1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LiveInterval analysis pass which is used 10 /// by the Linear Scan Register allocator. This pass linearizes the 11 /// basic blocks of the function in DFS order and computes live intervals for 12 /// each virtual and physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveRangeCalc.h" 25 #include "llvm/CodeGen/LiveVariables.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BlockFrequency.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "regalloc" 59 60 char LiveIntervals::ID = 0; 61 char &llvm::LiveIntervalsID = LiveIntervals::ID; 62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 63 "Live Interval Analysis", false, false) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 68 "Live Interval Analysis", false, false) 69 70 #ifndef NDEBUG 71 static cl::opt<bool> EnablePrecomputePhysRegs( 72 "precompute-phys-liveness", cl::Hidden, 73 cl::desc("Eagerly compute live intervals for all physreg units.")); 74 #else 75 static bool EnablePrecomputePhysRegs = false; 76 #endif // NDEBUG 77 78 namespace llvm { 79 80 cl::opt<bool> UseSegmentSetForPhysRegs( 81 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 82 cl::desc( 83 "Use segment set for the computation of the live ranges of physregs.")); 84 85 } // end namespace llvm 86 87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesCFG(); 89 AU.addRequired<AAResultsWrapperPass>(); 90 AU.addPreserved<AAResultsWrapperPass>(); 91 AU.addPreserved<LiveVariables>(); 92 AU.addPreservedID(MachineLoopInfoID); 93 AU.addRequiredTransitiveID(MachineDominatorsID); 94 AU.addPreservedID(MachineDominatorsID); 95 AU.addPreserved<SlotIndexes>(); 96 AU.addRequiredTransitive<SlotIndexes>(); 97 MachineFunctionPass::getAnalysisUsage(AU); 98 } 99 100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { 101 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 102 } 103 104 LiveIntervals::~LiveIntervals() { 105 delete LRCalc; 106 } 107 108 void LiveIntervals::releaseMemory() { 109 // Free the live intervals themselves. 110 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 111 delete VirtRegIntervals[Register::index2VirtReg(i)]; 112 VirtRegIntervals.clear(); 113 RegMaskSlots.clear(); 114 RegMaskBits.clear(); 115 RegMaskBlocks.clear(); 116 117 for (LiveRange *LR : RegUnitRanges) 118 delete LR; 119 RegUnitRanges.clear(); 120 121 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 122 VNInfoAllocator.Reset(); 123 } 124 125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 126 MF = &fn; 127 MRI = &MF->getRegInfo(); 128 TRI = MF->getSubtarget().getRegisterInfo(); 129 TII = MF->getSubtarget().getInstrInfo(); 130 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 131 Indexes = &getAnalysis<SlotIndexes>(); 132 DomTree = &getAnalysis<MachineDominatorTree>(); 133 134 if (!LRCalc) 135 LRCalc = new LiveRangeCalc(); 136 137 // Allocate space for all virtual registers. 138 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 139 140 computeVirtRegs(); 141 computeRegMasks(); 142 computeLiveInRegUnits(); 143 144 if (EnablePrecomputePhysRegs) { 145 // For stress testing, precompute live ranges of all physical register 146 // units, including reserved registers. 147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 148 getRegUnit(i); 149 } 150 LLVM_DEBUG(dump()); 151 return true; 152 } 153 154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 155 OS << "********** INTERVALS **********\n"; 156 157 // Dump the regunits. 158 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 159 if (LiveRange *LR = RegUnitRanges[Unit]) 160 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 161 162 // Dump the virtregs. 163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 164 unsigned Reg = Register::index2VirtReg(i); 165 if (hasInterval(Reg)) 166 OS << getInterval(Reg) << '\n'; 167 } 168 169 OS << "RegMasks:"; 170 for (SlotIndex Idx : RegMaskSlots) 171 OS << ' ' << Idx; 172 OS << '\n'; 173 174 printInstrs(OS); 175 } 176 177 void LiveIntervals::printInstrs(raw_ostream &OS) const { 178 OS << "********** MACHINEINSTRS **********\n"; 179 MF->print(OS, Indexes); 180 } 181 182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 184 printInstrs(dbgs()); 185 } 186 #endif 187 188 LiveInterval* LiveIntervals::createInterval(unsigned reg) { 189 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F; 190 return new LiveInterval(reg, Weight); 191 } 192 193 /// Compute the live interval of a virtual register, based on defs and uses. 194 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 195 assert(LRCalc && "LRCalc not initialized."); 196 assert(LI.empty() && "Should only compute empty intervals."); 197 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 198 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg)); 199 return computeDeadValues(LI, nullptr); 200 } 201 202 void LiveIntervals::computeVirtRegs() { 203 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 204 unsigned Reg = Register::index2VirtReg(i); 205 if (MRI->reg_nodbg_empty(Reg)) 206 continue; 207 LiveInterval &LI = createEmptyInterval(Reg); 208 bool NeedSplit = computeVirtRegInterval(LI); 209 if (NeedSplit) { 210 SmallVector<LiveInterval*, 8> SplitLIs; 211 splitSeparateComponents(LI, SplitLIs); 212 } 213 } 214 } 215 216 void LiveIntervals::computeRegMasks() { 217 RegMaskBlocks.resize(MF->getNumBlockIDs()); 218 219 // Find all instructions with regmask operands. 220 for (const MachineBasicBlock &MBB : *MF) { 221 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 222 RMB.first = RegMaskSlots.size(); 223 224 // Some block starts, such as EH funclets, create masks. 225 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 226 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 227 RegMaskBits.push_back(Mask); 228 } 229 230 for (const MachineInstr &MI : MBB) { 231 for (const MachineOperand &MO : MI.operands()) { 232 if (!MO.isRegMask()) 233 continue; 234 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 235 RegMaskBits.push_back(MO.getRegMask()); 236 } 237 } 238 239 // Some block ends, such as funclet returns, create masks. Put the mask on 240 // the last instruction of the block, because MBB slot index intervals are 241 // half-open. 242 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 243 assert(!MBB.empty() && "empty return block?"); 244 RegMaskSlots.push_back( 245 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 246 RegMaskBits.push_back(Mask); 247 } 248 249 // Compute the number of register mask instructions in this block. 250 RMB.second = RegMaskSlots.size() - RMB.first; 251 } 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Register Unit Liveness 256 //===----------------------------------------------------------------------===// 257 // 258 // Fixed interference typically comes from ABI boundaries: Function arguments 259 // and return values are passed in fixed registers, and so are exception 260 // pointers entering landing pads. Certain instructions require values to be 261 // present in specific registers. That is also represented through fixed 262 // interference. 263 // 264 265 /// Compute the live range of a register unit, based on the uses and defs of 266 /// aliasing registers. The range should be empty, or contain only dead 267 /// phi-defs from ABI blocks. 268 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 269 assert(LRCalc && "LRCalc not initialized."); 270 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 271 272 // The physregs aliasing Unit are the roots and their super-registers. 273 // Create all values as dead defs before extending to uses. Note that roots 274 // may share super-registers. That's OK because createDeadDefs() is 275 // idempotent. It is very rare for a register unit to have multiple roots, so 276 // uniquing super-registers is probably not worthwhile. 277 bool IsReserved = false; 278 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 279 bool IsRootReserved = true; 280 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 281 Super.isValid(); ++Super) { 282 unsigned Reg = *Super; 283 if (!MRI->reg_empty(Reg)) 284 LRCalc->createDeadDefs(LR, Reg); 285 // A register unit is considered reserved if all its roots and all their 286 // super registers are reserved. 287 if (!MRI->isReserved(Reg)) 288 IsRootReserved = false; 289 } 290 IsReserved |= IsRootReserved; 291 } 292 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 293 "reserved computation mismatch"); 294 295 // Now extend LR to reach all uses. 296 // Ignore uses of reserved registers. We only track defs of those. 297 if (!IsReserved) { 298 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 299 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 300 Super.isValid(); ++Super) { 301 unsigned Reg = *Super; 302 if (!MRI->reg_empty(Reg)) 303 LRCalc->extendToUses(LR, Reg); 304 } 305 } 306 } 307 308 // Flush the segment set to the segment vector. 309 if (UseSegmentSetForPhysRegs) 310 LR.flushSegmentSet(); 311 } 312 313 /// Precompute the live ranges of any register units that are live-in to an ABI 314 /// block somewhere. Register values can appear without a corresponding def when 315 /// entering the entry block or a landing pad. 316 void LiveIntervals::computeLiveInRegUnits() { 317 RegUnitRanges.resize(TRI->getNumRegUnits()); 318 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 319 320 // Keep track of the live range sets allocated. 321 SmallVector<unsigned, 8> NewRanges; 322 323 // Check all basic blocks for live-ins. 324 for (const MachineBasicBlock &MBB : *MF) { 325 // We only care about ABI blocks: Entry + landing pads. 326 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 327 continue; 328 329 // Create phi-defs at Begin for all live-in registers. 330 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 331 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 332 for (const auto &LI : MBB.liveins()) { 333 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { 334 unsigned Unit = *Units; 335 LiveRange *LR = RegUnitRanges[Unit]; 336 if (!LR) { 337 // Use segment set to speed-up initial computation of the live range. 338 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 339 NewRanges.push_back(Unit); 340 } 341 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 342 (void)VNI; 343 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 344 } 345 } 346 LLVM_DEBUG(dbgs() << '\n'); 347 } 348 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 349 350 // Compute the 'normal' part of the ranges. 351 for (unsigned Unit : NewRanges) 352 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 353 } 354 355 static void createSegmentsForValues(LiveRange &LR, 356 iterator_range<LiveInterval::vni_iterator> VNIs) { 357 for (VNInfo *VNI : VNIs) { 358 if (VNI->isUnused()) 359 continue; 360 SlotIndex Def = VNI->def; 361 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 362 } 363 } 364 365 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, 366 ShrinkToUsesWorkList &WorkList, 367 unsigned Reg, LaneBitmask LaneMask) { 368 // Keep track of the PHIs that are in use. 369 SmallPtrSet<VNInfo*, 8> UsedPHIs; 370 // Blocks that have already been added to WorkList as live-out. 371 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 372 373 auto getSubRange = [](const LiveInterval &I, LaneBitmask M) 374 -> const LiveRange& { 375 if (M.none()) 376 return I; 377 for (const LiveInterval::SubRange &SR : I.subranges()) { 378 if ((SR.LaneMask & M).any()) { 379 assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); 380 return SR; 381 } 382 } 383 llvm_unreachable("Subrange for mask not found"); 384 }; 385 386 const LiveInterval &LI = getInterval(Reg); 387 const LiveRange &OldRange = getSubRange(LI, LaneMask); 388 389 // Extend intervals to reach all uses in WorkList. 390 while (!WorkList.empty()) { 391 SlotIndex Idx = WorkList.back().first; 392 VNInfo *VNI = WorkList.back().second; 393 WorkList.pop_back(); 394 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); 395 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); 396 397 // Extend the live range for VNI to be live at Idx. 398 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { 399 assert(ExtVNI == VNI && "Unexpected existing value number"); 400 (void)ExtVNI; 401 // Is this a PHIDef we haven't seen before? 402 if (!VNI->isPHIDef() || VNI->def != BlockStart || 403 !UsedPHIs.insert(VNI).second) 404 continue; 405 // The PHI is live, make sure the predecessors are live-out. 406 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 407 if (!LiveOut.insert(Pred).second) 408 continue; 409 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 410 // A predecessor is not required to have a live-out value for a PHI. 411 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 412 WorkList.push_back(std::make_pair(Stop, PVNI)); 413 } 414 continue; 415 } 416 417 // VNI is live-in to MBB. 418 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 419 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 420 421 // Make sure VNI is live-out from the predecessors. 422 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 423 if (!LiveOut.insert(Pred).second) 424 continue; 425 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 426 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { 427 assert(OldVNI == VNI && "Wrong value out of predecessor"); 428 (void)OldVNI; 429 WorkList.push_back(std::make_pair(Stop, VNI)); 430 } else { 431 #ifndef NDEBUG 432 // There was no old VNI. Verify that Stop is jointly dominated 433 // by <undef>s for this live range. 434 assert(LaneMask.any() && 435 "Missing value out of predecessor for main range"); 436 SmallVector<SlotIndex,8> Undefs; 437 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 438 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && 439 "Missing value out of predecessor for subrange"); 440 #endif 441 } 442 } 443 } 444 } 445 446 bool LiveIntervals::shrinkToUses(LiveInterval *li, 447 SmallVectorImpl<MachineInstr*> *dead) { 448 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); 449 assert(Register::isVirtualRegister(li->reg) && 450 "Can only shrink virtual registers"); 451 452 // Shrink subregister live ranges. 453 bool NeedsCleanup = false; 454 for (LiveInterval::SubRange &S : li->subranges()) { 455 shrinkToUses(S, li->reg); 456 if (S.empty()) 457 NeedsCleanup = true; 458 } 459 if (NeedsCleanup) 460 li->removeEmptySubRanges(); 461 462 // Find all the values used, including PHI kills. 463 ShrinkToUsesWorkList WorkList; 464 465 // Visit all instructions reading li->reg. 466 unsigned Reg = li->reg; 467 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 468 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg)) 469 continue; 470 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 471 LiveQueryResult LRQ = li->Query(Idx); 472 VNInfo *VNI = LRQ.valueIn(); 473 if (!VNI) { 474 // This shouldn't happen: readsVirtualRegister returns true, but there is 475 // no live value. It is likely caused by a target getting <undef> flags 476 // wrong. 477 LLVM_DEBUG( 478 dbgs() << Idx << '\t' << UseMI 479 << "Warning: Instr claims to read non-existent value in " 480 << *li << '\n'); 481 continue; 482 } 483 // Special case: An early-clobber tied operand reads and writes the 484 // register one slot early. 485 if (VNInfo *DefVNI = LRQ.valueDefined()) 486 Idx = DefVNI->def; 487 488 WorkList.push_back(std::make_pair(Idx, VNI)); 489 } 490 491 // Create new live ranges with only minimal live segments per def. 492 LiveRange NewLR; 493 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); 494 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); 495 496 // Move the trimmed segments back. 497 li->segments.swap(NewLR.segments); 498 499 // Handle dead values. 500 bool CanSeparate = computeDeadValues(*li, dead); 501 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 502 return CanSeparate; 503 } 504 505 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 506 SmallVectorImpl<MachineInstr*> *dead) { 507 bool MayHaveSplitComponents = false; 508 bool HaveDeadDef = false; 509 510 for (VNInfo *VNI : LI.valnos) { 511 if (VNI->isUnused()) 512 continue; 513 SlotIndex Def = VNI->def; 514 LiveRange::iterator I = LI.FindSegmentContaining(Def); 515 assert(I != LI.end() && "Missing segment for VNI"); 516 517 // Is the register live before? Otherwise we may have to add a read-undef 518 // flag for subregister defs. 519 unsigned VReg = LI.reg; 520 if (MRI->shouldTrackSubRegLiveness(VReg)) { 521 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 522 MachineInstr *MI = getInstructionFromIndex(Def); 523 MI->setRegisterDefReadUndef(VReg); 524 } 525 } 526 527 if (I->end != Def.getDeadSlot()) 528 continue; 529 if (VNI->isPHIDef()) { 530 // This is a dead PHI. Remove it. 531 VNI->markUnused(); 532 LI.removeSegment(I); 533 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 534 MayHaveSplitComponents = true; 535 } else { 536 // This is a dead def. Make sure the instruction knows. 537 MachineInstr *MI = getInstructionFromIndex(Def); 538 assert(MI && "No instruction defining live value"); 539 MI->addRegisterDead(LI.reg, TRI); 540 if (HaveDeadDef) 541 MayHaveSplitComponents = true; 542 HaveDeadDef = true; 543 544 if (dead && MI->allDefsAreDead()) { 545 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 546 dead->push_back(MI); 547 } 548 } 549 } 550 return MayHaveSplitComponents; 551 } 552 553 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) { 554 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); 555 assert(Register::isVirtualRegister(Reg) && 556 "Can only shrink virtual registers"); 557 // Find all the values used, including PHI kills. 558 ShrinkToUsesWorkList WorkList; 559 560 // Visit all instructions reading Reg. 561 SlotIndex LastIdx; 562 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 563 // Skip "undef" uses. 564 if (!MO.readsReg()) 565 continue; 566 // Maybe the operand is for a subregister we don't care about. 567 unsigned SubReg = MO.getSubReg(); 568 if (SubReg != 0) { 569 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 570 if ((LaneMask & SR.LaneMask).none()) 571 continue; 572 } 573 // We only need to visit each instruction once. 574 MachineInstr *UseMI = MO.getParent(); 575 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 576 if (Idx == LastIdx) 577 continue; 578 LastIdx = Idx; 579 580 LiveQueryResult LRQ = SR.Query(Idx); 581 VNInfo *VNI = LRQ.valueIn(); 582 // For Subranges it is possible that only undef values are left in that 583 // part of the subregister, so there is no real liverange at the use 584 if (!VNI) 585 continue; 586 587 // Special case: An early-clobber tied operand reads and writes the 588 // register one slot early. 589 if (VNInfo *DefVNI = LRQ.valueDefined()) 590 Idx = DefVNI->def; 591 592 WorkList.push_back(std::make_pair(Idx, VNI)); 593 } 594 595 // Create a new live ranges with only minimal live segments per def. 596 LiveRange NewLR; 597 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); 598 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); 599 600 // Move the trimmed ranges back. 601 SR.segments.swap(NewLR.segments); 602 603 // Remove dead PHI value numbers 604 for (VNInfo *VNI : SR.valnos) { 605 if (VNI->isUnused()) 606 continue; 607 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 608 assert(Segment != nullptr && "Missing segment for VNI"); 609 if (Segment->end != VNI->def.getDeadSlot()) 610 continue; 611 if (VNI->isPHIDef()) { 612 // This is a dead PHI. Remove it. 613 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def 614 << " may separate interval\n"); 615 VNI->markUnused(); 616 SR.removeSegment(*Segment); 617 } 618 } 619 620 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 621 } 622 623 void LiveIntervals::extendToIndices(LiveRange &LR, 624 ArrayRef<SlotIndex> Indices, 625 ArrayRef<SlotIndex> Undefs) { 626 assert(LRCalc && "LRCalc not initialized."); 627 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 628 for (SlotIndex Idx : Indices) 629 LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 630 } 631 632 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 633 SmallVectorImpl<SlotIndex> *EndPoints) { 634 LiveQueryResult LRQ = LR.Query(Kill); 635 VNInfo *VNI = LRQ.valueOutOrDead(); 636 if (!VNI) 637 return; 638 639 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 640 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 641 642 // If VNI isn't live out from KillMBB, the value is trivially pruned. 643 if (LRQ.endPoint() < MBBEnd) { 644 LR.removeSegment(Kill, LRQ.endPoint()); 645 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 646 return; 647 } 648 649 // VNI is live out of KillMBB. 650 LR.removeSegment(Kill, MBBEnd); 651 if (EndPoints) EndPoints->push_back(MBBEnd); 652 653 // Find all blocks that are reachable from KillMBB without leaving VNI's live 654 // range. It is possible that KillMBB itself is reachable, so start a DFS 655 // from each successor. 656 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 657 VisitedTy Visited; 658 for (MachineBasicBlock *Succ : KillMBB->successors()) { 659 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 660 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 661 I != E;) { 662 MachineBasicBlock *MBB = *I; 663 664 // Check if VNI is live in to MBB. 665 SlotIndex MBBStart, MBBEnd; 666 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 667 LiveQueryResult LRQ = LR.Query(MBBStart); 668 if (LRQ.valueIn() != VNI) { 669 // This block isn't part of the VNI segment. Prune the search. 670 I.skipChildren(); 671 continue; 672 } 673 674 // Prune the search if VNI is killed in MBB. 675 if (LRQ.endPoint() < MBBEnd) { 676 LR.removeSegment(MBBStart, LRQ.endPoint()); 677 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 678 I.skipChildren(); 679 continue; 680 } 681 682 // VNI is live through MBB. 683 LR.removeSegment(MBBStart, MBBEnd); 684 if (EndPoints) EndPoints->push_back(MBBEnd); 685 ++I; 686 } 687 } 688 } 689 690 //===----------------------------------------------------------------------===// 691 // Register allocator hooks. 692 // 693 694 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 695 // Keep track of regunit ranges. 696 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 697 // Keep track of subregister ranges. 698 SmallVector<std::pair<const LiveInterval::SubRange*, 699 LiveRange::const_iterator>, 4> SRs; 700 701 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 702 unsigned Reg = Register::index2VirtReg(i); 703 if (MRI->reg_nodbg_empty(Reg)) 704 continue; 705 const LiveInterval &LI = getInterval(Reg); 706 if (LI.empty()) 707 continue; 708 709 // Find the regunit intervals for the assigned register. They may overlap 710 // the virtual register live range, cancelling any kills. 711 RU.clear(); 712 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid(); 713 ++Unit) { 714 const LiveRange &RURange = getRegUnit(*Unit); 715 if (RURange.empty()) 716 continue; 717 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 718 } 719 720 if (MRI->subRegLivenessEnabled()) { 721 SRs.clear(); 722 for (const LiveInterval::SubRange &SR : LI.subranges()) { 723 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); 724 } 725 } 726 727 // Every instruction that kills Reg corresponds to a segment range end 728 // point. 729 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 730 ++RI) { 731 // A block index indicates an MBB edge. 732 if (RI->end.isBlock()) 733 continue; 734 MachineInstr *MI = getInstructionFromIndex(RI->end); 735 if (!MI) 736 continue; 737 738 // Check if any of the regunits are live beyond the end of RI. That could 739 // happen when a physreg is defined as a copy of a virtreg: 740 // 741 // %eax = COPY %5 742 // FOO %5 <--- MI, cancel kill because %eax is live. 743 // BAR killed %eax 744 // 745 // There should be no kill flag on FOO when %5 is rewritten as %eax. 746 for (auto &RUP : RU) { 747 const LiveRange &RURange = *RUP.first; 748 LiveRange::const_iterator &I = RUP.second; 749 if (I == RURange.end()) 750 continue; 751 I = RURange.advanceTo(I, RI->end); 752 if (I == RURange.end() || I->start >= RI->end) 753 continue; 754 // I is overlapping RI. 755 goto CancelKill; 756 } 757 758 if (MRI->subRegLivenessEnabled()) { 759 // When reading a partial undefined value we must not add a kill flag. 760 // The regalloc might have used the undef lane for something else. 761 // Example: 762 // %1 = ... ; R32: %1 763 // %2:high16 = ... ; R64: %2 764 // = read killed %2 ; R64: %2 765 // = read %1 ; R32: %1 766 // The <kill> flag is correct for %2, but the register allocator may 767 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 768 // are actually never written by %2. After assignment the <kill> 769 // flag at the read instruction is invalid. 770 LaneBitmask DefinedLanesMask; 771 if (!SRs.empty()) { 772 // Compute a mask of lanes that are defined. 773 DefinedLanesMask = LaneBitmask::getNone(); 774 for (auto &SRP : SRs) { 775 const LiveInterval::SubRange &SR = *SRP.first; 776 LiveRange::const_iterator &I = SRP.second; 777 if (I == SR.end()) 778 continue; 779 I = SR.advanceTo(I, RI->end); 780 if (I == SR.end() || I->start >= RI->end) 781 continue; 782 // I is overlapping RI 783 DefinedLanesMask |= SR.LaneMask; 784 } 785 } else 786 DefinedLanesMask = LaneBitmask::getAll(); 787 788 bool IsFullWrite = false; 789 for (const MachineOperand &MO : MI->operands()) { 790 if (!MO.isReg() || MO.getReg() != Reg) 791 continue; 792 if (MO.isUse()) { 793 // Reading any undefined lanes? 794 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 795 if ((UseMask & ~DefinedLanesMask).any()) 796 goto CancelKill; 797 } else if (MO.getSubReg() == 0) { 798 // Writing to the full register? 799 assert(MO.isDef()); 800 IsFullWrite = true; 801 } 802 } 803 804 // If an instruction writes to a subregister, a new segment starts in 805 // the LiveInterval. But as this is only overriding part of the register 806 // adding kill-flags is not correct here after registers have been 807 // assigned. 808 if (!IsFullWrite) { 809 // Next segment has to be adjacent in the subregister write case. 810 LiveRange::const_iterator N = std::next(RI); 811 if (N != LI.end() && N->start == RI->end) 812 goto CancelKill; 813 } 814 } 815 816 MI->addRegisterKilled(Reg, nullptr); 817 continue; 818 CancelKill: 819 MI->clearRegisterKills(Reg, nullptr); 820 } 821 } 822 } 823 824 MachineBasicBlock* 825 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 826 // A local live range must be fully contained inside the block, meaning it is 827 // defined and killed at instructions, not at block boundaries. It is not 828 // live in or out of any block. 829 // 830 // It is technically possible to have a PHI-defined live range identical to a 831 // single block, but we are going to return false in that case. 832 833 SlotIndex Start = LI.beginIndex(); 834 if (Start.isBlock()) 835 return nullptr; 836 837 SlotIndex Stop = LI.endIndex(); 838 if (Stop.isBlock()) 839 return nullptr; 840 841 // getMBBFromIndex doesn't need to search the MBB table when both indexes 842 // belong to proper instructions. 843 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 844 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 845 return MBB1 == MBB2 ? MBB1 : nullptr; 846 } 847 848 bool 849 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 850 for (const VNInfo *PHI : LI.valnos) { 851 if (PHI->isUnused() || !PHI->isPHIDef()) 852 continue; 853 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 854 // Conservatively return true instead of scanning huge predecessor lists. 855 if (PHIMBB->pred_size() > 100) 856 return true; 857 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 858 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 859 return true; 860 } 861 return false; 862 } 863 864 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 865 const MachineBlockFrequencyInfo *MBFI, 866 const MachineInstr &MI) { 867 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 868 } 869 870 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 871 const MachineBlockFrequencyInfo *MBFI, 872 const MachineBasicBlock *MBB) { 873 BlockFrequency Freq = MBFI->getBlockFreq(MBB); 874 const float Scale = 1.0f / MBFI->getEntryFreq(); 875 return (isDef + isUse) * (Freq.getFrequency() * Scale); 876 } 877 878 LiveRange::Segment 879 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) { 880 LiveInterval& Interval = createEmptyInterval(reg); 881 VNInfo *VN = Interval.getNextValue( 882 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 883 getVNInfoAllocator()); 884 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 885 getMBBEndIdx(startInst.getParent()), VN); 886 Interval.addSegment(S); 887 888 return S; 889 } 890 891 //===----------------------------------------------------------------------===// 892 // Register mask functions 893 //===----------------------------------------------------------------------===// 894 895 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, 896 BitVector &UsableRegs) { 897 if (LI.empty()) 898 return false; 899 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); 900 901 // Use a smaller arrays for local live ranges. 902 ArrayRef<SlotIndex> Slots; 903 ArrayRef<const uint32_t*> Bits; 904 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 905 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 906 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 907 } else { 908 Slots = getRegMaskSlots(); 909 Bits = getRegMaskBits(); 910 } 911 912 // We are going to enumerate all the register mask slots contained in LI. 913 // Start with a binary search of RegMaskSlots to find a starting point. 914 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start); 915 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 916 917 // No slots in range, LI begins after the last call. 918 if (SlotI == SlotE) 919 return false; 920 921 bool Found = false; 922 while (true) { 923 assert(*SlotI >= LiveI->start); 924 // Loop over all slots overlapping this segment. 925 while (*SlotI < LiveI->end) { 926 // *SlotI overlaps LI. Collect mask bits. 927 if (!Found) { 928 // This is the first overlap. Initialize UsableRegs to all ones. 929 UsableRegs.clear(); 930 UsableRegs.resize(TRI->getNumRegs(), true); 931 Found = true; 932 } 933 // Remove usable registers clobbered by this mask. 934 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); 935 if (++SlotI == SlotE) 936 return Found; 937 } 938 // *SlotI is beyond the current LI segment. 939 LiveI = LI.advanceTo(LiveI, *SlotI); 940 if (LiveI == LiveE) 941 return Found; 942 // Advance SlotI until it overlaps. 943 while (*SlotI < LiveI->start) 944 if (++SlotI == SlotE) 945 return Found; 946 } 947 } 948 949 //===----------------------------------------------------------------------===// 950 // IntervalUpdate class. 951 //===----------------------------------------------------------------------===// 952 953 /// Toolkit used by handleMove to trim or extend live intervals. 954 class LiveIntervals::HMEditor { 955 private: 956 LiveIntervals& LIS; 957 const MachineRegisterInfo& MRI; 958 const TargetRegisterInfo& TRI; 959 SlotIndex OldIdx; 960 SlotIndex NewIdx; 961 SmallPtrSet<LiveRange*, 8> Updated; 962 bool UpdateFlags; 963 964 public: 965 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 966 const TargetRegisterInfo& TRI, 967 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 968 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 969 UpdateFlags(UpdateFlags) {} 970 971 // FIXME: UpdateFlags is a workaround that creates live intervals for all 972 // physregs, even those that aren't needed for regalloc, in order to update 973 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 974 // flags, and postRA passes will use a live register utility instead. 975 LiveRange *getRegUnitLI(unsigned Unit) { 976 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 977 return &LIS.getRegUnit(Unit); 978 return LIS.getCachedRegUnit(Unit); 979 } 980 981 /// Update all live ranges touched by MI, assuming a move from OldIdx to 982 /// NewIdx. 983 void updateAllRanges(MachineInstr *MI) { 984 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " 985 << *MI); 986 bool hasRegMask = false; 987 for (MachineOperand &MO : MI->operands()) { 988 if (MO.isRegMask()) 989 hasRegMask = true; 990 if (!MO.isReg()) 991 continue; 992 if (MO.isUse()) { 993 if (!MO.readsReg()) 994 continue; 995 // Aggressively clear all kill flags. 996 // They are reinserted by VirtRegRewriter. 997 MO.setIsKill(false); 998 } 999 1000 Register Reg = MO.getReg(); 1001 if (!Reg) 1002 continue; 1003 if (Register::isVirtualRegister(Reg)) { 1004 LiveInterval &LI = LIS.getInterval(Reg); 1005 if (LI.hasSubRanges()) { 1006 unsigned SubReg = MO.getSubReg(); 1007 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1008 : MRI.getMaxLaneMaskForVReg(Reg); 1009 for (LiveInterval::SubRange &S : LI.subranges()) { 1010 if ((S.LaneMask & LaneMask).none()) 1011 continue; 1012 updateRange(S, Reg, S.LaneMask); 1013 } 1014 } 1015 updateRange(LI, Reg, LaneBitmask::getNone()); 1016 continue; 1017 } 1018 1019 // For physregs, only update the regunits that actually have a 1020 // precomputed live range. 1021 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) 1022 if (LiveRange *LR = getRegUnitLI(*Units)) 1023 updateRange(*LR, *Units, LaneBitmask::getNone()); 1024 } 1025 if (hasRegMask) 1026 updateRegMaskSlots(); 1027 } 1028 1029 private: 1030 /// Update a single live range, assuming an instruction has been moved from 1031 /// OldIdx to NewIdx. 1032 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 1033 if (!Updated.insert(&LR).second) 1034 return; 1035 LLVM_DEBUG({ 1036 dbgs() << " "; 1037 if (Register::isVirtualRegister(Reg)) { 1038 dbgs() << printReg(Reg); 1039 if (LaneMask.any()) 1040 dbgs() << " L" << PrintLaneMask(LaneMask); 1041 } else { 1042 dbgs() << printRegUnit(Reg, &TRI); 1043 } 1044 dbgs() << ":\t" << LR << '\n'; 1045 }); 1046 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1047 handleMoveDown(LR); 1048 else 1049 handleMoveUp(LR, Reg, LaneMask); 1050 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); 1051 LR.verify(); 1052 } 1053 1054 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1055 /// to NewIdx (OldIdx < NewIdx). 1056 void handleMoveDown(LiveRange &LR) { 1057 LiveRange::iterator E = LR.end(); 1058 // Segment going into OldIdx. 1059 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1060 1061 // No value live before or after OldIdx? Nothing to do. 1062 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1063 return; 1064 1065 LiveRange::iterator OldIdxOut; 1066 // Do we have a value live-in to OldIdx? 1067 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1068 // If the live-in value already extends to NewIdx, there is nothing to do. 1069 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1070 return; 1071 // Aggressively remove all kill flags from the old kill point. 1072 // Kill flags shouldn't be used while live intervals exist, they will be 1073 // reinserted by VirtRegRewriter. 1074 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1075 for (MachineOperand &MOP : mi_bundle_ops(*KillMI)) 1076 if (MOP.isReg() && MOP.isUse()) 1077 MOP.setIsKill(false); 1078 1079 // Is there a def before NewIdx which is not OldIdx? 1080 LiveRange::iterator Next = std::next(OldIdxIn); 1081 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1082 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1083 // If we are here then OldIdx was just a use but not a def. We only have 1084 // to ensure liveness extends to NewIdx. 1085 LiveRange::iterator NewIdxIn = 1086 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1087 // Extend the segment before NewIdx if necessary. 1088 if (NewIdxIn == E || 1089 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1090 LiveRange::iterator Prev = std::prev(NewIdxIn); 1091 Prev->end = NewIdx.getRegSlot(); 1092 } 1093 // Extend OldIdxIn. 1094 OldIdxIn->end = Next->start; 1095 return; 1096 } 1097 1098 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1099 // invalid by overlapping ranges. 1100 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1101 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1102 // If this was not a kill, then there was no def and we're done. 1103 if (!isKill) 1104 return; 1105 1106 // Did we have a Def at OldIdx? 1107 OldIdxOut = Next; 1108 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1109 return; 1110 } else { 1111 OldIdxOut = OldIdxIn; 1112 } 1113 1114 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1115 // to the segment starting there. 1116 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1117 "No def?"); 1118 VNInfo *OldIdxVNI = OldIdxOut->valno; 1119 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1120 1121 // If the defined value extends beyond NewIdx, just move the beginning 1122 // of the segment to NewIdx. 1123 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1124 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1125 OldIdxVNI->def = NewIdxDef; 1126 OldIdxOut->start = OldIdxVNI->def; 1127 return; 1128 } 1129 1130 // If we are here then we have a Definition at OldIdx which ends before 1131 // NewIdx. 1132 1133 // Is there an existing Def at NewIdx? 1134 LiveRange::iterator AfterNewIdx 1135 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1136 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1137 if (!OldIdxDefIsDead && 1138 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1139 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1140 VNInfo *DefVNI; 1141 if (OldIdxOut != LR.begin() && 1142 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1143 OldIdxOut->start)) { 1144 // There is no gap between OldIdxOut and its predecessor anymore, 1145 // merge them. 1146 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1147 DefVNI = OldIdxVNI; 1148 IPrev->end = OldIdxOut->end; 1149 } else { 1150 // The value is live in to OldIdx 1151 LiveRange::iterator INext = std::next(OldIdxOut); 1152 assert(INext != E && "Must have following segment"); 1153 // We merge OldIdxOut and its successor. As we're dealing with subreg 1154 // reordering, there is always a successor to OldIdxOut in the same BB 1155 // We don't need INext->valno anymore and will reuse for the new segment 1156 // we create later. 1157 DefVNI = OldIdxVNI; 1158 INext->start = OldIdxOut->end; 1159 INext->valno->def = INext->start; 1160 } 1161 // If NewIdx is behind the last segment, extend that and append a new one. 1162 if (AfterNewIdx == E) { 1163 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1164 // one position. 1165 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1166 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1167 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1168 // The last segment is undefined now, reuse it for a dead def. 1169 LiveRange::iterator NewSegment = std::prev(E); 1170 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1171 DefVNI); 1172 DefVNI->def = NewIdxDef; 1173 1174 LiveRange::iterator Prev = std::prev(NewSegment); 1175 Prev->end = NewIdxDef; 1176 } else { 1177 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1178 // one position. 1179 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1180 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1181 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1182 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1183 // We have two cases: 1184 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1185 // Case 1: NewIdx is inside a liverange. Split this liverange at 1186 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1187 LiveRange::iterator NewSegment = AfterNewIdx; 1188 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1189 Prev->valno->def = NewIdxDef; 1190 1191 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1192 DefVNI->def = Prev->start; 1193 } else { 1194 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1195 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1196 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1197 DefVNI->def = NewIdxDef; 1198 assert(DefVNI != AfterNewIdx->valno); 1199 } 1200 } 1201 return; 1202 } 1203 1204 if (AfterNewIdx != E && 1205 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1206 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1207 // that value. 1208 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1209 LR.removeValNo(OldIdxVNI); 1210 } else { 1211 // There was no existing def at NewIdx. We need to create a dead def 1212 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1213 // a new segment at the place where we want to construct the dead def. 1214 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1215 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1216 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1217 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1218 // We can reuse OldIdxVNI now. 1219 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1220 VNInfo *NewSegmentVNI = OldIdxVNI; 1221 NewSegmentVNI->def = NewIdxDef; 1222 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1223 NewSegmentVNI); 1224 } 1225 } 1226 1227 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1228 /// to NewIdx (NewIdx < OldIdx). 1229 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 1230 LiveRange::iterator E = LR.end(); 1231 // Segment going into OldIdx. 1232 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1233 1234 // No value live before or after OldIdx? Nothing to do. 1235 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1236 return; 1237 1238 LiveRange::iterator OldIdxOut; 1239 // Do we have a value live-in to OldIdx? 1240 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1241 // If the live-in value isn't killed here, then we have no Def at 1242 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1243 // to do. 1244 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1245 if (!isKill) 1246 return; 1247 1248 // At this point we have to move OldIdxIn->end back to the nearest 1249 // previous use or (dead-)def but no further than NewIdx. 1250 SlotIndex DefBeforeOldIdx 1251 = std::max(OldIdxIn->start.getDeadSlot(), 1252 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1253 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1254 1255 // Did we have a Def at OldIdx? If not we are done now. 1256 OldIdxOut = std::next(OldIdxIn); 1257 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1258 return; 1259 } else { 1260 OldIdxOut = OldIdxIn; 1261 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1262 } 1263 1264 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1265 // to the segment starting there. 1266 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1267 "No def?"); 1268 VNInfo *OldIdxVNI = OldIdxOut->valno; 1269 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1270 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1271 1272 // Is there an existing def at NewIdx? 1273 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1274 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1275 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1276 assert(NewIdxOut->valno != OldIdxVNI && 1277 "Same value defined more than once?"); 1278 // If OldIdx was a dead def remove it. 1279 if (!OldIdxDefIsDead) { 1280 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1281 // NewIdx so it can take its place. 1282 OldIdxVNI->def = NewIdxDef; 1283 OldIdxOut->start = NewIdxDef; 1284 LR.removeValNo(NewIdxOut->valno); 1285 } else { 1286 // Simply remove the dead def at OldIdx. 1287 LR.removeValNo(OldIdxVNI); 1288 } 1289 } else { 1290 // Previously nothing was live after NewIdx, so all we have to do now is 1291 // move the begin of OldIdxOut to NewIdx. 1292 if (!OldIdxDefIsDead) { 1293 // Do we have any intermediate Defs between OldIdx and NewIdx? 1294 if (OldIdxIn != E && 1295 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1296 // OldIdx is not a dead def and NewIdx is before predecessor start. 1297 LiveRange::iterator NewIdxIn = NewIdxOut; 1298 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1299 const SlotIndex SplitPos = NewIdxDef; 1300 OldIdxVNI = OldIdxIn->valno; 1301 1302 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end; 1303 LiveRange::iterator Prev = std::prev(OldIdxIn); 1304 if (OldIdxIn != LR.begin() && 1305 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) { 1306 // If the segment before OldIdx read a value defined earlier than 1307 // NewIdx, the moved instruction also reads and forwards that 1308 // value. Extend the lifetime of the new def point. 1309 1310 // Extend to where the previous range started, unless there is 1311 // another redef first. 1312 NewDefEndPoint = std::min(OldIdxIn->start, 1313 std::next(NewIdxOut)->start); 1314 } 1315 1316 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1317 OldIdxOut->valno->def = OldIdxIn->start; 1318 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1319 OldIdxOut->valno); 1320 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1321 // We Slide [NewIdxIn, OldIdxIn) down one position. 1322 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1323 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1324 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1325 // NewIdxIn is now considered undef so we can reuse it for the moved 1326 // value. 1327 LiveRange::iterator NewSegment = NewIdxIn; 1328 LiveRange::iterator Next = std::next(NewSegment); 1329 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1330 // There is no gap between NewSegment and its predecessor. 1331 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1332 Next->valno); 1333 1334 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); 1335 Next->valno->def = SplitPos; 1336 } else { 1337 // There is a gap between NewSegment and its predecessor 1338 // Value becomes live in. 1339 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1340 NewSegment->valno->def = SplitPos; 1341 } 1342 } else { 1343 // Leave the end point of a live def. 1344 OldIdxOut->start = NewIdxDef; 1345 OldIdxVNI->def = NewIdxDef; 1346 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1347 OldIdxIn->end = NewIdx.getRegSlot(); 1348 } 1349 } else if (OldIdxIn != E 1350 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) 1351 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { 1352 // OldIdxVNI is a dead def that has been moved into the middle of 1353 // another value in LR. That can happen when LR is a whole register, 1354 // but the dead def is a write to a subreg that is dead at NewIdx. 1355 // The dead def may have been moved across other values 1356 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1357 // down one position. 1358 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1359 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1360 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1361 // Modify the segment at NewIdxOut and the following segment to meet at 1362 // the point of the dead def, with the following segment getting 1363 // OldIdxVNI as its value number. 1364 *NewIdxOut = LiveRange::Segment( 1365 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); 1366 *(NewIdxOut + 1) = LiveRange::Segment( 1367 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); 1368 OldIdxVNI->def = NewIdxDef; 1369 // Modify subsequent segments to be defined by the moved def OldIdxVNI. 1370 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) 1371 Idx->valno = OldIdxVNI; 1372 // Aggressively remove all dead flags from the former dead definition. 1373 // Kill/dead flags shouldn't be used while live intervals exist; they 1374 // will be reinserted by VirtRegRewriter. 1375 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) 1376 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1377 if (MO->isReg() && !MO->isUse()) 1378 MO->setIsDead(false); 1379 } else { 1380 // OldIdxVNI is a dead def. It may have been moved across other values 1381 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1382 // down one position. 1383 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1384 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1385 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1386 // OldIdxVNI can be reused now to build a new dead def segment. 1387 LiveRange::iterator NewSegment = NewIdxOut; 1388 VNInfo *NewSegmentVNI = OldIdxVNI; 1389 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1390 NewSegmentVNI); 1391 NewSegmentVNI->def = NewIdxDef; 1392 } 1393 } 1394 } 1395 1396 void updateRegMaskSlots() { 1397 SmallVectorImpl<SlotIndex>::iterator RI = 1398 llvm::lower_bound(LIS.RegMaskSlots, OldIdx); 1399 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1400 "No RegMask at OldIdx."); 1401 *RI = NewIdx.getRegSlot(); 1402 assert((RI == LIS.RegMaskSlots.begin() || 1403 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1404 "Cannot move regmask instruction above another call"); 1405 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1406 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1407 "Cannot move regmask instruction below another call"); 1408 } 1409 1410 // Return the last use of reg between NewIdx and OldIdx. 1411 SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg, 1412 LaneBitmask LaneMask) { 1413 if (Register::isVirtualRegister(Reg)) { 1414 SlotIndex LastUse = Before; 1415 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1416 if (MO.isUndef()) 1417 continue; 1418 unsigned SubReg = MO.getSubReg(); 1419 if (SubReg != 0 && LaneMask.any() 1420 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1421 continue; 1422 1423 const MachineInstr &MI = *MO.getParent(); 1424 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1425 if (InstSlot > LastUse && InstSlot < OldIdx) 1426 LastUse = InstSlot.getRegSlot(); 1427 } 1428 return LastUse; 1429 } 1430 1431 // This is a regunit interval, so scanning the use list could be very 1432 // expensive. Scan upwards from OldIdx instead. 1433 assert(Before < OldIdx && "Expected upwards move"); 1434 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1435 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1436 1437 // OldIdx may not correspond to an instruction any longer, so set MII to 1438 // point to the next instruction after OldIdx, or MBB->end(). 1439 MachineBasicBlock::iterator MII = MBB->end(); 1440 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1441 Indexes->getNextNonNullIndex(OldIdx))) 1442 if (MI->getParent() == MBB) 1443 MII = MI; 1444 1445 MachineBasicBlock::iterator Begin = MBB->begin(); 1446 while (MII != Begin) { 1447 if ((--MII)->isDebugInstr()) 1448 continue; 1449 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1450 1451 // Stop searching when Before is reached. 1452 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1453 return Before; 1454 1455 // Check if MII uses Reg. 1456 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1457 if (MO->isReg() && !MO->isUndef() && 1458 Register::isPhysicalRegister(MO->getReg()) && 1459 TRI.hasRegUnit(MO->getReg(), Reg)) 1460 return Idx.getRegSlot(); 1461 } 1462 // Didn't reach Before. It must be the first instruction in the block. 1463 return Before; 1464 } 1465 }; 1466 1467 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1468 // It is fine to move a bundle as a whole, but not an individual instruction 1469 // inside it. 1470 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && 1471 "Cannot move instruction in bundle"); 1472 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1473 Indexes->removeMachineInstrFromMaps(MI); 1474 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1475 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1476 OldIndex < getMBBEndIdx(MI.getParent()) && 1477 "Cannot handle moves across basic block boundaries."); 1478 1479 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1480 HME.updateAllRanges(&MI); 1481 } 1482 1483 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI, 1484 MachineInstr &BundleStart, 1485 bool UpdateFlags) { 1486 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1487 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); 1488 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1489 HME.updateAllRanges(&MI); 1490 } 1491 1492 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1493 const MachineBasicBlock::iterator End, 1494 const SlotIndex endIdx, 1495 LiveRange &LR, const unsigned Reg, 1496 LaneBitmask LaneMask) { 1497 LiveInterval::iterator LII = LR.find(endIdx); 1498 SlotIndex lastUseIdx; 1499 if (LII == LR.begin()) { 1500 // This happens when the function is called for a subregister that only 1501 // occurs _after_ the range that is to be repaired. 1502 return; 1503 } 1504 if (LII != LR.end() && LII->start < endIdx) 1505 lastUseIdx = LII->end; 1506 else 1507 --LII; 1508 1509 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1510 --I; 1511 MachineInstr &MI = *I; 1512 if (MI.isDebugInstr()) 1513 continue; 1514 1515 SlotIndex instrIdx = getInstructionIndex(MI); 1516 bool isStartValid = getInstructionFromIndex(LII->start); 1517 bool isEndValid = getInstructionFromIndex(LII->end); 1518 1519 // FIXME: This doesn't currently handle early-clobber or multiple removed 1520 // defs inside of the region to repair. 1521 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 1522 OE = MI.operands_end(); 1523 OI != OE; ++OI) { 1524 const MachineOperand &MO = *OI; 1525 if (!MO.isReg() || MO.getReg() != Reg) 1526 continue; 1527 1528 unsigned SubReg = MO.getSubReg(); 1529 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1530 if ((Mask & LaneMask).none()) 1531 continue; 1532 1533 if (MO.isDef()) { 1534 if (!isStartValid) { 1535 if (LII->end.isDead()) { 1536 SlotIndex prevStart; 1537 if (LII != LR.begin()) 1538 prevStart = std::prev(LII)->start; 1539 1540 // FIXME: This could be more efficient if there was a 1541 // removeSegment method that returned an iterator. 1542 LR.removeSegment(*LII, true); 1543 if (prevStart.isValid()) 1544 LII = LR.find(prevStart); 1545 else 1546 LII = LR.begin(); 1547 } else { 1548 LII->start = instrIdx.getRegSlot(); 1549 LII->valno->def = instrIdx.getRegSlot(); 1550 if (MO.getSubReg() && !MO.isUndef()) 1551 lastUseIdx = instrIdx.getRegSlot(); 1552 else 1553 lastUseIdx = SlotIndex(); 1554 continue; 1555 } 1556 } 1557 1558 if (!lastUseIdx.isValid()) { 1559 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1560 LiveRange::Segment S(instrIdx.getRegSlot(), 1561 instrIdx.getDeadSlot(), VNI); 1562 LII = LR.addSegment(S); 1563 } else if (LII->start != instrIdx.getRegSlot()) { 1564 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1565 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1566 LII = LR.addSegment(S); 1567 } 1568 1569 if (MO.getSubReg() && !MO.isUndef()) 1570 lastUseIdx = instrIdx.getRegSlot(); 1571 else 1572 lastUseIdx = SlotIndex(); 1573 } else if (MO.isUse()) { 1574 // FIXME: This should probably be handled outside of this branch, 1575 // either as part of the def case (for defs inside of the region) or 1576 // after the loop over the region. 1577 if (!isEndValid && !LII->end.isBlock()) 1578 LII->end = instrIdx.getRegSlot(); 1579 if (!lastUseIdx.isValid()) 1580 lastUseIdx = instrIdx.getRegSlot(); 1581 } 1582 } 1583 } 1584 } 1585 1586 void 1587 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1588 MachineBasicBlock::iterator Begin, 1589 MachineBasicBlock::iterator End, 1590 ArrayRef<unsigned> OrigRegs) { 1591 // Find anchor points, which are at the beginning/end of blocks or at 1592 // instructions that already have indexes. 1593 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) 1594 --Begin; 1595 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1596 ++End; 1597 1598 SlotIndex endIdx; 1599 if (End == MBB->end()) 1600 endIdx = getMBBEndIdx(MBB).getPrevSlot(); 1601 else 1602 endIdx = getInstructionIndex(*End); 1603 1604 Indexes->repairIndexesInRange(MBB, Begin, End); 1605 1606 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1607 --I; 1608 MachineInstr &MI = *I; 1609 if (MI.isDebugInstr()) 1610 continue; 1611 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1612 MOE = MI.operands_end(); 1613 MOI != MOE; ++MOI) { 1614 if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) && 1615 !hasInterval(MOI->getReg())) { 1616 createAndComputeVirtRegInterval(MOI->getReg()); 1617 } 1618 } 1619 } 1620 1621 for (unsigned Reg : OrigRegs) { 1622 if (!Register::isVirtualRegister(Reg)) 1623 continue; 1624 1625 LiveInterval &LI = getInterval(Reg); 1626 // FIXME: Should we support undefs that gain defs? 1627 if (!LI.hasAtLeastOneValue()) 1628 continue; 1629 1630 for (LiveInterval::SubRange &S : LI.subranges()) 1631 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask); 1632 1633 repairOldRegInRange(Begin, End, endIdx, LI, Reg); 1634 } 1635 } 1636 1637 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) { 1638 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { 1639 if (LiveRange *LR = getCachedRegUnit(*Unit)) 1640 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1641 LR->removeValNo(VNI); 1642 } 1643 } 1644 1645 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1646 // LI may not have the main range computed yet, but its subranges may 1647 // be present. 1648 VNInfo *VNI = LI.getVNInfoAt(Pos); 1649 if (VNI != nullptr) { 1650 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1651 LI.removeValNo(VNI); 1652 } 1653 1654 // Also remove the value defined in subranges. 1655 for (LiveInterval::SubRange &S : LI.subranges()) { 1656 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1657 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1658 S.removeValNo(SVNI); 1659 } 1660 LI.removeEmptySubRanges(); 1661 } 1662 1663 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1664 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1665 ConnectedVNInfoEqClasses ConEQ(*this); 1666 unsigned NumComp = ConEQ.Classify(LI); 1667 if (NumComp <= 1) 1668 return; 1669 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1670 unsigned Reg = LI.reg; 1671 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); 1672 for (unsigned I = 1; I < NumComp; ++I) { 1673 Register NewVReg = MRI->createVirtualRegister(RegClass); 1674 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1675 SplitLIs.push_back(&NewLI); 1676 } 1677 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1678 } 1679 1680 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1681 assert(LRCalc && "LRCalc not initialized."); 1682 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1683 LRCalc->constructMainRangeFromSubranges(LI); 1684 } 1685