xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "regalloc"
59 
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
63                       false, false)
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
66 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
67                 "Live Interval Analysis", false, false)
68 
69 #ifndef NDEBUG
70 static cl::opt<bool> EnablePrecomputePhysRegs(
71   "precompute-phys-liveness", cl::Hidden,
72   cl::desc("Eagerly compute live intervals for all physreg units."));
73 #else
74 static bool EnablePrecomputePhysRegs = false;
75 #endif // NDEBUG
76 
77 namespace llvm {
78 
79 cl::opt<bool> UseSegmentSetForPhysRegs(
80     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
81     cl::desc(
82         "Use segment set for the computation of the live ranges of physregs."));
83 
84 } // end namespace llvm
85 
86 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
87   AU.setPreservesCFG();
88   AU.addPreserved<LiveVariables>();
89   AU.addPreservedID(MachineLoopInfoID);
90   AU.addRequiredTransitiveID(MachineDominatorsID);
91   AU.addPreservedID(MachineDominatorsID);
92   AU.addPreserved<SlotIndexes>();
93   AU.addRequiredTransitive<SlotIndexes>();
94   MachineFunctionPass::getAnalysisUsage(AU);
95 }
96 
97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
98   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
99 }
100 
101 LiveIntervals::~LiveIntervals() { delete LICalc; }
102 
103 void LiveIntervals::releaseMemory() {
104   // Free the live intervals themselves.
105   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106     delete VirtRegIntervals[Register::index2VirtReg(i)];
107   VirtRegIntervals.clear();
108   RegMaskSlots.clear();
109   RegMaskBits.clear();
110   RegMaskBlocks.clear();
111 
112   for (LiveRange *LR : RegUnitRanges)
113     delete LR;
114   RegUnitRanges.clear();
115 
116   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117   VNInfoAllocator.Reset();
118 }
119 
120 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
121   MF = &fn;
122   MRI = &MF->getRegInfo();
123   TRI = MF->getSubtarget().getRegisterInfo();
124   TII = MF->getSubtarget().getInstrInfo();
125   Indexes = &getAnalysis<SlotIndexes>();
126   DomTree = &getAnalysis<MachineDominatorTree>();
127 
128   if (!LICalc)
129     LICalc = new LiveIntervalCalc();
130 
131   // Allocate space for all virtual registers.
132   VirtRegIntervals.resize(MRI->getNumVirtRegs());
133 
134   computeVirtRegs();
135   computeRegMasks();
136   computeLiveInRegUnits();
137 
138   if (EnablePrecomputePhysRegs) {
139     // For stress testing, precompute live ranges of all physical register
140     // units, including reserved registers.
141     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
142       getRegUnit(i);
143   }
144   LLVM_DEBUG(dump());
145   return false;
146 }
147 
148 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
149   OS << "********** INTERVALS **********\n";
150 
151   // Dump the regunits.
152   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
153     if (LiveRange *LR = RegUnitRanges[Unit])
154       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
155 
156   // Dump the virtregs.
157   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158     Register Reg = Register::index2VirtReg(i);
159     if (hasInterval(Reg))
160       OS << getInterval(Reg) << '\n';
161   }
162 
163   OS << "RegMasks:";
164   for (SlotIndex Idx : RegMaskSlots)
165     OS << ' ' << Idx;
166   OS << '\n';
167 
168   printInstrs(OS);
169 }
170 
171 void LiveIntervals::printInstrs(raw_ostream &OS) const {
172   OS << "********** MACHINEINSTRS **********\n";
173   MF->print(OS, Indexes);
174 }
175 
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
177 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
178   printInstrs(dbgs());
179 }
180 #endif
181 
182 LiveInterval *LiveIntervals::createInterval(Register reg) {
183   float Weight = reg.isPhysical() ? huge_valf : 0.0F;
184   return new LiveInterval(reg, Weight);
185 }
186 
187 /// Compute the live interval of a virtual register, based on defs and uses.
188 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
189   assert(LICalc && "LICalc not initialized.");
190   assert(LI.empty() && "Should only compute empty intervals.");
191   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
192   LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
193   return computeDeadValues(LI, nullptr);
194 }
195 
196 void LiveIntervals::computeVirtRegs() {
197   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
198     Register Reg = Register::index2VirtReg(i);
199     if (MRI->reg_nodbg_empty(Reg))
200       continue;
201     LiveInterval &LI = createEmptyInterval(Reg);
202     bool NeedSplit = computeVirtRegInterval(LI);
203     if (NeedSplit) {
204       SmallVector<LiveInterval*, 8> SplitLIs;
205       splitSeparateComponents(LI, SplitLIs);
206     }
207   }
208 }
209 
210 void LiveIntervals::computeRegMasks() {
211   RegMaskBlocks.resize(MF->getNumBlockIDs());
212 
213   // Find all instructions with regmask operands.
214   for (const MachineBasicBlock &MBB : *MF) {
215     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
216     RMB.first = RegMaskSlots.size();
217 
218     // Some block starts, such as EH funclets, create masks.
219     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
220       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
221       RegMaskBits.push_back(Mask);
222     }
223 
224     // Unwinders may clobber additional registers.
225     // FIXME: This functionality can possibly be merged into
226     // MachineBasicBlock::getBeginClobberMask().
227     if (MBB.isEHPad())
228       if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
229         RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
230         RegMaskBits.push_back(Mask);
231       }
232 
233     for (const MachineInstr &MI : MBB) {
234       for (const MachineOperand &MO : MI.operands()) {
235         if (!MO.isRegMask())
236           continue;
237         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
238         RegMaskBits.push_back(MO.getRegMask());
239       }
240     }
241 
242     // Some block ends, such as funclet returns, create masks. Put the mask on
243     // the last instruction of the block, because MBB slot index intervals are
244     // half-open.
245     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246       assert(!MBB.empty() && "empty return block?");
247       RegMaskSlots.push_back(
248           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
249       RegMaskBits.push_back(Mask);
250     }
251 
252     // Compute the number of register mask instructions in this block.
253     RMB.second = RegMaskSlots.size() - RMB.first;
254   }
255 }
256 
257 //===----------------------------------------------------------------------===//
258 //                           Register Unit Liveness
259 //===----------------------------------------------------------------------===//
260 //
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
265 // interference.
266 //
267 
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers.  The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
271 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
272   assert(LICalc && "LICalc not initialized.");
273   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
274 
275   // The physregs aliasing Unit are the roots and their super-registers.
276   // Create all values as dead defs before extending to uses. Note that roots
277   // may share super-registers. That's OK because createDeadDefs() is
278   // idempotent. It is very rare for a register unit to have multiple roots, so
279   // uniquing super-registers is probably not worthwhile.
280   bool IsReserved = false;
281   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
282     bool IsRootReserved = true;
283     for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
284       if (!MRI->reg_empty(Reg))
285         LICalc->createDeadDefs(LR, Reg);
286       // A register unit is considered reserved if all its roots and all their
287       // super registers are reserved.
288       if (!MRI->isReserved(Reg))
289         IsRootReserved = false;
290     }
291     IsReserved |= IsRootReserved;
292   }
293   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
294          "reserved computation mismatch");
295 
296   // Now extend LR to reach all uses.
297   // Ignore uses of reserved registers. We only track defs of those.
298   if (!IsReserved) {
299     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
300       for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
301         if (!MRI->reg_empty(Reg))
302           LICalc->extendToUses(LR, Reg);
303       }
304     }
305   }
306 
307   // Flush the segment set to the segment vector.
308   if (UseSegmentSetForPhysRegs)
309     LR.flushSegmentSet();
310 }
311 
312 /// Precompute the live ranges of any register units that are live-in to an ABI
313 /// block somewhere. Register values can appear without a corresponding def when
314 /// entering the entry block or a landing pad.
315 void LiveIntervals::computeLiveInRegUnits() {
316   RegUnitRanges.resize(TRI->getNumRegUnits());
317   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
318 
319   // Keep track of the live range sets allocated.
320   SmallVector<unsigned, 8> NewRanges;
321 
322   // Check all basic blocks for live-ins.
323   for (const MachineBasicBlock &MBB : *MF) {
324     // We only care about ABI blocks: Entry + landing pads.
325     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
326       continue;
327 
328     // Create phi-defs at Begin for all live-in registers.
329     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
330     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
331     for (const auto &LI : MBB.liveins()) {
332       for (MCRegUnit Unit : TRI->regunits(LI.PhysReg)) {
333         LiveRange *LR = RegUnitRanges[Unit];
334         if (!LR) {
335           // Use segment set to speed-up initial computation of the live range.
336           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
337           NewRanges.push_back(Unit);
338         }
339         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
340         (void)VNI;
341         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
342       }
343     }
344     LLVM_DEBUG(dbgs() << '\n');
345   }
346   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
347 
348   // Compute the 'normal' part of the ranges.
349   for (unsigned Unit : NewRanges)
350     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
351 }
352 
353 static void createSegmentsForValues(LiveRange &LR,
354     iterator_range<LiveInterval::vni_iterator> VNIs) {
355   for (VNInfo *VNI : VNIs) {
356     if (VNI->isUnused())
357       continue;
358     SlotIndex Def = VNI->def;
359     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
360   }
361 }
362 
363 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
364                                          ShrinkToUsesWorkList &WorkList,
365                                          Register Reg, LaneBitmask LaneMask) {
366   // Keep track of the PHIs that are in use.
367   SmallPtrSet<VNInfo*, 8> UsedPHIs;
368   // Blocks that have already been added to WorkList as live-out.
369   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
370 
371   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
372         -> const LiveRange& {
373     if (M.none())
374       return I;
375     for (const LiveInterval::SubRange &SR : I.subranges()) {
376       if ((SR.LaneMask & M).any()) {
377         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
378         return SR;
379       }
380     }
381     llvm_unreachable("Subrange for mask not found");
382   };
383 
384   const LiveInterval &LI = getInterval(Reg);
385   const LiveRange &OldRange = getSubRange(LI, LaneMask);
386 
387   // Extend intervals to reach all uses in WorkList.
388   while (!WorkList.empty()) {
389     SlotIndex Idx = WorkList.back().first;
390     VNInfo *VNI = WorkList.back().second;
391     WorkList.pop_back();
392     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
393     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
394 
395     // Extend the live range for VNI to be live at Idx.
396     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
397       assert(ExtVNI == VNI && "Unexpected existing value number");
398       (void)ExtVNI;
399       // Is this a PHIDef we haven't seen before?
400       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
401           !UsedPHIs.insert(VNI).second)
402         continue;
403       // The PHI is live, make sure the predecessors are live-out.
404       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
405         if (!LiveOut.insert(Pred).second)
406           continue;
407         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
408         // A predecessor is not required to have a live-out value for a PHI.
409         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
410           WorkList.push_back(std::make_pair(Stop, PVNI));
411       }
412       continue;
413     }
414 
415     // VNI is live-in to MBB.
416     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
417     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
418 
419     // Make sure VNI is live-out from the predecessors.
420     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
421       if (!LiveOut.insert(Pred).second)
422         continue;
423       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
424       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
425         assert(OldVNI == VNI && "Wrong value out of predecessor");
426         (void)OldVNI;
427         WorkList.push_back(std::make_pair(Stop, VNI));
428       } else {
429 #ifndef NDEBUG
430         // There was no old VNI. Verify that Stop is jointly dominated
431         // by <undef>s for this live range.
432         assert(LaneMask.any() &&
433                "Missing value out of predecessor for main range");
434         SmallVector<SlotIndex,8> Undefs;
435         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
436         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
437                "Missing value out of predecessor for subrange");
438 #endif
439       }
440     }
441   }
442 }
443 
444 bool LiveIntervals::shrinkToUses(LiveInterval *li,
445                                  SmallVectorImpl<MachineInstr*> *dead) {
446   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
447   assert(li->reg().isVirtual() && "Can only shrink virtual registers");
448 
449   // Shrink subregister live ranges.
450   bool NeedsCleanup = false;
451   for (LiveInterval::SubRange &S : li->subranges()) {
452     shrinkToUses(S, li->reg());
453     if (S.empty())
454       NeedsCleanup = true;
455   }
456   if (NeedsCleanup)
457     li->removeEmptySubRanges();
458 
459   // Find all the values used, including PHI kills.
460   ShrinkToUsesWorkList WorkList;
461 
462   // Visit all instructions reading li->reg().
463   Register Reg = li->reg();
464   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
465     if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
466       continue;
467     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
468     LiveQueryResult LRQ = li->Query(Idx);
469     VNInfo *VNI = LRQ.valueIn();
470     if (!VNI) {
471       // This shouldn't happen: readsVirtualRegister returns true, but there is
472       // no live value. It is likely caused by a target getting <undef> flags
473       // wrong.
474       LLVM_DEBUG(
475           dbgs() << Idx << '\t' << UseMI
476                  << "Warning: Instr claims to read non-existent value in "
477                  << *li << '\n');
478       continue;
479     }
480     // Special case: An early-clobber tied operand reads and writes the
481     // register one slot early.
482     if (VNInfo *DefVNI = LRQ.valueDefined())
483       Idx = DefVNI->def;
484 
485     WorkList.push_back(std::make_pair(Idx, VNI));
486   }
487 
488   // Create new live ranges with only minimal live segments per def.
489   LiveRange NewLR;
490   createSegmentsForValues(NewLR, li->vnis());
491   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
492 
493   // Move the trimmed segments back.
494   li->segments.swap(NewLR.segments);
495 
496   // Handle dead values.
497   bool CanSeparate = computeDeadValues(*li, dead);
498   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
499   return CanSeparate;
500 }
501 
502 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
503                                       SmallVectorImpl<MachineInstr*> *dead) {
504   bool MayHaveSplitComponents = false;
505 
506   for (VNInfo *VNI : LI.valnos) {
507     if (VNI->isUnused())
508       continue;
509     SlotIndex Def = VNI->def;
510     LiveRange::iterator I = LI.FindSegmentContaining(Def);
511     assert(I != LI.end() && "Missing segment for VNI");
512 
513     // Is the register live before? Otherwise we may have to add a read-undef
514     // flag for subregister defs.
515     Register VReg = LI.reg();
516     if (MRI->shouldTrackSubRegLiveness(VReg)) {
517       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
518         MachineInstr *MI = getInstructionFromIndex(Def);
519         MI->setRegisterDefReadUndef(VReg);
520       }
521     }
522 
523     if (I->end != Def.getDeadSlot())
524       continue;
525     if (VNI->isPHIDef()) {
526       // This is a dead PHI. Remove it.
527       VNI->markUnused();
528       LI.removeSegment(I);
529       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
530     } else {
531       // This is a dead def. Make sure the instruction knows.
532       MachineInstr *MI = getInstructionFromIndex(Def);
533       assert(MI && "No instruction defining live value");
534       MI->addRegisterDead(LI.reg(), TRI);
535 
536       if (dead && MI->allDefsAreDead()) {
537         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
538         dead->push_back(MI);
539       }
540     }
541     MayHaveSplitComponents = true;
542   }
543   return MayHaveSplitComponents;
544 }
545 
546 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
547   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
548   assert(Reg.isVirtual() && "Can only shrink virtual registers");
549   // Find all the values used, including PHI kills.
550   ShrinkToUsesWorkList WorkList;
551 
552   // Visit all instructions reading Reg.
553   SlotIndex LastIdx;
554   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
555     // Skip "undef" uses.
556     if (!MO.readsReg())
557       continue;
558     // Maybe the operand is for a subregister we don't care about.
559     unsigned SubReg = MO.getSubReg();
560     if (SubReg != 0) {
561       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
562       if ((LaneMask & SR.LaneMask).none())
563         continue;
564     }
565     // We only need to visit each instruction once.
566     MachineInstr *UseMI = MO.getParent();
567     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
568     if (Idx == LastIdx)
569       continue;
570     LastIdx = Idx;
571 
572     LiveQueryResult LRQ = SR.Query(Idx);
573     VNInfo *VNI = LRQ.valueIn();
574     // For Subranges it is possible that only undef values are left in that
575     // part of the subregister, so there is no real liverange at the use
576     if (!VNI)
577       continue;
578 
579     // Special case: An early-clobber tied operand reads and writes the
580     // register one slot early.
581     if (VNInfo *DefVNI = LRQ.valueDefined())
582       Idx = DefVNI->def;
583 
584     WorkList.push_back(std::make_pair(Idx, VNI));
585   }
586 
587   // Create a new live ranges with only minimal live segments per def.
588   LiveRange NewLR;
589   createSegmentsForValues(NewLR, SR.vnis());
590   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
591 
592   // Move the trimmed ranges back.
593   SR.segments.swap(NewLR.segments);
594 
595   // Remove dead PHI value numbers
596   for (VNInfo *VNI : SR.valnos) {
597     if (VNI->isUnused())
598       continue;
599     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
600     assert(Segment != nullptr && "Missing segment for VNI");
601     if (Segment->end != VNI->def.getDeadSlot())
602       continue;
603     if (VNI->isPHIDef()) {
604       // This is a dead PHI. Remove it.
605       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
606                         << " may separate interval\n");
607       VNI->markUnused();
608       SR.removeSegment(*Segment);
609     }
610   }
611 
612   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
613 }
614 
615 void LiveIntervals::extendToIndices(LiveRange &LR,
616                                     ArrayRef<SlotIndex> Indices,
617                                     ArrayRef<SlotIndex> Undefs) {
618   assert(LICalc && "LICalc not initialized.");
619   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
620   for (SlotIndex Idx : Indices)
621     LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
622 }
623 
624 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
625                                SmallVectorImpl<SlotIndex> *EndPoints) {
626   LiveQueryResult LRQ = LR.Query(Kill);
627   VNInfo *VNI = LRQ.valueOutOrDead();
628   if (!VNI)
629     return;
630 
631   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
632   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
633 
634   // If VNI isn't live out from KillMBB, the value is trivially pruned.
635   if (LRQ.endPoint() < MBBEnd) {
636     LR.removeSegment(Kill, LRQ.endPoint());
637     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
638     return;
639   }
640 
641   // VNI is live out of KillMBB.
642   LR.removeSegment(Kill, MBBEnd);
643   if (EndPoints) EndPoints->push_back(MBBEnd);
644 
645   // Find all blocks that are reachable from KillMBB without leaving VNI's live
646   // range. It is possible that KillMBB itself is reachable, so start a DFS
647   // from each successor.
648   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
649   VisitedTy Visited;
650   for (MachineBasicBlock *Succ : KillMBB->successors()) {
651     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
652          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
653          I != E;) {
654       MachineBasicBlock *MBB = *I;
655 
656       // Check if VNI is live in to MBB.
657       SlotIndex MBBStart, MBBEnd;
658       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
659       LiveQueryResult LRQ = LR.Query(MBBStart);
660       if (LRQ.valueIn() != VNI) {
661         // This block isn't part of the VNI segment. Prune the search.
662         I.skipChildren();
663         continue;
664       }
665 
666       // Prune the search if VNI is killed in MBB.
667       if (LRQ.endPoint() < MBBEnd) {
668         LR.removeSegment(MBBStart, LRQ.endPoint());
669         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
670         I.skipChildren();
671         continue;
672       }
673 
674       // VNI is live through MBB.
675       LR.removeSegment(MBBStart, MBBEnd);
676       if (EndPoints) EndPoints->push_back(MBBEnd);
677       ++I;
678     }
679   }
680 }
681 
682 //===----------------------------------------------------------------------===//
683 // Register allocator hooks.
684 //
685 
686 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
687   // Keep track of regunit ranges.
688   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
689 
690   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
691     Register Reg = Register::index2VirtReg(i);
692     if (MRI->reg_nodbg_empty(Reg))
693       continue;
694     const LiveInterval &LI = getInterval(Reg);
695     if (LI.empty())
696       continue;
697 
698     // Target may have not allocated this yet.
699     Register PhysReg = VRM->getPhys(Reg);
700     if (!PhysReg)
701       continue;
702 
703     // Find the regunit intervals for the assigned register. They may overlap
704     // the virtual register live range, cancelling any kills.
705     RU.clear();
706     for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
707       const LiveRange &RURange = getRegUnit(Unit);
708       if (RURange.empty())
709         continue;
710       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
711     }
712     // Every instruction that kills Reg corresponds to a segment range end
713     // point.
714     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
715          ++RI) {
716       // A block index indicates an MBB edge.
717       if (RI->end.isBlock())
718         continue;
719       MachineInstr *MI = getInstructionFromIndex(RI->end);
720       if (!MI)
721         continue;
722 
723       // Check if any of the regunits are live beyond the end of RI. That could
724       // happen when a physreg is defined as a copy of a virtreg:
725       //
726       //   %eax = COPY %5
727       //   FOO %5             <--- MI, cancel kill because %eax is live.
728       //   BAR killed %eax
729       //
730       // There should be no kill flag on FOO when %5 is rewritten as %eax.
731       for (auto &RUP : RU) {
732         const LiveRange &RURange = *RUP.first;
733         LiveRange::const_iterator &I = RUP.second;
734         if (I == RURange.end())
735           continue;
736         I = RURange.advanceTo(I, RI->end);
737         if (I == RURange.end() || I->start >= RI->end)
738           continue;
739         // I is overlapping RI.
740         goto CancelKill;
741       }
742 
743       if (MRI->subRegLivenessEnabled()) {
744         // When reading a partial undefined value we must not add a kill flag.
745         // The regalloc might have used the undef lane for something else.
746         // Example:
747         //     %1 = ...                  ; R32: %1
748         //     %2:high16 = ...           ; R64: %2
749         //        = read killed %2        ; R64: %2
750         //        = read %1              ; R32: %1
751         // The <kill> flag is correct for %2, but the register allocator may
752         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
753         // are actually never written by %2. After assignment the <kill>
754         // flag at the read instruction is invalid.
755         LaneBitmask DefinedLanesMask;
756         if (LI.hasSubRanges()) {
757           // Compute a mask of lanes that are defined.
758           DefinedLanesMask = LaneBitmask::getNone();
759           for (const LiveInterval::SubRange &SR : LI.subranges())
760             for (const LiveRange::Segment &Segment : SR.segments) {
761               if (Segment.start >= RI->end)
762                 break;
763               if (Segment.end == RI->end) {
764                 DefinedLanesMask |= SR.LaneMask;
765                 break;
766               }
767             }
768         } else
769           DefinedLanesMask = LaneBitmask::getAll();
770 
771         bool IsFullWrite = false;
772         for (const MachineOperand &MO : MI->operands()) {
773           if (!MO.isReg() || MO.getReg() != Reg)
774             continue;
775           if (MO.isUse()) {
776             // Reading any undefined lanes?
777             unsigned SubReg = MO.getSubReg();
778             LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
779                                          : MRI->getMaxLaneMaskForVReg(Reg);
780             if ((UseMask & ~DefinedLanesMask).any())
781               goto CancelKill;
782           } else if (MO.getSubReg() == 0) {
783             // Writing to the full register?
784             assert(MO.isDef());
785             IsFullWrite = true;
786           }
787         }
788 
789         // If an instruction writes to a subregister, a new segment starts in
790         // the LiveInterval. But as this is only overriding part of the register
791         // adding kill-flags is not correct here after registers have been
792         // assigned.
793         if (!IsFullWrite) {
794           // Next segment has to be adjacent in the subregister write case.
795           LiveRange::const_iterator N = std::next(RI);
796           if (N != LI.end() && N->start == RI->end)
797             goto CancelKill;
798         }
799       }
800 
801       MI->addRegisterKilled(Reg, nullptr);
802       continue;
803 CancelKill:
804       MI->clearRegisterKills(Reg, nullptr);
805     }
806   }
807 }
808 
809 MachineBasicBlock*
810 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
811   assert(!LI.empty() && "LiveInterval is empty.");
812 
813   // A local live range must be fully contained inside the block, meaning it is
814   // defined and killed at instructions, not at block boundaries. It is not
815   // live in or out of any block.
816   //
817   // It is technically possible to have a PHI-defined live range identical to a
818   // single block, but we are going to return false in that case.
819 
820   SlotIndex Start = LI.beginIndex();
821   if (Start.isBlock())
822     return nullptr;
823 
824   SlotIndex Stop = LI.endIndex();
825   if (Stop.isBlock())
826     return nullptr;
827 
828   // getMBBFromIndex doesn't need to search the MBB table when both indexes
829   // belong to proper instructions.
830   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
831   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
832   return MBB1 == MBB2 ? MBB1 : nullptr;
833 }
834 
835 bool
836 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
837   for (const VNInfo *PHI : LI.valnos) {
838     if (PHI->isUnused() || !PHI->isPHIDef())
839       continue;
840     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
841     // Conservatively return true instead of scanning huge predecessor lists.
842     if (PHIMBB->pred_size() > 100)
843       return true;
844     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
845       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
846         return true;
847   }
848   return false;
849 }
850 
851 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
852                                     const MachineBlockFrequencyInfo *MBFI,
853                                     const MachineInstr &MI) {
854   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
855 }
856 
857 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
858                                     const MachineBlockFrequencyInfo *MBFI,
859                                     const MachineBasicBlock *MBB) {
860   return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
861 }
862 
863 LiveRange::Segment
864 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
865   LiveInterval &Interval = getOrCreateEmptyInterval(Reg);
866   VNInfo *VN = Interval.getNextValue(
867       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
868       getVNInfoAllocator());
869   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
870                        getMBBEndIdx(startInst.getParent()), VN);
871   Interval.addSegment(S);
872 
873   return S;
874 }
875 
876 //===----------------------------------------------------------------------===//
877 //                          Register mask functions
878 //===----------------------------------------------------------------------===//
879 /// Check whether use of reg in MI is live-through. Live-through means that
880 /// the value is alive on exit from Machine instruction. The example of such
881 /// use is a deopt value in statepoint instruction.
882 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
883   if (MI->getOpcode() != TargetOpcode::STATEPOINT)
884     return false;
885   StatepointOpers SO(MI);
886   if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
887     return false;
888   for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
889        ++Idx) {
890     const MachineOperand &MO = MI->getOperand(Idx);
891     if (MO.isReg() && MO.getReg() == Reg)
892       return true;
893   }
894   return false;
895 }
896 
897 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
898                                              BitVector &UsableRegs) {
899   if (LI.empty())
900     return false;
901   LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
902 
903   // Use a smaller arrays for local live ranges.
904   ArrayRef<SlotIndex> Slots;
905   ArrayRef<const uint32_t*> Bits;
906   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
907     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
908     Bits = getRegMaskBitsInBlock(MBB->getNumber());
909   } else {
910     Slots = getRegMaskSlots();
911     Bits = getRegMaskBits();
912   }
913 
914   // We are going to enumerate all the register mask slots contained in LI.
915   // Start with a binary search of RegMaskSlots to find a starting point.
916   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
917   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
918 
919   // No slots in range, LI begins after the last call.
920   if (SlotI == SlotE)
921     return false;
922 
923   bool Found = false;
924   // Utility to union regmasks.
925   auto unionBitMask = [&](unsigned Idx) {
926       if (!Found) {
927         // This is the first overlap. Initialize UsableRegs to all ones.
928         UsableRegs.clear();
929         UsableRegs.resize(TRI->getNumRegs(), true);
930         Found = true;
931       }
932       // Remove usable registers clobbered by this mask.
933       UsableRegs.clearBitsNotInMask(Bits[Idx]);
934   };
935   while (true) {
936     assert(*SlotI >= LiveI->start);
937     // Loop over all slots overlapping this segment.
938     while (*SlotI < LiveI->end) {
939       // *SlotI overlaps LI. Collect mask bits.
940       unionBitMask(SlotI - Slots.begin());
941       if (++SlotI == SlotE)
942         return Found;
943     }
944     // If segment ends with live-through use we need to collect its regmask.
945     if (*SlotI == LiveI->end)
946       if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
947         if (hasLiveThroughUse(MI, LI.reg()))
948           unionBitMask(SlotI++ - Slots.begin());
949     // *SlotI is beyond the current LI segment.
950     // Special advance implementation to not miss next LiveI->end.
951     if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
952       return Found;
953     while (LiveI->end < *SlotI)
954       ++LiveI;
955     // Advance SlotI until it overlaps.
956     while (*SlotI < LiveI->start)
957       if (++SlotI == SlotE)
958         return Found;
959   }
960 }
961 
962 //===----------------------------------------------------------------------===//
963 //                         IntervalUpdate class.
964 //===----------------------------------------------------------------------===//
965 
966 /// Toolkit used by handleMove to trim or extend live intervals.
967 class LiveIntervals::HMEditor {
968 private:
969   LiveIntervals& LIS;
970   const MachineRegisterInfo& MRI;
971   const TargetRegisterInfo& TRI;
972   SlotIndex OldIdx;
973   SlotIndex NewIdx;
974   SmallPtrSet<LiveRange*, 8> Updated;
975   bool UpdateFlags;
976 
977 public:
978   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
979            const TargetRegisterInfo& TRI,
980            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
981     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
982       UpdateFlags(UpdateFlags) {}
983 
984   // FIXME: UpdateFlags is a workaround that creates live intervals for all
985   // physregs, even those that aren't needed for regalloc, in order to update
986   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
987   // flags, and postRA passes will use a live register utility instead.
988   LiveRange *getRegUnitLI(unsigned Unit) {
989     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
990       return &LIS.getRegUnit(Unit);
991     return LIS.getCachedRegUnit(Unit);
992   }
993 
994   /// Update all live ranges touched by MI, assuming a move from OldIdx to
995   /// NewIdx.
996   void updateAllRanges(MachineInstr *MI) {
997     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
998                       << *MI);
999     bool hasRegMask = false;
1000     for (MachineOperand &MO : MI->operands()) {
1001       if (MO.isRegMask())
1002         hasRegMask = true;
1003       if (!MO.isReg())
1004         continue;
1005       if (MO.isUse()) {
1006         if (!MO.readsReg())
1007           continue;
1008         // Aggressively clear all kill flags.
1009         // They are reinserted by VirtRegRewriter.
1010         MO.setIsKill(false);
1011       }
1012 
1013       Register Reg = MO.getReg();
1014       if (!Reg)
1015         continue;
1016       if (Reg.isVirtual()) {
1017         LiveInterval &LI = LIS.getInterval(Reg);
1018         if (LI.hasSubRanges()) {
1019           unsigned SubReg = MO.getSubReg();
1020           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1021                                         : MRI.getMaxLaneMaskForVReg(Reg);
1022           for (LiveInterval::SubRange &S : LI.subranges()) {
1023             if ((S.LaneMask & LaneMask).none())
1024               continue;
1025             updateRange(S, Reg, S.LaneMask);
1026           }
1027         }
1028         updateRange(LI, Reg, LaneBitmask::getNone());
1029         // If main range has a hole and we are moving a subrange use across
1030         // the hole updateRange() cannot properly handle it since it only
1031         // gets the LiveRange and not the whole LiveInterval. As a result
1032         // we may end up with a main range not covering all subranges.
1033         // This is extremely rare case, so let's check and reconstruct the
1034         // main range.
1035         if (LI.hasSubRanges()) {
1036           unsigned SubReg = MO.getSubReg();
1037           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1038                                         : MRI.getMaxLaneMaskForVReg(Reg);
1039           for (LiveInterval::SubRange &S : LI.subranges()) {
1040             if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1041               continue;
1042             LI.clear();
1043             LIS.constructMainRangeFromSubranges(LI);
1044             break;
1045           }
1046         }
1047 
1048         continue;
1049       }
1050 
1051       // For physregs, only update the regunits that actually have a
1052       // precomputed live range.
1053       for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg()))
1054         if (LiveRange *LR = getRegUnitLI(Unit))
1055           updateRange(*LR, Unit, LaneBitmask::getNone());
1056     }
1057     if (hasRegMask)
1058       updateRegMaskSlots();
1059   }
1060 
1061 private:
1062   /// Update a single live range, assuming an instruction has been moved from
1063   /// OldIdx to NewIdx.
1064   void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1065     if (!Updated.insert(&LR).second)
1066       return;
1067     LLVM_DEBUG({
1068       dbgs() << "     ";
1069       if (Reg.isVirtual()) {
1070         dbgs() << printReg(Reg);
1071         if (LaneMask.any())
1072           dbgs() << " L" << PrintLaneMask(LaneMask);
1073       } else {
1074         dbgs() << printRegUnit(Reg, &TRI);
1075       }
1076       dbgs() << ":\t" << LR << '\n';
1077     });
1078     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1079       handleMoveDown(LR);
1080     else
1081       handleMoveUp(LR, Reg, LaneMask);
1082     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1083     LR.verify();
1084   }
1085 
1086   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1087   /// to NewIdx (OldIdx < NewIdx).
1088   void handleMoveDown(LiveRange &LR) {
1089     LiveRange::iterator E = LR.end();
1090     // Segment going into OldIdx.
1091     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1092 
1093     // No value live before or after OldIdx? Nothing to do.
1094     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1095       return;
1096 
1097     LiveRange::iterator OldIdxOut;
1098     // Do we have a value live-in to OldIdx?
1099     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1100       // If the live-in value already extends to NewIdx, there is nothing to do.
1101       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1102         return;
1103       // Aggressively remove all kill flags from the old kill point.
1104       // Kill flags shouldn't be used while live intervals exist, they will be
1105       // reinserted by VirtRegRewriter.
1106       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1107         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1108           if (MOP.isReg() && MOP.isUse())
1109             MOP.setIsKill(false);
1110 
1111       // Is there a def before NewIdx which is not OldIdx?
1112       LiveRange::iterator Next = std::next(OldIdxIn);
1113       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1114           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1115         // If we are here then OldIdx was just a use but not a def. We only have
1116         // to ensure liveness extends to NewIdx.
1117         LiveRange::iterator NewIdxIn =
1118           LR.advanceTo(Next, NewIdx.getBaseIndex());
1119         // Extend the segment before NewIdx if necessary.
1120         if (NewIdxIn == E ||
1121             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1122           LiveRange::iterator Prev = std::prev(NewIdxIn);
1123           Prev->end = NewIdx.getRegSlot();
1124         }
1125         // Extend OldIdxIn.
1126         OldIdxIn->end = Next->start;
1127         return;
1128       }
1129 
1130       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1131       // invalid by overlapping ranges.
1132       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1133       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1134       // If this was not a kill, then there was no def and we're done.
1135       if (!isKill)
1136         return;
1137 
1138       // Did we have a Def at OldIdx?
1139       OldIdxOut = Next;
1140       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1141         return;
1142     } else {
1143       OldIdxOut = OldIdxIn;
1144     }
1145 
1146     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1147     // to the segment starting there.
1148     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1149            "No def?");
1150     VNInfo *OldIdxVNI = OldIdxOut->valno;
1151     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1152 
1153     // If the defined value extends beyond NewIdx, just move the beginning
1154     // of the segment to NewIdx.
1155     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1156     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1157       OldIdxVNI->def = NewIdxDef;
1158       OldIdxOut->start = OldIdxVNI->def;
1159       return;
1160     }
1161 
1162     // If we are here then we have a Definition at OldIdx which ends before
1163     // NewIdx.
1164 
1165     // Is there an existing Def at NewIdx?
1166     LiveRange::iterator AfterNewIdx
1167       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1168     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1169     if (!OldIdxDefIsDead &&
1170         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1171       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1172       VNInfo *DefVNI;
1173       if (OldIdxOut != LR.begin() &&
1174           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1175                                      OldIdxOut->start)) {
1176         // There is no gap between OldIdxOut and its predecessor anymore,
1177         // merge them.
1178         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1179         DefVNI = OldIdxVNI;
1180         IPrev->end = OldIdxOut->end;
1181       } else {
1182         // The value is live in to OldIdx
1183         LiveRange::iterator INext = std::next(OldIdxOut);
1184         assert(INext != E && "Must have following segment");
1185         // We merge OldIdxOut and its successor. As we're dealing with subreg
1186         // reordering, there is always a successor to OldIdxOut in the same BB
1187         // We don't need INext->valno anymore and will reuse for the new segment
1188         // we create later.
1189         DefVNI = OldIdxVNI;
1190         INext->start = OldIdxOut->end;
1191         INext->valno->def = INext->start;
1192       }
1193       // If NewIdx is behind the last segment, extend that and append a new one.
1194       if (AfterNewIdx == E) {
1195         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1196         // one position.
1197         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1198         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1199         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1200         // The last segment is undefined now, reuse it for a dead def.
1201         LiveRange::iterator NewSegment = std::prev(E);
1202         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1203                                          DefVNI);
1204         DefVNI->def = NewIdxDef;
1205 
1206         LiveRange::iterator Prev = std::prev(NewSegment);
1207         Prev->end = NewIdxDef;
1208       } else {
1209         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1210         // one position.
1211         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1212         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1213         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1214         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1215         // We have two cases:
1216         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1217           // Case 1: NewIdx is inside a liverange. Split this liverange at
1218           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1219           LiveRange::iterator NewSegment = AfterNewIdx;
1220           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1221           Prev->valno->def = NewIdxDef;
1222 
1223           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1224           DefVNI->def = Prev->start;
1225         } else {
1226           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1227           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1228           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1229           DefVNI->def = NewIdxDef;
1230           assert(DefVNI != AfterNewIdx->valno);
1231         }
1232       }
1233       return;
1234     }
1235 
1236     if (AfterNewIdx != E &&
1237         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1238       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1239       // that value.
1240       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1241       LR.removeValNo(OldIdxVNI);
1242     } else {
1243       // There was no existing def at NewIdx. We need to create a dead def
1244       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1245       // a new segment at the place where we want to construct the dead def.
1246       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1247       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1248       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1249       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1250       // We can reuse OldIdxVNI now.
1251       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1252       VNInfo *NewSegmentVNI = OldIdxVNI;
1253       NewSegmentVNI->def = NewIdxDef;
1254       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1255                                        NewSegmentVNI);
1256     }
1257   }
1258 
1259   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1260   /// to NewIdx (NewIdx < OldIdx).
1261   void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1262     LiveRange::iterator E = LR.end();
1263     // Segment going into OldIdx.
1264     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1265 
1266     // No value live before or after OldIdx? Nothing to do.
1267     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1268       return;
1269 
1270     LiveRange::iterator OldIdxOut;
1271     // Do we have a value live-in to OldIdx?
1272     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1273       // If the live-in value isn't killed here, then we have no Def at
1274       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1275       // to do.
1276       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1277       if (!isKill)
1278         return;
1279 
1280       // At this point we have to move OldIdxIn->end back to the nearest
1281       // previous use or (dead-)def but no further than NewIdx.
1282       SlotIndex DefBeforeOldIdx
1283         = std::max(OldIdxIn->start.getDeadSlot(),
1284                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1285       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1286 
1287       // Did we have a Def at OldIdx? If not we are done now.
1288       OldIdxOut = std::next(OldIdxIn);
1289       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1290         return;
1291     } else {
1292       OldIdxOut = OldIdxIn;
1293       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1294     }
1295 
1296     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1297     // to the segment starting there.
1298     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1299            "No def?");
1300     VNInfo *OldIdxVNI = OldIdxOut->valno;
1301     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1302     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1303 
1304     // Is there an existing def at NewIdx?
1305     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1306     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1307     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1308       assert(NewIdxOut->valno != OldIdxVNI &&
1309              "Same value defined more than once?");
1310       // If OldIdx was a dead def remove it.
1311       if (!OldIdxDefIsDead) {
1312         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1313         // NewIdx so it can take its place.
1314         OldIdxVNI->def = NewIdxDef;
1315         OldIdxOut->start = NewIdxDef;
1316         LR.removeValNo(NewIdxOut->valno);
1317       } else {
1318         // Simply remove the dead def at OldIdx.
1319         LR.removeValNo(OldIdxVNI);
1320       }
1321     } else {
1322       // Previously nothing was live after NewIdx, so all we have to do now is
1323       // move the begin of OldIdxOut to NewIdx.
1324       if (!OldIdxDefIsDead) {
1325         // Do we have any intermediate Defs between OldIdx and NewIdx?
1326         if (OldIdxIn != E &&
1327             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1328           // OldIdx is not a dead def and NewIdx is before predecessor start.
1329           LiveRange::iterator NewIdxIn = NewIdxOut;
1330           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1331           const SlotIndex SplitPos = NewIdxDef;
1332           OldIdxVNI = OldIdxIn->valno;
1333 
1334           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1335           LiveRange::iterator Prev = std::prev(OldIdxIn);
1336           if (OldIdxIn != LR.begin() &&
1337               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1338             // If the segment before OldIdx read a value defined earlier than
1339             // NewIdx, the moved instruction also reads and forwards that
1340             // value. Extend the lifetime of the new def point.
1341 
1342             // Extend to where the previous range started, unless there is
1343             // another redef first.
1344             NewDefEndPoint = std::min(OldIdxIn->start,
1345                                       std::next(NewIdxOut)->start);
1346           }
1347 
1348           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1349           OldIdxOut->valno->def = OldIdxIn->start;
1350           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1351                                           OldIdxOut->valno);
1352           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1353           // We Slide [NewIdxIn, OldIdxIn) down one position.
1354           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1355           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1356           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1357           // NewIdxIn is now considered undef so we can reuse it for the moved
1358           // value.
1359           LiveRange::iterator NewSegment = NewIdxIn;
1360           LiveRange::iterator Next = std::next(NewSegment);
1361           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1362             // There is no gap between NewSegment and its predecessor.
1363             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1364                                              Next->valno);
1365 
1366             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1367             Next->valno->def = SplitPos;
1368           } else {
1369             // There is a gap between NewSegment and its predecessor
1370             // Value becomes live in.
1371             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1372             NewSegment->valno->def = SplitPos;
1373           }
1374         } else {
1375           // Leave the end point of a live def.
1376           OldIdxOut->start = NewIdxDef;
1377           OldIdxVNI->def = NewIdxDef;
1378           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1379             OldIdxIn->end = NewIdxDef;
1380         }
1381       } else if (OldIdxIn != E
1382           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1383           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1384         // OldIdxVNI is a dead def that has been moved into the middle of
1385         // another value in LR. That can happen when LR is a whole register,
1386         // but the dead def is a write to a subreg that is dead at NewIdx.
1387         // The dead def may have been moved across other values
1388         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1389         // down one position.
1390         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1391         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1392         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1393         // Modify the segment at NewIdxOut and the following segment to meet at
1394         // the point of the dead def, with the following segment getting
1395         // OldIdxVNI as its value number.
1396         *NewIdxOut = LiveRange::Segment(
1397             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1398         *(NewIdxOut + 1) = LiveRange::Segment(
1399             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1400         OldIdxVNI->def = NewIdxDef;
1401         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1402         for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1403           Idx->valno = OldIdxVNI;
1404         // Aggressively remove all dead flags from the former dead definition.
1405         // Kill/dead flags shouldn't be used while live intervals exist; they
1406         // will be reinserted by VirtRegRewriter.
1407         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1408           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1409             if (MO->isReg() && !MO->isUse())
1410               MO->setIsDead(false);
1411       } else {
1412         // OldIdxVNI is a dead def. It may have been moved across other values
1413         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1414         // down one position.
1415         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1416         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1417         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1418         // OldIdxVNI can be reused now to build a new dead def segment.
1419         LiveRange::iterator NewSegment = NewIdxOut;
1420         VNInfo *NewSegmentVNI = OldIdxVNI;
1421         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1422                                          NewSegmentVNI);
1423         NewSegmentVNI->def = NewIdxDef;
1424       }
1425     }
1426   }
1427 
1428   void updateRegMaskSlots() {
1429     SmallVectorImpl<SlotIndex>::iterator RI =
1430         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1431     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1432            "No RegMask at OldIdx.");
1433     *RI = NewIdx.getRegSlot();
1434     assert((RI == LIS.RegMaskSlots.begin() ||
1435             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1436            "Cannot move regmask instruction above another call");
1437     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1438             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1439            "Cannot move regmask instruction below another call");
1440   }
1441 
1442   // Return the last use of reg between NewIdx and OldIdx.
1443   SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1444                               LaneBitmask LaneMask) {
1445     if (Reg.isVirtual()) {
1446       SlotIndex LastUse = Before;
1447       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1448         if (MO.isUndef())
1449           continue;
1450         unsigned SubReg = MO.getSubReg();
1451         if (SubReg != 0 && LaneMask.any()
1452             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1453           continue;
1454 
1455         const MachineInstr &MI = *MO.getParent();
1456         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1457         if (InstSlot > LastUse && InstSlot < OldIdx)
1458           LastUse = InstSlot.getRegSlot();
1459       }
1460       return LastUse;
1461     }
1462 
1463     // This is a regunit interval, so scanning the use list could be very
1464     // expensive. Scan upwards from OldIdx instead.
1465     assert(Before < OldIdx && "Expected upwards move");
1466     SlotIndexes *Indexes = LIS.getSlotIndexes();
1467     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1468 
1469     // OldIdx may not correspond to an instruction any longer, so set MII to
1470     // point to the next instruction after OldIdx, or MBB->end().
1471     MachineBasicBlock::iterator MII = MBB->end();
1472     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1473                            Indexes->getNextNonNullIndex(OldIdx)))
1474       if (MI->getParent() == MBB)
1475         MII = MI;
1476 
1477     MachineBasicBlock::iterator Begin = MBB->begin();
1478     while (MII != Begin) {
1479       if ((--MII)->isDebugOrPseudoInstr())
1480         continue;
1481       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1482 
1483       // Stop searching when Before is reached.
1484       if (!SlotIndex::isEarlierInstr(Before, Idx))
1485         return Before;
1486 
1487       // Check if MII uses Reg.
1488       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1489         if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1490             TRI.hasRegUnit(MO->getReg(), Reg))
1491           return Idx.getRegSlot();
1492     }
1493     // Didn't reach Before. It must be the first instruction in the block.
1494     return Before;
1495   }
1496 };
1497 
1498 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1499   // It is fine to move a bundle as a whole, but not an individual instruction
1500   // inside it.
1501   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1502          "Cannot move instruction in bundle");
1503   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1504   Indexes->removeMachineInstrFromMaps(MI);
1505   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1506   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1507          OldIndex < getMBBEndIdx(MI.getParent()) &&
1508          "Cannot handle moves across basic block boundaries.");
1509 
1510   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1511   HME.updateAllRanges(&MI);
1512 }
1513 
1514 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1515                                             bool UpdateFlags) {
1516   assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1517          "Bundle start is not a bundle");
1518   SmallVector<SlotIndex, 16> ToProcess;
1519   const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1520   auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1521 
1522   auto I = BundleStart.getIterator();
1523   I++;
1524   while (I != BundleEnd) {
1525     if (!Indexes->hasIndex(*I))
1526       continue;
1527     SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1528     ToProcess.push_back(OldIndex);
1529     Indexes->removeMachineInstrFromMaps(*I, true);
1530     I++;
1531   }
1532   for (SlotIndex OldIndex : ToProcess) {
1533     HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1534     HME.updateAllRanges(&BundleStart);
1535   }
1536 
1537   // Fix up dead defs
1538   const SlotIndex Index = getInstructionIndex(BundleStart);
1539   for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1540     MachineOperand &MO = BundleStart.getOperand(Idx);
1541     if (!MO.isReg())
1542       continue;
1543     Register Reg = MO.getReg();
1544     if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1545       LiveInterval &LI = getInterval(Reg);
1546       LiveQueryResult LRQ = LI.Query(Index);
1547       if (LRQ.isDeadDef())
1548         MO.setIsDead();
1549     }
1550   }
1551 }
1552 
1553 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1554                                         const MachineBasicBlock::iterator End,
1555                                         const SlotIndex EndIdx, LiveRange &LR,
1556                                         const Register Reg,
1557                                         LaneBitmask LaneMask) {
1558   LiveInterval::iterator LII = LR.find(EndIdx);
1559   SlotIndex lastUseIdx;
1560   if (LII != LR.end() && LII->start < EndIdx) {
1561     lastUseIdx = LII->end;
1562   } else if (LII == LR.begin()) {
1563     // We may not have a liverange at all if this is a subregister untouched
1564     // between \p Begin and \p End.
1565   } else {
1566     --LII;
1567   }
1568 
1569   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1570     --I;
1571     MachineInstr &MI = *I;
1572     if (MI.isDebugOrPseudoInstr())
1573       continue;
1574 
1575     SlotIndex instrIdx = getInstructionIndex(MI);
1576     bool isStartValid = getInstructionFromIndex(LII->start);
1577     bool isEndValid = getInstructionFromIndex(LII->end);
1578 
1579     // FIXME: This doesn't currently handle early-clobber or multiple removed
1580     // defs inside of the region to repair.
1581     for (const MachineOperand &MO : MI.operands()) {
1582       if (!MO.isReg() || MO.getReg() != Reg)
1583         continue;
1584 
1585       unsigned SubReg = MO.getSubReg();
1586       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1587       if ((Mask & LaneMask).none())
1588         continue;
1589 
1590       if (MO.isDef()) {
1591         if (!isStartValid) {
1592           if (LII->end.isDead()) {
1593             LII = LR.removeSegment(LII, true);
1594             if (LII != LR.begin())
1595               --LII;
1596           } else {
1597             LII->start = instrIdx.getRegSlot();
1598             LII->valno->def = instrIdx.getRegSlot();
1599             if (MO.getSubReg() && !MO.isUndef())
1600               lastUseIdx = instrIdx.getRegSlot();
1601             else
1602               lastUseIdx = SlotIndex();
1603             continue;
1604           }
1605         }
1606 
1607         if (!lastUseIdx.isValid()) {
1608           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1609           LiveRange::Segment S(instrIdx.getRegSlot(),
1610                                instrIdx.getDeadSlot(), VNI);
1611           LII = LR.addSegment(S);
1612         } else if (LII->start != instrIdx.getRegSlot()) {
1613           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1614           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1615           LII = LR.addSegment(S);
1616         }
1617 
1618         if (MO.getSubReg() && !MO.isUndef())
1619           lastUseIdx = instrIdx.getRegSlot();
1620         else
1621           lastUseIdx = SlotIndex();
1622       } else if (MO.isUse()) {
1623         // FIXME: This should probably be handled outside of this branch,
1624         // either as part of the def case (for defs inside of the region) or
1625         // after the loop over the region.
1626         if (!isEndValid && !LII->end.isBlock())
1627           LII->end = instrIdx.getRegSlot();
1628         if (!lastUseIdx.isValid())
1629           lastUseIdx = instrIdx.getRegSlot();
1630       }
1631     }
1632   }
1633 
1634   bool isStartValid = getInstructionFromIndex(LII->start);
1635   if (!isStartValid && LII->end.isDead())
1636     LR.removeSegment(*LII, true);
1637 }
1638 
1639 void
1640 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1641                                       MachineBasicBlock::iterator Begin,
1642                                       MachineBasicBlock::iterator End,
1643                                       ArrayRef<Register> OrigRegs) {
1644   // Find anchor points, which are at the beginning/end of blocks or at
1645   // instructions that already have indexes.
1646   while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1647     --Begin;
1648   while (End != MBB->end() && !Indexes->hasIndex(*End))
1649     ++End;
1650 
1651   SlotIndex EndIdx;
1652   if (End == MBB->end())
1653     EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1654   else
1655     EndIdx = getInstructionIndex(*End);
1656 
1657   Indexes->repairIndexesInRange(MBB, Begin, End);
1658 
1659   // Make sure a live interval exists for all register operands in the range.
1660   SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1661   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1662     --I;
1663     MachineInstr &MI = *I;
1664     if (MI.isDebugOrPseudoInstr())
1665       continue;
1666     for (const MachineOperand &MO : MI.operands()) {
1667       if (MO.isReg() && MO.getReg().isVirtual()) {
1668         Register Reg = MO.getReg();
1669         // If the new instructions refer to subregs but the old instructions did
1670         // not, throw away any old live interval so it will be recomputed with
1671         // subranges.
1672         if (MO.getSubReg() && hasInterval(Reg) &&
1673             !getInterval(Reg).hasSubRanges() &&
1674             MRI->shouldTrackSubRegLiveness(Reg))
1675           removeInterval(Reg);
1676         if (!hasInterval(Reg)) {
1677           createAndComputeVirtRegInterval(Reg);
1678           // Don't bother to repair a freshly calculated live interval.
1679           llvm::erase(RegsToRepair, Reg);
1680         }
1681       }
1682     }
1683   }
1684 
1685   for (Register Reg : RegsToRepair) {
1686     if (!Reg.isVirtual())
1687       continue;
1688 
1689     LiveInterval &LI = getInterval(Reg);
1690     // FIXME: Should we support undefs that gain defs?
1691     if (!LI.hasAtLeastOneValue())
1692       continue;
1693 
1694     for (LiveInterval::SubRange &S : LI.subranges())
1695       repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1696     LI.removeEmptySubRanges();
1697 
1698     repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1699   }
1700 }
1701 
1702 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1703   for (MCRegUnit Unit : TRI->regunits(Reg)) {
1704     if (LiveRange *LR = getCachedRegUnit(Unit))
1705       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1706         LR->removeValNo(VNI);
1707   }
1708 }
1709 
1710 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1711   // LI may not have the main range computed yet, but its subranges may
1712   // be present.
1713   VNInfo *VNI = LI.getVNInfoAt(Pos);
1714   if (VNI != nullptr) {
1715     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1716     LI.removeValNo(VNI);
1717   }
1718 
1719   // Also remove the value defined in subranges.
1720   for (LiveInterval::SubRange &S : LI.subranges()) {
1721     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1722       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1723         S.removeValNo(SVNI);
1724   }
1725   LI.removeEmptySubRanges();
1726 }
1727 
1728 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1729     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1730   ConnectedVNInfoEqClasses ConEQ(*this);
1731   unsigned NumComp = ConEQ.Classify(LI);
1732   if (NumComp <= 1)
1733     return;
1734   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1735   Register Reg = LI.reg();
1736   for (unsigned I = 1; I < NumComp; ++I) {
1737     Register NewVReg = MRI->cloneVirtualRegister(Reg);
1738     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1739     SplitLIs.push_back(&NewLI);
1740   }
1741   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1742 }
1743 
1744 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1745   assert(LICalc && "LICalc not initialized.");
1746   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1747   LICalc->constructMainRangeFromSubranges(LI);
1748 }
1749