xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp (revision 05ab65497e06edd12683163480841aa9630b9d4c)
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveRangeCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/MC/LaneBitmask.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BlockFrequency.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "regalloc"
59 
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63                 "Live Interval Analysis", false, false)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68                 "Live Interval Analysis", false, false)
69 
70 #ifndef NDEBUG
71 static cl::opt<bool> EnablePrecomputePhysRegs(
72   "precompute-phys-liveness", cl::Hidden,
73   cl::desc("Eagerly compute live intervals for all physreg units."));
74 #else
75 static bool EnablePrecomputePhysRegs = false;
76 #endif // NDEBUG
77 
78 namespace llvm {
79 
80 cl::opt<bool> UseSegmentSetForPhysRegs(
81     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82     cl::desc(
83         "Use segment set for the computation of the live ranges of physregs."));
84 
85 } // end namespace llvm
86 
87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88   AU.setPreservesCFG();
89   AU.addRequired<AAResultsWrapperPass>();
90   AU.addPreserved<AAResultsWrapperPass>();
91   AU.addPreserved<LiveVariables>();
92   AU.addPreservedID(MachineLoopInfoID);
93   AU.addRequiredTransitiveID(MachineDominatorsID);
94   AU.addPreservedID(MachineDominatorsID);
95   AU.addPreserved<SlotIndexes>();
96   AU.addRequiredTransitive<SlotIndexes>();
97   MachineFunctionPass::getAnalysisUsage(AU);
98 }
99 
100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102 }
103 
104 LiveIntervals::~LiveIntervals() {
105   delete LRCalc;
106 }
107 
108 void LiveIntervals::releaseMemory() {
109   // Free the live intervals themselves.
110   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111     delete VirtRegIntervals[Register::index2VirtReg(i)];
112   VirtRegIntervals.clear();
113   RegMaskSlots.clear();
114   RegMaskBits.clear();
115   RegMaskBlocks.clear();
116 
117   for (LiveRange *LR : RegUnitRanges)
118     delete LR;
119   RegUnitRanges.clear();
120 
121   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122   VNInfoAllocator.Reset();
123 }
124 
125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126   MF = &fn;
127   MRI = &MF->getRegInfo();
128   TRI = MF->getSubtarget().getRegisterInfo();
129   TII = MF->getSubtarget().getInstrInfo();
130   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131   Indexes = &getAnalysis<SlotIndexes>();
132   DomTree = &getAnalysis<MachineDominatorTree>();
133 
134   if (!LRCalc)
135     LRCalc = new LiveRangeCalc();
136 
137   // Allocate space for all virtual registers.
138   VirtRegIntervals.resize(MRI->getNumVirtRegs());
139 
140   computeVirtRegs();
141   computeRegMasks();
142   computeLiveInRegUnits();
143 
144   if (EnablePrecomputePhysRegs) {
145     // For stress testing, precompute live ranges of all physical register
146     // units, including reserved registers.
147     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148       getRegUnit(i);
149   }
150   LLVM_DEBUG(dump());
151   return true;
152 }
153 
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155   OS << "********** INTERVALS **********\n";
156 
157   // Dump the regunits.
158   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159     if (LiveRange *LR = RegUnitRanges[Unit])
160       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
161 
162   // Dump the virtregs.
163   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164     unsigned Reg = Register::index2VirtReg(i);
165     if (hasInterval(Reg))
166       OS << getInterval(Reg) << '\n';
167   }
168 
169   OS << "RegMasks:";
170   for (SlotIndex Idx : RegMaskSlots)
171     OS << ' ' << Idx;
172   OS << '\n';
173 
174   printInstrs(OS);
175 }
176 
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178   OS << "********** MACHINEINSTRS **********\n";
179   MF->print(OS, Indexes);
180 }
181 
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184   printInstrs(dbgs());
185 }
186 #endif
187 
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189   float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190   return new LiveInterval(reg, Weight);
191 }
192 
193 /// Compute the live interval of a virtual register, based on defs and uses.
194 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195   assert(LRCalc && "LRCalc not initialized.");
196   assert(LI.empty() && "Should only compute empty intervals.");
197   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199   return computeDeadValues(LI, nullptr);
200 }
201 
202 void LiveIntervals::computeVirtRegs() {
203   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
204     unsigned Reg = Register::index2VirtReg(i);
205     if (MRI->reg_nodbg_empty(Reg))
206       continue;
207     LiveInterval &LI = createEmptyInterval(Reg);
208     bool NeedSplit = computeVirtRegInterval(LI);
209     if (NeedSplit) {
210       SmallVector<LiveInterval*, 8> SplitLIs;
211       splitSeparateComponents(LI, SplitLIs);
212     }
213   }
214 }
215 
216 void LiveIntervals::computeRegMasks() {
217   RegMaskBlocks.resize(MF->getNumBlockIDs());
218 
219   // Find all instructions with regmask operands.
220   for (const MachineBasicBlock &MBB : *MF) {
221     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
222     RMB.first = RegMaskSlots.size();
223 
224     // Some block starts, such as EH funclets, create masks.
225     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
226       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
227       RegMaskBits.push_back(Mask);
228     }
229 
230     for (const MachineInstr &MI : MBB) {
231       for (const MachineOperand &MO : MI.operands()) {
232         if (!MO.isRegMask())
233           continue;
234         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
235         RegMaskBits.push_back(MO.getRegMask());
236       }
237     }
238 
239     // Some block ends, such as funclet returns, create masks. Put the mask on
240     // the last instruction of the block, because MBB slot index intervals are
241     // half-open.
242     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
243       assert(!MBB.empty() && "empty return block?");
244       RegMaskSlots.push_back(
245           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
246       RegMaskBits.push_back(Mask);
247     }
248 
249     // Compute the number of register mask instructions in this block.
250     RMB.second = RegMaskSlots.size() - RMB.first;
251   }
252 }
253 
254 //===----------------------------------------------------------------------===//
255 //                           Register Unit Liveness
256 //===----------------------------------------------------------------------===//
257 //
258 // Fixed interference typically comes from ABI boundaries: Function arguments
259 // and return values are passed in fixed registers, and so are exception
260 // pointers entering landing pads. Certain instructions require values to be
261 // present in specific registers. That is also represented through fixed
262 // interference.
263 //
264 
265 /// Compute the live range of a register unit, based on the uses and defs of
266 /// aliasing registers.  The range should be empty, or contain only dead
267 /// phi-defs from ABI blocks.
268 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
269   assert(LRCalc && "LRCalc not initialized.");
270   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
271 
272   // The physregs aliasing Unit are the roots and their super-registers.
273   // Create all values as dead defs before extending to uses. Note that roots
274   // may share super-registers. That's OK because createDeadDefs() is
275   // idempotent. It is very rare for a register unit to have multiple roots, so
276   // uniquing super-registers is probably not worthwhile.
277   bool IsReserved = false;
278   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
279     bool IsRootReserved = true;
280     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
281          Super.isValid(); ++Super) {
282       unsigned Reg = *Super;
283       if (!MRI->reg_empty(Reg))
284         LRCalc->createDeadDefs(LR, Reg);
285       // A register unit is considered reserved if all its roots and all their
286       // super registers are reserved.
287       if (!MRI->isReserved(Reg))
288         IsRootReserved = false;
289     }
290     IsReserved |= IsRootReserved;
291   }
292   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
293          "reserved computation mismatch");
294 
295   // Now extend LR to reach all uses.
296   // Ignore uses of reserved registers. We only track defs of those.
297   if (!IsReserved) {
298     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
299       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
300            Super.isValid(); ++Super) {
301         unsigned Reg = *Super;
302         if (!MRI->reg_empty(Reg))
303           LRCalc->extendToUses(LR, Reg);
304       }
305     }
306   }
307 
308   // Flush the segment set to the segment vector.
309   if (UseSegmentSetForPhysRegs)
310     LR.flushSegmentSet();
311 }
312 
313 /// Precompute the live ranges of any register units that are live-in to an ABI
314 /// block somewhere. Register values can appear without a corresponding def when
315 /// entering the entry block or a landing pad.
316 void LiveIntervals::computeLiveInRegUnits() {
317   RegUnitRanges.resize(TRI->getNumRegUnits());
318   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
319 
320   // Keep track of the live range sets allocated.
321   SmallVector<unsigned, 8> NewRanges;
322 
323   // Check all basic blocks for live-ins.
324   for (const MachineBasicBlock &MBB : *MF) {
325     // We only care about ABI blocks: Entry + landing pads.
326     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
327       continue;
328 
329     // Create phi-defs at Begin for all live-in registers.
330     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
331     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
332     for (const auto &LI : MBB.liveins()) {
333       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
334         unsigned Unit = *Units;
335         LiveRange *LR = RegUnitRanges[Unit];
336         if (!LR) {
337           // Use segment set to speed-up initial computation of the live range.
338           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
339           NewRanges.push_back(Unit);
340         }
341         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
342         (void)VNI;
343         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
344       }
345     }
346     LLVM_DEBUG(dbgs() << '\n');
347   }
348   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
349 
350   // Compute the 'normal' part of the ranges.
351   for (unsigned Unit : NewRanges)
352     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
353 }
354 
355 static void createSegmentsForValues(LiveRange &LR,
356     iterator_range<LiveInterval::vni_iterator> VNIs) {
357   for (VNInfo *VNI : VNIs) {
358     if (VNI->isUnused())
359       continue;
360     SlotIndex Def = VNI->def;
361     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
362   }
363 }
364 
365 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
366                                          ShrinkToUsesWorkList &WorkList,
367                                          unsigned Reg, LaneBitmask LaneMask) {
368   // Keep track of the PHIs that are in use.
369   SmallPtrSet<VNInfo*, 8> UsedPHIs;
370   // Blocks that have already been added to WorkList as live-out.
371   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
372 
373   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
374         -> const LiveRange& {
375     if (M.none())
376       return I;
377     for (const LiveInterval::SubRange &SR : I.subranges()) {
378       if ((SR.LaneMask & M).any()) {
379         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
380         return SR;
381       }
382     }
383     llvm_unreachable("Subrange for mask not found");
384   };
385 
386   const LiveInterval &LI = getInterval(Reg);
387   const LiveRange &OldRange = getSubRange(LI, LaneMask);
388 
389   // Extend intervals to reach all uses in WorkList.
390   while (!WorkList.empty()) {
391     SlotIndex Idx = WorkList.back().first;
392     VNInfo *VNI = WorkList.back().second;
393     WorkList.pop_back();
394     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
395     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
396 
397     // Extend the live range for VNI to be live at Idx.
398     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
399       assert(ExtVNI == VNI && "Unexpected existing value number");
400       (void)ExtVNI;
401       // Is this a PHIDef we haven't seen before?
402       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
403           !UsedPHIs.insert(VNI).second)
404         continue;
405       // The PHI is live, make sure the predecessors are live-out.
406       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
407         if (!LiveOut.insert(Pred).second)
408           continue;
409         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
410         // A predecessor is not required to have a live-out value for a PHI.
411         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
412           WorkList.push_back(std::make_pair(Stop, PVNI));
413       }
414       continue;
415     }
416 
417     // VNI is live-in to MBB.
418     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
419     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
420 
421     // Make sure VNI is live-out from the predecessors.
422     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
423       if (!LiveOut.insert(Pred).second)
424         continue;
425       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
426       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
427         assert(OldVNI == VNI && "Wrong value out of predecessor");
428         (void)OldVNI;
429         WorkList.push_back(std::make_pair(Stop, VNI));
430       } else {
431 #ifndef NDEBUG
432         // There was no old VNI. Verify that Stop is jointly dominated
433         // by <undef>s for this live range.
434         assert(LaneMask.any() &&
435                "Missing value out of predecessor for main range");
436         SmallVector<SlotIndex,8> Undefs;
437         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
438         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
439                "Missing value out of predecessor for subrange");
440 #endif
441       }
442     }
443   }
444 }
445 
446 bool LiveIntervals::shrinkToUses(LiveInterval *li,
447                                  SmallVectorImpl<MachineInstr*> *dead) {
448   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
449   assert(Register::isVirtualRegister(li->reg) &&
450          "Can only shrink virtual registers");
451 
452   // Shrink subregister live ranges.
453   bool NeedsCleanup = false;
454   for (LiveInterval::SubRange &S : li->subranges()) {
455     shrinkToUses(S, li->reg);
456     if (S.empty())
457       NeedsCleanup = true;
458   }
459   if (NeedsCleanup)
460     li->removeEmptySubRanges();
461 
462   // Find all the values used, including PHI kills.
463   ShrinkToUsesWorkList WorkList;
464 
465   // Visit all instructions reading li->reg.
466   unsigned Reg = li->reg;
467   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
468     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
469       continue;
470     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
471     LiveQueryResult LRQ = li->Query(Idx);
472     VNInfo *VNI = LRQ.valueIn();
473     if (!VNI) {
474       // This shouldn't happen: readsVirtualRegister returns true, but there is
475       // no live value. It is likely caused by a target getting <undef> flags
476       // wrong.
477       LLVM_DEBUG(
478           dbgs() << Idx << '\t' << UseMI
479                  << "Warning: Instr claims to read non-existent value in "
480                  << *li << '\n');
481       continue;
482     }
483     // Special case: An early-clobber tied operand reads and writes the
484     // register one slot early.
485     if (VNInfo *DefVNI = LRQ.valueDefined())
486       Idx = DefVNI->def;
487 
488     WorkList.push_back(std::make_pair(Idx, VNI));
489   }
490 
491   // Create new live ranges with only minimal live segments per def.
492   LiveRange NewLR;
493   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
494   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
495 
496   // Move the trimmed segments back.
497   li->segments.swap(NewLR.segments);
498 
499   // Handle dead values.
500   bool CanSeparate = computeDeadValues(*li, dead);
501   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
502   return CanSeparate;
503 }
504 
505 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
506                                       SmallVectorImpl<MachineInstr*> *dead) {
507   bool MayHaveSplitComponents = false;
508   bool HaveDeadDef = false;
509 
510   for (VNInfo *VNI : LI.valnos) {
511     if (VNI->isUnused())
512       continue;
513     SlotIndex Def = VNI->def;
514     LiveRange::iterator I = LI.FindSegmentContaining(Def);
515     assert(I != LI.end() && "Missing segment for VNI");
516 
517     // Is the register live before? Otherwise we may have to add a read-undef
518     // flag for subregister defs.
519     unsigned VReg = LI.reg;
520     if (MRI->shouldTrackSubRegLiveness(VReg)) {
521       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
522         MachineInstr *MI = getInstructionFromIndex(Def);
523         MI->setRegisterDefReadUndef(VReg);
524       }
525     }
526 
527     if (I->end != Def.getDeadSlot())
528       continue;
529     if (VNI->isPHIDef()) {
530       // This is a dead PHI. Remove it.
531       VNI->markUnused();
532       LI.removeSegment(I);
533       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
534       MayHaveSplitComponents = true;
535     } else {
536       // This is a dead def. Make sure the instruction knows.
537       MachineInstr *MI = getInstructionFromIndex(Def);
538       assert(MI && "No instruction defining live value");
539       MI->addRegisterDead(LI.reg, TRI);
540       if (HaveDeadDef)
541         MayHaveSplitComponents = true;
542       HaveDeadDef = true;
543 
544       if (dead && MI->allDefsAreDead()) {
545         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
546         dead->push_back(MI);
547       }
548     }
549   }
550   return MayHaveSplitComponents;
551 }
552 
553 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
554   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
555   assert(Register::isVirtualRegister(Reg) &&
556          "Can only shrink virtual registers");
557   // Find all the values used, including PHI kills.
558   ShrinkToUsesWorkList WorkList;
559 
560   // Visit all instructions reading Reg.
561   SlotIndex LastIdx;
562   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
563     // Skip "undef" uses.
564     if (!MO.readsReg())
565       continue;
566     // Maybe the operand is for a subregister we don't care about.
567     unsigned SubReg = MO.getSubReg();
568     if (SubReg != 0) {
569       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
570       if ((LaneMask & SR.LaneMask).none())
571         continue;
572     }
573     // We only need to visit each instruction once.
574     MachineInstr *UseMI = MO.getParent();
575     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
576     if (Idx == LastIdx)
577       continue;
578     LastIdx = Idx;
579 
580     LiveQueryResult LRQ = SR.Query(Idx);
581     VNInfo *VNI = LRQ.valueIn();
582     // For Subranges it is possible that only undef values are left in that
583     // part of the subregister, so there is no real liverange at the use
584     if (!VNI)
585       continue;
586 
587     // Special case: An early-clobber tied operand reads and writes the
588     // register one slot early.
589     if (VNInfo *DefVNI = LRQ.valueDefined())
590       Idx = DefVNI->def;
591 
592     WorkList.push_back(std::make_pair(Idx, VNI));
593   }
594 
595   // Create a new live ranges with only minimal live segments per def.
596   LiveRange NewLR;
597   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
598   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
599 
600   // Move the trimmed ranges back.
601   SR.segments.swap(NewLR.segments);
602 
603   // Remove dead PHI value numbers
604   for (VNInfo *VNI : SR.valnos) {
605     if (VNI->isUnused())
606       continue;
607     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
608     assert(Segment != nullptr && "Missing segment for VNI");
609     if (Segment->end != VNI->def.getDeadSlot())
610       continue;
611     if (VNI->isPHIDef()) {
612       // This is a dead PHI. Remove it.
613       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
614                         << " may separate interval\n");
615       VNI->markUnused();
616       SR.removeSegment(*Segment);
617     }
618   }
619 
620   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
621 }
622 
623 void LiveIntervals::extendToIndices(LiveRange &LR,
624                                     ArrayRef<SlotIndex> Indices,
625                                     ArrayRef<SlotIndex> Undefs) {
626   assert(LRCalc && "LRCalc not initialized.");
627   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
628   for (SlotIndex Idx : Indices)
629     LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
630 }
631 
632 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
633                                SmallVectorImpl<SlotIndex> *EndPoints) {
634   LiveQueryResult LRQ = LR.Query(Kill);
635   VNInfo *VNI = LRQ.valueOutOrDead();
636   if (!VNI)
637     return;
638 
639   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
640   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
641 
642   // If VNI isn't live out from KillMBB, the value is trivially pruned.
643   if (LRQ.endPoint() < MBBEnd) {
644     LR.removeSegment(Kill, LRQ.endPoint());
645     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
646     return;
647   }
648 
649   // VNI is live out of KillMBB.
650   LR.removeSegment(Kill, MBBEnd);
651   if (EndPoints) EndPoints->push_back(MBBEnd);
652 
653   // Find all blocks that are reachable from KillMBB without leaving VNI's live
654   // range. It is possible that KillMBB itself is reachable, so start a DFS
655   // from each successor.
656   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
657   VisitedTy Visited;
658   for (MachineBasicBlock *Succ : KillMBB->successors()) {
659     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
660          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
661          I != E;) {
662       MachineBasicBlock *MBB = *I;
663 
664       // Check if VNI is live in to MBB.
665       SlotIndex MBBStart, MBBEnd;
666       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
667       LiveQueryResult LRQ = LR.Query(MBBStart);
668       if (LRQ.valueIn() != VNI) {
669         // This block isn't part of the VNI segment. Prune the search.
670         I.skipChildren();
671         continue;
672       }
673 
674       // Prune the search if VNI is killed in MBB.
675       if (LRQ.endPoint() < MBBEnd) {
676         LR.removeSegment(MBBStart, LRQ.endPoint());
677         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
678         I.skipChildren();
679         continue;
680       }
681 
682       // VNI is live through MBB.
683       LR.removeSegment(MBBStart, MBBEnd);
684       if (EndPoints) EndPoints->push_back(MBBEnd);
685       ++I;
686     }
687   }
688 }
689 
690 //===----------------------------------------------------------------------===//
691 // Register allocator hooks.
692 //
693 
694 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
695   // Keep track of regunit ranges.
696   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
697   // Keep track of subregister ranges.
698   SmallVector<std::pair<const LiveInterval::SubRange*,
699                         LiveRange::const_iterator>, 4> SRs;
700 
701   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
702     unsigned Reg = Register::index2VirtReg(i);
703     if (MRI->reg_nodbg_empty(Reg))
704       continue;
705     const LiveInterval &LI = getInterval(Reg);
706     if (LI.empty())
707       continue;
708 
709     // Find the regunit intervals for the assigned register. They may overlap
710     // the virtual register live range, cancelling any kills.
711     RU.clear();
712     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
713          ++Unit) {
714       const LiveRange &RURange = getRegUnit(*Unit);
715       if (RURange.empty())
716         continue;
717       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
718     }
719 
720     if (MRI->subRegLivenessEnabled()) {
721       SRs.clear();
722       for (const LiveInterval::SubRange &SR : LI.subranges()) {
723         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
724       }
725     }
726 
727     // Every instruction that kills Reg corresponds to a segment range end
728     // point.
729     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
730          ++RI) {
731       // A block index indicates an MBB edge.
732       if (RI->end.isBlock())
733         continue;
734       MachineInstr *MI = getInstructionFromIndex(RI->end);
735       if (!MI)
736         continue;
737 
738       // Check if any of the regunits are live beyond the end of RI. That could
739       // happen when a physreg is defined as a copy of a virtreg:
740       //
741       //   %eax = COPY %5
742       //   FOO %5             <--- MI, cancel kill because %eax is live.
743       //   BAR killed %eax
744       //
745       // There should be no kill flag on FOO when %5 is rewritten as %eax.
746       for (auto &RUP : RU) {
747         const LiveRange &RURange = *RUP.first;
748         LiveRange::const_iterator &I = RUP.second;
749         if (I == RURange.end())
750           continue;
751         I = RURange.advanceTo(I, RI->end);
752         if (I == RURange.end() || I->start >= RI->end)
753           continue;
754         // I is overlapping RI.
755         goto CancelKill;
756       }
757 
758       if (MRI->subRegLivenessEnabled()) {
759         // When reading a partial undefined value we must not add a kill flag.
760         // The regalloc might have used the undef lane for something else.
761         // Example:
762         //     %1 = ...                  ; R32: %1
763         //     %2:high16 = ...           ; R64: %2
764         //        = read killed %2        ; R64: %2
765         //        = read %1              ; R32: %1
766         // The <kill> flag is correct for %2, but the register allocator may
767         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
768         // are actually never written by %2. After assignment the <kill>
769         // flag at the read instruction is invalid.
770         LaneBitmask DefinedLanesMask;
771         if (!SRs.empty()) {
772           // Compute a mask of lanes that are defined.
773           DefinedLanesMask = LaneBitmask::getNone();
774           for (auto &SRP : SRs) {
775             const LiveInterval::SubRange &SR = *SRP.first;
776             LiveRange::const_iterator &I = SRP.second;
777             if (I == SR.end())
778               continue;
779             I = SR.advanceTo(I, RI->end);
780             if (I == SR.end() || I->start >= RI->end)
781               continue;
782             // I is overlapping RI
783             DefinedLanesMask |= SR.LaneMask;
784           }
785         } else
786           DefinedLanesMask = LaneBitmask::getAll();
787 
788         bool IsFullWrite = false;
789         for (const MachineOperand &MO : MI->operands()) {
790           if (!MO.isReg() || MO.getReg() != Reg)
791             continue;
792           if (MO.isUse()) {
793             // Reading any undefined lanes?
794             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
795             if ((UseMask & ~DefinedLanesMask).any())
796               goto CancelKill;
797           } else if (MO.getSubReg() == 0) {
798             // Writing to the full register?
799             assert(MO.isDef());
800             IsFullWrite = true;
801           }
802         }
803 
804         // If an instruction writes to a subregister, a new segment starts in
805         // the LiveInterval. But as this is only overriding part of the register
806         // adding kill-flags is not correct here after registers have been
807         // assigned.
808         if (!IsFullWrite) {
809           // Next segment has to be adjacent in the subregister write case.
810           LiveRange::const_iterator N = std::next(RI);
811           if (N != LI.end() && N->start == RI->end)
812             goto CancelKill;
813         }
814       }
815 
816       MI->addRegisterKilled(Reg, nullptr);
817       continue;
818 CancelKill:
819       MI->clearRegisterKills(Reg, nullptr);
820     }
821   }
822 }
823 
824 MachineBasicBlock*
825 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
826   // A local live range must be fully contained inside the block, meaning it is
827   // defined and killed at instructions, not at block boundaries. It is not
828   // live in or out of any block.
829   //
830   // It is technically possible to have a PHI-defined live range identical to a
831   // single block, but we are going to return false in that case.
832 
833   SlotIndex Start = LI.beginIndex();
834   if (Start.isBlock())
835     return nullptr;
836 
837   SlotIndex Stop = LI.endIndex();
838   if (Stop.isBlock())
839     return nullptr;
840 
841   // getMBBFromIndex doesn't need to search the MBB table when both indexes
842   // belong to proper instructions.
843   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
844   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
845   return MBB1 == MBB2 ? MBB1 : nullptr;
846 }
847 
848 bool
849 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
850   for (const VNInfo *PHI : LI.valnos) {
851     if (PHI->isUnused() || !PHI->isPHIDef())
852       continue;
853     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
854     // Conservatively return true instead of scanning huge predecessor lists.
855     if (PHIMBB->pred_size() > 100)
856       return true;
857     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
858       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
859         return true;
860   }
861   return false;
862 }
863 
864 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
865                                     const MachineBlockFrequencyInfo *MBFI,
866                                     const MachineInstr &MI) {
867   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
868 }
869 
870 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
871                                     const MachineBlockFrequencyInfo *MBFI,
872                                     const MachineBasicBlock *MBB) {
873   BlockFrequency Freq = MBFI->getBlockFreq(MBB);
874   const float Scale = 1.0f / MBFI->getEntryFreq();
875   return (isDef + isUse) * (Freq.getFrequency() * Scale);
876 }
877 
878 LiveRange::Segment
879 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
880   LiveInterval& Interval = createEmptyInterval(reg);
881   VNInfo *VN = Interval.getNextValue(
882       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
883       getVNInfoAllocator());
884   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
885                        getMBBEndIdx(startInst.getParent()), VN);
886   Interval.addSegment(S);
887 
888   return S;
889 }
890 
891 //===----------------------------------------------------------------------===//
892 //                          Register mask functions
893 //===----------------------------------------------------------------------===//
894 
895 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
896                                              BitVector &UsableRegs) {
897   if (LI.empty())
898     return false;
899   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
900 
901   // Use a smaller arrays for local live ranges.
902   ArrayRef<SlotIndex> Slots;
903   ArrayRef<const uint32_t*> Bits;
904   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
905     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
906     Bits = getRegMaskBitsInBlock(MBB->getNumber());
907   } else {
908     Slots = getRegMaskSlots();
909     Bits = getRegMaskBits();
910   }
911 
912   // We are going to enumerate all the register mask slots contained in LI.
913   // Start with a binary search of RegMaskSlots to find a starting point.
914   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
915   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
916 
917   // No slots in range, LI begins after the last call.
918   if (SlotI == SlotE)
919     return false;
920 
921   bool Found = false;
922   while (true) {
923     assert(*SlotI >= LiveI->start);
924     // Loop over all slots overlapping this segment.
925     while (*SlotI < LiveI->end) {
926       // *SlotI overlaps LI. Collect mask bits.
927       if (!Found) {
928         // This is the first overlap. Initialize UsableRegs to all ones.
929         UsableRegs.clear();
930         UsableRegs.resize(TRI->getNumRegs(), true);
931         Found = true;
932       }
933       // Remove usable registers clobbered by this mask.
934       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
935       if (++SlotI == SlotE)
936         return Found;
937     }
938     // *SlotI is beyond the current LI segment.
939     LiveI = LI.advanceTo(LiveI, *SlotI);
940     if (LiveI == LiveE)
941       return Found;
942     // Advance SlotI until it overlaps.
943     while (*SlotI < LiveI->start)
944       if (++SlotI == SlotE)
945         return Found;
946   }
947 }
948 
949 //===----------------------------------------------------------------------===//
950 //                         IntervalUpdate class.
951 //===----------------------------------------------------------------------===//
952 
953 /// Toolkit used by handleMove to trim or extend live intervals.
954 class LiveIntervals::HMEditor {
955 private:
956   LiveIntervals& LIS;
957   const MachineRegisterInfo& MRI;
958   const TargetRegisterInfo& TRI;
959   SlotIndex OldIdx;
960   SlotIndex NewIdx;
961   SmallPtrSet<LiveRange*, 8> Updated;
962   bool UpdateFlags;
963 
964 public:
965   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
966            const TargetRegisterInfo& TRI,
967            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
968     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
969       UpdateFlags(UpdateFlags) {}
970 
971   // FIXME: UpdateFlags is a workaround that creates live intervals for all
972   // physregs, even those that aren't needed for regalloc, in order to update
973   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
974   // flags, and postRA passes will use a live register utility instead.
975   LiveRange *getRegUnitLI(unsigned Unit) {
976     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
977       return &LIS.getRegUnit(Unit);
978     return LIS.getCachedRegUnit(Unit);
979   }
980 
981   /// Update all live ranges touched by MI, assuming a move from OldIdx to
982   /// NewIdx.
983   void updateAllRanges(MachineInstr *MI) {
984     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
985                       << *MI);
986     bool hasRegMask = false;
987     for (MachineOperand &MO : MI->operands()) {
988       if (MO.isRegMask())
989         hasRegMask = true;
990       if (!MO.isReg())
991         continue;
992       if (MO.isUse()) {
993         if (!MO.readsReg())
994           continue;
995         // Aggressively clear all kill flags.
996         // They are reinserted by VirtRegRewriter.
997         MO.setIsKill(false);
998       }
999 
1000       Register Reg = MO.getReg();
1001       if (!Reg)
1002         continue;
1003       if (Register::isVirtualRegister(Reg)) {
1004         LiveInterval &LI = LIS.getInterval(Reg);
1005         if (LI.hasSubRanges()) {
1006           unsigned SubReg = MO.getSubReg();
1007           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1008                                         : MRI.getMaxLaneMaskForVReg(Reg);
1009           for (LiveInterval::SubRange &S : LI.subranges()) {
1010             if ((S.LaneMask & LaneMask).none())
1011               continue;
1012             updateRange(S, Reg, S.LaneMask);
1013           }
1014         }
1015         updateRange(LI, Reg, LaneBitmask::getNone());
1016         continue;
1017       }
1018 
1019       // For physregs, only update the regunits that actually have a
1020       // precomputed live range.
1021       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1022         if (LiveRange *LR = getRegUnitLI(*Units))
1023           updateRange(*LR, *Units, LaneBitmask::getNone());
1024     }
1025     if (hasRegMask)
1026       updateRegMaskSlots();
1027   }
1028 
1029 private:
1030   /// Update a single live range, assuming an instruction has been moved from
1031   /// OldIdx to NewIdx.
1032   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1033     if (!Updated.insert(&LR).second)
1034       return;
1035     LLVM_DEBUG({
1036       dbgs() << "     ";
1037       if (Register::isVirtualRegister(Reg)) {
1038         dbgs() << printReg(Reg);
1039         if (LaneMask.any())
1040           dbgs() << " L" << PrintLaneMask(LaneMask);
1041       } else {
1042         dbgs() << printRegUnit(Reg, &TRI);
1043       }
1044       dbgs() << ":\t" << LR << '\n';
1045     });
1046     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1047       handleMoveDown(LR);
1048     else
1049       handleMoveUp(LR, Reg, LaneMask);
1050     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1051     LR.verify();
1052   }
1053 
1054   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1055   /// to NewIdx (OldIdx < NewIdx).
1056   void handleMoveDown(LiveRange &LR) {
1057     LiveRange::iterator E = LR.end();
1058     // Segment going into OldIdx.
1059     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1060 
1061     // No value live before or after OldIdx? Nothing to do.
1062     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1063       return;
1064 
1065     LiveRange::iterator OldIdxOut;
1066     // Do we have a value live-in to OldIdx?
1067     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1068       // If the live-in value already extends to NewIdx, there is nothing to do.
1069       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1070         return;
1071       // Aggressively remove all kill flags from the old kill point.
1072       // Kill flags shouldn't be used while live intervals exist, they will be
1073       // reinserted by VirtRegRewriter.
1074       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1075         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1076           if (MOP.isReg() && MOP.isUse())
1077             MOP.setIsKill(false);
1078 
1079       // Is there a def before NewIdx which is not OldIdx?
1080       LiveRange::iterator Next = std::next(OldIdxIn);
1081       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1082           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1083         // If we are here then OldIdx was just a use but not a def. We only have
1084         // to ensure liveness extends to NewIdx.
1085         LiveRange::iterator NewIdxIn =
1086           LR.advanceTo(Next, NewIdx.getBaseIndex());
1087         // Extend the segment before NewIdx if necessary.
1088         if (NewIdxIn == E ||
1089             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1090           LiveRange::iterator Prev = std::prev(NewIdxIn);
1091           Prev->end = NewIdx.getRegSlot();
1092         }
1093         // Extend OldIdxIn.
1094         OldIdxIn->end = Next->start;
1095         return;
1096       }
1097 
1098       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1099       // invalid by overlapping ranges.
1100       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1101       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1102       // If this was not a kill, then there was no def and we're done.
1103       if (!isKill)
1104         return;
1105 
1106       // Did we have a Def at OldIdx?
1107       OldIdxOut = Next;
1108       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1109         return;
1110     } else {
1111       OldIdxOut = OldIdxIn;
1112     }
1113 
1114     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1115     // to the segment starting there.
1116     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1117            "No def?");
1118     VNInfo *OldIdxVNI = OldIdxOut->valno;
1119     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1120 
1121     // If the defined value extends beyond NewIdx, just move the beginning
1122     // of the segment to NewIdx.
1123     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1124     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1125       OldIdxVNI->def = NewIdxDef;
1126       OldIdxOut->start = OldIdxVNI->def;
1127       return;
1128     }
1129 
1130     // If we are here then we have a Definition at OldIdx which ends before
1131     // NewIdx.
1132 
1133     // Is there an existing Def at NewIdx?
1134     LiveRange::iterator AfterNewIdx
1135       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1136     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1137     if (!OldIdxDefIsDead &&
1138         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1139       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1140       VNInfo *DefVNI;
1141       if (OldIdxOut != LR.begin() &&
1142           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1143                                      OldIdxOut->start)) {
1144         // There is no gap between OldIdxOut and its predecessor anymore,
1145         // merge them.
1146         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1147         DefVNI = OldIdxVNI;
1148         IPrev->end = OldIdxOut->end;
1149       } else {
1150         // The value is live in to OldIdx
1151         LiveRange::iterator INext = std::next(OldIdxOut);
1152         assert(INext != E && "Must have following segment");
1153         // We merge OldIdxOut and its successor. As we're dealing with subreg
1154         // reordering, there is always a successor to OldIdxOut in the same BB
1155         // We don't need INext->valno anymore and will reuse for the new segment
1156         // we create later.
1157         DefVNI = OldIdxVNI;
1158         INext->start = OldIdxOut->end;
1159         INext->valno->def = INext->start;
1160       }
1161       // If NewIdx is behind the last segment, extend that and append a new one.
1162       if (AfterNewIdx == E) {
1163         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1164         // one position.
1165         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1166         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1167         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1168         // The last segment is undefined now, reuse it for a dead def.
1169         LiveRange::iterator NewSegment = std::prev(E);
1170         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1171                                          DefVNI);
1172         DefVNI->def = NewIdxDef;
1173 
1174         LiveRange::iterator Prev = std::prev(NewSegment);
1175         Prev->end = NewIdxDef;
1176       } else {
1177         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1178         // one position.
1179         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1180         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1181         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1182         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1183         // We have two cases:
1184         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1185           // Case 1: NewIdx is inside a liverange. Split this liverange at
1186           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1187           LiveRange::iterator NewSegment = AfterNewIdx;
1188           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1189           Prev->valno->def = NewIdxDef;
1190 
1191           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1192           DefVNI->def = Prev->start;
1193         } else {
1194           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1195           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1196           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1197           DefVNI->def = NewIdxDef;
1198           assert(DefVNI != AfterNewIdx->valno);
1199         }
1200       }
1201       return;
1202     }
1203 
1204     if (AfterNewIdx != E &&
1205         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1206       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1207       // that value.
1208       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1209       LR.removeValNo(OldIdxVNI);
1210     } else {
1211       // There was no existing def at NewIdx. We need to create a dead def
1212       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1213       // a new segment at the place where we want to construct the dead def.
1214       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1215       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1216       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1217       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1218       // We can reuse OldIdxVNI now.
1219       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1220       VNInfo *NewSegmentVNI = OldIdxVNI;
1221       NewSegmentVNI->def = NewIdxDef;
1222       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1223                                        NewSegmentVNI);
1224     }
1225   }
1226 
1227   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1228   /// to NewIdx (NewIdx < OldIdx).
1229   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1230     LiveRange::iterator E = LR.end();
1231     // Segment going into OldIdx.
1232     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1233 
1234     // No value live before or after OldIdx? Nothing to do.
1235     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1236       return;
1237 
1238     LiveRange::iterator OldIdxOut;
1239     // Do we have a value live-in to OldIdx?
1240     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1241       // If the live-in value isn't killed here, then we have no Def at
1242       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1243       // to do.
1244       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1245       if (!isKill)
1246         return;
1247 
1248       // At this point we have to move OldIdxIn->end back to the nearest
1249       // previous use or (dead-)def but no further than NewIdx.
1250       SlotIndex DefBeforeOldIdx
1251         = std::max(OldIdxIn->start.getDeadSlot(),
1252                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1253       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1254 
1255       // Did we have a Def at OldIdx? If not we are done now.
1256       OldIdxOut = std::next(OldIdxIn);
1257       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1258         return;
1259     } else {
1260       OldIdxOut = OldIdxIn;
1261       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1262     }
1263 
1264     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1265     // to the segment starting there.
1266     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1267            "No def?");
1268     VNInfo *OldIdxVNI = OldIdxOut->valno;
1269     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1270     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1271 
1272     // Is there an existing def at NewIdx?
1273     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1274     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1275     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1276       assert(NewIdxOut->valno != OldIdxVNI &&
1277              "Same value defined more than once?");
1278       // If OldIdx was a dead def remove it.
1279       if (!OldIdxDefIsDead) {
1280         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1281         // NewIdx so it can take its place.
1282         OldIdxVNI->def = NewIdxDef;
1283         OldIdxOut->start = NewIdxDef;
1284         LR.removeValNo(NewIdxOut->valno);
1285       } else {
1286         // Simply remove the dead def at OldIdx.
1287         LR.removeValNo(OldIdxVNI);
1288       }
1289     } else {
1290       // Previously nothing was live after NewIdx, so all we have to do now is
1291       // move the begin of OldIdxOut to NewIdx.
1292       if (!OldIdxDefIsDead) {
1293         // Do we have any intermediate Defs between OldIdx and NewIdx?
1294         if (OldIdxIn != E &&
1295             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1296           // OldIdx is not a dead def and NewIdx is before predecessor start.
1297           LiveRange::iterator NewIdxIn = NewIdxOut;
1298           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1299           const SlotIndex SplitPos = NewIdxDef;
1300           OldIdxVNI = OldIdxIn->valno;
1301 
1302           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1303           LiveRange::iterator Prev = std::prev(OldIdxIn);
1304           if (OldIdxIn != LR.begin() &&
1305               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1306             // If the segment before OldIdx read a value defined earlier than
1307             // NewIdx, the moved instruction also reads and forwards that
1308             // value. Extend the lifetime of the new def point.
1309 
1310             // Extend to where the previous range started, unless there is
1311             // another redef first.
1312             NewDefEndPoint = std::min(OldIdxIn->start,
1313                                       std::next(NewIdxOut)->start);
1314           }
1315 
1316           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1317           OldIdxOut->valno->def = OldIdxIn->start;
1318           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1319                                           OldIdxOut->valno);
1320           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1321           // We Slide [NewIdxIn, OldIdxIn) down one position.
1322           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1323           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1324           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1325           // NewIdxIn is now considered undef so we can reuse it for the moved
1326           // value.
1327           LiveRange::iterator NewSegment = NewIdxIn;
1328           LiveRange::iterator Next = std::next(NewSegment);
1329           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1330             // There is no gap between NewSegment and its predecessor.
1331             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1332                                              Next->valno);
1333 
1334             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1335             Next->valno->def = SplitPos;
1336           } else {
1337             // There is a gap between NewSegment and its predecessor
1338             // Value becomes live in.
1339             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1340             NewSegment->valno->def = SplitPos;
1341           }
1342         } else {
1343           // Leave the end point of a live def.
1344           OldIdxOut->start = NewIdxDef;
1345           OldIdxVNI->def = NewIdxDef;
1346           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1347             OldIdxIn->end = NewIdx.getRegSlot();
1348         }
1349       } else if (OldIdxIn != E
1350           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1351           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1352         // OldIdxVNI is a dead def that has been moved into the middle of
1353         // another value in LR. That can happen when LR is a whole register,
1354         // but the dead def is a write to a subreg that is dead at NewIdx.
1355         // The dead def may have been moved across other values
1356         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1357         // down one position.
1358         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1359         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1360         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1361         // Modify the segment at NewIdxOut and the following segment to meet at
1362         // the point of the dead def, with the following segment getting
1363         // OldIdxVNI as its value number.
1364         *NewIdxOut = LiveRange::Segment(
1365             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1366         *(NewIdxOut + 1) = LiveRange::Segment(
1367             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1368         OldIdxVNI->def = NewIdxDef;
1369         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1370         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1371           Idx->valno = OldIdxVNI;
1372         // Aggressively remove all dead flags from the former dead definition.
1373         // Kill/dead flags shouldn't be used while live intervals exist; they
1374         // will be reinserted by VirtRegRewriter.
1375         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1376           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1377             if (MO->isReg() && !MO->isUse())
1378               MO->setIsDead(false);
1379       } else {
1380         // OldIdxVNI is a dead def. It may have been moved across other values
1381         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1382         // down one position.
1383         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1384         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1385         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1386         // OldIdxVNI can be reused now to build a new dead def segment.
1387         LiveRange::iterator NewSegment = NewIdxOut;
1388         VNInfo *NewSegmentVNI = OldIdxVNI;
1389         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1390                                          NewSegmentVNI);
1391         NewSegmentVNI->def = NewIdxDef;
1392       }
1393     }
1394   }
1395 
1396   void updateRegMaskSlots() {
1397     SmallVectorImpl<SlotIndex>::iterator RI =
1398         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1399     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1400            "No RegMask at OldIdx.");
1401     *RI = NewIdx.getRegSlot();
1402     assert((RI == LIS.RegMaskSlots.begin() ||
1403             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1404            "Cannot move regmask instruction above another call");
1405     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1406             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1407            "Cannot move regmask instruction below another call");
1408   }
1409 
1410   // Return the last use of reg between NewIdx and OldIdx.
1411   SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1412                               LaneBitmask LaneMask) {
1413     if (Register::isVirtualRegister(Reg)) {
1414       SlotIndex LastUse = Before;
1415       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1416         if (MO.isUndef())
1417           continue;
1418         unsigned SubReg = MO.getSubReg();
1419         if (SubReg != 0 && LaneMask.any()
1420             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1421           continue;
1422 
1423         const MachineInstr &MI = *MO.getParent();
1424         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1425         if (InstSlot > LastUse && InstSlot < OldIdx)
1426           LastUse = InstSlot.getRegSlot();
1427       }
1428       return LastUse;
1429     }
1430 
1431     // This is a regunit interval, so scanning the use list could be very
1432     // expensive. Scan upwards from OldIdx instead.
1433     assert(Before < OldIdx && "Expected upwards move");
1434     SlotIndexes *Indexes = LIS.getSlotIndexes();
1435     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1436 
1437     // OldIdx may not correspond to an instruction any longer, so set MII to
1438     // point to the next instruction after OldIdx, or MBB->end().
1439     MachineBasicBlock::iterator MII = MBB->end();
1440     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1441                            Indexes->getNextNonNullIndex(OldIdx)))
1442       if (MI->getParent() == MBB)
1443         MII = MI;
1444 
1445     MachineBasicBlock::iterator Begin = MBB->begin();
1446     while (MII != Begin) {
1447       if ((--MII)->isDebugInstr())
1448         continue;
1449       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1450 
1451       // Stop searching when Before is reached.
1452       if (!SlotIndex::isEarlierInstr(Before, Idx))
1453         return Before;
1454 
1455       // Check if MII uses Reg.
1456       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1457         if (MO->isReg() && !MO->isUndef() &&
1458             Register::isPhysicalRegister(MO->getReg()) &&
1459             TRI.hasRegUnit(MO->getReg(), Reg))
1460           return Idx.getRegSlot();
1461     }
1462     // Didn't reach Before. It must be the first instruction in the block.
1463     return Before;
1464   }
1465 };
1466 
1467 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1468   // It is fine to move a bundle as a whole, but not an individual instruction
1469   // inside it.
1470   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1471          "Cannot move instruction in bundle");
1472   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1473   Indexes->removeMachineInstrFromMaps(MI);
1474   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1475   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1476          OldIndex < getMBBEndIdx(MI.getParent()) &&
1477          "Cannot handle moves across basic block boundaries.");
1478 
1479   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1480   HME.updateAllRanges(&MI);
1481 }
1482 
1483 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1484                                          MachineInstr &BundleStart,
1485                                          bool UpdateFlags) {
1486   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1487   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1488   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1489   HME.updateAllRanges(&MI);
1490 }
1491 
1492 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1493                                         const MachineBasicBlock::iterator End,
1494                                         const SlotIndex endIdx,
1495                                         LiveRange &LR, const unsigned Reg,
1496                                         LaneBitmask LaneMask) {
1497   LiveInterval::iterator LII = LR.find(endIdx);
1498   SlotIndex lastUseIdx;
1499   if (LII == LR.begin()) {
1500     // This happens when the function is called for a subregister that only
1501     // occurs _after_ the range that is to be repaired.
1502     return;
1503   }
1504   if (LII != LR.end() && LII->start < endIdx)
1505     lastUseIdx = LII->end;
1506   else
1507     --LII;
1508 
1509   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1510     --I;
1511     MachineInstr &MI = *I;
1512     if (MI.isDebugInstr())
1513       continue;
1514 
1515     SlotIndex instrIdx = getInstructionIndex(MI);
1516     bool isStartValid = getInstructionFromIndex(LII->start);
1517     bool isEndValid = getInstructionFromIndex(LII->end);
1518 
1519     // FIXME: This doesn't currently handle early-clobber or multiple removed
1520     // defs inside of the region to repair.
1521     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1522                                     OE = MI.operands_end();
1523          OI != OE; ++OI) {
1524       const MachineOperand &MO = *OI;
1525       if (!MO.isReg() || MO.getReg() != Reg)
1526         continue;
1527 
1528       unsigned SubReg = MO.getSubReg();
1529       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1530       if ((Mask & LaneMask).none())
1531         continue;
1532 
1533       if (MO.isDef()) {
1534         if (!isStartValid) {
1535           if (LII->end.isDead()) {
1536             SlotIndex prevStart;
1537             if (LII != LR.begin())
1538               prevStart = std::prev(LII)->start;
1539 
1540             // FIXME: This could be more efficient if there was a
1541             // removeSegment method that returned an iterator.
1542             LR.removeSegment(*LII, true);
1543             if (prevStart.isValid())
1544               LII = LR.find(prevStart);
1545             else
1546               LII = LR.begin();
1547           } else {
1548             LII->start = instrIdx.getRegSlot();
1549             LII->valno->def = instrIdx.getRegSlot();
1550             if (MO.getSubReg() && !MO.isUndef())
1551               lastUseIdx = instrIdx.getRegSlot();
1552             else
1553               lastUseIdx = SlotIndex();
1554             continue;
1555           }
1556         }
1557 
1558         if (!lastUseIdx.isValid()) {
1559           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1560           LiveRange::Segment S(instrIdx.getRegSlot(),
1561                                instrIdx.getDeadSlot(), VNI);
1562           LII = LR.addSegment(S);
1563         } else if (LII->start != instrIdx.getRegSlot()) {
1564           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1565           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1566           LII = LR.addSegment(S);
1567         }
1568 
1569         if (MO.getSubReg() && !MO.isUndef())
1570           lastUseIdx = instrIdx.getRegSlot();
1571         else
1572           lastUseIdx = SlotIndex();
1573       } else if (MO.isUse()) {
1574         // FIXME: This should probably be handled outside of this branch,
1575         // either as part of the def case (for defs inside of the region) or
1576         // after the loop over the region.
1577         if (!isEndValid && !LII->end.isBlock())
1578           LII->end = instrIdx.getRegSlot();
1579         if (!lastUseIdx.isValid())
1580           lastUseIdx = instrIdx.getRegSlot();
1581       }
1582     }
1583   }
1584 }
1585 
1586 void
1587 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1588                                       MachineBasicBlock::iterator Begin,
1589                                       MachineBasicBlock::iterator End,
1590                                       ArrayRef<unsigned> OrigRegs) {
1591   // Find anchor points, which are at the beginning/end of blocks or at
1592   // instructions that already have indexes.
1593   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1594     --Begin;
1595   while (End != MBB->end() && !Indexes->hasIndex(*End))
1596     ++End;
1597 
1598   SlotIndex endIdx;
1599   if (End == MBB->end())
1600     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1601   else
1602     endIdx = getInstructionIndex(*End);
1603 
1604   Indexes->repairIndexesInRange(MBB, Begin, End);
1605 
1606   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1607     --I;
1608     MachineInstr &MI = *I;
1609     if (MI.isDebugInstr())
1610       continue;
1611     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1612                                           MOE = MI.operands_end();
1613          MOI != MOE; ++MOI) {
1614       if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1615           !hasInterval(MOI->getReg())) {
1616         createAndComputeVirtRegInterval(MOI->getReg());
1617       }
1618     }
1619   }
1620 
1621   for (unsigned Reg : OrigRegs) {
1622     if (!Register::isVirtualRegister(Reg))
1623       continue;
1624 
1625     LiveInterval &LI = getInterval(Reg);
1626     // FIXME: Should we support undefs that gain defs?
1627     if (!LI.hasAtLeastOneValue())
1628       continue;
1629 
1630     for (LiveInterval::SubRange &S : LI.subranges())
1631       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1632 
1633     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1634   }
1635 }
1636 
1637 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1638   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1639     if (LiveRange *LR = getCachedRegUnit(*Unit))
1640       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1641         LR->removeValNo(VNI);
1642   }
1643 }
1644 
1645 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1646   // LI may not have the main range computed yet, but its subranges may
1647   // be present.
1648   VNInfo *VNI = LI.getVNInfoAt(Pos);
1649   if (VNI != nullptr) {
1650     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1651     LI.removeValNo(VNI);
1652   }
1653 
1654   // Also remove the value defined in subranges.
1655   for (LiveInterval::SubRange &S : LI.subranges()) {
1656     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1657       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1658         S.removeValNo(SVNI);
1659   }
1660   LI.removeEmptySubRanges();
1661 }
1662 
1663 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1664     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1665   ConnectedVNInfoEqClasses ConEQ(*this);
1666   unsigned NumComp = ConEQ.Classify(LI);
1667   if (NumComp <= 1)
1668     return;
1669   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1670   unsigned Reg = LI.reg;
1671   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1672   for (unsigned I = 1; I < NumComp; ++I) {
1673     Register NewVReg = MRI->createVirtualRegister(RegClass);
1674     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1675     SplitLIs.push_back(&NewLI);
1676   }
1677   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1678 }
1679 
1680 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1681   assert(LRCalc && "LRCalc not initialized.");
1682   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1683   LRCalc->constructMainRangeFromSubranges(LI);
1684 }
1685