1 //===- LiveInterval.cpp - Live Interval Representation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveRange and LiveInterval classes. Given some 10 // numbering of each the machine instructions an interval [i, j) is said to be a 11 // live range for register v if there is no instruction with number j' >= j 12 // such that v is live at j' and there is no instruction with number i' < i such 13 // that v is live at i'. In this implementation ranges can have holes, 14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 15 // individual segment is represented as an instance of LiveRange::Segment, 16 // and the whole range is represented as an instance of LiveRange. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "LiveRangeUtils.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/MC/LaneBitmask.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 namespace { 49 50 //===----------------------------------------------------------------------===// 51 // Implementation of various methods necessary for calculation of live ranges. 52 // The implementation of the methods abstracts from the concrete type of the 53 // segment collection. 54 // 55 // Implementation of the class follows the Template design pattern. The base 56 // class contains generic algorithms that call collection-specific methods, 57 // which are provided in concrete subclasses. In order to avoid virtual calls 58 // these methods are provided by means of C++ template instantiation. 59 // The base class calls the methods of the subclass through method impl(), 60 // which casts 'this' pointer to the type of the subclass. 61 // 62 //===----------------------------------------------------------------------===// 63 64 template <typename ImplT, typename IteratorT, typename CollectionT> 65 class CalcLiveRangeUtilBase { 66 protected: 67 LiveRange *LR; 68 69 protected: 70 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 71 72 public: 73 using Segment = LiveRange::Segment; 74 using iterator = IteratorT; 75 76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a 77 /// value defined at @p Def. 78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new 79 /// value will be allocated using @p VNInfoAllocator. 80 /// If @p ForVNI is null, the return value is the value defined at @p Def, 81 /// either a pre-existing one, or the one newly created. 82 /// If @p ForVNI is not null, then @p Def should be the location where 83 /// @p ForVNI is defined. If the range does not have a value defined at 84 /// @p Def, the value @p ForVNI will be used instead of allocating a new 85 /// one. If the range already has a value defined at @p Def, it must be 86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value. 87 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, 88 VNInfo *ForVNI) { 89 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 90 assert((!ForVNI || ForVNI->def == Def) && 91 "If ForVNI is specified, it must match Def"); 92 iterator I = impl().find(Def); 93 if (I == segments().end()) { 94 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 95 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 96 return VNI; 97 } 98 99 Segment *S = segmentAt(I); 100 if (SlotIndex::isSameInstr(Def, S->start)) { 101 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch"); 102 assert(S->valno->def == S->start && "Inconsistent existing value def"); 103 104 // It is possible to have both normal and early-clobber defs of the same 105 // register on an instruction. It doesn't make a lot of sense, but it is 106 // possible to specify in inline assembly. 107 // 108 // Just convert everything to early-clobber. 109 Def = std::min(Def, S->start); 110 if (Def != S->start) 111 S->start = S->valno->def = Def; 112 return S->valno; 113 } 114 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 115 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 116 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 117 return VNI; 118 } 119 120 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { 121 if (segments().empty()) 122 return nullptr; 123 iterator I = 124 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); 125 if (I == segments().begin()) 126 return nullptr; 127 --I; 128 if (I->end <= StartIdx) 129 return nullptr; 130 if (I->end < Use) 131 extendSegmentEndTo(I, Use); 132 return I->valno; 133 } 134 135 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 136 SlotIndex StartIdx, SlotIndex Use) { 137 if (segments().empty()) 138 return std::make_pair(nullptr, false); 139 SlotIndex BeforeUse = Use.getPrevSlot(); 140 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); 141 if (I == segments().begin()) 142 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 143 --I; 144 if (I->end <= StartIdx) 145 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 146 if (I->end < Use) { 147 if (LR->isUndefIn(Undefs, I->end, BeforeUse)) 148 return std::make_pair(nullptr, true); 149 extendSegmentEndTo(I, Use); 150 } 151 return std::make_pair(I->valno, false); 152 } 153 154 /// This method is used when we want to extend the segment specified 155 /// by I to end at the specified endpoint. To do this, we should 156 /// merge and eliminate all segments that this will overlap 157 /// with. The iterator is not invalidated. 158 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 159 assert(I != segments().end() && "Not a valid segment!"); 160 Segment *S = segmentAt(I); 161 VNInfo *ValNo = I->valno; 162 163 // Search for the first segment that we can't merge with. 164 iterator MergeTo = std::next(I); 165 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 166 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 167 168 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 169 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 170 171 // If the newly formed segment now touches the segment after it and if they 172 // have the same value number, merge the two segments into one segment. 173 if (MergeTo != segments().end() && MergeTo->start <= I->end && 174 MergeTo->valno == ValNo) { 175 S->end = MergeTo->end; 176 ++MergeTo; 177 } 178 179 // Erase any dead segments. 180 segments().erase(std::next(I), MergeTo); 181 } 182 183 /// This method is used when we want to extend the segment specified 184 /// by I to start at the specified endpoint. To do this, we should 185 /// merge and eliminate all segments that this will overlap with. 186 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 187 assert(I != segments().end() && "Not a valid segment!"); 188 Segment *S = segmentAt(I); 189 VNInfo *ValNo = I->valno; 190 191 // Search for the first segment that we can't merge with. 192 iterator MergeTo = I; 193 do { 194 if (MergeTo == segments().begin()) { 195 S->start = NewStart; 196 segments().erase(MergeTo, I); 197 return I; 198 } 199 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 200 --MergeTo; 201 } while (NewStart <= MergeTo->start); 202 203 // If we start in the middle of another segment, just delete a range and 204 // extend that segment. 205 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 206 segmentAt(MergeTo)->end = S->end; 207 } else { 208 // Otherwise, extend the segment right after. 209 ++MergeTo; 210 Segment *MergeToSeg = segmentAt(MergeTo); 211 MergeToSeg->start = NewStart; 212 MergeToSeg->end = S->end; 213 } 214 215 segments().erase(std::next(MergeTo), std::next(I)); 216 return MergeTo; 217 } 218 219 iterator addSegment(Segment S) { 220 SlotIndex Start = S.start, End = S.end; 221 iterator I = impl().findInsertPos(S); 222 223 // If the inserted segment starts in the middle or right at the end of 224 // another segment, just extend that segment to contain the segment of S. 225 if (I != segments().begin()) { 226 iterator B = std::prev(I); 227 if (S.valno == B->valno) { 228 if (B->start <= Start && B->end >= Start) { 229 extendSegmentEndTo(B, End); 230 return B; 231 } 232 } else { 233 // Check to make sure that we are not overlapping two live segments with 234 // different valno's. 235 assert(B->end <= Start && 236 "Cannot overlap two segments with differing ValID's" 237 " (did you def the same reg twice in a MachineInstr?)"); 238 } 239 } 240 241 // Otherwise, if this segment ends in the middle of, or right next 242 // to, another segment, merge it into that segment. 243 if (I != segments().end()) { 244 if (S.valno == I->valno) { 245 if (I->start <= End) { 246 I = extendSegmentStartTo(I, Start); 247 248 // If S is a complete superset of a segment, we may need to grow its 249 // endpoint as well. 250 if (End > I->end) 251 extendSegmentEndTo(I, End); 252 return I; 253 } 254 } else { 255 // Check to make sure that we are not overlapping two live segments with 256 // different valno's. 257 assert(I->start >= End && 258 "Cannot overlap two segments with differing ValID's"); 259 } 260 } 261 262 // Otherwise, this is just a new segment that doesn't interact with 263 // anything. 264 // Insert it. 265 return segments().insert(I, S); 266 } 267 268 private: 269 ImplT &impl() { return *static_cast<ImplT *>(this); } 270 271 CollectionT &segments() { return impl().segmentsColl(); } 272 273 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 274 }; 275 276 //===----------------------------------------------------------------------===// 277 // Instantiation of the methods for calculation of live ranges 278 // based on a segment vector. 279 //===----------------------------------------------------------------------===// 280 281 class CalcLiveRangeUtilVector; 282 using CalcLiveRangeUtilVectorBase = 283 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 284 LiveRange::Segments>; 285 286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 287 public: 288 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 289 290 private: 291 friend CalcLiveRangeUtilVectorBase; 292 293 LiveRange::Segments &segmentsColl() { return LR->segments; } 294 295 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 296 297 iterator find(SlotIndex Pos) { return LR->find(Pos); } 298 299 iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); } 300 }; 301 302 //===----------------------------------------------------------------------===// 303 // Instantiation of the methods for calculation of live ranges 304 // based on a segment set. 305 //===----------------------------------------------------------------------===// 306 307 class CalcLiveRangeUtilSet; 308 using CalcLiveRangeUtilSetBase = 309 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, 310 LiveRange::SegmentSet>; 311 312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 313 public: 314 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 315 316 private: 317 friend CalcLiveRangeUtilSetBase; 318 319 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 320 321 void insertAtEnd(const Segment &S) { 322 LR->segmentSet->insert(LR->segmentSet->end(), S); 323 } 324 325 iterator find(SlotIndex Pos) { 326 iterator I = 327 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 328 if (I == LR->segmentSet->begin()) 329 return I; 330 iterator PrevI = std::prev(I); 331 if (Pos < (*PrevI).end) 332 return PrevI; 333 return I; 334 } 335 336 iterator findInsertPos(Segment S) { 337 iterator I = LR->segmentSet->upper_bound(S); 338 if (I != LR->segmentSet->end() && !(S.start < *I)) 339 ++I; 340 return I; 341 } 342 }; 343 344 } // end anonymous namespace 345 346 //===----------------------------------------------------------------------===// 347 // LiveRange methods 348 //===----------------------------------------------------------------------===// 349 350 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 351 // This algorithm is basically std::upper_bound. 352 // Unfortunately, std::upper_bound cannot be used with mixed types until we 353 // adopt C++0x. Many libraries can do it, but not all. 354 if (empty() || Pos >= endIndex()) 355 return end(); 356 iterator I = begin(); 357 size_t Len = size(); 358 do { 359 size_t Mid = Len >> 1; 360 if (Pos < I[Mid].end) { 361 Len = Mid; 362 } else { 363 I += Mid + 1; 364 Len -= Mid + 1; 365 } 366 } while (Len); 367 return I; 368 } 369 370 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { 371 // Use the segment set, if it is available. 372 if (segmentSet != nullptr) 373 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr); 374 // Otherwise use the segment vector. 375 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr); 376 } 377 378 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { 379 // Use the segment set, if it is available. 380 if (segmentSet != nullptr) 381 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI); 382 // Otherwise use the segment vector. 383 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI); 384 } 385 386 // overlaps - Return true if the intersection of the two live ranges is 387 // not empty. 388 // 389 // An example for overlaps(): 390 // 391 // 0: A = ... 392 // 4: B = ... 393 // 8: C = A + B ;; last use of A 394 // 395 // The live ranges should look like: 396 // 397 // A = [3, 11) 398 // B = [7, x) 399 // C = [11, y) 400 // 401 // A->overlaps(C) should return false since we want to be able to join 402 // A and C. 403 // 404 bool LiveRange::overlapsFrom(const LiveRange& other, 405 const_iterator StartPos) const { 406 assert(!empty() && "empty range"); 407 const_iterator i = begin(); 408 const_iterator ie = end(); 409 const_iterator j = StartPos; 410 const_iterator je = other.end(); 411 412 assert((StartPos->start <= i->start || StartPos == other.begin()) && 413 StartPos != other.end() && "Bogus start position hint!"); 414 415 if (i->start < j->start) { 416 i = std::upper_bound(i, ie, j->start); 417 if (i != begin()) --i; 418 } else if (j->start < i->start) { 419 ++StartPos; 420 if (StartPos != other.end() && StartPos->start <= i->start) { 421 assert(StartPos < other.end() && i < end()); 422 j = std::upper_bound(j, je, i->start); 423 if (j != other.begin()) --j; 424 } 425 } else { 426 return true; 427 } 428 429 if (j == je) return false; 430 431 while (i != ie) { 432 if (i->start > j->start) { 433 std::swap(i, j); 434 std::swap(ie, je); 435 } 436 437 if (i->end > j->start) 438 return true; 439 ++i; 440 } 441 442 return false; 443 } 444 445 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 446 const SlotIndexes &Indexes) const { 447 assert(!empty() && "empty range"); 448 if (Other.empty()) 449 return false; 450 451 // Use binary searches to find initial positions. 452 const_iterator I = find(Other.beginIndex()); 453 const_iterator IE = end(); 454 if (I == IE) 455 return false; 456 const_iterator J = Other.find(I->start); 457 const_iterator JE = Other.end(); 458 if (J == JE) 459 return false; 460 461 while (true) { 462 // J has just been advanced to satisfy: 463 assert(J->end >= I->start); 464 // Check for an overlap. 465 if (J->start < I->end) { 466 // I and J are overlapping. Find the later start. 467 SlotIndex Def = std::max(I->start, J->start); 468 // Allow the overlap if Def is a coalescable copy. 469 if (Def.isBlock() || 470 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 471 return true; 472 } 473 // Advance the iterator that ends first to check for more overlaps. 474 if (J->end > I->end) { 475 std::swap(I, J); 476 std::swap(IE, JE); 477 } 478 // Advance J until J->end >= I->start. 479 do 480 if (++J == JE) 481 return false; 482 while (J->end < I->start); 483 } 484 } 485 486 /// overlaps - Return true if the live range overlaps an interval specified 487 /// by [Start, End). 488 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 489 assert(Start < End && "Invalid range"); 490 const_iterator I = lower_bound(*this, End); 491 return I != begin() && (--I)->end > Start; 492 } 493 494 bool LiveRange::covers(const LiveRange &Other) const { 495 if (empty()) 496 return Other.empty(); 497 498 const_iterator I = begin(); 499 for (const Segment &O : Other.segments) { 500 I = advanceTo(I, O.start); 501 if (I == end() || I->start > O.start) 502 return false; 503 504 // Check adjacent live segments and see if we can get behind O.end. 505 while (I->end < O.end) { 506 const_iterator Last = I; 507 // Get next segment and abort if it was not adjacent. 508 ++I; 509 if (I == end() || Last->end != I->start) 510 return false; 511 } 512 } 513 return true; 514 } 515 516 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 517 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 518 /// it can be nuked later. 519 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 520 if (ValNo->id == getNumValNums()-1) { 521 do { 522 valnos.pop_back(); 523 } while (!valnos.empty() && valnos.back()->isUnused()); 524 } else { 525 ValNo->markUnused(); 526 } 527 } 528 529 /// RenumberValues - Renumber all values in order of appearance and delete the 530 /// remaining unused values. 531 void LiveRange::RenumberValues() { 532 SmallPtrSet<VNInfo*, 8> Seen; 533 valnos.clear(); 534 for (const Segment &S : segments) { 535 VNInfo *VNI = S.valno; 536 if (!Seen.insert(VNI).second) 537 continue; 538 assert(!VNI->isUnused() && "Unused valno used by live segment"); 539 VNI->id = (unsigned)valnos.size(); 540 valnos.push_back(VNI); 541 } 542 } 543 544 void LiveRange::addSegmentToSet(Segment S) { 545 CalcLiveRangeUtilSet(this).addSegment(S); 546 } 547 548 LiveRange::iterator LiveRange::addSegment(Segment S) { 549 // Use the segment set, if it is available. 550 if (segmentSet != nullptr) { 551 addSegmentToSet(S); 552 return end(); 553 } 554 // Otherwise use the segment vector. 555 return CalcLiveRangeUtilVector(this).addSegment(S); 556 } 557 558 void LiveRange::append(const Segment S) { 559 // Check that the segment belongs to the back of the list. 560 assert(segments.empty() || segments.back().end <= S.start); 561 segments.push_back(S); 562 } 563 564 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, 565 SlotIndex StartIdx, SlotIndex Kill) { 566 // Use the segment set, if it is available. 567 if (segmentSet != nullptr) 568 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill); 569 // Otherwise use the segment vector. 570 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill); 571 } 572 573 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 574 // Use the segment set, if it is available. 575 if (segmentSet != nullptr) 576 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 577 // Otherwise use the segment vector. 578 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 579 } 580 581 /// Remove the specified segment from this range. Note that the segment must 582 /// be in a single Segment in its entirety. 583 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 584 bool RemoveDeadValNo) { 585 // Find the Segment containing this span. 586 iterator I = find(Start); 587 assert(I != end() && "Segment is not in range!"); 588 assert(I->containsInterval(Start, End) 589 && "Segment is not entirely in range!"); 590 591 // If the span we are removing is at the start of the Segment, adjust it. 592 VNInfo *ValNo = I->valno; 593 if (I->start == Start) { 594 if (I->end == End) { 595 segments.erase(I); // Removed the whole Segment. 596 597 if (RemoveDeadValNo) 598 removeValNoIfDead(ValNo); 599 } else 600 I->start = End; 601 return; 602 } 603 604 // Otherwise if the span we are removing is at the end of the Segment, 605 // adjust the other way. 606 if (I->end == End) { 607 I->end = Start; 608 return; 609 } 610 611 // Otherwise, we are splitting the Segment into two pieces. 612 SlotIndex OldEnd = I->end; 613 I->end = Start; // Trim the old segment. 614 615 // Insert the new one. 616 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 617 } 618 619 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) { 620 VNInfo *ValNo = I->valno; 621 I = segments.erase(I); 622 if (RemoveDeadValNo) 623 removeValNoIfDead(ValNo); 624 return I; 625 } 626 627 void LiveRange::removeValNoIfDead(VNInfo *ValNo) { 628 if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; })) 629 markValNoForDeletion(ValNo); 630 } 631 632 /// removeValNo - Remove all the segments defined by the specified value#. 633 /// Also remove the value# from value# list. 634 void LiveRange::removeValNo(VNInfo *ValNo) { 635 if (empty()) return; 636 llvm::erase_if(segments, 637 [ValNo](const Segment &S) { return S.valno == ValNo; }); 638 // Now that ValNo is dead, remove it. 639 markValNoForDeletion(ValNo); 640 } 641 642 void LiveRange::join(LiveRange &Other, 643 const int *LHSValNoAssignments, 644 const int *RHSValNoAssignments, 645 SmallVectorImpl<VNInfo *> &NewVNInfo) { 646 verify(); 647 648 // Determine if any of our values are mapped. This is uncommon, so we want 649 // to avoid the range scan if not. 650 bool MustMapCurValNos = false; 651 unsigned NumVals = getNumValNums(); 652 unsigned NumNewVals = NewVNInfo.size(); 653 for (unsigned i = 0; i != NumVals; ++i) { 654 unsigned LHSValID = LHSValNoAssignments[i]; 655 if (i != LHSValID || 656 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 657 MustMapCurValNos = true; 658 break; 659 } 660 } 661 662 // If we have to apply a mapping to our base range assignment, rewrite it now. 663 if (MustMapCurValNos && !empty()) { 664 // Map the first live range. 665 666 iterator OutIt = begin(); 667 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 668 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 669 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 670 assert(nextValNo && "Huh?"); 671 672 // If this live range has the same value # as its immediate predecessor, 673 // and if they are neighbors, remove one Segment. This happens when we 674 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 675 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 676 OutIt->end = I->end; 677 } else { 678 // Didn't merge. Move OutIt to the next segment, 679 ++OutIt; 680 OutIt->valno = nextValNo; 681 if (OutIt != I) { 682 OutIt->start = I->start; 683 OutIt->end = I->end; 684 } 685 } 686 } 687 // If we merge some segments, chop off the end. 688 ++OutIt; 689 segments.erase(OutIt, end()); 690 } 691 692 // Rewrite Other values before changing the VNInfo ids. 693 // This can leave Other in an invalid state because we're not coalescing 694 // touching segments that now have identical values. That's OK since Other is 695 // not supposed to be valid after calling join(); 696 for (Segment &S : Other.segments) 697 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 698 699 // Update val# info. Renumber them and make sure they all belong to this 700 // LiveRange now. Also remove dead val#'s. 701 unsigned NumValNos = 0; 702 for (unsigned i = 0; i < NumNewVals; ++i) { 703 VNInfo *VNI = NewVNInfo[i]; 704 if (VNI) { 705 if (NumValNos >= NumVals) 706 valnos.push_back(VNI); 707 else 708 valnos[NumValNos] = VNI; 709 VNI->id = NumValNos++; // Renumber val#. 710 } 711 } 712 if (NumNewVals < NumVals) 713 valnos.resize(NumNewVals); // shrinkify 714 715 // Okay, now insert the RHS live segments into the LHS. 716 LiveRangeUpdater Updater(this); 717 for (Segment &S : Other.segments) 718 Updater.add(S); 719 } 720 721 /// Merge all of the segments in RHS into this live range as the specified 722 /// value number. The segments in RHS are allowed to overlap with segments in 723 /// the current range, but only if the overlapping segments have the 724 /// specified value number. 725 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 726 VNInfo *LHSValNo) { 727 LiveRangeUpdater Updater(this); 728 for (const Segment &S : RHS.segments) 729 Updater.add(S.start, S.end, LHSValNo); 730 } 731 732 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 733 /// in RHS into this live range as the specified value number. 734 /// The segments in RHS are allowed to overlap with segments in the 735 /// current range, it will replace the value numbers of the overlaped 736 /// segments with the specified value number. 737 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 738 const VNInfo *RHSValNo, 739 VNInfo *LHSValNo) { 740 LiveRangeUpdater Updater(this); 741 for (const Segment &S : RHS.segments) 742 if (S.valno == RHSValNo) 743 Updater.add(S.start, S.end, LHSValNo); 744 } 745 746 /// MergeValueNumberInto - This method is called when two value nubmers 747 /// are found to be equivalent. This eliminates V1, replacing all 748 /// segments with the V1 value number with the V2 value number. This can 749 /// cause merging of V1/V2 values numbers and compaction of the value space. 750 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 751 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 752 753 // This code actually merges the (numerically) larger value number into the 754 // smaller value number, which is likely to allow us to compactify the value 755 // space. The only thing we have to be careful of is to preserve the 756 // instruction that defines the result value. 757 758 // Make sure V2 is smaller than V1. 759 if (V1->id < V2->id) { 760 V1->copyFrom(*V2); 761 std::swap(V1, V2); 762 } 763 764 // Merge V1 segments into V2. 765 for (iterator I = begin(); I != end(); ) { 766 iterator S = I++; 767 if (S->valno != V1) continue; // Not a V1 Segment. 768 769 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 770 // range, extend it. 771 if (S != begin()) { 772 iterator Prev = S-1; 773 if (Prev->valno == V2 && Prev->end == S->start) { 774 Prev->end = S->end; 775 776 // Erase this live-range. 777 segments.erase(S); 778 I = Prev+1; 779 S = Prev; 780 } 781 } 782 783 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 784 // Ensure that it is a V2 live-range. 785 S->valno = V2; 786 787 // If we can merge it into later V2 segments, do so now. We ignore any 788 // following V1 segments, as they will be merged in subsequent iterations 789 // of the loop. 790 if (I != end()) { 791 if (I->start == S->end && I->valno == V2) { 792 S->end = I->end; 793 segments.erase(I); 794 I = S+1; 795 } 796 } 797 } 798 799 // Now that V1 is dead, remove it. 800 markValNoForDeletion(V1); 801 802 return V2; 803 } 804 805 void LiveRange::flushSegmentSet() { 806 assert(segmentSet != nullptr && "segment set must have been created"); 807 assert( 808 segments.empty() && 809 "segment set can be used only initially before switching to the array"); 810 segments.append(segmentSet->begin(), segmentSet->end()); 811 segmentSet = nullptr; 812 verify(); 813 } 814 815 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { 816 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); 817 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 818 819 // If there are no regmask slots, we have nothing to search. 820 if (SlotI == SlotE) 821 return false; 822 823 // Start our search at the first segment that ends after the first slot. 824 const_iterator SegmentI = find(*SlotI); 825 const_iterator SegmentE = end(); 826 827 // If there are no segments that end after the first slot, we're done. 828 if (SegmentI == SegmentE) 829 return false; 830 831 // Look for each slot in the live range. 832 for ( ; SlotI != SlotE; ++SlotI) { 833 // Go to the next segment that ends after the current slot. 834 // The slot may be within a hole in the range. 835 SegmentI = advanceTo(SegmentI, *SlotI); 836 if (SegmentI == SegmentE) 837 return false; 838 839 // If this segment contains the slot, we're done. 840 if (SegmentI->contains(*SlotI)) 841 return true; 842 // Otherwise, look for the next slot. 843 } 844 845 // We didn't find a segment containing any of the slots. 846 return false; 847 } 848 849 void LiveInterval::freeSubRange(SubRange *S) { 850 S->~SubRange(); 851 // Memory was allocated with BumpPtr allocator and is not freed here. 852 } 853 854 void LiveInterval::removeEmptySubRanges() { 855 SubRange **NextPtr = &SubRanges; 856 SubRange *I = *NextPtr; 857 while (I != nullptr) { 858 if (!I->empty()) { 859 NextPtr = &I->Next; 860 I = *NextPtr; 861 continue; 862 } 863 // Skip empty subranges until we find the first nonempty one. 864 do { 865 SubRange *Next = I->Next; 866 freeSubRange(I); 867 I = Next; 868 } while (I != nullptr && I->empty()); 869 *NextPtr = I; 870 } 871 } 872 873 void LiveInterval::clearSubRanges() { 874 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 875 Next = I->Next; 876 freeSubRange(I); 877 } 878 SubRanges = nullptr; 879 } 880 881 /// For each VNI in \p SR, check whether or not that value defines part 882 /// of the mask describe by \p LaneMask and if not, remove that value 883 /// from \p SR. 884 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR, 885 LaneBitmask LaneMask, 886 const SlotIndexes &Indexes, 887 const TargetRegisterInfo &TRI, 888 unsigned ComposeSubRegIdx) { 889 // Phys reg should not be tracked at subreg level. 890 // Same for noreg (Reg == 0). 891 if (!Register::isVirtualRegister(Reg) || !Reg) 892 return; 893 // Remove the values that don't define those lanes. 894 SmallVector<VNInfo *, 8> ToBeRemoved; 895 for (VNInfo *VNI : SR.valnos) { 896 if (VNI->isUnused()) 897 continue; 898 // PHI definitions don't have MI attached, so there is nothing 899 // we can use to strip the VNI. 900 if (VNI->isPHIDef()) 901 continue; 902 const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def); 903 assert(MI && "Cannot find the definition of a value"); 904 bool hasDef = false; 905 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 906 if (!MOI->isReg() || !MOI->isDef()) 907 continue; 908 if (MOI->getReg() != Reg) 909 continue; 910 LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg()); 911 LaneBitmask ExpectedDefMask = 912 ComposeSubRegIdx 913 ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask) 914 : OrigMask; 915 if ((ExpectedDefMask & LaneMask).none()) 916 continue; 917 hasDef = true; 918 break; 919 } 920 921 if (!hasDef) 922 ToBeRemoved.push_back(VNI); 923 } 924 for (VNInfo *VNI : ToBeRemoved) 925 SR.removeValNo(VNI); 926 927 // If the subrange is empty at this point, the MIR is invalid. Do not assert 928 // and let the verifier catch this case. 929 } 930 931 void LiveInterval::refineSubRanges( 932 BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 933 std::function<void(LiveInterval::SubRange &)> Apply, 934 const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, 935 unsigned ComposeSubRegIdx) { 936 LaneBitmask ToApply = LaneMask; 937 for (SubRange &SR : subranges()) { 938 LaneBitmask SRMask = SR.LaneMask; 939 LaneBitmask Matching = SRMask & LaneMask; 940 if (Matching.none()) 941 continue; 942 943 SubRange *MatchingRange; 944 if (SRMask == Matching) { 945 // The subrange fits (it does not cover bits outside \p LaneMask). 946 MatchingRange = &SR; 947 } else { 948 // We have to split the subrange into a matching and non-matching part. 949 // Reduce lanemask of existing lane to non-matching part. 950 SR.LaneMask = SRMask & ~Matching; 951 // Create a new subrange for the matching part 952 MatchingRange = createSubRangeFrom(Allocator, Matching, SR); 953 // Now that the subrange is split in half, make sure we 954 // only keep in the subranges the VNIs that touch the related half. 955 stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI, 956 ComposeSubRegIdx); 957 stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI, 958 ComposeSubRegIdx); 959 } 960 Apply(*MatchingRange); 961 ToApply &= ~Matching; 962 } 963 // Create a new subrange if there are uncovered bits left. 964 if (ToApply.any()) { 965 SubRange *NewRange = createSubRange(Allocator, ToApply); 966 Apply(*NewRange); 967 } 968 } 969 970 unsigned LiveInterval::getSize() const { 971 unsigned Sum = 0; 972 for (const Segment &S : segments) 973 Sum += S.start.distance(S.end); 974 return Sum; 975 } 976 977 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 978 LaneBitmask LaneMask, 979 const MachineRegisterInfo &MRI, 980 const SlotIndexes &Indexes) const { 981 assert(Register::isVirtualRegister(reg())); 982 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg()); 983 assert((VRegMask & LaneMask).any()); 984 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 985 for (const MachineOperand &MO : MRI.def_operands(reg())) { 986 if (!MO.isUndef()) 987 continue; 988 unsigned SubReg = MO.getSubReg(); 989 assert(SubReg != 0 && "Undef should only be set on subreg defs"); 990 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg); 991 LaneBitmask UndefMask = VRegMask & ~DefMask; 992 if ((UndefMask & LaneMask).any()) { 993 const MachineInstr &MI = *MO.getParent(); 994 bool EarlyClobber = MO.isEarlyClobber(); 995 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber); 996 Undefs.push_back(Pos); 997 } 998 } 999 } 1000 1001 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { 1002 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; 1003 } 1004 1005 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1006 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { 1007 dbgs() << *this << '\n'; 1008 } 1009 #endif 1010 1011 void LiveRange::print(raw_ostream &OS) const { 1012 if (empty()) 1013 OS << "EMPTY"; 1014 else { 1015 for (const Segment &S : segments) { 1016 OS << S; 1017 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1018 } 1019 } 1020 1021 // Print value number info. 1022 if (getNumValNums()) { 1023 OS << ' '; 1024 unsigned vnum = 0; 1025 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1026 ++i, ++vnum) { 1027 const VNInfo *vni = *i; 1028 if (vnum) OS << ' '; 1029 OS << vnum << '@'; 1030 if (vni->isUnused()) { 1031 OS << 'x'; 1032 } else { 1033 OS << vni->def; 1034 if (vni->isPHIDef()) 1035 OS << "-phi"; 1036 } 1037 } 1038 } 1039 } 1040 1041 void LiveInterval::SubRange::print(raw_ostream &OS) const { 1042 OS << " L" << PrintLaneMask(LaneMask) << ' ' 1043 << static_cast<const LiveRange &>(*this); 1044 } 1045 1046 void LiveInterval::print(raw_ostream &OS) const { 1047 OS << printReg(reg()) << ' '; 1048 super::print(OS); 1049 // Print subranges 1050 for (const SubRange &SR : subranges()) 1051 OS << SR; 1052 OS << " weight:" << Weight; 1053 } 1054 1055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1056 LLVM_DUMP_METHOD void LiveRange::dump() const { 1057 dbgs() << *this << '\n'; 1058 } 1059 1060 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { 1061 dbgs() << *this << '\n'; 1062 } 1063 1064 LLVM_DUMP_METHOD void LiveInterval::dump() const { 1065 dbgs() << *this << '\n'; 1066 } 1067 #endif 1068 1069 #ifndef NDEBUG 1070 void LiveRange::verify() const { 1071 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1072 assert(I->start.isValid()); 1073 assert(I->end.isValid()); 1074 assert(I->start < I->end); 1075 assert(I->valno != nullptr); 1076 assert(I->valno->id < valnos.size()); 1077 assert(I->valno == valnos[I->valno->id]); 1078 if (std::next(I) != E) { 1079 assert(I->end <= std::next(I)->start); 1080 if (I->end == std::next(I)->start) 1081 assert(I->valno != std::next(I)->valno); 1082 } 1083 } 1084 } 1085 1086 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1087 super::verify(); 1088 1089 // Make sure SubRanges are fine and LaneMasks are disjunct. 1090 LaneBitmask Mask; 1091 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg()) 1092 : LaneBitmask::getAll(); 1093 for (const SubRange &SR : subranges()) { 1094 // Subrange lanemask should be disjunct to any previous subrange masks. 1095 assert((Mask & SR.LaneMask).none()); 1096 Mask |= SR.LaneMask; 1097 1098 // subrange mask should not contained in maximum lane mask for the vreg. 1099 assert((Mask & ~MaxMask).none()); 1100 // empty subranges must be removed. 1101 assert(!SR.empty()); 1102 1103 SR.verify(); 1104 // Main liverange should cover subrange. 1105 assert(covers(SR)); 1106 } 1107 } 1108 #endif 1109 1110 //===----------------------------------------------------------------------===// 1111 // LiveRangeUpdater class 1112 //===----------------------------------------------------------------------===// 1113 // 1114 // The LiveRangeUpdater class always maintains these invariants: 1115 // 1116 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1117 // This is the initial state, and the state created by flush(). 1118 // In this state, isDirty() returns false. 1119 // 1120 // Otherwise, segments are kept in three separate areas: 1121 // 1122 // 1. [begin; WriteI) at the front of LR. 1123 // 2. [ReadI; end) at the back of LR. 1124 // 3. Spills. 1125 // 1126 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1127 // - Segments in all three areas are fully ordered and coalesced. 1128 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1129 // - Segments in Spills precede and can't coalesce with segments in area 2. 1130 // - No coalescing is possible between segments in Spills and segments in area 1131 // 1, and there are no overlapping segments. 1132 // 1133 // The segments in Spills are not ordered with respect to the segments in area 1134 // 1. They need to be merged. 1135 // 1136 // When they exist, Spills.back().start <= LastStart, 1137 // and WriteI[-1].start <= LastStart. 1138 1139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1140 void LiveRangeUpdater::print(raw_ostream &OS) const { 1141 if (!isDirty()) { 1142 if (LR) 1143 OS << "Clean updater: " << *LR << '\n'; 1144 else 1145 OS << "Null updater.\n"; 1146 return; 1147 } 1148 assert(LR && "Can't have null LR in dirty updater."); 1149 OS << " updater with gap = " << (ReadI - WriteI) 1150 << ", last start = " << LastStart 1151 << ":\n Area 1:"; 1152 for (const auto &S : make_range(LR->begin(), WriteI)) 1153 OS << ' ' << S; 1154 OS << "\n Spills:"; 1155 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1156 OS << ' ' << Spills[I]; 1157 OS << "\n Area 2:"; 1158 for (const auto &S : make_range(ReadI, LR->end())) 1159 OS << ' ' << S; 1160 OS << '\n'; 1161 } 1162 1163 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { 1164 print(errs()); 1165 } 1166 #endif 1167 1168 // Determine if A and B should be coalesced. 1169 static inline bool coalescable(const LiveRange::Segment &A, 1170 const LiveRange::Segment &B) { 1171 assert(A.start <= B.start && "Unordered live segments."); 1172 if (A.end == B.start) 1173 return A.valno == B.valno; 1174 if (A.end < B.start) 1175 return false; 1176 assert(A.valno == B.valno && "Cannot overlap different values"); 1177 return true; 1178 } 1179 1180 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1181 assert(LR && "Cannot add to a null destination"); 1182 1183 // Fall back to the regular add method if the live range 1184 // is using the segment set instead of the segment vector. 1185 if (LR->segmentSet != nullptr) { 1186 LR->addSegmentToSet(Seg); 1187 return; 1188 } 1189 1190 // Flush the state if Start moves backwards. 1191 if (!LastStart.isValid() || LastStart > Seg.start) { 1192 if (isDirty()) 1193 flush(); 1194 // This brings us to an uninitialized state. Reinitialize. 1195 assert(Spills.empty() && "Leftover spilled segments"); 1196 WriteI = ReadI = LR->begin(); 1197 } 1198 1199 // Remember start for next time. 1200 LastStart = Seg.start; 1201 1202 // Advance ReadI until it ends after Seg.start. 1203 LiveRange::iterator E = LR->end(); 1204 if (ReadI != E && ReadI->end <= Seg.start) { 1205 // First try to close the gap between WriteI and ReadI with spills. 1206 if (ReadI != WriteI) 1207 mergeSpills(); 1208 // Then advance ReadI. 1209 if (ReadI == WriteI) 1210 ReadI = WriteI = LR->find(Seg.start); 1211 else 1212 while (ReadI != E && ReadI->end <= Seg.start) 1213 *WriteI++ = *ReadI++; 1214 } 1215 1216 assert(ReadI == E || ReadI->end > Seg.start); 1217 1218 // Check if the ReadI segment begins early. 1219 if (ReadI != E && ReadI->start <= Seg.start) { 1220 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1221 // Bail if Seg is completely contained in ReadI. 1222 if (ReadI->end >= Seg.end) 1223 return; 1224 // Coalesce into Seg. 1225 Seg.start = ReadI->start; 1226 ++ReadI; 1227 } 1228 1229 // Coalesce as much as possible from ReadI into Seg. 1230 while (ReadI != E && coalescable(Seg, *ReadI)) { 1231 Seg.end = std::max(Seg.end, ReadI->end); 1232 ++ReadI; 1233 } 1234 1235 // Try coalescing Spills.back() into Seg. 1236 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1237 Seg.start = Spills.back().start; 1238 Seg.end = std::max(Spills.back().end, Seg.end); 1239 Spills.pop_back(); 1240 } 1241 1242 // Try coalescing Seg into WriteI[-1]. 1243 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1244 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1245 return; 1246 } 1247 1248 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1249 if (WriteI != ReadI) { 1250 *WriteI++ = Seg; 1251 return; 1252 } 1253 1254 // Finally, append to LR or Spills. 1255 if (WriteI == E) { 1256 LR->segments.push_back(Seg); 1257 WriteI = ReadI = LR->end(); 1258 } else 1259 Spills.push_back(Seg); 1260 } 1261 1262 // Merge as many spilled segments as possible into the gap between WriteI 1263 // and ReadI. Advance WriteI to reflect the inserted instructions. 1264 void LiveRangeUpdater::mergeSpills() { 1265 // Perform a backwards merge of Spills and [SpillI;WriteI). 1266 size_t GapSize = ReadI - WriteI; 1267 size_t NumMoved = std::min(Spills.size(), GapSize); 1268 LiveRange::iterator Src = WriteI; 1269 LiveRange::iterator Dst = Src + NumMoved; 1270 LiveRange::iterator SpillSrc = Spills.end(); 1271 LiveRange::iterator B = LR->begin(); 1272 1273 // This is the new WriteI position after merging spills. 1274 WriteI = Dst; 1275 1276 // Now merge Src and Spills backwards. 1277 while (Src != Dst) { 1278 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1279 *--Dst = *--Src; 1280 else 1281 *--Dst = *--SpillSrc; 1282 } 1283 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1284 Spills.erase(SpillSrc, Spills.end()); 1285 } 1286 1287 void LiveRangeUpdater::flush() { 1288 if (!isDirty()) 1289 return; 1290 // Clear the dirty state. 1291 LastStart = SlotIndex(); 1292 1293 assert(LR && "Cannot add to a null destination"); 1294 1295 // Nothing to merge? 1296 if (Spills.empty()) { 1297 LR->segments.erase(WriteI, ReadI); 1298 LR->verify(); 1299 return; 1300 } 1301 1302 // Resize the WriteI - ReadI gap to match Spills. 1303 size_t GapSize = ReadI - WriteI; 1304 if (GapSize < Spills.size()) { 1305 // The gap is too small. Make some room. 1306 size_t WritePos = WriteI - LR->begin(); 1307 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1308 // This also invalidated ReadI, but it is recomputed below. 1309 WriteI = LR->begin() + WritePos; 1310 } else { 1311 // Shrink the gap if necessary. 1312 LR->segments.erase(WriteI + Spills.size(), ReadI); 1313 } 1314 ReadI = WriteI + Spills.size(); 1315 mergeSpills(); 1316 LR->verify(); 1317 } 1318 1319 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { 1320 // Create initial equivalence classes. 1321 EqClass.clear(); 1322 EqClass.grow(LR.getNumValNums()); 1323 1324 const VNInfo *used = nullptr, *unused = nullptr; 1325 1326 // Determine connections. 1327 for (const VNInfo *VNI : LR.valnos) { 1328 // Group all unused values into one class. 1329 if (VNI->isUnused()) { 1330 if (unused) 1331 EqClass.join(unused->id, VNI->id); 1332 unused = VNI; 1333 continue; 1334 } 1335 used = VNI; 1336 if (VNI->isPHIDef()) { 1337 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1338 assert(MBB && "Phi-def has no defining MBB"); 1339 // Connect to values live out of predecessors. 1340 for (MachineBasicBlock *Pred : MBB->predecessors()) 1341 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred))) 1342 EqClass.join(VNI->id, PVNI->id); 1343 } else { 1344 // Normal value defined by an instruction. Check for two-addr redef. 1345 // FIXME: This could be coincidental. Should we really check for a tied 1346 // operand constraint? 1347 // Note that VNI->def may be a use slot for an early clobber def. 1348 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) 1349 EqClass.join(VNI->id, UVNI->id); 1350 } 1351 } 1352 1353 // Lump all the unused values in with the last used value. 1354 if (used && unused) 1355 EqClass.join(used->id, unused->id); 1356 1357 EqClass.compress(); 1358 return EqClass.getNumClasses(); 1359 } 1360 1361 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], 1362 MachineRegisterInfo &MRI) { 1363 // Rewrite instructions. 1364 for (MachineOperand &MO : 1365 llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) { 1366 MachineInstr *MI = MO.getParent(); 1367 const VNInfo *VNI; 1368 if (MI->isDebugValue()) { 1369 // DBG_VALUE instructions don't have slot indexes, so get the index of 1370 // the instruction before them. The value is defined there too. 1371 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); 1372 VNI = LI.Query(Idx).valueOut(); 1373 } else { 1374 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1375 LiveQueryResult LRQ = LI.Query(Idx); 1376 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1377 } 1378 // In the case of an <undef> use that isn't tied to any def, VNI will be 1379 // NULL. If the use is tied to a def, VNI will be the defined value. 1380 if (!VNI) 1381 continue; 1382 if (unsigned EqClass = getEqClass(VNI)) 1383 MO.setReg(LIV[EqClass - 1]->reg()); 1384 } 1385 1386 // Distribute subregister liveranges. 1387 if (LI.hasSubRanges()) { 1388 unsigned NumComponents = EqClass.getNumClasses(); 1389 SmallVector<unsigned, 8> VNIMapping; 1390 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1391 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1392 for (LiveInterval::SubRange &SR : LI.subranges()) { 1393 // Create new subranges in the split intervals and construct a mapping 1394 // for the VNInfos in the subrange. 1395 unsigned NumValNos = SR.valnos.size(); 1396 VNIMapping.clear(); 1397 VNIMapping.reserve(NumValNos); 1398 SubRanges.clear(); 1399 SubRanges.resize(NumComponents-1, nullptr); 1400 for (unsigned I = 0; I < NumValNos; ++I) { 1401 const VNInfo &VNI = *SR.valnos[I]; 1402 unsigned ComponentNum; 1403 if (VNI.isUnused()) { 1404 ComponentNum = 0; 1405 } else { 1406 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); 1407 assert(MainRangeVNI != nullptr 1408 && "SubRange def must have corresponding main range def"); 1409 ComponentNum = getEqClass(MainRangeVNI); 1410 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { 1411 SubRanges[ComponentNum-1] 1412 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); 1413 } 1414 } 1415 VNIMapping.push_back(ComponentNum); 1416 } 1417 DistributeRange(SR, SubRanges.data(), VNIMapping); 1418 } 1419 LI.removeEmptySubRanges(); 1420 } 1421 1422 // Distribute main liverange. 1423 DistributeRange(LI, LIV, EqClass); 1424 } 1425