xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveIntervalCalc.cpp (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 //===- LiveIntervalCalc.cpp - Calculate live interval --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the LiveIntervalCalc class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/LiveIntervalCalc.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/LiveInterval.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/MC/LaneBitmask.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <iterator>
32 #include <tuple>
33 #include <utility>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "regalloc"
38 
39 // Reserve an address that indicates a value that is known to be "undef".
40 static VNInfo UndefVNI(0xbad, SlotIndex());
41 
42 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
43                           LiveRange &LR, const MachineOperand &MO) {
44   const MachineInstr &MI = *MO.getParent();
45   SlotIndex DefIdx =
46       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
47 
48   // Create the def in LR. This may find an existing def.
49   LR.createDeadDef(DefIdx, Alloc);
50 }
51 
52 void LiveIntervalCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
53   const MachineRegisterInfo *MRI = getRegInfo();
54   SlotIndexes *Indexes = getIndexes();
55   VNInfo::Allocator *Alloc = getVNAlloc();
56 
57   assert(MRI && Indexes && "call reset() first");
58 
59   // Step 1: Create minimal live segments for every definition of Reg.
60   // Visit all def operands. If the same instruction has multiple defs of Reg,
61   // createDeadDef() will deduplicate.
62   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
63   unsigned Reg = LI.reg();
64   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
65     if (!MO.isDef() && !MO.readsReg())
66       continue;
67 
68     unsigned SubReg = MO.getSubReg();
69     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
70       LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
71                                         : MRI->getMaxLaneMaskForVReg(Reg);
72       // If this is the first time we see a subregister def, initialize
73       // subranges by creating a copy of the main range.
74       if (!LI.hasSubRanges() && !LI.empty()) {
75         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
76         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
77       }
78 
79       LI.refineSubRanges(
80           *Alloc, SubMask,
81           [&MO, Indexes, Alloc](LiveInterval::SubRange &SR) {
82             if (MO.isDef())
83               createDeadDef(*Indexes, *Alloc, SR, MO);
84           },
85           *Indexes, TRI);
86     }
87 
88     // Create the def in the main liverange. We do not have to do this if
89     // subranges are tracked as we recreate the main range later in this case.
90     if (MO.isDef() && !LI.hasSubRanges())
91       createDeadDef(*Indexes, *Alloc, LI, MO);
92   }
93 
94   // We may have created empty live ranges for partially undefined uses, we
95   // can't keep them because we won't find defs in them later.
96   LI.removeEmptySubRanges();
97 
98   const MachineFunction *MF = getMachineFunction();
99   MachineDominatorTree *DomTree = getDomTree();
100   // Step 2: Extend live segments to all uses, constructing SSA form as
101   // necessary.
102   if (LI.hasSubRanges()) {
103     for (LiveInterval::SubRange &S : LI.subranges()) {
104       LiveIntervalCalc SubLIC;
105       SubLIC.reset(MF, Indexes, DomTree, Alloc);
106       SubLIC.extendToUses(S, Reg, S.LaneMask, &LI);
107     }
108     LI.clear();
109     constructMainRangeFromSubranges(LI);
110   } else {
111     resetLiveOutMap();
112     extendToUses(LI, Reg, LaneBitmask::getAll());
113   }
114 }
115 
116 void LiveIntervalCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
117   // First create dead defs at all defs found in subranges.
118   LiveRange &MainRange = LI;
119   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
120          "Expect empty main liverange");
121 
122   VNInfo::Allocator *Alloc = getVNAlloc();
123   for (const LiveInterval::SubRange &SR : LI.subranges()) {
124     for (const VNInfo *VNI : SR.valnos) {
125       if (!VNI->isUnused() && !VNI->isPHIDef())
126         MainRange.createDeadDef(VNI->def, *Alloc);
127     }
128   }
129   resetLiveOutMap();
130   extendToUses(MainRange, LI.reg(), LaneBitmask::getAll(), &LI);
131 }
132 
133 void LiveIntervalCalc::createDeadDefs(LiveRange &LR, Register Reg) {
134   const MachineRegisterInfo *MRI = getRegInfo();
135   SlotIndexes *Indexes = getIndexes();
136   VNInfo::Allocator *Alloc = getVNAlloc();
137   assert(MRI && Indexes && "call reset() first");
138 
139   // Visit all def operands. If the same instruction has multiple defs of Reg,
140   // LR.createDeadDef() will deduplicate.
141   for (MachineOperand &MO : MRI->def_operands(Reg))
142     createDeadDef(*Indexes, *Alloc, LR, MO);
143 }
144 
145 void LiveIntervalCalc::extendToUses(LiveRange &LR, Register Reg,
146                                     LaneBitmask Mask, LiveInterval *LI) {
147   const MachineRegisterInfo *MRI = getRegInfo();
148   SlotIndexes *Indexes = getIndexes();
149   SmallVector<SlotIndex, 4> Undefs;
150   if (LI != nullptr)
151     LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
152 
153   // Visit all operands that read Reg. This may include partial defs.
154   bool IsSubRange = !Mask.all();
155   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
156   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
157     // Clear all kill flags. They will be reinserted after register allocation
158     // by LiveIntervals::addKillFlags().
159     if (MO.isUse())
160       MO.setIsKill(false);
161     // MO::readsReg returns "true" for subregister defs. This is for keeping
162     // liveness of the entire register (i.e. for the main range of the live
163     // interval). For subranges, definitions of non-overlapping subregisters
164     // do not count as uses.
165     if (!MO.readsReg() || (IsSubRange && MO.isDef()))
166       continue;
167 
168     unsigned SubReg = MO.getSubReg();
169     if (SubReg != 0) {
170       LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
171       if (MO.isDef())
172         SLM = ~SLM;
173       // Ignore uses not reading the current (sub)range.
174       if ((SLM & Mask).none())
175         continue;
176     }
177 
178     // Determine the actual place of the use.
179     const MachineInstr *MI = MO.getParent();
180     unsigned OpNo = (&MO - &MI->getOperand(0));
181     SlotIndex UseIdx;
182     if (MI->isPHI()) {
183       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
184       // The actual place where a phi operand is used is the end of the pred
185       // MBB. PHI operands are paired: (Reg, PredMBB).
186       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo + 1).getMBB());
187     } else {
188       // Check for early-clobber redefs.
189       bool isEarlyClobber = false;
190       unsigned DefIdx;
191       if (MO.isDef())
192         isEarlyClobber = MO.isEarlyClobber();
193       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
194         // FIXME: This would be a lot easier if tied early-clobber uses also
195         // had an early-clobber flag.
196         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
197       }
198       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
199     }
200 
201     // MI is reading Reg. We may have visited MI before if it happens to be
202     // reading Reg multiple times. That is OK, extend() is idempotent.
203     extend(LR, UseIdx, Reg, Undefs);
204   }
205 }
206