndex, 16> ToProcess; 1509 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart); 1510 auto BundleEnd = getBundleEnd(BundleStart.getIterator()); 1511 1512 auto I = BundleStart.getIterator(); 1513 I++; 1514 while (I != BundleEnd) { 1515 if (!Indexes->hasIndex(*I)) 1516 continue; 1517 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true); 1518 ToProcess.push_back(OldIndex); 1519 Indexes->removeMachineInstrFromMaps(*I, true); 1520 I++; 1521 } 1522 for (SlotIndex OldIndex : ToProcess) { 1523 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1524 HME.updateAllRanges(&BundleStart); 1525 } 1526 1527 // Fix up dead defs 1528 const SlotIndex Index = getInstructionIndex(BundleStart); 1529 for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) { 1530 MachineOperand &MO = BundleStart.getOperand(Idx); 1531 if (!MO.isReg()) 1532 continue; 1533 Register Reg = MO.getReg(); 1534 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { 1535 LiveInterval &LI = getInterval(Reg); 1536 LiveQueryResult LRQ = LI.Query(Index); 1537 if (LRQ.isDeadDef()) 1538 MO.setIsDead(); 1539 } 1540 } 1541 } 1542 1543 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1544 const MachineBasicBlock::iterator End, 1545 const SlotIndex EndIdx, LiveRange &LR, 1546 const Register Reg, 1547 LaneBitmask LaneMask) { 1548 LiveInterval::iterator LII = LR.find(EndIdx); 1549 SlotIndex lastUseIdx; 1550 if (LII == LR.begin()) { 1551 // This happens when the function is called for a subregister that only 1552 // occurs _after_ the range that is to be repaired. 1553 return; 1554 } 1555 if (LII != LR.end() && LII->start < EndIdx) 1556 lastUseIdx = LII->end; 1557 else 1558 --LII; 1559 1560 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1561 --I; 1562 MachineInstr &MI = *I; 1563 if (MI.isDebugInstr()) 1564 continue; 1565 1566 SlotIndex instrIdx = getInstructionIndex(MI); 1567 bool isStartValid = getInstructionFromIndex(LII->start); 1568 bool isEndValid = getInstructionFromIndex(LII->end); 1569 1570 // FIXME: This doesn't currently handle early-clobber or multiple removed 1571 // defs inside of the region to repair. 1572 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 1573 OE = MI.operands_end(); 1574 OI != OE; ++OI) { 1575 const MachineOperand &MO = *OI; 1576 if (!MO.isReg() || MO.getReg() != Reg) 1577 continue; 1578 1579 unsigned SubReg = MO.getSubReg(); 1580 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1581 if ((Mask & LaneMask).none()) 1582 continue; 1583 1584 if (MO.isDef()) { 1585 if (!isStartValid) { 1586 if (LII->end.isDead()) { 1587 SlotIndex prevStart; 1588 if (LII != LR.begin()) 1589 prevStart = std::prev(LII)->start; 1590 1591 // FIXME: This could be more efficient if there was a 1592 // removeSegment method that returned an iterator. 1593 LR.removeSegment(*LII, true); 1594 if (prevStart.isValid()) 1595 LII = LR.find(prevStart); 1596 else 1597 LII = LR.begin(); 1598 } else { 1599 LII->start = instrIdx.getRegSlot(); 1600 LII->valno->def = instrIdx.getRegSlot(); 1601 if (MO.getSubReg() && !MO.isUndef()) 1602 lastUseIdx = instrIdx.getRegSlot(); 1603 else 1604 lastUseIdx = SlotIndex(); 1605 continue; 1606 } 1607 } 1608 1609 if (!lastUseIdx.isValid()) { 1610 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1611 LiveRange::Segment S(instrIdx.getRegSlot(), 1612 instrIdx.getDeadSlot(), VNI); 1613 LII = LR.addSegment(S); 1614 } else if (LII->start != instrIdx.getRegSlot()) { 1615 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1616 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1617 LII = LR.addSegment(S); 1618 } 1619 1620 if (MO.getSubReg() && !MO.isUndef()) 1621 lastUseIdx = instrIdx.getRegSlot(); 1622 else 1623 lastUseIdx = SlotIndex(); 1624 } else if (MO.isUse()) { 1625 // FIXME: This should probably be handled outside of this branch, 1626 // either as part of the def case (for defs inside of the region) or 1627 // after the loop over the region. 1628 if (!isEndValid && !LII->end.isBlock()) 1629 LII->end = instrIdx.getRegSlot(); 1630 if (!lastUseIdx.isValid()) 1631 lastUseIdx = instrIdx.getRegSlot(); 1632 } 1633 } 1634 } 1635 } 1636 1637 void 1638 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1639 MachineBasicBlock::iterator Begin, 1640 MachineBasicBlock::iterator End, 1641 ArrayRef<Register> OrigRegs) { 1642 // Find anchor points, which are at the beginning/end of blocks or at 1643 // instructions that already have indexes. 1644 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) 1645 --Begin; 1646 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1647 ++End; 1648 1649 SlotIndex EndIdx; 1650 if (End == MBB->end()) 1651 EndIdx = getMBBEndIdx(MBB).getPrevSlot(); 1652 else 1653 EndIdx = getInstructionIndex(*End); 1654 1655 Indexes->repairIndexesInRange(MBB, Begin, End); 1656 1657 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1658 --I; 1659 MachineInstr &MI = *I; 1660 if (MI.isDebugInstr()) 1661 continue; 1662 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1663 MOE = MI.operands_end(); 1664 MOI != MOE; ++MOI) { 1665 if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) && 1666 !hasInterval(MOI->getReg())) { 1667 createAndComputeVirtRegInterval(MOI->getReg()); 1668 } 1669 } 1670 } 1671 1672 for (Register Reg : OrigRegs) { 1673 if (!Reg.isVirtual()) 1674 continue; 1675 1676 LiveInterval &LI = getInterval(Reg); 1677 // FIXME: Should we support undefs that gain defs? 1678 if (!LI.hasAtLeastOneValue()) 1679 continue; 1680 1681 for (LiveInterval::SubRange &S : LI.subranges()) 1682 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask); 1683 1684 repairOldRegInRange(Begin, End, EndIdx, LI, Reg); 1685 } 1686 } 1687 1688 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { 1689 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { 1690 if (LiveRange *LR = getCachedRegUnit(*Unit)) 1691 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1692 LR->removeValNo(VNI); 1693 } 1694 } 1695 1696 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1697 // LI may not have the main range computed yet, but its subranges may 1698 // be present. 1699 VNInfo *VNI = LI.getVNInfoAt(Pos); 1700 if (VNI != nullptr) { 1701 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1702 LI.removeValNo(VNI); 1703 } 1704 1705 // Also remove the value defined in subranges. 1706 for (LiveInterval::SubRange &S : LI.subranges()) { 1707 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1708 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1709 S.removeValNo(SVNI); 1710 } 1711 LI.removeEmptySubRanges(); 1712 } 1713 1714 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1715 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1716 ConnectedVNInfoEqClasses ConEQ(*this); 1717 unsigned NumComp = ConEQ.Classify(LI); 1718 if (NumComp <= 1) 1719 return; 1720 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1721 Register Reg = LI.reg(); 1722 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); 1723 for (unsigned I = 1; I < NumComp; ++I) { 1724 Register NewVReg = MRI->createVirtualRegister(RegClass); 1725 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1726 SplitLIs.push_back(&NewLI); 1727 } 1728 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1729 } 1730 1731 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1732 assert(LICalc && "LICalc not initialized."); 1733 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1734 LICalc->constructMainRangeFromSubranges(LI); 1735 } 1736