xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp (revision 27ef5d48c729defb83a8822143dc71ab17f9d68b)
1  //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  /// \file This file implements the LiveInterval analysis pass which is used
10  /// by the Linear Scan Register allocator. This pass linearizes the
11  /// basic blocks of the function in DFS order and computes live intervals for
12  /// each virtual and physical register.
13  //
14  //===----------------------------------------------------------------------===//
15  
16  #include "llvm/CodeGen/LiveIntervals.h"
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/ADT/DepthFirstIterator.h"
19  #include "llvm/ADT/SmallPtrSet.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/ADT/iterator_range.h"
22  #include "llvm/CodeGen/LiveInterval.h"
23  #include "llvm/CodeGen/LiveIntervalCalc.h"
24  #include "llvm/CodeGen/LiveVariables.h"
25  #include "llvm/CodeGen/MachineBasicBlock.h"
26  #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27  #include "llvm/CodeGen/MachineDominators.h"
28  #include "llvm/CodeGen/MachineFunction.h"
29  #include "llvm/CodeGen/MachineInstr.h"
30  #include "llvm/CodeGen/MachineInstrBundle.h"
31  #include "llvm/CodeGen/MachineOperand.h"
32  #include "llvm/CodeGen/MachineRegisterInfo.h"
33  #include "llvm/CodeGen/Passes.h"
34  #include "llvm/CodeGen/SlotIndexes.h"
35  #include "llvm/CodeGen/StackMaps.h"
36  #include "llvm/CodeGen/TargetRegisterInfo.h"
37  #include "llvm/CodeGen/TargetSubtargetInfo.h"
38  #include "llvm/CodeGen/VirtRegMap.h"
39  #include "llvm/Config/llvm-config.h"
40  #include "llvm/IR/Statepoint.h"
41  #include "llvm/MC/LaneBitmask.h"
42  #include "llvm/MC/MCRegisterInfo.h"
43  #include "llvm/Pass.h"
44  #include "llvm/Support/CommandLine.h"
45  #include "llvm/Support/Compiler.h"
46  #include "llvm/Support/Debug.h"
47  #include "llvm/Support/MathExtras.h"
48  #include "llvm/Support/raw_ostream.h"
49  #include <algorithm>
50  #include <cassert>
51  #include <cstdint>
52  #include <iterator>
53  #include <tuple>
54  #include <utility>
55  
56  using namespace llvm;
57  
58  #define DEBUG_TYPE "regalloc"
59  
60  AnalysisKey LiveIntervalsAnalysis::Key;
61  
62  LiveIntervalsAnalysis::Result
63  LiveIntervalsAnalysis::run(MachineFunction &MF,
64                             MachineFunctionAnalysisManager &MFAM) {
65    return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(MF),
66                  MFAM.getResult<MachineDominatorTreeAnalysis>(MF));
67  }
68  
69  PreservedAnalyses
70  LiveIntervalsPrinterPass::run(MachineFunction &MF,
71                                MachineFunctionAnalysisManager &MFAM) {
72    OS << "Live intervals for machine function: " << MF.getName() << ":\n";
73    MFAM.getResult<LiveIntervalsAnalysis>(MF).print(OS);
74    return PreservedAnalyses::all();
75  }
76  
77  char LiveIntervalsWrapperPass::ID = 0;
78  char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID;
79  INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals",
80                        "Live Interval Analysis", false, false)
81  INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
82  INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
83  INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals",
84                      "Live Interval Analysis", false, false)
85  
86  bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) {
87    LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
88    LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
89    LIS.analyze(MF);
90    LLVM_DEBUG(dump());
91    return false;
92  }
93  
94  #ifndef NDEBUG
95  static cl::opt<bool> EnablePrecomputePhysRegs(
96    "precompute-phys-liveness", cl::Hidden,
97    cl::desc("Eagerly compute live intervals for all physreg units."));
98  #else
99  static bool EnablePrecomputePhysRegs = false;
100  #endif // NDEBUG
101  
102  namespace llvm {
103  
104  cl::opt<bool> UseSegmentSetForPhysRegs(
105      "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
106      cl::desc(
107          "Use segment set for the computation of the live ranges of physregs."));
108  
109  } // end namespace llvm
110  
111  void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
112    AU.setPreservesCFG();
113    AU.addPreserved<LiveVariablesWrapperPass>();
114    AU.addPreservedID(MachineLoopInfoID);
115    AU.addRequiredTransitiveID(MachineDominatorsID);
116    AU.addPreservedID(MachineDominatorsID);
117    AU.addPreserved<SlotIndexesWrapperPass>();
118    AU.addRequiredTransitive<SlotIndexesWrapperPass>();
119    MachineFunctionPass::getAnalysisUsage(AU);
120  }
121  
122  LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) {
123    initializeLiveIntervalsWrapperPassPass(*PassRegistry::getPassRegistry());
124  }
125  
126  LiveIntervals::~LiveIntervals() { clear(); }
127  
128  void LiveIntervals::clear() {
129    // Free the live intervals themselves.
130    for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
131      delete VirtRegIntervals[Register::index2VirtReg(i)];
132    VirtRegIntervals.clear();
133    RegMaskSlots.clear();
134    RegMaskBits.clear();
135    RegMaskBlocks.clear();
136  
137    for (LiveRange *LR : RegUnitRanges)
138      delete LR;
139    RegUnitRanges.clear();
140  
141    // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
142    VNInfoAllocator.Reset();
143  }
144  
145  void LiveIntervals::analyze(MachineFunction &fn) {
146    MF = &fn;
147    MRI = &MF->getRegInfo();
148    TRI = MF->getSubtarget().getRegisterInfo();
149    TII = MF->getSubtarget().getInstrInfo();
150  
151    if (!LICalc)
152      LICalc = std::make_unique<LiveIntervalCalc>();
153  
154    // Allocate space for all virtual registers.
155    VirtRegIntervals.resize(MRI->getNumVirtRegs());
156  
157    computeVirtRegs();
158    computeRegMasks();
159    computeLiveInRegUnits();
160  
161    if (EnablePrecomputePhysRegs) {
162      // For stress testing, precompute live ranges of all physical register
163      // units, including reserved registers.
164      for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
165        getRegUnit(i);
166    }
167  }
168  
169  void LiveIntervals::print(raw_ostream &OS) const {
170    OS << "********** INTERVALS **********\n";
171  
172    // Dump the regunits.
173    for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
174      if (LiveRange *LR = RegUnitRanges[Unit])
175        OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
176  
177    // Dump the virtregs.
178    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
179      Register Reg = Register::index2VirtReg(i);
180      if (hasInterval(Reg))
181        OS << getInterval(Reg) << '\n';
182    }
183  
184    OS << "RegMasks:";
185    for (SlotIndex Idx : RegMaskSlots)
186      OS << ' ' << Idx;
187    OS << '\n';
188  
189    printInstrs(OS);
190  }
191  
192  void LiveIntervals::printInstrs(raw_ostream &OS) const {
193    OS << "********** MACHINEINSTRS **********\n";
194    MF->print(OS, Indexes);
195  }
196  
197  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
198  LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
199    printInstrs(dbgs());
200  }
201  #endif
202  
203  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
204  LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); }
205  #endif
206  
207  LiveInterval *LiveIntervals::createInterval(Register reg) {
208    float Weight = reg.isPhysical() ? huge_valf : 0.0F;
209    return new LiveInterval(reg, Weight);
210  }
211  
212  /// Compute the live interval of a virtual register, based on defs and uses.
213  bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
214    assert(LICalc && "LICalc not initialized.");
215    assert(LI.empty() && "Should only compute empty intervals.");
216    LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
217    LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
218    return computeDeadValues(LI, nullptr);
219  }
220  
221  void LiveIntervals::computeVirtRegs() {
222    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
223      Register Reg = Register::index2VirtReg(i);
224      if (MRI->reg_nodbg_empty(Reg))
225        continue;
226      LiveInterval &LI = createEmptyInterval(Reg);
227      bool NeedSplit = computeVirtRegInterval(LI);
228      if (NeedSplit) {
229        SmallVector<LiveInterval*, 8> SplitLIs;
230        splitSeparateComponents(LI, SplitLIs);
231      }
232    }
233  }
234  
235  void LiveIntervals::computeRegMasks() {
236    RegMaskBlocks.resize(MF->getNumBlockIDs());
237  
238    // Find all instructions with regmask operands.
239    for (const MachineBasicBlock &MBB : *MF) {
240      std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
241      RMB.first = RegMaskSlots.size();
242  
243      // Some block starts, such as EH funclets, create masks.
244      if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
245        RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
246        RegMaskBits.push_back(Mask);
247      }
248  
249      // Unwinders may clobber additional registers.
250      // FIXME: This functionality can possibly be merged into
251      // MachineBasicBlock::getBeginClobberMask().
252      if (MBB.isEHPad())
253        if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
254          RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
255          RegMaskBits.push_back(Mask);
256        }
257  
258      for (const MachineInstr &MI : MBB) {
259        for (const MachineOperand &MO : MI.operands()) {
260          if (!MO.isRegMask())
261            continue;
262          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
263          RegMaskBits.push_back(MO.getRegMask());
264        }
265      }
266  
267      // Some block ends, such as funclet returns, create masks. Put the mask on
268      // the last instruction of the block, because MBB slot index intervals are
269      // half-open.
270      if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
271        assert(!MBB.empty() && "empty return block?");
272        RegMaskSlots.push_back(
273            Indexes->getInstructionIndex(MBB.back()).getRegSlot());
274        RegMaskBits.push_back(Mask);
275      }
276  
277      // Compute the number of register mask instructions in this block.
278      RMB.second = RegMaskSlots.size() - RMB.first;
279    }
280  }
281  
282  //===----------------------------------------------------------------------===//
283  //                           Register Unit Liveness
284  //===----------------------------------------------------------------------===//
285  //
286  // Fixed interference typically comes from ABI boundaries: Function arguments
287  // and return values are passed in fixed registers, and so are exception
288  // pointers entering landing pads. Certain instructions require values to be
289  // present in specific registers. That is also represented through fixed
290  // interference.
291  //
292  
293  /// Compute the live range of a register unit, based on the uses and defs of
294  /// aliasing registers.  The range should be empty, or contain only dead
295  /// phi-defs from ABI blocks.
296  void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
297    assert(LICalc && "LICalc not initialized.");
298    LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
299  
300    // The physregs aliasing Unit are the roots and their super-registers.
301    // Create all values as dead defs before extending to uses. Note that roots
302    // may share super-registers. That's OK because createDeadDefs() is
303    // idempotent. It is very rare for a register unit to have multiple roots, so
304    // uniquing super-registers is probably not worthwhile.
305    bool IsReserved = false;
306    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
307      bool IsRootReserved = true;
308      for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
309        if (!MRI->reg_empty(Reg))
310          LICalc->createDeadDefs(LR, Reg);
311        // A register unit is considered reserved if all its roots and all their
312        // super registers are reserved.
313        if (!MRI->isReserved(Reg))
314          IsRootReserved = false;
315      }
316      IsReserved |= IsRootReserved;
317    }
318    assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
319           "reserved computation mismatch");
320  
321    // Now extend LR to reach all uses.
322    // Ignore uses of reserved registers. We only track defs of those.
323    if (!IsReserved) {
324      for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
325        for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
326          if (!MRI->reg_empty(Reg))
327            LICalc->extendToUses(LR, Reg);
328        }
329      }
330    }
331  
332    // Flush the segment set to the segment vector.
333    if (UseSegmentSetForPhysRegs)
334      LR.flushSegmentSet();
335  }
336  
337  /// Precompute the live ranges of any register units that are live-in to an ABI
338  /// block somewhere. Register values can appear without a corresponding def when
339  /// entering the entry block or a landing pad.
340  void LiveIntervals::computeLiveInRegUnits() {
341    RegUnitRanges.resize(TRI->getNumRegUnits());
342    LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
343  
344    // Keep track of the live range sets allocated.
345    SmallVector<unsigned, 8> NewRanges;
346  
347    // Check all basic blocks for live-ins.
348    for (const MachineBasicBlock &MBB : *MF) {
349      // We only care about ABI blocks: Entry + landing pads.
350      if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
351        continue;
352  
353      // Create phi-defs at Begin for all live-in registers.
354      SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
355      LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
356      for (const auto &LI : MBB.liveins()) {
357        for (MCRegUnit Unit : TRI->regunits(LI.PhysReg)) {
358          LiveRange *LR = RegUnitRanges[Unit];
359          if (!LR) {
360            // Use segment set to speed-up initial computation of the live range.
361            LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
362            NewRanges.push_back(Unit);
363          }
364          VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
365          (void)VNI;
366          LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
367        }
368      }
369      LLVM_DEBUG(dbgs() << '\n');
370    }
371    LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
372  
373    // Compute the 'normal' part of the ranges.
374    for (unsigned Unit : NewRanges)
375      computeRegUnitRange(*RegUnitRanges[Unit], Unit);
376  }
377  
378  static void createSegmentsForValues(LiveRange &LR,
379      iterator_range<LiveInterval::vni_iterator> VNIs) {
380    for (VNInfo *VNI : VNIs) {
381      if (VNI->isUnused())
382        continue;
383      SlotIndex Def = VNI->def;
384      LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
385    }
386  }
387  
388  void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
389                                           ShrinkToUsesWorkList &WorkList,
390                                           Register Reg, LaneBitmask LaneMask) {
391    // Keep track of the PHIs that are in use.
392    SmallPtrSet<VNInfo*, 8> UsedPHIs;
393    // Blocks that have already been added to WorkList as live-out.
394    SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
395  
396    auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
397          -> const LiveRange& {
398      if (M.none())
399        return I;
400      for (const LiveInterval::SubRange &SR : I.subranges()) {
401        if ((SR.LaneMask & M).any()) {
402          assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
403          return SR;
404        }
405      }
406      llvm_unreachable("Subrange for mask not found");
407    };
408  
409    const LiveInterval &LI = getInterval(Reg);
410    const LiveRange &OldRange = getSubRange(LI, LaneMask);
411  
412    // Extend intervals to reach all uses in WorkList.
413    while (!WorkList.empty()) {
414      SlotIndex Idx = WorkList.back().first;
415      VNInfo *VNI = WorkList.back().second;
416      WorkList.pop_back();
417      const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
418      SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
419  
420      // Extend the live range for VNI to be live at Idx.
421      if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
422        assert(ExtVNI == VNI && "Unexpected existing value number");
423        (void)ExtVNI;
424        // Is this a PHIDef we haven't seen before?
425        if (!VNI->isPHIDef() || VNI->def != BlockStart ||
426            !UsedPHIs.insert(VNI).second)
427          continue;
428        // The PHI is live, make sure the predecessors are live-out.
429        for (const MachineBasicBlock *Pred : MBB->predecessors()) {
430          if (!LiveOut.insert(Pred).second)
431            continue;
432          SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
433          // A predecessor is not required to have a live-out value for a PHI.
434          if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
435            WorkList.push_back(std::make_pair(Stop, PVNI));
436        }
437        continue;
438      }
439  
440      // VNI is live-in to MBB.
441      LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
442      Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
443  
444      // Make sure VNI is live-out from the predecessors.
445      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
446        if (!LiveOut.insert(Pred).second)
447          continue;
448        SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
449        if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
450          assert(OldVNI == VNI && "Wrong value out of predecessor");
451          (void)OldVNI;
452          WorkList.push_back(std::make_pair(Stop, VNI));
453        } else {
454  #ifndef NDEBUG
455          // There was no old VNI. Verify that Stop is jointly dominated
456          // by <undef>s for this live range.
457          assert(LaneMask.any() &&
458                 "Missing value out of predecessor for main range");
459          SmallVector<SlotIndex,8> Undefs;
460          LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
461          assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
462                 "Missing value out of predecessor for subrange");
463  #endif
464        }
465      }
466    }
467  }
468  
469  bool LiveIntervals::shrinkToUses(LiveInterval *li,
470                                   SmallVectorImpl<MachineInstr*> *dead) {
471    LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
472    assert(li->reg().isVirtual() && "Can only shrink virtual registers");
473  
474    // Shrink subregister live ranges.
475    bool NeedsCleanup = false;
476    for (LiveInterval::SubRange &S : li->subranges()) {
477      shrinkToUses(S, li->reg());
478      if (S.empty())
479        NeedsCleanup = true;
480    }
481    if (NeedsCleanup)
482      li->removeEmptySubRanges();
483  
484    // Find all the values used, including PHI kills.
485    ShrinkToUsesWorkList WorkList;
486  
487    // Visit all instructions reading li->reg().
488    Register Reg = li->reg();
489    for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
490      if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
491        continue;
492      SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
493      LiveQueryResult LRQ = li->Query(Idx);
494      VNInfo *VNI = LRQ.valueIn();
495      if (!VNI) {
496        // This shouldn't happen: readsVirtualRegister returns true, but there is
497        // no live value. It is likely caused by a target getting <undef> flags
498        // wrong.
499        LLVM_DEBUG(
500            dbgs() << Idx << '\t' << UseMI
501                   << "Warning: Instr claims to read non-existent value in "
502                   << *li << '\n');
503        continue;
504      }
505      // Special case: An early-clobber tied operand reads and writes the
506      // register one slot early.
507      if (VNInfo *DefVNI = LRQ.valueDefined())
508        Idx = DefVNI->def;
509  
510      WorkList.push_back(std::make_pair(Idx, VNI));
511    }
512  
513    // Create new live ranges with only minimal live segments per def.
514    LiveRange NewLR;
515    createSegmentsForValues(NewLR, li->vnis());
516    extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
517  
518    // Move the trimmed segments back.
519    li->segments.swap(NewLR.segments);
520  
521    // Handle dead values.
522    bool CanSeparate = computeDeadValues(*li, dead);
523    LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
524    return CanSeparate;
525  }
526  
527  bool LiveIntervals::computeDeadValues(LiveInterval &LI,
528                                        SmallVectorImpl<MachineInstr*> *dead) {
529    bool MayHaveSplitComponents = false;
530  
531    for (VNInfo *VNI : LI.valnos) {
532      if (VNI->isUnused())
533        continue;
534      SlotIndex Def = VNI->def;
535      LiveRange::iterator I = LI.FindSegmentContaining(Def);
536      assert(I != LI.end() && "Missing segment for VNI");
537  
538      // Is the register live before? Otherwise we may have to add a read-undef
539      // flag for subregister defs.
540      Register VReg = LI.reg();
541      if (MRI->shouldTrackSubRegLiveness(VReg)) {
542        if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
543          MachineInstr *MI = getInstructionFromIndex(Def);
544          MI->setRegisterDefReadUndef(VReg);
545        }
546      }
547  
548      if (I->end != Def.getDeadSlot())
549        continue;
550      if (VNI->isPHIDef()) {
551        // This is a dead PHI. Remove it.
552        VNI->markUnused();
553        LI.removeSegment(I);
554        LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
555      } else {
556        // This is a dead def. Make sure the instruction knows.
557        MachineInstr *MI = getInstructionFromIndex(Def);
558        assert(MI && "No instruction defining live value");
559        MI->addRegisterDead(LI.reg(), TRI);
560  
561        if (dead && MI->allDefsAreDead()) {
562          LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
563          dead->push_back(MI);
564        }
565      }
566      MayHaveSplitComponents = true;
567    }
568    return MayHaveSplitComponents;
569  }
570  
571  void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
572    LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
573    assert(Reg.isVirtual() && "Can only shrink virtual registers");
574    // Find all the values used, including PHI kills.
575    ShrinkToUsesWorkList WorkList;
576  
577    // Visit all instructions reading Reg.
578    SlotIndex LastIdx;
579    for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
580      // Skip "undef" uses.
581      if (!MO.readsReg())
582        continue;
583      // Maybe the operand is for a subregister we don't care about.
584      unsigned SubReg = MO.getSubReg();
585      if (SubReg != 0) {
586        LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
587        if ((LaneMask & SR.LaneMask).none())
588          continue;
589      }
590      // We only need to visit each instruction once.
591      MachineInstr *UseMI = MO.getParent();
592      SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
593      if (Idx == LastIdx)
594        continue;
595      LastIdx = Idx;
596  
597      LiveQueryResult LRQ = SR.Query(Idx);
598      VNInfo *VNI = LRQ.valueIn();
599      // For Subranges it is possible that only undef values are left in that
600      // part of the subregister, so there is no real liverange at the use
601      if (!VNI)
602        continue;
603  
604      // Special case: An early-clobber tied operand reads and writes the
605      // register one slot early.
606      if (VNInfo *DefVNI = LRQ.valueDefined())
607        Idx = DefVNI->def;
608  
609      WorkList.push_back(std::make_pair(Idx, VNI));
610    }
611  
612    // Create a new live ranges with only minimal live segments per def.
613    LiveRange NewLR;
614    createSegmentsForValues(NewLR, SR.vnis());
615    extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
616  
617    // Move the trimmed ranges back.
618    SR.segments.swap(NewLR.segments);
619  
620    // Remove dead PHI value numbers
621    for (VNInfo *VNI : SR.valnos) {
622      if (VNI->isUnused())
623        continue;
624      const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
625      assert(Segment != nullptr && "Missing segment for VNI");
626      if (Segment->end != VNI->def.getDeadSlot())
627        continue;
628      if (VNI->isPHIDef()) {
629        // This is a dead PHI. Remove it.
630        LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
631                          << " may separate interval\n");
632        VNI->markUnused();
633        SR.removeSegment(*Segment);
634      }
635    }
636  
637    LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
638  }
639  
640  void LiveIntervals::extendToIndices(LiveRange &LR,
641                                      ArrayRef<SlotIndex> Indices,
642                                      ArrayRef<SlotIndex> Undefs) {
643    assert(LICalc && "LICalc not initialized.");
644    LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
645    for (SlotIndex Idx : Indices)
646      LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
647  }
648  
649  void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
650                                 SmallVectorImpl<SlotIndex> *EndPoints) {
651    LiveQueryResult LRQ = LR.Query(Kill);
652    VNInfo *VNI = LRQ.valueOutOrDead();
653    if (!VNI)
654      return;
655  
656    MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
657    SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
658  
659    // If VNI isn't live out from KillMBB, the value is trivially pruned.
660    if (LRQ.endPoint() < MBBEnd) {
661      LR.removeSegment(Kill, LRQ.endPoint());
662      if (EndPoints) EndPoints->push_back(LRQ.endPoint());
663      return;
664    }
665  
666    // VNI is live out of KillMBB.
667    LR.removeSegment(Kill, MBBEnd);
668    if (EndPoints) EndPoints->push_back(MBBEnd);
669  
670    // Find all blocks that are reachable from KillMBB without leaving VNI's live
671    // range. It is possible that KillMBB itself is reachable, so start a DFS
672    // from each successor.
673    using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
674    VisitedTy Visited;
675    for (MachineBasicBlock *Succ : KillMBB->successors()) {
676      for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
677           I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
678           I != E;) {
679        MachineBasicBlock *MBB = *I;
680  
681        // Check if VNI is live in to MBB.
682        SlotIndex MBBStart, MBBEnd;
683        std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
684        LiveQueryResult LRQ = LR.Query(MBBStart);
685        if (LRQ.valueIn() != VNI) {
686          // This block isn't part of the VNI segment. Prune the search.
687          I.skipChildren();
688          continue;
689        }
690  
691        // Prune the search if VNI is killed in MBB.
692        if (LRQ.endPoint() < MBBEnd) {
693          LR.removeSegment(MBBStart, LRQ.endPoint());
694          if (EndPoints) EndPoints->push_back(LRQ.endPoint());
695          I.skipChildren();
696          continue;
697        }
698  
699        // VNI is live through MBB.
700        LR.removeSegment(MBBStart, MBBEnd);
701        if (EndPoints) EndPoints->push_back(MBBEnd);
702        ++I;
703      }
704    }
705  }
706  
707  //===----------------------------------------------------------------------===//
708  // Register allocator hooks.
709  //
710  
711  void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
712    // Keep track of regunit ranges.
713    SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
714  
715    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
716      Register Reg = Register::index2VirtReg(i);
717      if (MRI->reg_nodbg_empty(Reg))
718        continue;
719      const LiveInterval &LI = getInterval(Reg);
720      if (LI.empty())
721        continue;
722  
723      // Target may have not allocated this yet.
724      Register PhysReg = VRM->getPhys(Reg);
725      if (!PhysReg)
726        continue;
727  
728      // Find the regunit intervals for the assigned register. They may overlap
729      // the virtual register live range, cancelling any kills.
730      RU.clear();
731      for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
732        const LiveRange &RURange = getRegUnit(Unit);
733        if (RURange.empty())
734          continue;
735        RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
736      }
737      // Every instruction that kills Reg corresponds to a segment range end
738      // point.
739      for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
740           ++RI) {
741        // A block index indicates an MBB edge.
742        if (RI->end.isBlock())
743          continue;
744        MachineInstr *MI = getInstructionFromIndex(RI->end);
745        if (!MI)
746          continue;
747  
748        // Check if any of the regunits are live beyond the end of RI. That could
749        // happen when a physreg is defined as a copy of a virtreg:
750        //
751        //   %eax = COPY %5
752        //   FOO %5             <--- MI, cancel kill because %eax is live.
753        //   BAR killed %eax
754        //
755        // There should be no kill flag on FOO when %5 is rewritten as %eax.
756        for (auto &RUP : RU) {
757          const LiveRange &RURange = *RUP.first;
758          LiveRange::const_iterator &I = RUP.second;
759          if (I == RURange.end())
760            continue;
761          I = RURange.advanceTo(I, RI->end);
762          if (I == RURange.end() || I->start >= RI->end)
763            continue;
764          // I is overlapping RI.
765          goto CancelKill;
766        }
767  
768        if (MRI->subRegLivenessEnabled()) {
769          // When reading a partial undefined value we must not add a kill flag.
770          // The regalloc might have used the undef lane for something else.
771          // Example:
772          //     %1 = ...                  ; R32: %1
773          //     %2:high16 = ...           ; R64: %2
774          //        = read killed %2        ; R64: %2
775          //        = read %1              ; R32: %1
776          // The <kill> flag is correct for %2, but the register allocator may
777          // assign R0L to %1, and R0 to %2 because the low 32bits of R0
778          // are actually never written by %2. After assignment the <kill>
779          // flag at the read instruction is invalid.
780          LaneBitmask DefinedLanesMask;
781          if (LI.hasSubRanges()) {
782            // Compute a mask of lanes that are defined.
783            DefinedLanesMask = LaneBitmask::getNone();
784            for (const LiveInterval::SubRange &SR : LI.subranges())
785              for (const LiveRange::Segment &Segment : SR.segments) {
786                if (Segment.start >= RI->end)
787                  break;
788                if (Segment.end == RI->end) {
789                  DefinedLanesMask |= SR.LaneMask;
790                  break;
791                }
792              }
793          } else
794            DefinedLanesMask = LaneBitmask::getAll();
795  
796          bool IsFullWrite = false;
797          for (const MachineOperand &MO : MI->operands()) {
798            if (!MO.isReg() || MO.getReg() != Reg)
799              continue;
800            if (MO.isUse()) {
801              // Reading any undefined lanes?
802              unsigned SubReg = MO.getSubReg();
803              LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
804                                           : MRI->getMaxLaneMaskForVReg(Reg);
805              if ((UseMask & ~DefinedLanesMask).any())
806                goto CancelKill;
807            } else if (MO.getSubReg() == 0) {
808              // Writing to the full register?
809              assert(MO.isDef());
810              IsFullWrite = true;
811            }
812          }
813  
814          // If an instruction writes to a subregister, a new segment starts in
815          // the LiveInterval. But as this is only overriding part of the register
816          // adding kill-flags is not correct here after registers have been
817          // assigned.
818          if (!IsFullWrite) {
819            // Next segment has to be adjacent in the subregister write case.
820            LiveRange::const_iterator N = std::next(RI);
821            if (N != LI.end() && N->start == RI->end)
822              goto CancelKill;
823          }
824        }
825  
826        MI->addRegisterKilled(Reg, nullptr);
827        continue;
828  CancelKill:
829        MI->clearRegisterKills(Reg, nullptr);
830      }
831    }
832  }
833  
834  MachineBasicBlock*
835  LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
836    assert(!LI.empty() && "LiveInterval is empty.");
837  
838    // A local live range must be fully contained inside the block, meaning it is
839    // defined and killed at instructions, not at block boundaries. It is not
840    // live in or out of any block.
841    //
842    // It is technically possible to have a PHI-defined live range identical to a
843    // single block, but we are going to return false in that case.
844  
845    SlotIndex Start = LI.beginIndex();
846    if (Start.isBlock())
847      return nullptr;
848  
849    SlotIndex Stop = LI.endIndex();
850    if (Stop.isBlock())
851      return nullptr;
852  
853    // getMBBFromIndex doesn't need to search the MBB table when both indexes
854    // belong to proper instructions.
855    MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
856    MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
857    return MBB1 == MBB2 ? MBB1 : nullptr;
858  }
859  
860  bool
861  LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
862    for (const VNInfo *PHI : LI.valnos) {
863      if (PHI->isUnused() || !PHI->isPHIDef())
864        continue;
865      const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
866      // Conservatively return true instead of scanning huge predecessor lists.
867      if (PHIMBB->pred_size() > 100)
868        return true;
869      for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
870        if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
871          return true;
872    }
873    return false;
874  }
875  
876  float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
877                                      const MachineBlockFrequencyInfo *MBFI,
878                                      const MachineInstr &MI) {
879    return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
880  }
881  
882  float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
883                                      const MachineBlockFrequencyInfo *MBFI,
884                                      const MachineBasicBlock *MBB) {
885    return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
886  }
887  
888  LiveRange::Segment
889  LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
890    LiveInterval &Interval = getOrCreateEmptyInterval(Reg);
891    VNInfo *VN = Interval.getNextValue(
892        SlotIndex(getInstructionIndex(startInst).getRegSlot()),
893        getVNInfoAllocator());
894    LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
895                         getMBBEndIdx(startInst.getParent()), VN);
896    Interval.addSegment(S);
897  
898    return S;
899  }
900  
901  //===----------------------------------------------------------------------===//
902  //                          Register mask functions
903  //===----------------------------------------------------------------------===//
904  /// Check whether use of reg in MI is live-through. Live-through means that
905  /// the value is alive on exit from Machine instruction. The example of such
906  /// use is a deopt value in statepoint instruction.
907  static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
908    if (MI->getOpcode() != TargetOpcode::STATEPOINT)
909      return false;
910    StatepointOpers SO(MI);
911    if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
912      return false;
913    for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
914         ++Idx) {
915      const MachineOperand &MO = MI->getOperand(Idx);
916      if (MO.isReg() && MO.getReg() == Reg)
917        return true;
918    }
919    return false;
920  }
921  
922  bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
923                                               BitVector &UsableRegs) {
924    if (LI.empty())
925      return false;
926    LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
927  
928    // Use a smaller arrays for local live ranges.
929    ArrayRef<SlotIndex> Slots;
930    ArrayRef<const uint32_t*> Bits;
931    if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
932      Slots = getRegMaskSlotsInBlock(MBB->getNumber());
933      Bits = getRegMaskBitsInBlock(MBB->getNumber());
934    } else {
935      Slots = getRegMaskSlots();
936      Bits = getRegMaskBits();
937    }
938  
939    // We are going to enumerate all the register mask slots contained in LI.
940    // Start with a binary search of RegMaskSlots to find a starting point.
941    ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
942    ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
943  
944    // No slots in range, LI begins after the last call.
945    if (SlotI == SlotE)
946      return false;
947  
948    bool Found = false;
949    // Utility to union regmasks.
950    auto unionBitMask = [&](unsigned Idx) {
951        if (!Found) {
952          // This is the first overlap. Initialize UsableRegs to all ones.
953          UsableRegs.clear();
954          UsableRegs.resize(TRI->getNumRegs(), true);
955          Found = true;
956        }
957        // Remove usable registers clobbered by this mask.
958        UsableRegs.clearBitsNotInMask(Bits[Idx]);
959    };
960    while (true) {
961      assert(*SlotI >= LiveI->start);
962      // Loop over all slots overlapping this segment.
963      while (*SlotI < LiveI->end) {
964        // *SlotI overlaps LI. Collect mask bits.
965        unionBitMask(SlotI - Slots.begin());
966        if (++SlotI == SlotE)
967          return Found;
968      }
969      // If segment ends with live-through use we need to collect its regmask.
970      if (*SlotI == LiveI->end)
971        if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
972          if (hasLiveThroughUse(MI, LI.reg()))
973            unionBitMask(SlotI++ - Slots.begin());
974      // *SlotI is beyond the current LI segment.
975      // Special advance implementation to not miss next LiveI->end.
976      if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
977        return Found;
978      while (LiveI->end < *SlotI)
979        ++LiveI;
980      // Advance SlotI until it overlaps.
981      while (*SlotI < LiveI->start)
982        if (++SlotI == SlotE)
983          return Found;
984    }
985  }
986  
987  //===----------------------------------------------------------------------===//
988  //                         IntervalUpdate class.
989  //===----------------------------------------------------------------------===//
990  
991  /// Toolkit used by handleMove to trim or extend live intervals.
992  class LiveIntervals::HMEditor {
993  private:
994    LiveIntervals& LIS;
995    const MachineRegisterInfo& MRI;
996    const TargetRegisterInfo& TRI;
997    SlotIndex OldIdx;
998    SlotIndex NewIdx;
999    SmallPtrSet<LiveRange*, 8> Updated;
1000    bool UpdateFlags;
1001  
1002  public:
1003    HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
1004             const TargetRegisterInfo& TRI,
1005             SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
1006      : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
1007        UpdateFlags(UpdateFlags) {}
1008  
1009    // FIXME: UpdateFlags is a workaround that creates live intervals for all
1010    // physregs, even those that aren't needed for regalloc, in order to update
1011    // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
1012    // flags, and postRA passes will use a live register utility instead.
1013    LiveRange *getRegUnitLI(unsigned Unit) {
1014      if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
1015        return &LIS.getRegUnit(Unit);
1016      return LIS.getCachedRegUnit(Unit);
1017    }
1018  
1019    /// Update all live ranges touched by MI, assuming a move from OldIdx to
1020    /// NewIdx.
1021    void updateAllRanges(MachineInstr *MI) {
1022      LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1023                        << *MI);
1024      bool hasRegMask = false;
1025      for (MachineOperand &MO : MI->operands()) {
1026        if (MO.isRegMask())
1027          hasRegMask = true;
1028        if (!MO.isReg())
1029          continue;
1030        if (MO.isUse()) {
1031          if (!MO.readsReg())
1032            continue;
1033          // Aggressively clear all kill flags.
1034          // They are reinserted by VirtRegRewriter.
1035          MO.setIsKill(false);
1036        }
1037  
1038        Register Reg = MO.getReg();
1039        if (!Reg)
1040          continue;
1041        if (Reg.isVirtual()) {
1042          LiveInterval &LI = LIS.getInterval(Reg);
1043          if (LI.hasSubRanges()) {
1044            unsigned SubReg = MO.getSubReg();
1045            LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1046                                          : MRI.getMaxLaneMaskForVReg(Reg);
1047            for (LiveInterval::SubRange &S : LI.subranges()) {
1048              if ((S.LaneMask & LaneMask).none())
1049                continue;
1050              updateRange(S, Reg, S.LaneMask);
1051            }
1052          }
1053          updateRange(LI, Reg, LaneBitmask::getNone());
1054          // If main range has a hole and we are moving a subrange use across
1055          // the hole updateRange() cannot properly handle it since it only
1056          // gets the LiveRange and not the whole LiveInterval. As a result
1057          // we may end up with a main range not covering all subranges.
1058          // This is extremely rare case, so let's check and reconstruct the
1059          // main range.
1060          if (LI.hasSubRanges()) {
1061            unsigned SubReg = MO.getSubReg();
1062            LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1063                                          : MRI.getMaxLaneMaskForVReg(Reg);
1064            for (LiveInterval::SubRange &S : LI.subranges()) {
1065              if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1066                continue;
1067              LI.clear();
1068              LIS.constructMainRangeFromSubranges(LI);
1069              break;
1070            }
1071          }
1072  
1073          continue;
1074        }
1075  
1076        // For physregs, only update the regunits that actually have a
1077        // precomputed live range.
1078        for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg()))
1079          if (LiveRange *LR = getRegUnitLI(Unit))
1080            updateRange(*LR, Unit, LaneBitmask::getNone());
1081      }
1082      if (hasRegMask)
1083        updateRegMaskSlots();
1084    }
1085  
1086  private:
1087    /// Update a single live range, assuming an instruction has been moved from
1088    /// OldIdx to NewIdx.
1089    void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1090      if (!Updated.insert(&LR).second)
1091        return;
1092      LLVM_DEBUG({
1093        dbgs() << "     ";
1094        if (Reg.isVirtual()) {
1095          dbgs() << printReg(Reg);
1096          if (LaneMask.any())
1097            dbgs() << " L" << PrintLaneMask(LaneMask);
1098        } else {
1099          dbgs() << printRegUnit(Reg, &TRI);
1100        }
1101        dbgs() << ":\t" << LR << '\n';
1102      });
1103      if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1104        handleMoveDown(LR);
1105      else
1106        handleMoveUp(LR, Reg, LaneMask);
1107      LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1108      LR.verify();
1109    }
1110  
1111    /// Update LR to reflect an instruction has been moved downwards from OldIdx
1112    /// to NewIdx (OldIdx < NewIdx).
1113    void handleMoveDown(LiveRange &LR) {
1114      LiveRange::iterator E = LR.end();
1115      // Segment going into OldIdx.
1116      LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1117  
1118      // No value live before or after OldIdx? Nothing to do.
1119      if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1120        return;
1121  
1122      LiveRange::iterator OldIdxOut;
1123      // Do we have a value live-in to OldIdx?
1124      if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1125        // If the live-in value already extends to NewIdx, there is nothing to do.
1126        if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1127          return;
1128        // Aggressively remove all kill flags from the old kill point.
1129        // Kill flags shouldn't be used while live intervals exist, they will be
1130        // reinserted by VirtRegRewriter.
1131        if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1132          for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1133            if (MOP.isReg() && MOP.isUse())
1134              MOP.setIsKill(false);
1135  
1136        // Is there a def before NewIdx which is not OldIdx?
1137        LiveRange::iterator Next = std::next(OldIdxIn);
1138        if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1139            SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1140          // If we are here then OldIdx was just a use but not a def. We only have
1141          // to ensure liveness extends to NewIdx.
1142          LiveRange::iterator NewIdxIn =
1143            LR.advanceTo(Next, NewIdx.getBaseIndex());
1144          // Extend the segment before NewIdx if necessary.
1145          if (NewIdxIn == E ||
1146              !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1147            LiveRange::iterator Prev = std::prev(NewIdxIn);
1148            Prev->end = NewIdx.getRegSlot();
1149          }
1150          // Extend OldIdxIn.
1151          OldIdxIn->end = Next->start;
1152          return;
1153        }
1154  
1155        // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1156        // invalid by overlapping ranges.
1157        bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1158        OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1159        // If this was not a kill, then there was no def and we're done.
1160        if (!isKill)
1161          return;
1162  
1163        // Did we have a Def at OldIdx?
1164        OldIdxOut = Next;
1165        if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1166          return;
1167      } else {
1168        OldIdxOut = OldIdxIn;
1169      }
1170  
1171      // If we are here then there is a Definition at OldIdx. OldIdxOut points
1172      // to the segment starting there.
1173      assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1174             "No def?");
1175      VNInfo *OldIdxVNI = OldIdxOut->valno;
1176      assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1177  
1178      // If the defined value extends beyond NewIdx, just move the beginning
1179      // of the segment to NewIdx.
1180      SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1181      if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1182        OldIdxVNI->def = NewIdxDef;
1183        OldIdxOut->start = OldIdxVNI->def;
1184        return;
1185      }
1186  
1187      // If we are here then we have a Definition at OldIdx which ends before
1188      // NewIdx.
1189  
1190      // Is there an existing Def at NewIdx?
1191      LiveRange::iterator AfterNewIdx
1192        = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1193      bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1194      if (!OldIdxDefIsDead &&
1195          SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1196        // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1197        VNInfo *DefVNI;
1198        if (OldIdxOut != LR.begin() &&
1199            !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1200                                       OldIdxOut->start)) {
1201          // There is no gap between OldIdxOut and its predecessor anymore,
1202          // merge them.
1203          LiveRange::iterator IPrev = std::prev(OldIdxOut);
1204          DefVNI = OldIdxVNI;
1205          IPrev->end = OldIdxOut->end;
1206        } else {
1207          // The value is live in to OldIdx
1208          LiveRange::iterator INext = std::next(OldIdxOut);
1209          assert(INext != E && "Must have following segment");
1210          // We merge OldIdxOut and its successor. As we're dealing with subreg
1211          // reordering, there is always a successor to OldIdxOut in the same BB
1212          // We don't need INext->valno anymore and will reuse for the new segment
1213          // we create later.
1214          DefVNI = OldIdxVNI;
1215          INext->start = OldIdxOut->end;
1216          INext->valno->def = INext->start;
1217        }
1218        // If NewIdx is behind the last segment, extend that and append a new one.
1219        if (AfterNewIdx == E) {
1220          // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1221          // one position.
1222          //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1223          // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1224          std::copy(std::next(OldIdxOut), E, OldIdxOut);
1225          // The last segment is undefined now, reuse it for a dead def.
1226          LiveRange::iterator NewSegment = std::prev(E);
1227          *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1228                                           DefVNI);
1229          DefVNI->def = NewIdxDef;
1230  
1231          LiveRange::iterator Prev = std::prev(NewSegment);
1232          Prev->end = NewIdxDef;
1233        } else {
1234          // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1235          // one position.
1236          //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1237          // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1238          std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1239          LiveRange::iterator Prev = std::prev(AfterNewIdx);
1240          // We have two cases:
1241          if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1242            // Case 1: NewIdx is inside a liverange. Split this liverange at
1243            // NewIdxDef into the segment "Prev" followed by "NewSegment".
1244            LiveRange::iterator NewSegment = AfterNewIdx;
1245            *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1246            Prev->valno->def = NewIdxDef;
1247  
1248            *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1249            DefVNI->def = Prev->start;
1250          } else {
1251            // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1252            // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1253            *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1254            DefVNI->def = NewIdxDef;
1255            assert(DefVNI != AfterNewIdx->valno);
1256          }
1257        }
1258        return;
1259      }
1260  
1261      if (AfterNewIdx != E &&
1262          SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1263        // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1264        // that value.
1265        assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1266        LR.removeValNo(OldIdxVNI);
1267      } else {
1268        // There was no existing def at NewIdx. We need to create a dead def
1269        // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1270        // a new segment at the place where we want to construct the dead def.
1271        //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1272        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1273        assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1274        std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1275        // We can reuse OldIdxVNI now.
1276        LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1277        VNInfo *NewSegmentVNI = OldIdxVNI;
1278        NewSegmentVNI->def = NewIdxDef;
1279        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1280                                         NewSegmentVNI);
1281      }
1282    }
1283  
1284    /// Update LR to reflect an instruction has been moved upwards from OldIdx
1285    /// to NewIdx (NewIdx < OldIdx).
1286    void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1287      LiveRange::iterator E = LR.end();
1288      // Segment going into OldIdx.
1289      LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1290  
1291      // No value live before or after OldIdx? Nothing to do.
1292      if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1293        return;
1294  
1295      LiveRange::iterator OldIdxOut;
1296      // Do we have a value live-in to OldIdx?
1297      if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1298        // If the live-in value isn't killed here, then we have no Def at
1299        // OldIdx, moreover the value must be live at NewIdx so there is nothing
1300        // to do.
1301        bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1302        if (!isKill)
1303          return;
1304  
1305        // At this point we have to move OldIdxIn->end back to the nearest
1306        // previous use or (dead-)def but no further than NewIdx.
1307        SlotIndex DefBeforeOldIdx
1308          = std::max(OldIdxIn->start.getDeadSlot(),
1309                     NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1310        OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1311  
1312        // Did we have a Def at OldIdx? If not we are done now.
1313        OldIdxOut = std::next(OldIdxIn);
1314        if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1315          return;
1316      } else {
1317        OldIdxOut = OldIdxIn;
1318        OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1319      }
1320  
1321      // If we are here then there is a Definition at OldIdx. OldIdxOut points
1322      // to the segment starting there.
1323      assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1324             "No def?");
1325      VNInfo *OldIdxVNI = OldIdxOut->valno;
1326      assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1327      bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1328  
1329      // Is there an existing def at NewIdx?
1330      SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1331      LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1332      if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1333        assert(NewIdxOut->valno != OldIdxVNI &&
1334               "Same value defined more than once?");
1335        // If OldIdx was a dead def remove it.
1336        if (!OldIdxDefIsDead) {
1337          // Remove segment starting at NewIdx and move begin of OldIdxOut to
1338          // NewIdx so it can take its place.
1339          OldIdxVNI->def = NewIdxDef;
1340          OldIdxOut->start = NewIdxDef;
1341          LR.removeValNo(NewIdxOut->valno);
1342        } else {
1343          // Simply remove the dead def at OldIdx.
1344          LR.removeValNo(OldIdxVNI);
1345        }
1346      } else {
1347        // Previously nothing was live after NewIdx, so all we have to do now is
1348        // move the begin of OldIdxOut to NewIdx.
1349        if (!OldIdxDefIsDead) {
1350          // Do we have any intermediate Defs between OldIdx and NewIdx?
1351          if (OldIdxIn != E &&
1352              SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1353            // OldIdx is not a dead def and NewIdx is before predecessor start.
1354            LiveRange::iterator NewIdxIn = NewIdxOut;
1355            assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1356            const SlotIndex SplitPos = NewIdxDef;
1357            OldIdxVNI = OldIdxIn->valno;
1358  
1359            SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1360            LiveRange::iterator Prev = std::prev(OldIdxIn);
1361            if (OldIdxIn != LR.begin() &&
1362                SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1363              // If the segment before OldIdx read a value defined earlier than
1364              // NewIdx, the moved instruction also reads and forwards that
1365              // value. Extend the lifetime of the new def point.
1366  
1367              // Extend to where the previous range started, unless there is
1368              // another redef first.
1369              NewDefEndPoint = std::min(OldIdxIn->start,
1370                                        std::next(NewIdxOut)->start);
1371            }
1372  
1373            // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1374            OldIdxOut->valno->def = OldIdxIn->start;
1375            *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1376                                            OldIdxOut->valno);
1377            // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1378            // We Slide [NewIdxIn, OldIdxIn) down one position.
1379            //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1380            // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1381            std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1382            // NewIdxIn is now considered undef so we can reuse it for the moved
1383            // value.
1384            LiveRange::iterator NewSegment = NewIdxIn;
1385            LiveRange::iterator Next = std::next(NewSegment);
1386            if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1387              // There is no gap between NewSegment and its predecessor.
1388              *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1389                                               Next->valno);
1390  
1391              *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1392              Next->valno->def = SplitPos;
1393            } else {
1394              // There is a gap between NewSegment and its predecessor
1395              // Value becomes live in.
1396              *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1397              NewSegment->valno->def = SplitPos;
1398            }
1399          } else {
1400            // Leave the end point of a live def.
1401            OldIdxOut->start = NewIdxDef;
1402            OldIdxVNI->def = NewIdxDef;
1403            if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1404              OldIdxIn->end = NewIdxDef;
1405          }
1406        } else if (OldIdxIn != E
1407            && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1408            && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1409          // OldIdxVNI is a dead def that has been moved into the middle of
1410          // another value in LR. That can happen when LR is a whole register,
1411          // but the dead def is a write to a subreg that is dead at NewIdx.
1412          // The dead def may have been moved across other values
1413          // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1414          // down one position.
1415          //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1416          // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1417          std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1418          // Modify the segment at NewIdxOut and the following segment to meet at
1419          // the point of the dead def, with the following segment getting
1420          // OldIdxVNI as its value number.
1421          *NewIdxOut = LiveRange::Segment(
1422              NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1423          *(NewIdxOut + 1) = LiveRange::Segment(
1424              NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1425          OldIdxVNI->def = NewIdxDef;
1426          // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1427          for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1428            Idx->valno = OldIdxVNI;
1429          // Aggressively remove all dead flags from the former dead definition.
1430          // Kill/dead flags shouldn't be used while live intervals exist; they
1431          // will be reinserted by VirtRegRewriter.
1432          if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1433            for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1434              if (MO->isReg() && !MO->isUse())
1435                MO->setIsDead(false);
1436        } else {
1437          // OldIdxVNI is a dead def. It may have been moved across other values
1438          // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1439          // down one position.
1440          //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1441          // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1442          std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1443          // OldIdxVNI can be reused now to build a new dead def segment.
1444          LiveRange::iterator NewSegment = NewIdxOut;
1445          VNInfo *NewSegmentVNI = OldIdxVNI;
1446          *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1447                                           NewSegmentVNI);
1448          NewSegmentVNI->def = NewIdxDef;
1449        }
1450      }
1451    }
1452  
1453    void updateRegMaskSlots() {
1454      SmallVectorImpl<SlotIndex>::iterator RI =
1455          llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1456      assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1457             "No RegMask at OldIdx.");
1458      *RI = NewIdx.getRegSlot();
1459      assert((RI == LIS.RegMaskSlots.begin() ||
1460              SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1461             "Cannot move regmask instruction above another call");
1462      assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1463              SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1464             "Cannot move regmask instruction below another call");
1465    }
1466  
1467    // Return the last use of reg between NewIdx and OldIdx.
1468    SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1469                                LaneBitmask LaneMask) {
1470      if (Reg.isVirtual()) {
1471        SlotIndex LastUse = Before;
1472        for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1473          if (MO.isUndef())
1474            continue;
1475          unsigned SubReg = MO.getSubReg();
1476          if (SubReg != 0 && LaneMask.any()
1477              && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1478            continue;
1479  
1480          const MachineInstr &MI = *MO.getParent();
1481          SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1482          if (InstSlot > LastUse && InstSlot < OldIdx)
1483            LastUse = InstSlot.getRegSlot();
1484        }
1485        return LastUse;
1486      }
1487  
1488      // This is a regunit interval, so scanning the use list could be very
1489      // expensive. Scan upwards from OldIdx instead.
1490      assert(Before < OldIdx && "Expected upwards move");
1491      SlotIndexes *Indexes = LIS.getSlotIndexes();
1492      MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1493  
1494      // OldIdx may not correspond to an instruction any longer, so set MII to
1495      // point to the next instruction after OldIdx, or MBB->end().
1496      MachineBasicBlock::iterator MII = MBB->end();
1497      if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1498                             Indexes->getNextNonNullIndex(OldIdx)))
1499        if (MI->getParent() == MBB)
1500          MII = MI;
1501  
1502      MachineBasicBlock::iterator Begin = MBB->begin();
1503      while (MII != Begin) {
1504        if ((--MII)->isDebugOrPseudoInstr())
1505          continue;
1506        SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1507  
1508        // Stop searching when Before is reached.
1509        if (!SlotIndex::isEarlierInstr(Before, Idx))
1510          return Before;
1511  
1512        // Check if MII uses Reg.
1513        for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1514          if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1515              TRI.hasRegUnit(MO->getReg(), Reg))
1516            return Idx.getRegSlot();
1517      }
1518      // Didn't reach Before. It must be the first instruction in the block.
1519      return Before;
1520    }
1521  };
1522  
1523  void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1524    // It is fine to move a bundle as a whole, but not an individual instruction
1525    // inside it.
1526    assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1527           "Cannot move instruction in bundle");
1528    SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1529    Indexes->removeMachineInstrFromMaps(MI);
1530    SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1531    assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1532           OldIndex < getMBBEndIdx(MI.getParent()) &&
1533           "Cannot handle moves across basic block boundaries.");
1534  
1535    HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1536    HME.updateAllRanges(&MI);
1537  }
1538  
1539  void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1540                                              bool UpdateFlags) {
1541    assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1542           "Bundle start is not a bundle");
1543    SmallVector<SlotIndex, 16> ToProcess;
1544    const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1545    auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1546  
1547    auto I = BundleStart.getIterator();
1548    I++;
1549    while (I != BundleEnd) {
1550      if (!Indexes->hasIndex(*I))
1551        continue;
1552      SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1553      ToProcess.push_back(OldIndex);
1554      Indexes->removeMachineInstrFromMaps(*I, true);
1555      I++;
1556    }
1557    for (SlotIndex OldIndex : ToProcess) {
1558      HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1559      HME.updateAllRanges(&BundleStart);
1560    }
1561  
1562    // Fix up dead defs
1563    const SlotIndex Index = getInstructionIndex(BundleStart);
1564    for (MachineOperand &MO : BundleStart.operands()) {
1565      if (!MO.isReg())
1566        continue;
1567      Register Reg = MO.getReg();
1568      if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1569        LiveInterval &LI = getInterval(Reg);
1570        LiveQueryResult LRQ = LI.Query(Index);
1571        if (LRQ.isDeadDef())
1572          MO.setIsDead();
1573      }
1574    }
1575  }
1576  
1577  void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1578                                          const MachineBasicBlock::iterator End,
1579                                          const SlotIndex EndIdx, LiveRange &LR,
1580                                          const Register Reg,
1581                                          LaneBitmask LaneMask) {
1582    LiveInterval::iterator LII = LR.find(EndIdx);
1583    SlotIndex lastUseIdx;
1584    if (LII != LR.end() && LII->start < EndIdx) {
1585      lastUseIdx = LII->end;
1586    } else if (LII == LR.begin()) {
1587      // We may not have a liverange at all if this is a subregister untouched
1588      // between \p Begin and \p End.
1589    } else {
1590      --LII;
1591    }
1592  
1593    for (MachineBasicBlock::iterator I = End; I != Begin;) {
1594      --I;
1595      MachineInstr &MI = *I;
1596      if (MI.isDebugOrPseudoInstr())
1597        continue;
1598  
1599      SlotIndex instrIdx = getInstructionIndex(MI);
1600      bool isStartValid = getInstructionFromIndex(LII->start);
1601      bool isEndValid = getInstructionFromIndex(LII->end);
1602  
1603      // FIXME: This doesn't currently handle early-clobber or multiple removed
1604      // defs inside of the region to repair.
1605      for (const MachineOperand &MO : MI.operands()) {
1606        if (!MO.isReg() || MO.getReg() != Reg)
1607          continue;
1608  
1609        unsigned SubReg = MO.getSubReg();
1610        LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1611        if ((Mask & LaneMask).none())
1612          continue;
1613  
1614        if (MO.isDef()) {
1615          if (!isStartValid) {
1616            if (LII->end.isDead()) {
1617              LII = LR.removeSegment(LII, true);
1618              if (LII != LR.begin())
1619                --LII;
1620            } else {
1621              LII->start = instrIdx.getRegSlot();
1622              LII->valno->def = instrIdx.getRegSlot();
1623              if (MO.getSubReg() && !MO.isUndef())
1624                lastUseIdx = instrIdx.getRegSlot();
1625              else
1626                lastUseIdx = SlotIndex();
1627              continue;
1628            }
1629          }
1630  
1631          if (!lastUseIdx.isValid()) {
1632            VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1633            LiveRange::Segment S(instrIdx.getRegSlot(),
1634                                 instrIdx.getDeadSlot(), VNI);
1635            LII = LR.addSegment(S);
1636          } else if (LII->start != instrIdx.getRegSlot()) {
1637            VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1638            LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1639            LII = LR.addSegment(S);
1640          }
1641  
1642          if (MO.getSubReg() && !MO.isUndef())
1643            lastUseIdx = instrIdx.getRegSlot();
1644          else
1645            lastUseIdx = SlotIndex();
1646        } else if (MO.isUse()) {
1647          // FIXME: This should probably be handled outside of this branch,
1648          // either as part of the def case (for defs inside of the region) or
1649          // after the loop over the region.
1650          if (!isEndValid && !LII->end.isBlock())
1651            LII->end = instrIdx.getRegSlot();
1652          if (!lastUseIdx.isValid())
1653            lastUseIdx = instrIdx.getRegSlot();
1654        }
1655      }
1656    }
1657  
1658    bool isStartValid = getInstructionFromIndex(LII->start);
1659    if (!isStartValid && LII->end.isDead())
1660      LR.removeSegment(*LII, true);
1661  }
1662  
1663  void
1664  LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1665                                        MachineBasicBlock::iterator Begin,
1666                                        MachineBasicBlock::iterator End,
1667                                        ArrayRef<Register> OrigRegs) {
1668    // Find anchor points, which are at the beginning/end of blocks or at
1669    // instructions that already have indexes.
1670    while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1671      --Begin;
1672    while (End != MBB->end() && !Indexes->hasIndex(*End))
1673      ++End;
1674  
1675    SlotIndex EndIdx;
1676    if (End == MBB->end())
1677      EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1678    else
1679      EndIdx = getInstructionIndex(*End);
1680  
1681    Indexes->repairIndexesInRange(MBB, Begin, End);
1682  
1683    // Make sure a live interval exists for all register operands in the range.
1684    SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1685    for (MachineBasicBlock::iterator I = End; I != Begin;) {
1686      --I;
1687      MachineInstr &MI = *I;
1688      if (MI.isDebugOrPseudoInstr())
1689        continue;
1690      for (const MachineOperand &MO : MI.operands()) {
1691        if (MO.isReg() && MO.getReg().isVirtual()) {
1692          Register Reg = MO.getReg();
1693          if (MO.getSubReg() && hasInterval(Reg) &&
1694              MRI->shouldTrackSubRegLiveness(Reg)) {
1695            LiveInterval &LI = getInterval(Reg);
1696            if (!LI.hasSubRanges()) {
1697              // If the new instructions refer to subregs but the old instructions
1698              // did not, throw away any old live interval so it will be
1699              // recomputed with subranges.
1700              removeInterval(Reg);
1701            } else if (MO.isDef()) {
1702              // Similarly if a subreg def has no precise subrange match then
1703              // assume we need to recompute all subranges.
1704              unsigned SubReg = MO.getSubReg();
1705              LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1706              if (llvm::none_of(LI.subranges(),
1707                                [Mask](LiveInterval::SubRange &SR) {
1708                                  return SR.LaneMask == Mask;
1709                                })) {
1710                removeInterval(Reg);
1711              }
1712            }
1713          }
1714          if (!hasInterval(Reg)) {
1715            createAndComputeVirtRegInterval(Reg);
1716            // Don't bother to repair a freshly calculated live interval.
1717            llvm::erase(RegsToRepair, Reg);
1718          }
1719        }
1720      }
1721    }
1722  
1723    for (Register Reg : RegsToRepair) {
1724      if (!Reg.isVirtual())
1725        continue;
1726  
1727      LiveInterval &LI = getInterval(Reg);
1728      // FIXME: Should we support undefs that gain defs?
1729      if (!LI.hasAtLeastOneValue())
1730        continue;
1731  
1732      for (LiveInterval::SubRange &S : LI.subranges())
1733        repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1734      LI.removeEmptySubRanges();
1735  
1736      repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1737    }
1738  }
1739  
1740  void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1741    for (MCRegUnit Unit : TRI->regunits(Reg)) {
1742      if (LiveRange *LR = getCachedRegUnit(Unit))
1743        if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1744          LR->removeValNo(VNI);
1745    }
1746  }
1747  
1748  void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1749    // LI may not have the main range computed yet, but its subranges may
1750    // be present.
1751    VNInfo *VNI = LI.getVNInfoAt(Pos);
1752    if (VNI != nullptr) {
1753      assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1754      LI.removeValNo(VNI);
1755    }
1756  
1757    // Also remove the value defined in subranges.
1758    for (LiveInterval::SubRange &S : LI.subranges()) {
1759      if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1760        if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1761          S.removeValNo(SVNI);
1762    }
1763    LI.removeEmptySubRanges();
1764  }
1765  
1766  void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1767      SmallVectorImpl<LiveInterval*> &SplitLIs) {
1768    ConnectedVNInfoEqClasses ConEQ(*this);
1769    unsigned NumComp = ConEQ.Classify(LI);
1770    if (NumComp <= 1)
1771      return;
1772    LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1773    Register Reg = LI.reg();
1774    for (unsigned I = 1; I < NumComp; ++I) {
1775      Register NewVReg = MRI->cloneVirtualRegister(Reg);
1776      LiveInterval &NewLI = createEmptyInterval(NewVReg);
1777      SplitLIs.push_back(&NewLI);
1778    }
1779    ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1780  }
1781  
1782  void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1783    assert(LICalc && "LICalc not initialized.");
1784    LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1785    LICalc->constructMainRangeFromSubranges(LI);
1786  }
1787