1 //===- LiveInterval.cpp - Live Interval Representation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveRange and LiveInterval classes. Given some 10 // numbering of each the machine instructions an interval [i, j) is said to be a 11 // live range for register v if there is no instruction with number j' >= j 12 // such that v is live at j' and there is no instruction with number i' < i such 13 // that v is live at i'. In this implementation ranges can have holes, 14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 15 // individual segment is represented as an instance of LiveRange::Segment, 16 // and the whole range is represented as an instance of LiveRange. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "LiveRangeUtils.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/MC/LaneBitmask.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 namespace { 49 50 //===----------------------------------------------------------------------===// 51 // Implementation of various methods necessary for calculation of live ranges. 52 // The implementation of the methods abstracts from the concrete type of the 53 // segment collection. 54 // 55 // Implementation of the class follows the Template design pattern. The base 56 // class contains generic algorithms that call collection-specific methods, 57 // which are provided in concrete subclasses. In order to avoid virtual calls 58 // these methods are provided by means of C++ template instantiation. 59 // The base class calls the methods of the subclass through method impl(), 60 // which casts 'this' pointer to the type of the subclass. 61 // 62 //===----------------------------------------------------------------------===// 63 64 template <typename ImplT, typename IteratorT, typename CollectionT> 65 class CalcLiveRangeUtilBase { 66 protected: 67 LiveRange *LR; 68 69 protected: 70 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 71 72 public: 73 using Segment = LiveRange::Segment; 74 using iterator = IteratorT; 75 76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a 77 /// value defined at @p Def. 78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new 79 /// value will be allocated using @p VNInfoAllocator. 80 /// If @p ForVNI is null, the return value is the value defined at @p Def, 81 /// either a pre-existing one, or the one newly created. 82 /// If @p ForVNI is not null, then @p Def should be the location where 83 /// @p ForVNI is defined. If the range does not have a value defined at 84 /// @p Def, the value @p ForVNI will be used instead of allocating a new 85 /// one. If the range already has a value defined at @p Def, it must be 86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value. 87 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, 88 VNInfo *ForVNI) { 89 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 90 assert((!ForVNI || ForVNI->def == Def) && 91 "If ForVNI is specified, it must match Def"); 92 iterator I = impl().find(Def); 93 if (I == segments().end()) { 94 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 95 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 96 return VNI; 97 } 98 99 Segment *S = segmentAt(I); 100 if (SlotIndex::isSameInstr(Def, S->start)) { 101 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch"); 102 assert(S->valno->def == S->start && "Inconsistent existing value def"); 103 104 // It is possible to have both normal and early-clobber defs of the same 105 // register on an instruction. It doesn't make a lot of sense, but it is 106 // possible to specify in inline assembly. 107 // 108 // Just convert everything to early-clobber. 109 Def = std::min(Def, S->start); 110 if (Def != S->start) 111 S->start = S->valno->def = Def; 112 return S->valno; 113 } 114 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 115 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 116 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 117 return VNI; 118 } 119 120 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { 121 if (segments().empty()) 122 return nullptr; 123 iterator I = 124 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); 125 if (I == segments().begin()) 126 return nullptr; 127 --I; 128 if (I->end <= StartIdx) 129 return nullptr; 130 if (I->end < Use) 131 extendSegmentEndTo(I, Use); 132 return I->valno; 133 } 134 135 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 136 SlotIndex StartIdx, SlotIndex Use) { 137 if (segments().empty()) 138 return std::make_pair(nullptr, false); 139 SlotIndex BeforeUse = Use.getPrevSlot(); 140 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); 141 if (I == segments().begin()) 142 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 143 --I; 144 if (I->end <= StartIdx) 145 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 146 if (I->end < Use) { 147 if (LR->isUndefIn(Undefs, I->end, BeforeUse)) 148 return std::make_pair(nullptr, true); 149 extendSegmentEndTo(I, Use); 150 } 151 return std::make_pair(I->valno, false); 152 } 153 154 /// This method is used when we want to extend the segment specified 155 /// by I to end at the specified endpoint. To do this, we should 156 /// merge and eliminate all segments that this will overlap 157 /// with. The iterator is not invalidated. 158 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 159 assert(I != segments().end() && "Not a valid segment!"); 160 Segment *S = segmentAt(I); 161 VNInfo *ValNo = I->valno; 162 163 // Search for the first segment that we can't merge with. 164 iterator MergeTo = std::next(I); 165 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 166 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 167 168 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 169 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 170 171 // If the newly formed segment now touches the segment after it and if they 172 // have the same value number, merge the two segments into one segment. 173 if (MergeTo != segments().end() && MergeTo->start <= I->end && 174 MergeTo->valno == ValNo) { 175 S->end = MergeTo->end; 176 ++MergeTo; 177 } 178 179 // Erase any dead segments. 180 segments().erase(std::next(I), MergeTo); 181 } 182 183 /// This method is used when we want to extend the segment specified 184 /// by I to start at the specified endpoint. To do this, we should 185 /// merge and eliminate all segments that this will overlap with. 186 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 187 assert(I != segments().end() && "Not a valid segment!"); 188 Segment *S = segmentAt(I); 189 VNInfo *ValNo = I->valno; 190 191 // Search for the first segment that we can't merge with. 192 iterator MergeTo = I; 193 do { 194 if (MergeTo == segments().begin()) { 195 S->start = NewStart; 196 segments().erase(MergeTo, I); 197 return I; 198 } 199 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 200 --MergeTo; 201 } while (NewStart <= MergeTo->start); 202 203 // If we start in the middle of another segment, just delete a range and 204 // extend that segment. 205 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 206 segmentAt(MergeTo)->end = S->end; 207 } else { 208 // Otherwise, extend the segment right after. 209 ++MergeTo; 210 Segment *MergeToSeg = segmentAt(MergeTo); 211 MergeToSeg->start = NewStart; 212 MergeToSeg->end = S->end; 213 } 214 215 segments().erase(std::next(MergeTo), std::next(I)); 216 return MergeTo; 217 } 218 219 iterator addSegment(Segment S) { 220 SlotIndex Start = S.start, End = S.end; 221 iterator I = impl().findInsertPos(S); 222 223 // If the inserted segment starts in the middle or right at the end of 224 // another segment, just extend that segment to contain the segment of S. 225 if (I != segments().begin()) { 226 iterator B = std::prev(I); 227 if (S.valno == B->valno) { 228 if (B->start <= Start && B->end >= Start) { 229 extendSegmentEndTo(B, End); 230 return B; 231 } 232 } else { 233 // Check to make sure that we are not overlapping two live segments with 234 // different valno's. 235 assert(B->end <= Start && 236 "Cannot overlap two segments with differing ValID's" 237 " (did you def the same reg twice in a MachineInstr?)"); 238 } 239 } 240 241 // Otherwise, if this segment ends in the middle of, or right next 242 // to, another segment, merge it into that segment. 243 if (I != segments().end()) { 244 if (S.valno == I->valno) { 245 if (I->start <= End) { 246 I = extendSegmentStartTo(I, Start); 247 248 // If S is a complete superset of a segment, we may need to grow its 249 // endpoint as well. 250 if (End > I->end) 251 extendSegmentEndTo(I, End); 252 return I; 253 } 254 } else { 255 // Check to make sure that we are not overlapping two live segments with 256 // different valno's. 257 assert(I->start >= End && 258 "Cannot overlap two segments with differing ValID's"); 259 } 260 } 261 262 // Otherwise, this is just a new segment that doesn't interact with 263 // anything. 264 // Insert it. 265 return segments().insert(I, S); 266 } 267 268 private: 269 ImplT &impl() { return *static_cast<ImplT *>(this); } 270 271 CollectionT &segments() { return impl().segmentsColl(); } 272 273 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 274 }; 275 276 //===----------------------------------------------------------------------===// 277 // Instantiation of the methods for calculation of live ranges 278 // based on a segment vector. 279 //===----------------------------------------------------------------------===// 280 281 class CalcLiveRangeUtilVector; 282 using CalcLiveRangeUtilVectorBase = 283 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 284 LiveRange::Segments>; 285 286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 287 public: 288 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 289 290 private: 291 friend CalcLiveRangeUtilVectorBase; 292 293 LiveRange::Segments &segmentsColl() { return LR->segments; } 294 295 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 296 297 iterator find(SlotIndex Pos) { return LR->find(Pos); } 298 299 iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); } 300 }; 301 302 //===----------------------------------------------------------------------===// 303 // Instantiation of the methods for calculation of live ranges 304 // based on a segment set. 305 //===----------------------------------------------------------------------===// 306 307 class CalcLiveRangeUtilSet; 308 using CalcLiveRangeUtilSetBase = 309 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, 310 LiveRange::SegmentSet>; 311 312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 313 public: 314 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 315 316 private: 317 friend CalcLiveRangeUtilSetBase; 318 319 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 320 321 void insertAtEnd(const Segment &S) { 322 LR->segmentSet->insert(LR->segmentSet->end(), S); 323 } 324 325 iterator find(SlotIndex Pos) { 326 iterator I = 327 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 328 if (I == LR->segmentSet->begin()) 329 return I; 330 iterator PrevI = std::prev(I); 331 if (Pos < (*PrevI).end) 332 return PrevI; 333 return I; 334 } 335 336 iterator findInsertPos(Segment S) { 337 iterator I = LR->segmentSet->upper_bound(S); 338 if (I != LR->segmentSet->end() && !(S.start < *I)) 339 ++I; 340 return I; 341 } 342 }; 343 344 } // end anonymous namespace 345 346 //===----------------------------------------------------------------------===// 347 // LiveRange methods 348 //===----------------------------------------------------------------------===// 349 350 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 351 return llvm::partition_point(*this, 352 [&](const Segment &X) { return X.end <= Pos; }); 353 } 354 355 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { 356 // Use the segment set, if it is available. 357 if (segmentSet != nullptr) 358 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr); 359 // Otherwise use the segment vector. 360 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr); 361 } 362 363 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { 364 // Use the segment set, if it is available. 365 if (segmentSet != nullptr) 366 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI); 367 // Otherwise use the segment vector. 368 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI); 369 } 370 371 // overlaps - Return true if the intersection of the two live ranges is 372 // not empty. 373 // 374 // An example for overlaps(): 375 // 376 // 0: A = ... 377 // 4: B = ... 378 // 8: C = A + B ;; last use of A 379 // 380 // The live ranges should look like: 381 // 382 // A = [3, 11) 383 // B = [7, x) 384 // C = [11, y) 385 // 386 // A->overlaps(C) should return false since we want to be able to join 387 // A and C. 388 // 389 bool LiveRange::overlapsFrom(const LiveRange& other, 390 const_iterator StartPos) const { 391 assert(!empty() && "empty range"); 392 const_iterator i = begin(); 393 const_iterator ie = end(); 394 const_iterator j = StartPos; 395 const_iterator je = other.end(); 396 397 assert((StartPos->start <= i->start || StartPos == other.begin()) && 398 StartPos != other.end() && "Bogus start position hint!"); 399 400 if (i->start < j->start) { 401 i = std::upper_bound(i, ie, j->start); 402 if (i != begin()) --i; 403 } else if (j->start < i->start) { 404 ++StartPos; 405 if (StartPos != other.end() && StartPos->start <= i->start) { 406 assert(StartPos < other.end() && i < end()); 407 j = std::upper_bound(j, je, i->start); 408 if (j != other.begin()) --j; 409 } 410 } else { 411 return true; 412 } 413 414 if (j == je) return false; 415 416 while (i != ie) { 417 if (i->start > j->start) { 418 std::swap(i, j); 419 std::swap(ie, je); 420 } 421 422 if (i->end > j->start) 423 return true; 424 ++i; 425 } 426 427 return false; 428 } 429 430 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 431 const SlotIndexes &Indexes) const { 432 assert(!empty() && "empty range"); 433 if (Other.empty()) 434 return false; 435 436 // Use binary searches to find initial positions. 437 const_iterator I = find(Other.beginIndex()); 438 const_iterator IE = end(); 439 if (I == IE) 440 return false; 441 const_iterator J = Other.find(I->start); 442 const_iterator JE = Other.end(); 443 if (J == JE) 444 return false; 445 446 while (true) { 447 // J has just been advanced to satisfy: 448 assert(J->end >= I->start); 449 // Check for an overlap. 450 if (J->start < I->end) { 451 // I and J are overlapping. Find the later start. 452 SlotIndex Def = std::max(I->start, J->start); 453 // Allow the overlap if Def is a coalescable copy. 454 if (Def.isBlock() || 455 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 456 return true; 457 } 458 // Advance the iterator that ends first to check for more overlaps. 459 if (J->end > I->end) { 460 std::swap(I, J); 461 std::swap(IE, JE); 462 } 463 // Advance J until J->end >= I->start. 464 do 465 if (++J == JE) 466 return false; 467 while (J->end < I->start); 468 } 469 } 470 471 /// overlaps - Return true if the live range overlaps an interval specified 472 /// by [Start, End). 473 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 474 assert(Start < End && "Invalid range"); 475 const_iterator I = lower_bound(*this, End); 476 return I != begin() && (--I)->end > Start; 477 } 478 479 bool LiveRange::covers(const LiveRange &Other) const { 480 if (empty()) 481 return Other.empty(); 482 483 const_iterator I = begin(); 484 for (const Segment &O : Other.segments) { 485 I = advanceTo(I, O.start); 486 if (I == end() || I->start > O.start) 487 return false; 488 489 // Check adjacent live segments and see if we can get behind O.end. 490 while (I->end < O.end) { 491 const_iterator Last = I; 492 // Get next segment and abort if it was not adjacent. 493 ++I; 494 if (I == end() || Last->end != I->start) 495 return false; 496 } 497 } 498 return true; 499 } 500 501 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 502 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 503 /// it can be nuked later. 504 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 505 if (ValNo->id == getNumValNums()-1) { 506 do { 507 valnos.pop_back(); 508 } while (!valnos.empty() && valnos.back()->isUnused()); 509 } else { 510 ValNo->markUnused(); 511 } 512 } 513 514 /// RenumberValues - Renumber all values in order of appearance and delete the 515 /// remaining unused values. 516 void LiveRange::RenumberValues() { 517 SmallPtrSet<VNInfo*, 8> Seen; 518 valnos.clear(); 519 for (const Segment &S : segments) { 520 VNInfo *VNI = S.valno; 521 if (!Seen.insert(VNI).second) 522 continue; 523 assert(!VNI->isUnused() && "Unused valno used by live segment"); 524 VNI->id = (unsigned)valnos.size(); 525 valnos.push_back(VNI); 526 } 527 } 528 529 void LiveRange::addSegmentToSet(Segment S) { 530 CalcLiveRangeUtilSet(this).addSegment(S); 531 } 532 533 LiveRange::iterator LiveRange::addSegment(Segment S) { 534 // Use the segment set, if it is available. 535 if (segmentSet != nullptr) { 536 addSegmentToSet(S); 537 return end(); 538 } 539 // Otherwise use the segment vector. 540 return CalcLiveRangeUtilVector(this).addSegment(S); 541 } 542 543 void LiveRange::append(const Segment S) { 544 // Check that the segment belongs to the back of the list. 545 assert(segments.empty() || segments.back().end <= S.start); 546 segments.push_back(S); 547 } 548 549 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, 550 SlotIndex StartIdx, SlotIndex Kill) { 551 // Use the segment set, if it is available. 552 if (segmentSet != nullptr) 553 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill); 554 // Otherwise use the segment vector. 555 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill); 556 } 557 558 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 559 // Use the segment set, if it is available. 560 if (segmentSet != nullptr) 561 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 562 // Otherwise use the segment vector. 563 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 564 } 565 566 /// Remove the specified segment from this range. Note that the segment must 567 /// be in a single Segment in its entirety. 568 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 569 bool RemoveDeadValNo) { 570 // Find the Segment containing this span. 571 iterator I = find(Start); 572 assert(I != end() && "Segment is not in range!"); 573 assert(I->containsInterval(Start, End) 574 && "Segment is not entirely in range!"); 575 576 // If the span we are removing is at the start of the Segment, adjust it. 577 VNInfo *ValNo = I->valno; 578 if (I->start == Start) { 579 if (I->end == End) { 580 segments.erase(I); // Removed the whole Segment. 581 582 if (RemoveDeadValNo) 583 removeValNoIfDead(ValNo); 584 } else 585 I->start = End; 586 return; 587 } 588 589 // Otherwise if the span we are removing is at the end of the Segment, 590 // adjust the other way. 591 if (I->end == End) { 592 I->end = Start; 593 return; 594 } 595 596 // Otherwise, we are splitting the Segment into two pieces. 597 SlotIndex OldEnd = I->end; 598 I->end = Start; // Trim the old segment. 599 600 // Insert the new one. 601 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 602 } 603 604 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) { 605 VNInfo *ValNo = I->valno; 606 I = segments.erase(I); 607 if (RemoveDeadValNo) 608 removeValNoIfDead(ValNo); 609 return I; 610 } 611 612 void LiveRange::removeValNoIfDead(VNInfo *ValNo) { 613 if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; })) 614 markValNoForDeletion(ValNo); 615 } 616 617 /// removeValNo - Remove all the segments defined by the specified value#. 618 /// Also remove the value# from value# list. 619 void LiveRange::removeValNo(VNInfo *ValNo) { 620 if (empty()) return; 621 llvm::erase_if(segments, 622 [ValNo](const Segment &S) { return S.valno == ValNo; }); 623 // Now that ValNo is dead, remove it. 624 markValNoForDeletion(ValNo); 625 } 626 627 void LiveRange::join(LiveRange &Other, 628 const int *LHSValNoAssignments, 629 const int *RHSValNoAssignments, 630 SmallVectorImpl<VNInfo *> &NewVNInfo) { 631 verify(); 632 633 // Determine if any of our values are mapped. This is uncommon, so we want 634 // to avoid the range scan if not. 635 bool MustMapCurValNos = false; 636 unsigned NumVals = getNumValNums(); 637 unsigned NumNewVals = NewVNInfo.size(); 638 for (unsigned i = 0; i != NumVals; ++i) { 639 unsigned LHSValID = LHSValNoAssignments[i]; 640 if (i != LHSValID || 641 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 642 MustMapCurValNos = true; 643 break; 644 } 645 } 646 647 // If we have to apply a mapping to our base range assignment, rewrite it now. 648 if (MustMapCurValNos && !empty()) { 649 // Map the first live range. 650 651 iterator OutIt = begin(); 652 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 653 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 654 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 655 assert(nextValNo && "Huh?"); 656 657 // If this live range has the same value # as its immediate predecessor, 658 // and if they are neighbors, remove one Segment. This happens when we 659 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 660 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 661 OutIt->end = I->end; 662 } else { 663 // Didn't merge. Move OutIt to the next segment, 664 ++OutIt; 665 OutIt->valno = nextValNo; 666 if (OutIt != I) { 667 OutIt->start = I->start; 668 OutIt->end = I->end; 669 } 670 } 671 } 672 // If we merge some segments, chop off the end. 673 ++OutIt; 674 segments.erase(OutIt, end()); 675 } 676 677 // Rewrite Other values before changing the VNInfo ids. 678 // This can leave Other in an invalid state because we're not coalescing 679 // touching segments that now have identical values. That's OK since Other is 680 // not supposed to be valid after calling join(); 681 for (Segment &S : Other.segments) 682 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 683 684 // Update val# info. Renumber them and make sure they all belong to this 685 // LiveRange now. Also remove dead val#'s. 686 unsigned NumValNos = 0; 687 for (unsigned i = 0; i < NumNewVals; ++i) { 688 VNInfo *VNI = NewVNInfo[i]; 689 if (VNI) { 690 if (NumValNos >= NumVals) 691 valnos.push_back(VNI); 692 else 693 valnos[NumValNos] = VNI; 694 VNI->id = NumValNos++; // Renumber val#. 695 } 696 } 697 if (NumNewVals < NumVals) 698 valnos.resize(NumNewVals); // shrinkify 699 700 // Okay, now insert the RHS live segments into the LHS. 701 LiveRangeUpdater Updater(this); 702 for (Segment &S : Other.segments) 703 Updater.add(S); 704 } 705 706 /// Merge all of the segments in RHS into this live range as the specified 707 /// value number. The segments in RHS are allowed to overlap with segments in 708 /// the current range, but only if the overlapping segments have the 709 /// specified value number. 710 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 711 VNInfo *LHSValNo) { 712 LiveRangeUpdater Updater(this); 713 for (const Segment &S : RHS.segments) 714 Updater.add(S.start, S.end, LHSValNo); 715 } 716 717 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 718 /// in RHS into this live range as the specified value number. 719 /// The segments in RHS are allowed to overlap with segments in the 720 /// current range, it will replace the value numbers of the overlaped 721 /// segments with the specified value number. 722 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 723 const VNInfo *RHSValNo, 724 VNInfo *LHSValNo) { 725 LiveRangeUpdater Updater(this); 726 for (const Segment &S : RHS.segments) 727 if (S.valno == RHSValNo) 728 Updater.add(S.start, S.end, LHSValNo); 729 } 730 731 /// MergeValueNumberInto - This method is called when two value nubmers 732 /// are found to be equivalent. This eliminates V1, replacing all 733 /// segments with the V1 value number with the V2 value number. This can 734 /// cause merging of V1/V2 values numbers and compaction of the value space. 735 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 736 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 737 738 // This code actually merges the (numerically) larger value number into the 739 // smaller value number, which is likely to allow us to compactify the value 740 // space. The only thing we have to be careful of is to preserve the 741 // instruction that defines the result value. 742 743 // Make sure V2 is smaller than V1. 744 if (V1->id < V2->id) { 745 V1->copyFrom(*V2); 746 std::swap(V1, V2); 747 } 748 749 // Merge V1 segments into V2. 750 for (iterator I = begin(); I != end(); ) { 751 iterator S = I++; 752 if (S->valno != V1) continue; // Not a V1 Segment. 753 754 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 755 // range, extend it. 756 if (S != begin()) { 757 iterator Prev = S-1; 758 if (Prev->valno == V2 && Prev->end == S->start) { 759 Prev->end = S->end; 760 761 // Erase this live-range. 762 segments.erase(S); 763 I = Prev+1; 764 S = Prev; 765 } 766 } 767 768 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 769 // Ensure that it is a V2 live-range. 770 S->valno = V2; 771 772 // If we can merge it into later V2 segments, do so now. We ignore any 773 // following V1 segments, as they will be merged in subsequent iterations 774 // of the loop. 775 if (I != end()) { 776 if (I->start == S->end && I->valno == V2) { 777 S->end = I->end; 778 segments.erase(I); 779 I = S+1; 780 } 781 } 782 } 783 784 // Now that V1 is dead, remove it. 785 markValNoForDeletion(V1); 786 787 return V2; 788 } 789 790 void LiveRange::flushSegmentSet() { 791 assert(segmentSet != nullptr && "segment set must have been created"); 792 assert( 793 segments.empty() && 794 "segment set can be used only initially before switching to the array"); 795 segments.append(segmentSet->begin(), segmentSet->end()); 796 segmentSet = nullptr; 797 verify(); 798 } 799 800 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { 801 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); 802 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 803 804 // If there are no regmask slots, we have nothing to search. 805 if (SlotI == SlotE) 806 return false; 807 808 // Start our search at the first segment that ends after the first slot. 809 const_iterator SegmentI = find(*SlotI); 810 const_iterator SegmentE = end(); 811 812 // If there are no segments that end after the first slot, we're done. 813 if (SegmentI == SegmentE) 814 return false; 815 816 // Look for each slot in the live range. 817 for ( ; SlotI != SlotE; ++SlotI) { 818 // Go to the next segment that ends after the current slot. 819 // The slot may be within a hole in the range. 820 SegmentI = advanceTo(SegmentI, *SlotI); 821 if (SegmentI == SegmentE) 822 return false; 823 824 // If this segment contains the slot, we're done. 825 if (SegmentI->contains(*SlotI)) 826 return true; 827 // Otherwise, look for the next slot. 828 } 829 830 // We didn't find a segment containing any of the slots. 831 return false; 832 } 833 834 void LiveInterval::freeSubRange(SubRange *S) { 835 S->~SubRange(); 836 // Memory was allocated with BumpPtr allocator and is not freed here. 837 } 838 839 void LiveInterval::removeEmptySubRanges() { 840 SubRange **NextPtr = &SubRanges; 841 SubRange *I = *NextPtr; 842 while (I != nullptr) { 843 if (!I->empty()) { 844 NextPtr = &I->Next; 845 I = *NextPtr; 846 continue; 847 } 848 // Skip empty subranges until we find the first nonempty one. 849 do { 850 SubRange *Next = I->Next; 851 freeSubRange(I); 852 I = Next; 853 } while (I != nullptr && I->empty()); 854 *NextPtr = I; 855 } 856 } 857 858 void LiveInterval::clearSubRanges() { 859 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 860 Next = I->Next; 861 freeSubRange(I); 862 } 863 SubRanges = nullptr; 864 } 865 866 /// For each VNI in \p SR, check whether or not that value defines part 867 /// of the mask describe by \p LaneMask and if not, remove that value 868 /// from \p SR. 869 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR, 870 LaneBitmask LaneMask, 871 const SlotIndexes &Indexes, 872 const TargetRegisterInfo &TRI, 873 unsigned ComposeSubRegIdx) { 874 // Phys reg should not be tracked at subreg level. 875 // Same for noreg (Reg == 0). 876 if (!Register::isVirtualRegister(Reg) || !Reg) 877 return; 878 // Remove the values that don't define those lanes. 879 SmallVector<VNInfo *, 8> ToBeRemoved; 880 for (VNInfo *VNI : SR.valnos) { 881 if (VNI->isUnused()) 882 continue; 883 // PHI definitions don't have MI attached, so there is nothing 884 // we can use to strip the VNI. 885 if (VNI->isPHIDef()) 886 continue; 887 const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def); 888 assert(MI && "Cannot find the definition of a value"); 889 bool hasDef = false; 890 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 891 if (!MOI->isReg() || !MOI->isDef()) 892 continue; 893 if (MOI->getReg() != Reg) 894 continue; 895 LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg()); 896 LaneBitmask ExpectedDefMask = 897 ComposeSubRegIdx 898 ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask) 899 : OrigMask; 900 if ((ExpectedDefMask & LaneMask).none()) 901 continue; 902 hasDef = true; 903 break; 904 } 905 906 if (!hasDef) 907 ToBeRemoved.push_back(VNI); 908 } 909 for (VNInfo *VNI : ToBeRemoved) 910 SR.removeValNo(VNI); 911 912 // If the subrange is empty at this point, the MIR is invalid. Do not assert 913 // and let the verifier catch this case. 914 } 915 916 void LiveInterval::refineSubRanges( 917 BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 918 std::function<void(LiveInterval::SubRange &)> Apply, 919 const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, 920 unsigned ComposeSubRegIdx) { 921 LaneBitmask ToApply = LaneMask; 922 for (SubRange &SR : subranges()) { 923 LaneBitmask SRMask = SR.LaneMask; 924 LaneBitmask Matching = SRMask & LaneMask; 925 if (Matching.none()) 926 continue; 927 928 SubRange *MatchingRange; 929 if (SRMask == Matching) { 930 // The subrange fits (it does not cover bits outside \p LaneMask). 931 MatchingRange = &SR; 932 } else { 933 // We have to split the subrange into a matching and non-matching part. 934 // Reduce lanemask of existing lane to non-matching part. 935 SR.LaneMask = SRMask & ~Matching; 936 // Create a new subrange for the matching part 937 MatchingRange = createSubRangeFrom(Allocator, Matching, SR); 938 // Now that the subrange is split in half, make sure we 939 // only keep in the subranges the VNIs that touch the related half. 940 stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI, 941 ComposeSubRegIdx); 942 stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI, 943 ComposeSubRegIdx); 944 } 945 Apply(*MatchingRange); 946 ToApply &= ~Matching; 947 } 948 // Create a new subrange if there are uncovered bits left. 949 if (ToApply.any()) { 950 SubRange *NewRange = createSubRange(Allocator, ToApply); 951 Apply(*NewRange); 952 } 953 } 954 955 unsigned LiveInterval::getSize() const { 956 unsigned Sum = 0; 957 for (const Segment &S : segments) 958 Sum += S.start.distance(S.end); 959 return Sum; 960 } 961 962 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 963 LaneBitmask LaneMask, 964 const MachineRegisterInfo &MRI, 965 const SlotIndexes &Indexes) const { 966 assert(Register::isVirtualRegister(reg())); 967 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg()); 968 assert((VRegMask & LaneMask).any()); 969 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 970 for (const MachineOperand &MO : MRI.def_operands(reg())) { 971 if (!MO.isUndef()) 972 continue; 973 unsigned SubReg = MO.getSubReg(); 974 assert(SubReg != 0 && "Undef should only be set on subreg defs"); 975 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg); 976 LaneBitmask UndefMask = VRegMask & ~DefMask; 977 if ((UndefMask & LaneMask).any()) { 978 const MachineInstr &MI = *MO.getParent(); 979 bool EarlyClobber = MO.isEarlyClobber(); 980 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber); 981 Undefs.push_back(Pos); 982 } 983 } 984 } 985 986 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { 987 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; 988 } 989 990 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 991 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { 992 dbgs() << *this << '\n'; 993 } 994 #endif 995 996 void LiveRange::print(raw_ostream &OS) const { 997 if (empty()) 998 OS << "EMPTY"; 999 else { 1000 for (const Segment &S : segments) { 1001 OS << S; 1002 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1003 } 1004 } 1005 1006 // Print value number info. 1007 if (getNumValNums()) { 1008 OS << ' '; 1009 unsigned vnum = 0; 1010 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1011 ++i, ++vnum) { 1012 const VNInfo *vni = *i; 1013 if (vnum) OS << ' '; 1014 OS << vnum << '@'; 1015 if (vni->isUnused()) { 1016 OS << 'x'; 1017 } else { 1018 OS << vni->def; 1019 if (vni->isPHIDef()) 1020 OS << "-phi"; 1021 } 1022 } 1023 } 1024 } 1025 1026 void LiveInterval::SubRange::print(raw_ostream &OS) const { 1027 OS << " L" << PrintLaneMask(LaneMask) << ' ' 1028 << static_cast<const LiveRange &>(*this); 1029 } 1030 1031 void LiveInterval::print(raw_ostream &OS) const { 1032 OS << printReg(reg()) << ' '; 1033 super::print(OS); 1034 // Print subranges 1035 for (const SubRange &SR : subranges()) 1036 OS << SR; 1037 OS << " weight:" << Weight; 1038 } 1039 1040 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1041 LLVM_DUMP_METHOD void LiveRange::dump() const { 1042 dbgs() << *this << '\n'; 1043 } 1044 1045 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { 1046 dbgs() << *this << '\n'; 1047 } 1048 1049 LLVM_DUMP_METHOD void LiveInterval::dump() const { 1050 dbgs() << *this << '\n'; 1051 } 1052 #endif 1053 1054 #ifndef NDEBUG 1055 void LiveRange::verify() const { 1056 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1057 assert(I->start.isValid()); 1058 assert(I->end.isValid()); 1059 assert(I->start < I->end); 1060 assert(I->valno != nullptr); 1061 assert(I->valno->id < valnos.size()); 1062 assert(I->valno == valnos[I->valno->id]); 1063 if (std::next(I) != E) { 1064 assert(I->end <= std::next(I)->start); 1065 if (I->end == std::next(I)->start) 1066 assert(I->valno != std::next(I)->valno); 1067 } 1068 } 1069 } 1070 1071 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1072 super::verify(); 1073 1074 // Make sure SubRanges are fine and LaneMasks are disjunct. 1075 LaneBitmask Mask; 1076 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg()) 1077 : LaneBitmask::getAll(); 1078 for (const SubRange &SR : subranges()) { 1079 // Subrange lanemask should be disjunct to any previous subrange masks. 1080 assert((Mask & SR.LaneMask).none()); 1081 Mask |= SR.LaneMask; 1082 1083 // subrange mask should not contained in maximum lane mask for the vreg. 1084 assert((Mask & ~MaxMask).none()); 1085 // empty subranges must be removed. 1086 assert(!SR.empty()); 1087 1088 SR.verify(); 1089 // Main liverange should cover subrange. 1090 assert(covers(SR)); 1091 } 1092 } 1093 #endif 1094 1095 //===----------------------------------------------------------------------===// 1096 // LiveRangeUpdater class 1097 //===----------------------------------------------------------------------===// 1098 // 1099 // The LiveRangeUpdater class always maintains these invariants: 1100 // 1101 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1102 // This is the initial state, and the state created by flush(). 1103 // In this state, isDirty() returns false. 1104 // 1105 // Otherwise, segments are kept in three separate areas: 1106 // 1107 // 1. [begin; WriteI) at the front of LR. 1108 // 2. [ReadI; end) at the back of LR. 1109 // 3. Spills. 1110 // 1111 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1112 // - Segments in all three areas are fully ordered and coalesced. 1113 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1114 // - Segments in Spills precede and can't coalesce with segments in area 2. 1115 // - No coalescing is possible between segments in Spills and segments in area 1116 // 1, and there are no overlapping segments. 1117 // 1118 // The segments in Spills are not ordered with respect to the segments in area 1119 // 1. They need to be merged. 1120 // 1121 // When they exist, Spills.back().start <= LastStart, 1122 // and WriteI[-1].start <= LastStart. 1123 1124 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1125 void LiveRangeUpdater::print(raw_ostream &OS) const { 1126 if (!isDirty()) { 1127 if (LR) 1128 OS << "Clean updater: " << *LR << '\n'; 1129 else 1130 OS << "Null updater.\n"; 1131 return; 1132 } 1133 assert(LR && "Can't have null LR in dirty updater."); 1134 OS << " updater with gap = " << (ReadI - WriteI) 1135 << ", last start = " << LastStart 1136 << ":\n Area 1:"; 1137 for (const auto &S : make_range(LR->begin(), WriteI)) 1138 OS << ' ' << S; 1139 OS << "\n Spills:"; 1140 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1141 OS << ' ' << Spills[I]; 1142 OS << "\n Area 2:"; 1143 for (const auto &S : make_range(ReadI, LR->end())) 1144 OS << ' ' << S; 1145 OS << '\n'; 1146 } 1147 1148 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { 1149 print(errs()); 1150 } 1151 #endif 1152 1153 // Determine if A and B should be coalesced. 1154 static inline bool coalescable(const LiveRange::Segment &A, 1155 const LiveRange::Segment &B) { 1156 assert(A.start <= B.start && "Unordered live segments."); 1157 if (A.end == B.start) 1158 return A.valno == B.valno; 1159 if (A.end < B.start) 1160 return false; 1161 assert(A.valno == B.valno && "Cannot overlap different values"); 1162 return true; 1163 } 1164 1165 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1166 assert(LR && "Cannot add to a null destination"); 1167 1168 // Fall back to the regular add method if the live range 1169 // is using the segment set instead of the segment vector. 1170 if (LR->segmentSet != nullptr) { 1171 LR->addSegmentToSet(Seg); 1172 return; 1173 } 1174 1175 // Flush the state if Start moves backwards. 1176 if (!LastStart.isValid() || LastStart > Seg.start) { 1177 if (isDirty()) 1178 flush(); 1179 // This brings us to an uninitialized state. Reinitialize. 1180 assert(Spills.empty() && "Leftover spilled segments"); 1181 WriteI = ReadI = LR->begin(); 1182 } 1183 1184 // Remember start for next time. 1185 LastStart = Seg.start; 1186 1187 // Advance ReadI until it ends after Seg.start. 1188 LiveRange::iterator E = LR->end(); 1189 if (ReadI != E && ReadI->end <= Seg.start) { 1190 // First try to close the gap between WriteI and ReadI with spills. 1191 if (ReadI != WriteI) 1192 mergeSpills(); 1193 // Then advance ReadI. 1194 if (ReadI == WriteI) 1195 ReadI = WriteI = LR->find(Seg.start); 1196 else 1197 while (ReadI != E && ReadI->end <= Seg.start) 1198 *WriteI++ = *ReadI++; 1199 } 1200 1201 assert(ReadI == E || ReadI->end > Seg.start); 1202 1203 // Check if the ReadI segment begins early. 1204 if (ReadI != E && ReadI->start <= Seg.start) { 1205 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1206 // Bail if Seg is completely contained in ReadI. 1207 if (ReadI->end >= Seg.end) 1208 return; 1209 // Coalesce into Seg. 1210 Seg.start = ReadI->start; 1211 ++ReadI; 1212 } 1213 1214 // Coalesce as much as possible from ReadI into Seg. 1215 while (ReadI != E && coalescable(Seg, *ReadI)) { 1216 Seg.end = std::max(Seg.end, ReadI->end); 1217 ++ReadI; 1218 } 1219 1220 // Try coalescing Spills.back() into Seg. 1221 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1222 Seg.start = Spills.back().start; 1223 Seg.end = std::max(Spills.back().end, Seg.end); 1224 Spills.pop_back(); 1225 } 1226 1227 // Try coalescing Seg into WriteI[-1]. 1228 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1229 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1230 return; 1231 } 1232 1233 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1234 if (WriteI != ReadI) { 1235 *WriteI++ = Seg; 1236 return; 1237 } 1238 1239 // Finally, append to LR or Spills. 1240 if (WriteI == E) { 1241 LR->segments.push_back(Seg); 1242 WriteI = ReadI = LR->end(); 1243 } else 1244 Spills.push_back(Seg); 1245 } 1246 1247 // Merge as many spilled segments as possible into the gap between WriteI 1248 // and ReadI. Advance WriteI to reflect the inserted instructions. 1249 void LiveRangeUpdater::mergeSpills() { 1250 // Perform a backwards merge of Spills and [SpillI;WriteI). 1251 size_t GapSize = ReadI - WriteI; 1252 size_t NumMoved = std::min(Spills.size(), GapSize); 1253 LiveRange::iterator Src = WriteI; 1254 LiveRange::iterator Dst = Src + NumMoved; 1255 LiveRange::iterator SpillSrc = Spills.end(); 1256 LiveRange::iterator B = LR->begin(); 1257 1258 // This is the new WriteI position after merging spills. 1259 WriteI = Dst; 1260 1261 // Now merge Src and Spills backwards. 1262 while (Src != Dst) { 1263 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1264 *--Dst = *--Src; 1265 else 1266 *--Dst = *--SpillSrc; 1267 } 1268 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1269 Spills.erase(SpillSrc, Spills.end()); 1270 } 1271 1272 void LiveRangeUpdater::flush() { 1273 if (!isDirty()) 1274 return; 1275 // Clear the dirty state. 1276 LastStart = SlotIndex(); 1277 1278 assert(LR && "Cannot add to a null destination"); 1279 1280 // Nothing to merge? 1281 if (Spills.empty()) { 1282 LR->segments.erase(WriteI, ReadI); 1283 LR->verify(); 1284 return; 1285 } 1286 1287 // Resize the WriteI - ReadI gap to match Spills. 1288 size_t GapSize = ReadI - WriteI; 1289 if (GapSize < Spills.size()) { 1290 // The gap is too small. Make some room. 1291 size_t WritePos = WriteI - LR->begin(); 1292 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1293 // This also invalidated ReadI, but it is recomputed below. 1294 WriteI = LR->begin() + WritePos; 1295 } else { 1296 // Shrink the gap if necessary. 1297 LR->segments.erase(WriteI + Spills.size(), ReadI); 1298 } 1299 ReadI = WriteI + Spills.size(); 1300 mergeSpills(); 1301 LR->verify(); 1302 } 1303 1304 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { 1305 // Create initial equivalence classes. 1306 EqClass.clear(); 1307 EqClass.grow(LR.getNumValNums()); 1308 1309 const VNInfo *used = nullptr, *unused = nullptr; 1310 1311 // Determine connections. 1312 for (const VNInfo *VNI : LR.valnos) { 1313 // Group all unused values into one class. 1314 if (VNI->isUnused()) { 1315 if (unused) 1316 EqClass.join(unused->id, VNI->id); 1317 unused = VNI; 1318 continue; 1319 } 1320 used = VNI; 1321 if (VNI->isPHIDef()) { 1322 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1323 assert(MBB && "Phi-def has no defining MBB"); 1324 // Connect to values live out of predecessors. 1325 for (MachineBasicBlock *Pred : MBB->predecessors()) 1326 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred))) 1327 EqClass.join(VNI->id, PVNI->id); 1328 } else { 1329 // Normal value defined by an instruction. Check for two-addr redef. 1330 // FIXME: This could be coincidental. Should we really check for a tied 1331 // operand constraint? 1332 // Note that VNI->def may be a use slot for an early clobber def. 1333 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) 1334 EqClass.join(VNI->id, UVNI->id); 1335 } 1336 } 1337 1338 // Lump all the unused values in with the last used value. 1339 if (used && unused) 1340 EqClass.join(used->id, unused->id); 1341 1342 EqClass.compress(); 1343 return EqClass.getNumClasses(); 1344 } 1345 1346 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], 1347 MachineRegisterInfo &MRI) { 1348 // Rewrite instructions. 1349 for (MachineOperand &MO : 1350 llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) { 1351 MachineInstr *MI = MO.getParent(); 1352 const VNInfo *VNI; 1353 if (MI->isDebugValue()) { 1354 // DBG_VALUE instructions don't have slot indexes, so get the index of 1355 // the instruction before them. The value is defined there too. 1356 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); 1357 VNI = LI.Query(Idx).valueOut(); 1358 } else { 1359 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1360 LiveQueryResult LRQ = LI.Query(Idx); 1361 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1362 } 1363 // In the case of an <undef> use that isn't tied to any def, VNI will be 1364 // NULL. If the use is tied to a def, VNI will be the defined value. 1365 if (!VNI) 1366 continue; 1367 if (unsigned EqClass = getEqClass(VNI)) 1368 MO.setReg(LIV[EqClass - 1]->reg()); 1369 } 1370 1371 // Distribute subregister liveranges. 1372 if (LI.hasSubRanges()) { 1373 unsigned NumComponents = EqClass.getNumClasses(); 1374 SmallVector<unsigned, 8> VNIMapping; 1375 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1376 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1377 for (LiveInterval::SubRange &SR : LI.subranges()) { 1378 // Create new subranges in the split intervals and construct a mapping 1379 // for the VNInfos in the subrange. 1380 unsigned NumValNos = SR.valnos.size(); 1381 VNIMapping.clear(); 1382 VNIMapping.reserve(NumValNos); 1383 SubRanges.clear(); 1384 SubRanges.resize(NumComponents-1, nullptr); 1385 for (unsigned I = 0; I < NumValNos; ++I) { 1386 const VNInfo &VNI = *SR.valnos[I]; 1387 unsigned ComponentNum; 1388 if (VNI.isUnused()) { 1389 ComponentNum = 0; 1390 } else { 1391 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); 1392 assert(MainRangeVNI != nullptr 1393 && "SubRange def must have corresponding main range def"); 1394 ComponentNum = getEqClass(MainRangeVNI); 1395 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { 1396 SubRanges[ComponentNum-1] 1397 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); 1398 } 1399 } 1400 VNIMapping.push_back(ComponentNum); 1401 } 1402 DistributeRange(SR, SubRanges.data(), VNIMapping); 1403 } 1404 LI.removeEmptySubRanges(); 1405 } 1406 1407 // Distribute main liverange. 1408 DistributeRange(LI, LIV, EqClass); 1409 } 1410