xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp (revision 643ac419fafba89f5adda0e0ea75b538727453fb)
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervalCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/MC/LaneBitmask.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/CodeGen/StackMaps.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <tuple>
57 #include <utility>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "regalloc"
62 
63 char LiveIntervals::ID = 0;
64 char &llvm::LiveIntervalsID = LiveIntervals::ID;
65 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
66                 "Live Interval Analysis", false, false)
67 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
69 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
70 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
71                 "Live Interval Analysis", false, false)
72 
73 #ifndef NDEBUG
74 static cl::opt<bool> EnablePrecomputePhysRegs(
75   "precompute-phys-liveness", cl::Hidden,
76   cl::desc("Eagerly compute live intervals for all physreg units."));
77 #else
78 static bool EnablePrecomputePhysRegs = false;
79 #endif // NDEBUG
80 
81 namespace llvm {
82 
83 cl::opt<bool> UseSegmentSetForPhysRegs(
84     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
85     cl::desc(
86         "Use segment set for the computation of the live ranges of physregs."));
87 
88 } // end namespace llvm
89 
90 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
91   AU.setPreservesCFG();
92   AU.addRequired<AAResultsWrapperPass>();
93   AU.addPreserved<AAResultsWrapperPass>();
94   AU.addPreserved<LiveVariables>();
95   AU.addPreservedID(MachineLoopInfoID);
96   AU.addRequiredTransitiveID(MachineDominatorsID);
97   AU.addPreservedID(MachineDominatorsID);
98   AU.addPreserved<SlotIndexes>();
99   AU.addRequiredTransitive<SlotIndexes>();
100   MachineFunctionPass::getAnalysisUsage(AU);
101 }
102 
103 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
104   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
105 }
106 
107 LiveIntervals::~LiveIntervals() { delete LICalc; }
108 
109 void LiveIntervals::releaseMemory() {
110   // Free the live intervals themselves.
111   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
112     delete VirtRegIntervals[Register::index2VirtReg(i)];
113   VirtRegIntervals.clear();
114   RegMaskSlots.clear();
115   RegMaskBits.clear();
116   RegMaskBlocks.clear();
117 
118   for (LiveRange *LR : RegUnitRanges)
119     delete LR;
120   RegUnitRanges.clear();
121 
122   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
123   VNInfoAllocator.Reset();
124 }
125 
126 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
127   MF = &fn;
128   MRI = &MF->getRegInfo();
129   TRI = MF->getSubtarget().getRegisterInfo();
130   TII = MF->getSubtarget().getInstrInfo();
131   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
132   Indexes = &getAnalysis<SlotIndexes>();
133   DomTree = &getAnalysis<MachineDominatorTree>();
134 
135   if (!LICalc)
136     LICalc = new LiveIntervalCalc();
137 
138   // Allocate space for all virtual registers.
139   VirtRegIntervals.resize(MRI->getNumVirtRegs());
140 
141   computeVirtRegs();
142   computeRegMasks();
143   computeLiveInRegUnits();
144 
145   if (EnablePrecomputePhysRegs) {
146     // For stress testing, precompute live ranges of all physical register
147     // units, including reserved registers.
148     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
149       getRegUnit(i);
150   }
151   LLVM_DEBUG(dump());
152   return true;
153 }
154 
155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
156   OS << "********** INTERVALS **********\n";
157 
158   // Dump the regunits.
159   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
160     if (LiveRange *LR = RegUnitRanges[Unit])
161       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
162 
163   // Dump the virtregs.
164   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
165     Register Reg = Register::index2VirtReg(i);
166     if (hasInterval(Reg))
167       OS << getInterval(Reg) << '\n';
168   }
169 
170   OS << "RegMasks:";
171   for (SlotIndex Idx : RegMaskSlots)
172     OS << ' ' << Idx;
173   OS << '\n';
174 
175   printInstrs(OS);
176 }
177 
178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
179   OS << "********** MACHINEINSTRS **********\n";
180   MF->print(OS, Indexes);
181 }
182 
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
184 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
185   printInstrs(dbgs());
186 }
187 #endif
188 
189 LiveInterval *LiveIntervals::createInterval(Register reg) {
190   float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
191   return new LiveInterval(reg, Weight);
192 }
193 
194 /// Compute the live interval of a virtual register, based on defs and uses.
195 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
196   assert(LICalc && "LICalc not initialized.");
197   assert(LI.empty() && "Should only compute empty intervals.");
198   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
199   LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
200   return computeDeadValues(LI, nullptr);
201 }
202 
203 void LiveIntervals::computeVirtRegs() {
204   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
205     Register Reg = Register::index2VirtReg(i);
206     if (MRI->reg_nodbg_empty(Reg))
207       continue;
208     LiveInterval &LI = createEmptyInterval(Reg);
209     bool NeedSplit = computeVirtRegInterval(LI);
210     if (NeedSplit) {
211       SmallVector<LiveInterval*, 8> SplitLIs;
212       splitSeparateComponents(LI, SplitLIs);
213     }
214   }
215 }
216 
217 void LiveIntervals::computeRegMasks() {
218   RegMaskBlocks.resize(MF->getNumBlockIDs());
219 
220   // Find all instructions with regmask operands.
221   for (const MachineBasicBlock &MBB : *MF) {
222     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
223     RMB.first = RegMaskSlots.size();
224 
225     // Some block starts, such as EH funclets, create masks.
226     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
227       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
228       RegMaskBits.push_back(Mask);
229     }
230 
231     // Unwinders may clobber additional registers.
232     // FIXME: This functionality can possibly be merged into
233     // MachineBasicBlock::getBeginClobberMask().
234     if (MBB.isEHPad())
235       if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
236         RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
237         RegMaskBits.push_back(Mask);
238       }
239 
240     for (const MachineInstr &MI : MBB) {
241       for (const MachineOperand &MO : MI.operands()) {
242         if (!MO.isRegMask())
243           continue;
244         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
245         RegMaskBits.push_back(MO.getRegMask());
246       }
247     }
248 
249     // Some block ends, such as funclet returns, create masks. Put the mask on
250     // the last instruction of the block, because MBB slot index intervals are
251     // half-open.
252     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
253       assert(!MBB.empty() && "empty return block?");
254       RegMaskSlots.push_back(
255           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
256       RegMaskBits.push_back(Mask);
257     }
258 
259     // Compute the number of register mask instructions in this block.
260     RMB.second = RegMaskSlots.size() - RMB.first;
261   }
262 }
263 
264 //===----------------------------------------------------------------------===//
265 //                           Register Unit Liveness
266 //===----------------------------------------------------------------------===//
267 //
268 // Fixed interference typically comes from ABI boundaries: Function arguments
269 // and return values are passed in fixed registers, and so are exception
270 // pointers entering landing pads. Certain instructions require values to be
271 // present in specific registers. That is also represented through fixed
272 // interference.
273 //
274 
275 /// Compute the live range of a register unit, based on the uses and defs of
276 /// aliasing registers.  The range should be empty, or contain only dead
277 /// phi-defs from ABI blocks.
278 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
279   assert(LICalc && "LICalc not initialized.");
280   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
281 
282   // The physregs aliasing Unit are the roots and their super-registers.
283   // Create all values as dead defs before extending to uses. Note that roots
284   // may share super-registers. That's OK because createDeadDefs() is
285   // idempotent. It is very rare for a register unit to have multiple roots, so
286   // uniquing super-registers is probably not worthwhile.
287   bool IsReserved = false;
288   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
289     bool IsRootReserved = true;
290     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
291          Super.isValid(); ++Super) {
292       MCRegister Reg = *Super;
293       if (!MRI->reg_empty(Reg))
294         LICalc->createDeadDefs(LR, Reg);
295       // A register unit is considered reserved if all its roots and all their
296       // super registers are reserved.
297       if (!MRI->isReserved(Reg))
298         IsRootReserved = false;
299     }
300     IsReserved |= IsRootReserved;
301   }
302   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
303          "reserved computation mismatch");
304 
305   // Now extend LR to reach all uses.
306   // Ignore uses of reserved registers. We only track defs of those.
307   if (!IsReserved) {
308     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
309       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
310            Super.isValid(); ++Super) {
311         MCRegister Reg = *Super;
312         if (!MRI->reg_empty(Reg))
313           LICalc->extendToUses(LR, Reg);
314       }
315     }
316   }
317 
318   // Flush the segment set to the segment vector.
319   if (UseSegmentSetForPhysRegs)
320     LR.flushSegmentSet();
321 }
322 
323 /// Precompute the live ranges of any register units that are live-in to an ABI
324 /// block somewhere. Register values can appear without a corresponding def when
325 /// entering the entry block or a landing pad.
326 void LiveIntervals::computeLiveInRegUnits() {
327   RegUnitRanges.resize(TRI->getNumRegUnits());
328   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
329 
330   // Keep track of the live range sets allocated.
331   SmallVector<unsigned, 8> NewRanges;
332 
333   // Check all basic blocks for live-ins.
334   for (const MachineBasicBlock &MBB : *MF) {
335     // We only care about ABI blocks: Entry + landing pads.
336     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
337       continue;
338 
339     // Create phi-defs at Begin for all live-in registers.
340     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
341     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
342     for (const auto &LI : MBB.liveins()) {
343       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
344         unsigned Unit = *Units;
345         LiveRange *LR = RegUnitRanges[Unit];
346         if (!LR) {
347           // Use segment set to speed-up initial computation of the live range.
348           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
349           NewRanges.push_back(Unit);
350         }
351         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
352         (void)VNI;
353         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
354       }
355     }
356     LLVM_DEBUG(dbgs() << '\n');
357   }
358   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
359 
360   // Compute the 'normal' part of the ranges.
361   for (unsigned Unit : NewRanges)
362     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
363 }
364 
365 static void createSegmentsForValues(LiveRange &LR,
366     iterator_range<LiveInterval::vni_iterator> VNIs) {
367   for (VNInfo *VNI : VNIs) {
368     if (VNI->isUnused())
369       continue;
370     SlotIndex Def = VNI->def;
371     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
372   }
373 }
374 
375 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
376                                          ShrinkToUsesWorkList &WorkList,
377                                          Register Reg, LaneBitmask LaneMask) {
378   // Keep track of the PHIs that are in use.
379   SmallPtrSet<VNInfo*, 8> UsedPHIs;
380   // Blocks that have already been added to WorkList as live-out.
381   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
382 
383   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
384         -> const LiveRange& {
385     if (M.none())
386       return I;
387     for (const LiveInterval::SubRange &SR : I.subranges()) {
388       if ((SR.LaneMask & M).any()) {
389         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
390         return SR;
391       }
392     }
393     llvm_unreachable("Subrange for mask not found");
394   };
395 
396   const LiveInterval &LI = getInterval(Reg);
397   const LiveRange &OldRange = getSubRange(LI, LaneMask);
398 
399   // Extend intervals to reach all uses in WorkList.
400   while (!WorkList.empty()) {
401     SlotIndex Idx = WorkList.back().first;
402     VNInfo *VNI = WorkList.back().second;
403     WorkList.pop_back();
404     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
405     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
406 
407     // Extend the live range for VNI to be live at Idx.
408     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
409       assert(ExtVNI == VNI && "Unexpected existing value number");
410       (void)ExtVNI;
411       // Is this a PHIDef we haven't seen before?
412       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
413           !UsedPHIs.insert(VNI).second)
414         continue;
415       // The PHI is live, make sure the predecessors are live-out.
416       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
417         if (!LiveOut.insert(Pred).second)
418           continue;
419         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
420         // A predecessor is not required to have a live-out value for a PHI.
421         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
422           WorkList.push_back(std::make_pair(Stop, PVNI));
423       }
424       continue;
425     }
426 
427     // VNI is live-in to MBB.
428     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
429     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
430 
431     // Make sure VNI is live-out from the predecessors.
432     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
433       if (!LiveOut.insert(Pred).second)
434         continue;
435       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
436       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
437         assert(OldVNI == VNI && "Wrong value out of predecessor");
438         (void)OldVNI;
439         WorkList.push_back(std::make_pair(Stop, VNI));
440       } else {
441 #ifndef NDEBUG
442         // There was no old VNI. Verify that Stop is jointly dominated
443         // by <undef>s for this live range.
444         assert(LaneMask.any() &&
445                "Missing value out of predecessor for main range");
446         SmallVector<SlotIndex,8> Undefs;
447         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
448         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
449                "Missing value out of predecessor for subrange");
450 #endif
451       }
452     }
453   }
454 }
455 
456 bool LiveIntervals::shrinkToUses(LiveInterval *li,
457                                  SmallVectorImpl<MachineInstr*> *dead) {
458   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
459   assert(Register::isVirtualRegister(li->reg()) &&
460          "Can only shrink virtual registers");
461 
462   // Shrink subregister live ranges.
463   bool NeedsCleanup = false;
464   for (LiveInterval::SubRange &S : li->subranges()) {
465     shrinkToUses(S, li->reg());
466     if (S.empty())
467       NeedsCleanup = true;
468   }
469   if (NeedsCleanup)
470     li->removeEmptySubRanges();
471 
472   // Find all the values used, including PHI kills.
473   ShrinkToUsesWorkList WorkList;
474 
475   // Visit all instructions reading li->reg().
476   Register Reg = li->reg();
477   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
478     if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
479       continue;
480     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
481     LiveQueryResult LRQ = li->Query(Idx);
482     VNInfo *VNI = LRQ.valueIn();
483     if (!VNI) {
484       // This shouldn't happen: readsVirtualRegister returns true, but there is
485       // no live value. It is likely caused by a target getting <undef> flags
486       // wrong.
487       LLVM_DEBUG(
488           dbgs() << Idx << '\t' << UseMI
489                  << "Warning: Instr claims to read non-existent value in "
490                  << *li << '\n');
491       continue;
492     }
493     // Special case: An early-clobber tied operand reads and writes the
494     // register one slot early.
495     if (VNInfo *DefVNI = LRQ.valueDefined())
496       Idx = DefVNI->def;
497 
498     WorkList.push_back(std::make_pair(Idx, VNI));
499   }
500 
501   // Create new live ranges with only minimal live segments per def.
502   LiveRange NewLR;
503   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
504   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
505 
506   // Move the trimmed segments back.
507   li->segments.swap(NewLR.segments);
508 
509   // Handle dead values.
510   bool CanSeparate = computeDeadValues(*li, dead);
511   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
512   return CanSeparate;
513 }
514 
515 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
516                                       SmallVectorImpl<MachineInstr*> *dead) {
517   bool MayHaveSplitComponents = false;
518   bool HaveDeadDef = false;
519 
520   for (VNInfo *VNI : LI.valnos) {
521     if (VNI->isUnused())
522       continue;
523     SlotIndex Def = VNI->def;
524     LiveRange::iterator I = LI.FindSegmentContaining(Def);
525     assert(I != LI.end() && "Missing segment for VNI");
526 
527     // Is the register live before? Otherwise we may have to add a read-undef
528     // flag for subregister defs.
529     Register VReg = LI.reg();
530     if (MRI->shouldTrackSubRegLiveness(VReg)) {
531       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
532         MachineInstr *MI = getInstructionFromIndex(Def);
533         MI->setRegisterDefReadUndef(VReg);
534       }
535     }
536 
537     if (I->end != Def.getDeadSlot())
538       continue;
539     if (VNI->isPHIDef()) {
540       // This is a dead PHI. Remove it.
541       VNI->markUnused();
542       LI.removeSegment(I);
543       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
544       MayHaveSplitComponents = true;
545     } else {
546       // This is a dead def. Make sure the instruction knows.
547       MachineInstr *MI = getInstructionFromIndex(Def);
548       assert(MI && "No instruction defining live value");
549       MI->addRegisterDead(LI.reg(), TRI);
550       if (HaveDeadDef)
551         MayHaveSplitComponents = true;
552       HaveDeadDef = true;
553 
554       if (dead && MI->allDefsAreDead()) {
555         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
556         dead->push_back(MI);
557       }
558     }
559   }
560   return MayHaveSplitComponents;
561 }
562 
563 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
564   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
565   assert(Register::isVirtualRegister(Reg) &&
566          "Can only shrink virtual registers");
567   // Find all the values used, including PHI kills.
568   ShrinkToUsesWorkList WorkList;
569 
570   // Visit all instructions reading Reg.
571   SlotIndex LastIdx;
572   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
573     // Skip "undef" uses.
574     if (!MO.readsReg())
575       continue;
576     // Maybe the operand is for a subregister we don't care about.
577     unsigned SubReg = MO.getSubReg();
578     if (SubReg != 0) {
579       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
580       if ((LaneMask & SR.LaneMask).none())
581         continue;
582     }
583     // We only need to visit each instruction once.
584     MachineInstr *UseMI = MO.getParent();
585     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
586     if (Idx == LastIdx)
587       continue;
588     LastIdx = Idx;
589 
590     LiveQueryResult LRQ = SR.Query(Idx);
591     VNInfo *VNI = LRQ.valueIn();
592     // For Subranges it is possible that only undef values are left in that
593     // part of the subregister, so there is no real liverange at the use
594     if (!VNI)
595       continue;
596 
597     // Special case: An early-clobber tied operand reads and writes the
598     // register one slot early.
599     if (VNInfo *DefVNI = LRQ.valueDefined())
600       Idx = DefVNI->def;
601 
602     WorkList.push_back(std::make_pair(Idx, VNI));
603   }
604 
605   // Create a new live ranges with only minimal live segments per def.
606   LiveRange NewLR;
607   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
608   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
609 
610   // Move the trimmed ranges back.
611   SR.segments.swap(NewLR.segments);
612 
613   // Remove dead PHI value numbers
614   for (VNInfo *VNI : SR.valnos) {
615     if (VNI->isUnused())
616       continue;
617     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
618     assert(Segment != nullptr && "Missing segment for VNI");
619     if (Segment->end != VNI->def.getDeadSlot())
620       continue;
621     if (VNI->isPHIDef()) {
622       // This is a dead PHI. Remove it.
623       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
624                         << " may separate interval\n");
625       VNI->markUnused();
626       SR.removeSegment(*Segment);
627     }
628   }
629 
630   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
631 }
632 
633 void LiveIntervals::extendToIndices(LiveRange &LR,
634                                     ArrayRef<SlotIndex> Indices,
635                                     ArrayRef<SlotIndex> Undefs) {
636   assert(LICalc && "LICalc not initialized.");
637   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
638   for (SlotIndex Idx : Indices)
639     LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
640 }
641 
642 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
643                                SmallVectorImpl<SlotIndex> *EndPoints) {
644   LiveQueryResult LRQ = LR.Query(Kill);
645   VNInfo *VNI = LRQ.valueOutOrDead();
646   if (!VNI)
647     return;
648 
649   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
650   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
651 
652   // If VNI isn't live out from KillMBB, the value is trivially pruned.
653   if (LRQ.endPoint() < MBBEnd) {
654     LR.removeSegment(Kill, LRQ.endPoint());
655     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
656     return;
657   }
658 
659   // VNI is live out of KillMBB.
660   LR.removeSegment(Kill, MBBEnd);
661   if (EndPoints) EndPoints->push_back(MBBEnd);
662 
663   // Find all blocks that are reachable from KillMBB without leaving VNI's live
664   // range. It is possible that KillMBB itself is reachable, so start a DFS
665   // from each successor.
666   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
667   VisitedTy Visited;
668   for (MachineBasicBlock *Succ : KillMBB->successors()) {
669     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
670          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
671          I != E;) {
672       MachineBasicBlock *MBB = *I;
673 
674       // Check if VNI is live in to MBB.
675       SlotIndex MBBStart, MBBEnd;
676       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
677       LiveQueryResult LRQ = LR.Query(MBBStart);
678       if (LRQ.valueIn() != VNI) {
679         // This block isn't part of the VNI segment. Prune the search.
680         I.skipChildren();
681         continue;
682       }
683 
684       // Prune the search if VNI is killed in MBB.
685       if (LRQ.endPoint() < MBBEnd) {
686         LR.removeSegment(MBBStart, LRQ.endPoint());
687         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
688         I.skipChildren();
689         continue;
690       }
691 
692       // VNI is live through MBB.
693       LR.removeSegment(MBBStart, MBBEnd);
694       if (EndPoints) EndPoints->push_back(MBBEnd);
695       ++I;
696     }
697   }
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // Register allocator hooks.
702 //
703 
704 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
705   // Keep track of regunit ranges.
706   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
707 
708   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
709     Register Reg = Register::index2VirtReg(i);
710     if (MRI->reg_nodbg_empty(Reg))
711       continue;
712     const LiveInterval &LI = getInterval(Reg);
713     if (LI.empty())
714       continue;
715 
716     // Target may have not allocated this yet.
717     Register PhysReg = VRM->getPhys(Reg);
718     if (!PhysReg)
719       continue;
720 
721     // Find the regunit intervals for the assigned register. They may overlap
722     // the virtual register live range, cancelling any kills.
723     RU.clear();
724     for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
725          ++Unit) {
726       const LiveRange &RURange = getRegUnit(*Unit);
727       if (RURange.empty())
728         continue;
729       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
730     }
731     // Every instruction that kills Reg corresponds to a segment range end
732     // point.
733     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
734          ++RI) {
735       // A block index indicates an MBB edge.
736       if (RI->end.isBlock())
737         continue;
738       MachineInstr *MI = getInstructionFromIndex(RI->end);
739       if (!MI)
740         continue;
741 
742       // Check if any of the regunits are live beyond the end of RI. That could
743       // happen when a physreg is defined as a copy of a virtreg:
744       //
745       //   %eax = COPY %5
746       //   FOO %5             <--- MI, cancel kill because %eax is live.
747       //   BAR killed %eax
748       //
749       // There should be no kill flag on FOO when %5 is rewritten as %eax.
750       for (auto &RUP : RU) {
751         const LiveRange &RURange = *RUP.first;
752         LiveRange::const_iterator &I = RUP.second;
753         if (I == RURange.end())
754           continue;
755         I = RURange.advanceTo(I, RI->end);
756         if (I == RURange.end() || I->start >= RI->end)
757           continue;
758         // I is overlapping RI.
759         goto CancelKill;
760       }
761 
762       if (MRI->subRegLivenessEnabled()) {
763         // When reading a partial undefined value we must not add a kill flag.
764         // The regalloc might have used the undef lane for something else.
765         // Example:
766         //     %1 = ...                  ; R32: %1
767         //     %2:high16 = ...           ; R64: %2
768         //        = read killed %2        ; R64: %2
769         //        = read %1              ; R32: %1
770         // The <kill> flag is correct for %2, but the register allocator may
771         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
772         // are actually never written by %2. After assignment the <kill>
773         // flag at the read instruction is invalid.
774         LaneBitmask DefinedLanesMask;
775         if (LI.hasSubRanges()) {
776           // Compute a mask of lanes that are defined.
777           DefinedLanesMask = LaneBitmask::getNone();
778           for (const LiveInterval::SubRange &SR : LI.subranges())
779             for (const LiveRange::Segment &Segment : SR.segments) {
780               if (Segment.start >= RI->end)
781                 break;
782               if (Segment.end == RI->end) {
783                 DefinedLanesMask |= SR.LaneMask;
784                 break;
785               }
786             }
787         } else
788           DefinedLanesMask = LaneBitmask::getAll();
789 
790         bool IsFullWrite = false;
791         for (const MachineOperand &MO : MI->operands()) {
792           if (!MO.isReg() || MO.getReg() != Reg)
793             continue;
794           if (MO.isUse()) {
795             // Reading any undefined lanes?
796             unsigned SubReg = MO.getSubReg();
797             LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
798                                          : MRI->getMaxLaneMaskForVReg(Reg);
799             if ((UseMask & ~DefinedLanesMask).any())
800               goto CancelKill;
801           } else if (MO.getSubReg() == 0) {
802             // Writing to the full register?
803             assert(MO.isDef());
804             IsFullWrite = true;
805           }
806         }
807 
808         // If an instruction writes to a subregister, a new segment starts in
809         // the LiveInterval. But as this is only overriding part of the register
810         // adding kill-flags is not correct here after registers have been
811         // assigned.
812         if (!IsFullWrite) {
813           // Next segment has to be adjacent in the subregister write case.
814           LiveRange::const_iterator N = std::next(RI);
815           if (N != LI.end() && N->start == RI->end)
816             goto CancelKill;
817         }
818       }
819 
820       MI->addRegisterKilled(Reg, nullptr);
821       continue;
822 CancelKill:
823       MI->clearRegisterKills(Reg, nullptr);
824     }
825   }
826 }
827 
828 MachineBasicBlock*
829 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
830   assert(!LI.empty() && "LiveInterval is empty.");
831 
832   // A local live range must be fully contained inside the block, meaning it is
833   // defined and killed at instructions, not at block boundaries. It is not
834   // live in or out of any block.
835   //
836   // It is technically possible to have a PHI-defined live range identical to a
837   // single block, but we are going to return false in that case.
838 
839   SlotIndex Start = LI.beginIndex();
840   if (Start.isBlock())
841     return nullptr;
842 
843   SlotIndex Stop = LI.endIndex();
844   if (Stop.isBlock())
845     return nullptr;
846 
847   // getMBBFromIndex doesn't need to search the MBB table when both indexes
848   // belong to proper instructions.
849   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
850   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
851   return MBB1 == MBB2 ? MBB1 : nullptr;
852 }
853 
854 bool
855 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
856   for (const VNInfo *PHI : LI.valnos) {
857     if (PHI->isUnused() || !PHI->isPHIDef())
858       continue;
859     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
860     // Conservatively return true instead of scanning huge predecessor lists.
861     if (PHIMBB->pred_size() > 100)
862       return true;
863     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
864       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
865         return true;
866   }
867   return false;
868 }
869 
870 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
871                                     const MachineBlockFrequencyInfo *MBFI,
872                                     const MachineInstr &MI) {
873   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
874 }
875 
876 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
877                                     const MachineBlockFrequencyInfo *MBFI,
878                                     const MachineBasicBlock *MBB) {
879   return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
880 }
881 
882 LiveRange::Segment
883 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
884   LiveInterval &Interval = createEmptyInterval(Reg);
885   VNInfo *VN = Interval.getNextValue(
886       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
887       getVNInfoAllocator());
888   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
889                        getMBBEndIdx(startInst.getParent()), VN);
890   Interval.addSegment(S);
891 
892   return S;
893 }
894 
895 //===----------------------------------------------------------------------===//
896 //                          Register mask functions
897 //===----------------------------------------------------------------------===//
898 /// Check whether use of reg in MI is live-through. Live-through means that
899 /// the value is alive on exit from Machine instruction. The example of such
900 /// use is a deopt value in statepoint instruction.
901 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
902   if (MI->getOpcode() != TargetOpcode::STATEPOINT)
903     return false;
904   StatepointOpers SO(MI);
905   if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
906     return false;
907   for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
908        ++Idx) {
909     const MachineOperand &MO = MI->getOperand(Idx);
910     if (MO.isReg() && MO.getReg() == Reg)
911       return true;
912   }
913   return false;
914 }
915 
916 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
917                                              BitVector &UsableRegs) {
918   if (LI.empty())
919     return false;
920   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
921 
922   // Use a smaller arrays for local live ranges.
923   ArrayRef<SlotIndex> Slots;
924   ArrayRef<const uint32_t*> Bits;
925   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
926     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
927     Bits = getRegMaskBitsInBlock(MBB->getNumber());
928   } else {
929     Slots = getRegMaskSlots();
930     Bits = getRegMaskBits();
931   }
932 
933   // We are going to enumerate all the register mask slots contained in LI.
934   // Start with a binary search of RegMaskSlots to find a starting point.
935   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
936   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
937 
938   // No slots in range, LI begins after the last call.
939   if (SlotI == SlotE)
940     return false;
941 
942   bool Found = false;
943   // Utility to union regmasks.
944   auto unionBitMask = [&](unsigned Idx) {
945       if (!Found) {
946         // This is the first overlap. Initialize UsableRegs to all ones.
947         UsableRegs.clear();
948         UsableRegs.resize(TRI->getNumRegs(), true);
949         Found = true;
950       }
951       // Remove usable registers clobbered by this mask.
952       UsableRegs.clearBitsNotInMask(Bits[Idx]);
953   };
954   while (true) {
955     assert(*SlotI >= LiveI->start);
956     // Loop over all slots overlapping this segment.
957     while (*SlotI < LiveI->end) {
958       // *SlotI overlaps LI. Collect mask bits.
959       unionBitMask(SlotI - Slots.begin());
960       if (++SlotI == SlotE)
961         return Found;
962     }
963     // If segment ends with live-through use we need to collect its regmask.
964     if (*SlotI == LiveI->end)
965       if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
966         if (hasLiveThroughUse(MI, LI.reg()))
967           unionBitMask(SlotI++ - Slots.begin());
968     // *SlotI is beyond the current LI segment.
969     // Special advance implementation to not miss next LiveI->end.
970     if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
971       return Found;
972     while (LiveI->end < *SlotI)
973       ++LiveI;
974     // Advance SlotI until it overlaps.
975     while (*SlotI < LiveI->start)
976       if (++SlotI == SlotE)
977         return Found;
978   }
979 }
980 
981 //===----------------------------------------------------------------------===//
982 //                         IntervalUpdate class.
983 //===----------------------------------------------------------------------===//
984 
985 /// Toolkit used by handleMove to trim or extend live intervals.
986 class LiveIntervals::HMEditor {
987 private:
988   LiveIntervals& LIS;
989   const MachineRegisterInfo& MRI;
990   const TargetRegisterInfo& TRI;
991   SlotIndex OldIdx;
992   SlotIndex NewIdx;
993   SmallPtrSet<LiveRange*, 8> Updated;
994   bool UpdateFlags;
995 
996 public:
997   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
998            const TargetRegisterInfo& TRI,
999            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
1000     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
1001       UpdateFlags(UpdateFlags) {}
1002 
1003   // FIXME: UpdateFlags is a workaround that creates live intervals for all
1004   // physregs, even those that aren't needed for regalloc, in order to update
1005   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
1006   // flags, and postRA passes will use a live register utility instead.
1007   LiveRange *getRegUnitLI(unsigned Unit) {
1008     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
1009       return &LIS.getRegUnit(Unit);
1010     return LIS.getCachedRegUnit(Unit);
1011   }
1012 
1013   /// Update all live ranges touched by MI, assuming a move from OldIdx to
1014   /// NewIdx.
1015   void updateAllRanges(MachineInstr *MI) {
1016     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1017                       << *MI);
1018     bool hasRegMask = false;
1019     for (MachineOperand &MO : MI->operands()) {
1020       if (MO.isRegMask())
1021         hasRegMask = true;
1022       if (!MO.isReg())
1023         continue;
1024       if (MO.isUse()) {
1025         if (!MO.readsReg())
1026           continue;
1027         // Aggressively clear all kill flags.
1028         // They are reinserted by VirtRegRewriter.
1029         MO.setIsKill(false);
1030       }
1031 
1032       Register Reg = MO.getReg();
1033       if (!Reg)
1034         continue;
1035       if (Register::isVirtualRegister(Reg)) {
1036         LiveInterval &LI = LIS.getInterval(Reg);
1037         if (LI.hasSubRanges()) {
1038           unsigned SubReg = MO.getSubReg();
1039           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1040                                         : MRI.getMaxLaneMaskForVReg(Reg);
1041           for (LiveInterval::SubRange &S : LI.subranges()) {
1042             if ((S.LaneMask & LaneMask).none())
1043               continue;
1044             updateRange(S, Reg, S.LaneMask);
1045           }
1046         }
1047         updateRange(LI, Reg, LaneBitmask::getNone());
1048         // If main range has a hole and we are moving a subrange use across
1049         // the hole updateRange() cannot properly handle it since it only
1050         // gets the LiveRange and not the whole LiveInterval. As a result
1051         // we may end up with a main range not covering all subranges.
1052         // This is extremely rare case, so let's check and reconstruct the
1053         // main range.
1054         for (LiveInterval::SubRange &S : LI.subranges()) {
1055           if (LI.covers(S))
1056             continue;
1057           LI.clear();
1058           LIS.constructMainRangeFromSubranges(LI);
1059           break;
1060         }
1061 
1062         continue;
1063       }
1064 
1065       // For physregs, only update the regunits that actually have a
1066       // precomputed live range.
1067       for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1068            ++Units)
1069         if (LiveRange *LR = getRegUnitLI(*Units))
1070           updateRange(*LR, *Units, LaneBitmask::getNone());
1071     }
1072     if (hasRegMask)
1073       updateRegMaskSlots();
1074   }
1075 
1076 private:
1077   /// Update a single live range, assuming an instruction has been moved from
1078   /// OldIdx to NewIdx.
1079   void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1080     if (!Updated.insert(&LR).second)
1081       return;
1082     LLVM_DEBUG({
1083       dbgs() << "     ";
1084       if (Register::isVirtualRegister(Reg)) {
1085         dbgs() << printReg(Reg);
1086         if (LaneMask.any())
1087           dbgs() << " L" << PrintLaneMask(LaneMask);
1088       } else {
1089         dbgs() << printRegUnit(Reg, &TRI);
1090       }
1091       dbgs() << ":\t" << LR << '\n';
1092     });
1093     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1094       handleMoveDown(LR);
1095     else
1096       handleMoveUp(LR, Reg, LaneMask);
1097     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1098     LR.verify();
1099   }
1100 
1101   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1102   /// to NewIdx (OldIdx < NewIdx).
1103   void handleMoveDown(LiveRange &LR) {
1104     LiveRange::iterator E = LR.end();
1105     // Segment going into OldIdx.
1106     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1107 
1108     // No value live before or after OldIdx? Nothing to do.
1109     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1110       return;
1111 
1112     LiveRange::iterator OldIdxOut;
1113     // Do we have a value live-in to OldIdx?
1114     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1115       // If the live-in value already extends to NewIdx, there is nothing to do.
1116       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1117         return;
1118       // Aggressively remove all kill flags from the old kill point.
1119       // Kill flags shouldn't be used while live intervals exist, they will be
1120       // reinserted by VirtRegRewriter.
1121       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1122         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1123           if (MOP.isReg() && MOP.isUse())
1124             MOP.setIsKill(false);
1125 
1126       // Is there a def before NewIdx which is not OldIdx?
1127       LiveRange::iterator Next = std::next(OldIdxIn);
1128       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1129           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1130         // If we are here then OldIdx was just a use but not a def. We only have
1131         // to ensure liveness extends to NewIdx.
1132         LiveRange::iterator NewIdxIn =
1133           LR.advanceTo(Next, NewIdx.getBaseIndex());
1134         // Extend the segment before NewIdx if necessary.
1135         if (NewIdxIn == E ||
1136             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1137           LiveRange::iterator Prev = std::prev(NewIdxIn);
1138           Prev->end = NewIdx.getRegSlot();
1139         }
1140         // Extend OldIdxIn.
1141         OldIdxIn->end = Next->start;
1142         return;
1143       }
1144 
1145       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1146       // invalid by overlapping ranges.
1147       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1148       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1149       // If this was not a kill, then there was no def and we're done.
1150       if (!isKill)
1151         return;
1152 
1153       // Did we have a Def at OldIdx?
1154       OldIdxOut = Next;
1155       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1156         return;
1157     } else {
1158       OldIdxOut = OldIdxIn;
1159     }
1160 
1161     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1162     // to the segment starting there.
1163     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1164            "No def?");
1165     VNInfo *OldIdxVNI = OldIdxOut->valno;
1166     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1167 
1168     // If the defined value extends beyond NewIdx, just move the beginning
1169     // of the segment to NewIdx.
1170     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1171     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1172       OldIdxVNI->def = NewIdxDef;
1173       OldIdxOut->start = OldIdxVNI->def;
1174       return;
1175     }
1176 
1177     // If we are here then we have a Definition at OldIdx which ends before
1178     // NewIdx.
1179 
1180     // Is there an existing Def at NewIdx?
1181     LiveRange::iterator AfterNewIdx
1182       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1183     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1184     if (!OldIdxDefIsDead &&
1185         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1186       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1187       VNInfo *DefVNI;
1188       if (OldIdxOut != LR.begin() &&
1189           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1190                                      OldIdxOut->start)) {
1191         // There is no gap between OldIdxOut and its predecessor anymore,
1192         // merge them.
1193         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1194         DefVNI = OldIdxVNI;
1195         IPrev->end = OldIdxOut->end;
1196       } else {
1197         // The value is live in to OldIdx
1198         LiveRange::iterator INext = std::next(OldIdxOut);
1199         assert(INext != E && "Must have following segment");
1200         // We merge OldIdxOut and its successor. As we're dealing with subreg
1201         // reordering, there is always a successor to OldIdxOut in the same BB
1202         // We don't need INext->valno anymore and will reuse for the new segment
1203         // we create later.
1204         DefVNI = OldIdxVNI;
1205         INext->start = OldIdxOut->end;
1206         INext->valno->def = INext->start;
1207       }
1208       // If NewIdx is behind the last segment, extend that and append a new one.
1209       if (AfterNewIdx == E) {
1210         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1211         // one position.
1212         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1213         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1214         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1215         // The last segment is undefined now, reuse it for a dead def.
1216         LiveRange::iterator NewSegment = std::prev(E);
1217         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1218                                          DefVNI);
1219         DefVNI->def = NewIdxDef;
1220 
1221         LiveRange::iterator Prev = std::prev(NewSegment);
1222         Prev->end = NewIdxDef;
1223       } else {
1224         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1225         // one position.
1226         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1227         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1228         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1229         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1230         // We have two cases:
1231         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1232           // Case 1: NewIdx is inside a liverange. Split this liverange at
1233           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1234           LiveRange::iterator NewSegment = AfterNewIdx;
1235           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1236           Prev->valno->def = NewIdxDef;
1237 
1238           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1239           DefVNI->def = Prev->start;
1240         } else {
1241           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1242           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1243           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1244           DefVNI->def = NewIdxDef;
1245           assert(DefVNI != AfterNewIdx->valno);
1246         }
1247       }
1248       return;
1249     }
1250 
1251     if (AfterNewIdx != E &&
1252         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1253       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1254       // that value.
1255       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1256       LR.removeValNo(OldIdxVNI);
1257     } else {
1258       // There was no existing def at NewIdx. We need to create a dead def
1259       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1260       // a new segment at the place where we want to construct the dead def.
1261       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1262       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1263       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1264       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1265       // We can reuse OldIdxVNI now.
1266       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1267       VNInfo *NewSegmentVNI = OldIdxVNI;
1268       NewSegmentVNI->def = NewIdxDef;
1269       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1270                                        NewSegmentVNI);
1271     }
1272   }
1273 
1274   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1275   /// to NewIdx (NewIdx < OldIdx).
1276   void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1277     LiveRange::iterator E = LR.end();
1278     // Segment going into OldIdx.
1279     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1280 
1281     // No value live before or after OldIdx? Nothing to do.
1282     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1283       return;
1284 
1285     LiveRange::iterator OldIdxOut;
1286     // Do we have a value live-in to OldIdx?
1287     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1288       // If the live-in value isn't killed here, then we have no Def at
1289       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1290       // to do.
1291       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1292       if (!isKill)
1293         return;
1294 
1295       // At this point we have to move OldIdxIn->end back to the nearest
1296       // previous use or (dead-)def but no further than NewIdx.
1297       SlotIndex DefBeforeOldIdx
1298         = std::max(OldIdxIn->start.getDeadSlot(),
1299                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1300       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1301 
1302       // Did we have a Def at OldIdx? If not we are done now.
1303       OldIdxOut = std::next(OldIdxIn);
1304       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1305         return;
1306     } else {
1307       OldIdxOut = OldIdxIn;
1308       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1309     }
1310 
1311     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1312     // to the segment starting there.
1313     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1314            "No def?");
1315     VNInfo *OldIdxVNI = OldIdxOut->valno;
1316     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1317     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1318 
1319     // Is there an existing def at NewIdx?
1320     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1321     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1322     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1323       assert(NewIdxOut->valno != OldIdxVNI &&
1324              "Same value defined more than once?");
1325       // If OldIdx was a dead def remove it.
1326       if (!OldIdxDefIsDead) {
1327         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1328         // NewIdx so it can take its place.
1329         OldIdxVNI->def = NewIdxDef;
1330         OldIdxOut->start = NewIdxDef;
1331         LR.removeValNo(NewIdxOut->valno);
1332       } else {
1333         // Simply remove the dead def at OldIdx.
1334         LR.removeValNo(OldIdxVNI);
1335       }
1336     } else {
1337       // Previously nothing was live after NewIdx, so all we have to do now is
1338       // move the begin of OldIdxOut to NewIdx.
1339       if (!OldIdxDefIsDead) {
1340         // Do we have any intermediate Defs between OldIdx and NewIdx?
1341         if (OldIdxIn != E &&
1342             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1343           // OldIdx is not a dead def and NewIdx is before predecessor start.
1344           LiveRange::iterator NewIdxIn = NewIdxOut;
1345           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1346           const SlotIndex SplitPos = NewIdxDef;
1347           OldIdxVNI = OldIdxIn->valno;
1348 
1349           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1350           LiveRange::iterator Prev = std::prev(OldIdxIn);
1351           if (OldIdxIn != LR.begin() &&
1352               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1353             // If the segment before OldIdx read a value defined earlier than
1354             // NewIdx, the moved instruction also reads and forwards that
1355             // value. Extend the lifetime of the new def point.
1356 
1357             // Extend to where the previous range started, unless there is
1358             // another redef first.
1359             NewDefEndPoint = std::min(OldIdxIn->start,
1360                                       std::next(NewIdxOut)->start);
1361           }
1362 
1363           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1364           OldIdxOut->valno->def = OldIdxIn->start;
1365           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1366                                           OldIdxOut->valno);
1367           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1368           // We Slide [NewIdxIn, OldIdxIn) down one position.
1369           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1370           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1371           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1372           // NewIdxIn is now considered undef so we can reuse it for the moved
1373           // value.
1374           LiveRange::iterator NewSegment = NewIdxIn;
1375           LiveRange::iterator Next = std::next(NewSegment);
1376           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1377             // There is no gap between NewSegment and its predecessor.
1378             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1379                                              Next->valno);
1380 
1381             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1382             Next->valno->def = SplitPos;
1383           } else {
1384             // There is a gap between NewSegment and its predecessor
1385             // Value becomes live in.
1386             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1387             NewSegment->valno->def = SplitPos;
1388           }
1389         } else {
1390           // Leave the end point of a live def.
1391           OldIdxOut->start = NewIdxDef;
1392           OldIdxVNI->def = NewIdxDef;
1393           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1394             OldIdxIn->end = NewIdxDef;
1395         }
1396       } else if (OldIdxIn != E
1397           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1398           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1399         // OldIdxVNI is a dead def that has been moved into the middle of
1400         // another value in LR. That can happen when LR is a whole register,
1401         // but the dead def is a write to a subreg that is dead at NewIdx.
1402         // The dead def may have been moved across other values
1403         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1404         // down one position.
1405         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1406         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1407         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1408         // Modify the segment at NewIdxOut and the following segment to meet at
1409         // the point of the dead def, with the following segment getting
1410         // OldIdxVNI as its value number.
1411         *NewIdxOut = LiveRange::Segment(
1412             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1413         *(NewIdxOut + 1) = LiveRange::Segment(
1414             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1415         OldIdxVNI->def = NewIdxDef;
1416         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1417         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1418           Idx->valno = OldIdxVNI;
1419         // Aggressively remove all dead flags from the former dead definition.
1420         // Kill/dead flags shouldn't be used while live intervals exist; they
1421         // will be reinserted by VirtRegRewriter.
1422         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1423           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1424             if (MO->isReg() && !MO->isUse())
1425               MO->setIsDead(false);
1426       } else {
1427         // OldIdxVNI is a dead def. It may have been moved across other values
1428         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1429         // down one position.
1430         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1431         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1432         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1433         // OldIdxVNI can be reused now to build a new dead def segment.
1434         LiveRange::iterator NewSegment = NewIdxOut;
1435         VNInfo *NewSegmentVNI = OldIdxVNI;
1436         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1437                                          NewSegmentVNI);
1438         NewSegmentVNI->def = NewIdxDef;
1439       }
1440     }
1441   }
1442 
1443   void updateRegMaskSlots() {
1444     SmallVectorImpl<SlotIndex>::iterator RI =
1445         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1446     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1447            "No RegMask at OldIdx.");
1448     *RI = NewIdx.getRegSlot();
1449     assert((RI == LIS.RegMaskSlots.begin() ||
1450             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1451            "Cannot move regmask instruction above another call");
1452     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1453             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1454            "Cannot move regmask instruction below another call");
1455   }
1456 
1457   // Return the last use of reg between NewIdx and OldIdx.
1458   SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1459                               LaneBitmask LaneMask) {
1460     if (Register::isVirtualRegister(Reg)) {
1461       SlotIndex LastUse = Before;
1462       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1463         if (MO.isUndef())
1464           continue;
1465         unsigned SubReg = MO.getSubReg();
1466         if (SubReg != 0 && LaneMask.any()
1467             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1468           continue;
1469 
1470         const MachineInstr &MI = *MO.getParent();
1471         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1472         if (InstSlot > LastUse && InstSlot < OldIdx)
1473           LastUse = InstSlot.getRegSlot();
1474       }
1475       return LastUse;
1476     }
1477 
1478     // This is a regunit interval, so scanning the use list could be very
1479     // expensive. Scan upwards from OldIdx instead.
1480     assert(Before < OldIdx && "Expected upwards move");
1481     SlotIndexes *Indexes = LIS.getSlotIndexes();
1482     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1483 
1484     // OldIdx may not correspond to an instruction any longer, so set MII to
1485     // point to the next instruction after OldIdx, or MBB->end().
1486     MachineBasicBlock::iterator MII = MBB->end();
1487     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1488                            Indexes->getNextNonNullIndex(OldIdx)))
1489       if (MI->getParent() == MBB)
1490         MII = MI;
1491 
1492     MachineBasicBlock::iterator Begin = MBB->begin();
1493     while (MII != Begin) {
1494       if ((--MII)->isDebugOrPseudoInstr())
1495         continue;
1496       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1497 
1498       // Stop searching when Before is reached.
1499       if (!SlotIndex::isEarlierInstr(Before, Idx))
1500         return Before;
1501 
1502       // Check if MII uses Reg.
1503       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1504         if (MO->isReg() && !MO->isUndef() &&
1505             Register::isPhysicalRegister(MO->getReg()) &&
1506             TRI.hasRegUnit(MO->getReg(), Reg))
1507           return Idx.getRegSlot();
1508     }
1509     // Didn't reach Before. It must be the first instruction in the block.
1510     return Before;
1511   }
1512 };
1513 
1514 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1515   // It is fine to move a bundle as a whole, but not an individual instruction
1516   // inside it.
1517   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1518          "Cannot move instruction in bundle");
1519   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1520   Indexes->removeMachineInstrFromMaps(MI);
1521   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1522   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1523          OldIndex < getMBBEndIdx(MI.getParent()) &&
1524          "Cannot handle moves across basic block boundaries.");
1525 
1526   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1527   HME.updateAllRanges(&MI);
1528 }
1529 
1530 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1531                                             bool UpdateFlags) {
1532   assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1533          "Bundle start is not a bundle");
1534   SmallVector<SlotIndex, 16> ToProcess;
1535   const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1536   auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1537 
1538   auto I = BundleStart.getIterator();
1539   I++;
1540   while (I != BundleEnd) {
1541     if (!Indexes->hasIndex(*I))
1542       continue;
1543     SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1544     ToProcess.push_back(OldIndex);
1545     Indexes->removeMachineInstrFromMaps(*I, true);
1546     I++;
1547   }
1548   for (SlotIndex OldIndex : ToProcess) {
1549     HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1550     HME.updateAllRanges(&BundleStart);
1551   }
1552 
1553   // Fix up dead defs
1554   const SlotIndex Index = getInstructionIndex(BundleStart);
1555   for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1556     MachineOperand &MO = BundleStart.getOperand(Idx);
1557     if (!MO.isReg())
1558       continue;
1559     Register Reg = MO.getReg();
1560     if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1561       LiveInterval &LI = getInterval(Reg);
1562       LiveQueryResult LRQ = LI.Query(Index);
1563       if (LRQ.isDeadDef())
1564         MO.setIsDead();
1565     }
1566   }
1567 }
1568 
1569 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1570                                         const MachineBasicBlock::iterator End,
1571                                         const SlotIndex EndIdx, LiveRange &LR,
1572                                         const Register Reg,
1573                                         LaneBitmask LaneMask) {
1574   LiveInterval::iterator LII = LR.find(EndIdx);
1575   SlotIndex lastUseIdx;
1576   if (LII != LR.end() && LII->start < EndIdx) {
1577     lastUseIdx = LII->end;
1578   } else if (LII == LR.begin()) {
1579     // We may not have a liverange at all if this is a subregister untouched
1580     // between \p Begin and \p End.
1581   } else {
1582     --LII;
1583   }
1584 
1585   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1586     --I;
1587     MachineInstr &MI = *I;
1588     if (MI.isDebugOrPseudoInstr())
1589       continue;
1590 
1591     SlotIndex instrIdx = getInstructionIndex(MI);
1592     bool isStartValid = getInstructionFromIndex(LII->start);
1593     bool isEndValid = getInstructionFromIndex(LII->end);
1594 
1595     // FIXME: This doesn't currently handle early-clobber or multiple removed
1596     // defs inside of the region to repair.
1597     for (const MachineOperand &MO : MI.operands()) {
1598       if (!MO.isReg() || MO.getReg() != Reg)
1599         continue;
1600 
1601       unsigned SubReg = MO.getSubReg();
1602       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1603       if ((Mask & LaneMask).none())
1604         continue;
1605 
1606       if (MO.isDef()) {
1607         if (!isStartValid) {
1608           if (LII->end.isDead()) {
1609             LII = LR.removeSegment(LII, true);
1610             if (LII != LR.begin())
1611               --LII;
1612           } else {
1613             LII->start = instrIdx.getRegSlot();
1614             LII->valno->def = instrIdx.getRegSlot();
1615             if (MO.getSubReg() && !MO.isUndef())
1616               lastUseIdx = instrIdx.getRegSlot();
1617             else
1618               lastUseIdx = SlotIndex();
1619             continue;
1620           }
1621         }
1622 
1623         if (!lastUseIdx.isValid()) {
1624           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1625           LiveRange::Segment S(instrIdx.getRegSlot(),
1626                                instrIdx.getDeadSlot(), VNI);
1627           LII = LR.addSegment(S);
1628         } else if (LII->start != instrIdx.getRegSlot()) {
1629           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1630           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1631           LII = LR.addSegment(S);
1632         }
1633 
1634         if (MO.getSubReg() && !MO.isUndef())
1635           lastUseIdx = instrIdx.getRegSlot();
1636         else
1637           lastUseIdx = SlotIndex();
1638       } else if (MO.isUse()) {
1639         // FIXME: This should probably be handled outside of this branch,
1640         // either as part of the def case (for defs inside of the region) or
1641         // after the loop over the region.
1642         if (!isEndValid && !LII->end.isBlock())
1643           LII->end = instrIdx.getRegSlot();
1644         if (!lastUseIdx.isValid())
1645           lastUseIdx = instrIdx.getRegSlot();
1646       }
1647     }
1648   }
1649 
1650   bool isStartValid = getInstructionFromIndex(LII->start);
1651   if (!isStartValid && LII->end.isDead())
1652     LR.removeSegment(*LII, true);
1653 }
1654 
1655 void
1656 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1657                                       MachineBasicBlock::iterator Begin,
1658                                       MachineBasicBlock::iterator End,
1659                                       ArrayRef<Register> OrigRegs) {
1660   // Find anchor points, which are at the beginning/end of blocks or at
1661   // instructions that already have indexes.
1662   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1663     --Begin;
1664   while (End != MBB->end() && !Indexes->hasIndex(*End))
1665     ++End;
1666 
1667   SlotIndex EndIdx;
1668   if (End == MBB->end())
1669     EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1670   else
1671     EndIdx = getInstructionIndex(*End);
1672 
1673   Indexes->repairIndexesInRange(MBB, Begin, End);
1674 
1675   // Make sure a live interval exists for all register operands in the range.
1676   SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1677   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1678     --I;
1679     MachineInstr &MI = *I;
1680     if (MI.isDebugOrPseudoInstr())
1681       continue;
1682     for (const MachineOperand &MO : MI.operands()) {
1683       if (MO.isReg() && MO.getReg().isVirtual()) {
1684         Register Reg = MO.getReg();
1685         // If the new instructions refer to subregs but the old instructions did
1686         // not, throw away any old live interval so it will be recomputed with
1687         // subranges.
1688         if (MO.getSubReg() && hasInterval(Reg) &&
1689             !getInterval(Reg).hasSubRanges() &&
1690             MRI->shouldTrackSubRegLiveness(Reg))
1691           removeInterval(Reg);
1692         if (!hasInterval(Reg)) {
1693           createAndComputeVirtRegInterval(Reg);
1694           // Don't bother to repair a freshly calculated live interval.
1695           erase_value(RegsToRepair, Reg);
1696         }
1697       }
1698     }
1699   }
1700 
1701   for (Register Reg : RegsToRepair) {
1702     if (!Reg.isVirtual())
1703       continue;
1704 
1705     LiveInterval &LI = getInterval(Reg);
1706     // FIXME: Should we support undefs that gain defs?
1707     if (!LI.hasAtLeastOneValue())
1708       continue;
1709 
1710     for (LiveInterval::SubRange &S : LI.subranges())
1711       repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1712     LI.removeEmptySubRanges();
1713 
1714     repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1715   }
1716 }
1717 
1718 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1719   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1720     if (LiveRange *LR = getCachedRegUnit(*Unit))
1721       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1722         LR->removeValNo(VNI);
1723   }
1724 }
1725 
1726 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1727   // LI may not have the main range computed yet, but its subranges may
1728   // be present.
1729   VNInfo *VNI = LI.getVNInfoAt(Pos);
1730   if (VNI != nullptr) {
1731     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1732     LI.removeValNo(VNI);
1733   }
1734 
1735   // Also remove the value defined in subranges.
1736   for (LiveInterval::SubRange &S : LI.subranges()) {
1737     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1738       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1739         S.removeValNo(SVNI);
1740   }
1741   LI.removeEmptySubRanges();
1742 }
1743 
1744 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1745     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1746   ConnectedVNInfoEqClasses ConEQ(*this);
1747   unsigned NumComp = ConEQ.Classify(LI);
1748   if (NumComp <= 1)
1749     return;
1750   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1751   Register Reg = LI.reg();
1752   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1753   for (unsigned I = 1; I < NumComp; ++I) {
1754     Register NewVReg = MRI->createVirtualRegister(RegClass);
1755     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1756     SplitLIs.push_back(&NewLI);
1757   }
1758   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1759 }
1760 
1761 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1762   assert(LICalc && "LICalc not initialized.");
1763   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1764   LICalc->constructMainRangeFromSubranges(LI);
1765 }
1766