xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveInterval.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes.  Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
54 //
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
61 //
62 //===----------------------------------------------------------------------===//
63 
64 template <typename ImplT, typename IteratorT, typename CollectionT>
65 class CalcLiveRangeUtilBase {
66 protected:
67   LiveRange *LR;
68 
69 protected:
70   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
71 
72 public:
73   using Segment = LiveRange::Segment;
74   using iterator = IteratorT;
75 
76   /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77   /// value defined at @p Def.
78   /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79   /// value will be allocated using @p VNInfoAllocator.
80   /// If @p ForVNI is null, the return value is the value defined at @p Def,
81   /// either a pre-existing one, or the one newly created.
82   /// If @p ForVNI is not null, then @p Def should be the location where
83   /// @p ForVNI is defined. If the range does not have a value defined at
84   /// @p Def, the value @p ForVNI will be used instead of allocating a new
85   /// one. If the range already has a value defined at @p Def, it must be
86   /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88                         VNInfo *ForVNI) {
89     assert(!Def.isDead() && "Cannot define a value at the dead slot");
90     assert((!ForVNI || ForVNI->def == Def) &&
91            "If ForVNI is specified, it must match Def");
92     iterator I = impl().find(Def);
93     if (I == segments().end()) {
94       VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96       return VNI;
97     }
98 
99     Segment *S = segmentAt(I);
100     if (SlotIndex::isSameInstr(Def, S->start)) {
101       assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102       assert(S->valno->def == S->start && "Inconsistent existing value def");
103 
104       // It is possible to have both normal and early-clobber defs of the same
105       // register on an instruction. It doesn't make a lot of sense, but it is
106       // possible to specify in inline assembly.
107       //
108       // Just convert everything to early-clobber.
109       Def = std::min(Def, S->start);
110       if (Def != S->start)
111         S->start = S->valno->def = Def;
112       return S->valno;
113     }
114     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115     VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117     return VNI;
118   }
119 
120   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121     if (segments().empty())
122       return nullptr;
123     iterator I =
124       impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125     if (I == segments().begin())
126       return nullptr;
127     --I;
128     if (I->end <= StartIdx)
129       return nullptr;
130     if (I->end < Use)
131       extendSegmentEndTo(I, Use);
132     return I->valno;
133   }
134 
135   std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136       SlotIndex StartIdx, SlotIndex Use) {
137     if (segments().empty())
138       return std::make_pair(nullptr, false);
139     SlotIndex BeforeUse = Use.getPrevSlot();
140     iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141     if (I == segments().begin())
142       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143     --I;
144     if (I->end <= StartIdx)
145       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146     if (I->end < Use) {
147       if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148         return std::make_pair(nullptr, true);
149       extendSegmentEndTo(I, Use);
150     }
151     return std::make_pair(I->valno, false);
152   }
153 
154   /// This method is used when we want to extend the segment specified
155   /// by I to end at the specified endpoint. To do this, we should
156   /// merge and eliminate all segments that this will overlap
157   /// with. The iterator is not invalidated.
158   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159     assert(I != segments().end() && "Not a valid segment!");
160     Segment *S = segmentAt(I);
161     VNInfo *ValNo = I->valno;
162 
163     // Search for the first segment that we can't merge with.
164     iterator MergeTo = std::next(I);
165     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
167 
168     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
170 
171     // If the newly formed segment now touches the segment after it and if they
172     // have the same value number, merge the two segments into one segment.
173     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174         MergeTo->valno == ValNo) {
175       S->end = MergeTo->end;
176       ++MergeTo;
177     }
178 
179     // Erase any dead segments.
180     segments().erase(std::next(I), MergeTo);
181   }
182 
183   /// This method is used when we want to extend the segment specified
184   /// by I to start at the specified endpoint.  To do this, we should
185   /// merge and eliminate all segments that this will overlap with.
186   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187     assert(I != segments().end() && "Not a valid segment!");
188     Segment *S = segmentAt(I);
189     VNInfo *ValNo = I->valno;
190 
191     // Search for the first segment that we can't merge with.
192     iterator MergeTo = I;
193     do {
194       if (MergeTo == segments().begin()) {
195         S->start = NewStart;
196         segments().erase(MergeTo, I);
197         return I;
198       }
199       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200       --MergeTo;
201     } while (NewStart <= MergeTo->start);
202 
203     // If we start in the middle of another segment, just delete a range and
204     // extend that segment.
205     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206       segmentAt(MergeTo)->end = S->end;
207     } else {
208       // Otherwise, extend the segment right after.
209       ++MergeTo;
210       Segment *MergeToSeg = segmentAt(MergeTo);
211       MergeToSeg->start = NewStart;
212       MergeToSeg->end = S->end;
213     }
214 
215     segments().erase(std::next(MergeTo), std::next(I));
216     return MergeTo;
217   }
218 
219   iterator addSegment(Segment S) {
220     SlotIndex Start = S.start, End = S.end;
221     iterator I = impl().findInsertPos(S);
222 
223     // If the inserted segment starts in the middle or right at the end of
224     // another segment, just extend that segment to contain the segment of S.
225     if (I != segments().begin()) {
226       iterator B = std::prev(I);
227       if (S.valno == B->valno) {
228         if (B->start <= Start && B->end >= Start) {
229           extendSegmentEndTo(B, End);
230           return B;
231         }
232       } else {
233         // Check to make sure that we are not overlapping two live segments with
234         // different valno's.
235         assert(B->end <= Start &&
236                "Cannot overlap two segments with differing ValID's"
237                " (did you def the same reg twice in a MachineInstr?)");
238       }
239     }
240 
241     // Otherwise, if this segment ends in the middle of, or right next
242     // to, another segment, merge it into that segment.
243     if (I != segments().end()) {
244       if (S.valno == I->valno) {
245         if (I->start <= End) {
246           I = extendSegmentStartTo(I, Start);
247 
248           // If S is a complete superset of a segment, we may need to grow its
249           // endpoint as well.
250           if (End > I->end)
251             extendSegmentEndTo(I, End);
252           return I;
253         }
254       } else {
255         // Check to make sure that we are not overlapping two live segments with
256         // different valno's.
257         assert(I->start >= End &&
258                "Cannot overlap two segments with differing ValID's");
259       }
260     }
261 
262     // Otherwise, this is just a new segment that doesn't interact with
263     // anything.
264     // Insert it.
265     return segments().insert(I, S);
266   }
267 
268 private:
269   ImplT &impl() { return *static_cast<ImplT *>(this); }
270 
271   CollectionT &segments() { return impl().segmentsColl(); }
272 
273   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
274 };
275 
276 //===----------------------------------------------------------------------===//
277 //   Instantiation of the methods for calculation of live ranges
278 //   based on a segment vector.
279 //===----------------------------------------------------------------------===//
280 
281 class CalcLiveRangeUtilVector;
282 using CalcLiveRangeUtilVectorBase =
283     CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284                           LiveRange::Segments>;
285 
286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287 public:
288   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
289 
290 private:
291   friend CalcLiveRangeUtilVectorBase;
292 
293   LiveRange::Segments &segmentsColl() { return LR->segments; }
294 
295   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
296 
297   iterator find(SlotIndex Pos) { return LR->find(Pos); }
298 
299   iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
300 };
301 
302 //===----------------------------------------------------------------------===//
303 //   Instantiation of the methods for calculation of live ranges
304 //   based on a segment set.
305 //===----------------------------------------------------------------------===//
306 
307 class CalcLiveRangeUtilSet;
308 using CalcLiveRangeUtilSetBase =
309     CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
310                           LiveRange::SegmentSet>;
311 
312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
313 public:
314   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
315 
316 private:
317   friend CalcLiveRangeUtilSetBase;
318 
319   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
320 
321   void insertAtEnd(const Segment &S) {
322     LR->segmentSet->insert(LR->segmentSet->end(), S);
323   }
324 
325   iterator find(SlotIndex Pos) {
326     iterator I =
327         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
328     if (I == LR->segmentSet->begin())
329       return I;
330     iterator PrevI = std::prev(I);
331     if (Pos < (*PrevI).end)
332       return PrevI;
333     return I;
334   }
335 
336   iterator findInsertPos(Segment S) {
337     iterator I = LR->segmentSet->upper_bound(S);
338     if (I != LR->segmentSet->end() && !(S.start < *I))
339       ++I;
340     return I;
341   }
342 };
343 
344 } // end anonymous namespace
345 
346 //===----------------------------------------------------------------------===//
347 //   LiveRange methods
348 //===----------------------------------------------------------------------===//
349 
350 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
351   return llvm::partition_point(*this,
352                                [&](const Segment &X) { return X.end <= Pos; });
353 }
354 
355 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
356   // Use the segment set, if it is available.
357   if (segmentSet != nullptr)
358     return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
359   // Otherwise use the segment vector.
360   return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
361 }
362 
363 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
364   // Use the segment set, if it is available.
365   if (segmentSet != nullptr)
366     return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
367   // Otherwise use the segment vector.
368   return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
369 }
370 
371 // overlaps - Return true if the intersection of the two live ranges is
372 // not empty.
373 //
374 // An example for overlaps():
375 //
376 // 0: A = ...
377 // 4: B = ...
378 // 8: C = A + B ;; last use of A
379 //
380 // The live ranges should look like:
381 //
382 // A = [3, 11)
383 // B = [7, x)
384 // C = [11, y)
385 //
386 // A->overlaps(C) should return false since we want to be able to join
387 // A and C.
388 //
389 bool LiveRange::overlapsFrom(const LiveRange& other,
390                              const_iterator StartPos) const {
391   assert(!empty() && "empty range");
392   const_iterator i = begin();
393   const_iterator ie = end();
394   const_iterator j = StartPos;
395   const_iterator je = other.end();
396 
397   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
398          StartPos != other.end() && "Bogus start position hint!");
399 
400   if (i->start < j->start) {
401     i = std::upper_bound(i, ie, j->start);
402     if (i != begin()) --i;
403   } else if (j->start < i->start) {
404     ++StartPos;
405     if (StartPos != other.end() && StartPos->start <= i->start) {
406       assert(StartPos < other.end() && i < end());
407       j = std::upper_bound(j, je, i->start);
408       if (j != other.begin()) --j;
409     }
410   } else {
411     return true;
412   }
413 
414   if (j == je) return false;
415 
416   while (i != ie) {
417     if (i->start > j->start) {
418       std::swap(i, j);
419       std::swap(ie, je);
420     }
421 
422     if (i->end > j->start)
423       return true;
424     ++i;
425   }
426 
427   return false;
428 }
429 
430 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
431                          const SlotIndexes &Indexes) const {
432   assert(!empty() && "empty range");
433   if (Other.empty())
434     return false;
435 
436   // Use binary searches to find initial positions.
437   const_iterator I = find(Other.beginIndex());
438   const_iterator IE = end();
439   if (I == IE)
440     return false;
441   const_iterator J = Other.find(I->start);
442   const_iterator JE = Other.end();
443   if (J == JE)
444     return false;
445 
446   while (true) {
447     // J has just been advanced to satisfy:
448     assert(J->end > I->start);
449     // Check for an overlap.
450     if (J->start < I->end) {
451       // I and J are overlapping. Find the later start.
452       SlotIndex Def = std::max(I->start, J->start);
453       // Allow the overlap if Def is a coalescable copy.
454       if (Def.isBlock() ||
455           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
456         return true;
457     }
458     // Advance the iterator that ends first to check for more overlaps.
459     if (J->end > I->end) {
460       std::swap(I, J);
461       std::swap(IE, JE);
462     }
463     // Advance J until J->end > I->start.
464     do
465       if (++J == JE)
466         return false;
467     while (J->end <= I->start);
468   }
469 }
470 
471 /// overlaps - Return true if the live range overlaps an interval specified
472 /// by [Start, End).
473 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
474   assert(Start < End && "Invalid range");
475   const_iterator I = lower_bound(*this, End);
476   return I != begin() && (--I)->end > Start;
477 }
478 
479 bool LiveRange::covers(const LiveRange &Other) const {
480   if (empty())
481     return Other.empty();
482 
483   const_iterator I = begin();
484   for (const Segment &O : Other.segments) {
485     I = advanceTo(I, O.start);
486     if (I == end() || I->start > O.start)
487       return false;
488 
489     // Check adjacent live segments and see if we can get behind O.end.
490     while (I->end < O.end) {
491       const_iterator Last = I;
492       // Get next segment and abort if it was not adjacent.
493       ++I;
494       if (I == end() || Last->end != I->start)
495         return false;
496     }
497   }
498   return true;
499 }
500 
501 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
502 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
503 /// it can be nuked later.
504 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
505   if (ValNo->id == getNumValNums()-1) {
506     do {
507       valnos.pop_back();
508     } while (!valnos.empty() && valnos.back()->isUnused());
509   } else {
510     ValNo->markUnused();
511   }
512 }
513 
514 /// RenumberValues - Renumber all values in order of appearance and delete the
515 /// remaining unused values.
516 void LiveRange::RenumberValues() {
517   SmallPtrSet<VNInfo*, 8> Seen;
518   valnos.clear();
519   for (const Segment &S : segments) {
520     VNInfo *VNI = S.valno;
521     if (!Seen.insert(VNI).second)
522       continue;
523     assert(!VNI->isUnused() && "Unused valno used by live segment");
524     VNI->id = (unsigned)valnos.size();
525     valnos.push_back(VNI);
526   }
527 }
528 
529 void LiveRange::addSegmentToSet(Segment S) {
530   CalcLiveRangeUtilSet(this).addSegment(S);
531 }
532 
533 LiveRange::iterator LiveRange::addSegment(Segment S) {
534   // Use the segment set, if it is available.
535   if (segmentSet != nullptr) {
536     addSegmentToSet(S);
537     return end();
538   }
539   // Otherwise use the segment vector.
540   return CalcLiveRangeUtilVector(this).addSegment(S);
541 }
542 
543 void LiveRange::append(const Segment S) {
544   // Check that the segment belongs to the back of the list.
545   assert(segments.empty() || segments.back().end <= S.start);
546   segments.push_back(S);
547 }
548 
549 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
550     SlotIndex StartIdx, SlotIndex Kill) {
551   // Use the segment set, if it is available.
552   if (segmentSet != nullptr)
553     return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
554   // Otherwise use the segment vector.
555   return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
556 }
557 
558 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
559   // Use the segment set, if it is available.
560   if (segmentSet != nullptr)
561     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
562   // Otherwise use the segment vector.
563   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
564 }
565 
566 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
567                               bool RemoveDeadValNo) {
568   // Find the Segment containing this span.
569   iterator I = find(Start);
570 
571   // No Segment found, so nothing to do.
572   if (I == end())
573     return;
574 
575   assert(I->containsInterval(Start, End)
576          && "Segment is not entirely in range!");
577 
578   // If the span we are removing is at the start of the Segment, adjust it.
579   VNInfo *ValNo = I->valno;
580   if (I->start == Start) {
581     if (I->end == End) {
582       segments.erase(I);  // Removed the whole Segment.
583 
584       if (RemoveDeadValNo)
585         removeValNoIfDead(ValNo);
586     } else
587       I->start = End;
588     return;
589   }
590 
591   // Otherwise if the span we are removing is at the end of the Segment,
592   // adjust the other way.
593   if (I->end == End) {
594     I->end = Start;
595     return;
596   }
597 
598   // Otherwise, we are splitting the Segment into two pieces.
599   SlotIndex OldEnd = I->end;
600   I->end = Start;   // Trim the old segment.
601 
602   // Insert the new one.
603   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
604 }
605 
606 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) {
607   VNInfo *ValNo = I->valno;
608   I = segments.erase(I);
609   if (RemoveDeadValNo)
610     removeValNoIfDead(ValNo);
611   return I;
612 }
613 
614 void LiveRange::removeValNoIfDead(VNInfo *ValNo) {
615   if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; }))
616     markValNoForDeletion(ValNo);
617 }
618 
619 /// removeValNo - Remove all the segments defined by the specified value#.
620 /// Also remove the value# from value# list.
621 void LiveRange::removeValNo(VNInfo *ValNo) {
622   if (empty()) return;
623   llvm::erase_if(segments,
624                  [ValNo](const Segment &S) { return S.valno == ValNo; });
625   // Now that ValNo is dead, remove it.
626   markValNoForDeletion(ValNo);
627 }
628 
629 void LiveRange::join(LiveRange &Other,
630                      const int *LHSValNoAssignments,
631                      const int *RHSValNoAssignments,
632                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
633   verify();
634   Other.verify();
635 
636   // Determine if any of our values are mapped.  This is uncommon, so we want
637   // to avoid the range scan if not.
638   bool MustMapCurValNos = false;
639   unsigned NumVals = getNumValNums();
640   unsigned NumNewVals = NewVNInfo.size();
641   for (unsigned i = 0; i != NumVals; ++i) {
642     unsigned LHSValID = LHSValNoAssignments[i];
643     if (i != LHSValID ||
644         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
645       MustMapCurValNos = true;
646       break;
647     }
648   }
649 
650   // If we have to apply a mapping to our base range assignment, rewrite it now.
651   if (MustMapCurValNos && !empty()) {
652     // Map the first live range.
653 
654     iterator OutIt = begin();
655     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
656     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
657       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
658       assert(nextValNo && "Huh?");
659 
660       // If this live range has the same value # as its immediate predecessor,
661       // and if they are neighbors, remove one Segment.  This happens when we
662       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
663       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
664         OutIt->end = I->end;
665       } else {
666         // Didn't merge. Move OutIt to the next segment,
667         ++OutIt;
668         OutIt->valno = nextValNo;
669         if (OutIt != I) {
670           OutIt->start = I->start;
671           OutIt->end = I->end;
672         }
673       }
674     }
675     // If we merge some segments, chop off the end.
676     ++OutIt;
677     segments.erase(OutIt, end());
678   }
679 
680   // Rewrite Other values before changing the VNInfo ids.
681   // This can leave Other in an invalid state because we're not coalescing
682   // touching segments that now have identical values. That's OK since Other is
683   // not supposed to be valid after calling join();
684   for (Segment &S : Other.segments)
685     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
686 
687   // Update val# info. Renumber them and make sure they all belong to this
688   // LiveRange now. Also remove dead val#'s.
689   unsigned NumValNos = 0;
690   for (unsigned i = 0; i < NumNewVals; ++i) {
691     VNInfo *VNI = NewVNInfo[i];
692     if (VNI) {
693       if (NumValNos >= NumVals)
694         valnos.push_back(VNI);
695       else
696         valnos[NumValNos] = VNI;
697       VNI->id = NumValNos++;  // Renumber val#.
698     }
699   }
700   if (NumNewVals < NumVals)
701     valnos.resize(NumNewVals);  // shrinkify
702 
703   // Okay, now insert the RHS live segments into the LHS.
704   LiveRangeUpdater Updater(this);
705   for (Segment &S : Other.segments)
706     Updater.add(S);
707 }
708 
709 /// Merge all of the segments in RHS into this live range as the specified
710 /// value number.  The segments in RHS are allowed to overlap with segments in
711 /// the current range, but only if the overlapping segments have the
712 /// specified value number.
713 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
714                                        VNInfo *LHSValNo) {
715   LiveRangeUpdater Updater(this);
716   for (const Segment &S : RHS.segments)
717     Updater.add(S.start, S.end, LHSValNo);
718 }
719 
720 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
721 /// in RHS into this live range as the specified value number.
722 /// The segments in RHS are allowed to overlap with segments in the
723 /// current range, it will replace the value numbers of the overlaped
724 /// segments with the specified value number.
725 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
726                                     const VNInfo *RHSValNo,
727                                     VNInfo *LHSValNo) {
728   LiveRangeUpdater Updater(this);
729   for (const Segment &S : RHS.segments)
730     if (S.valno == RHSValNo)
731       Updater.add(S.start, S.end, LHSValNo);
732 }
733 
734 /// MergeValueNumberInto - This method is called when two value nubmers
735 /// are found to be equivalent.  This eliminates V1, replacing all
736 /// segments with the V1 value number with the V2 value number.  This can
737 /// cause merging of V1/V2 values numbers and compaction of the value space.
738 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
739   assert(V1 != V2 && "Identical value#'s are always equivalent!");
740 
741   // This code actually merges the (numerically) larger value number into the
742   // smaller value number, which is likely to allow us to compactify the value
743   // space.  The only thing we have to be careful of is to preserve the
744   // instruction that defines the result value.
745 
746   // Make sure V2 is smaller than V1.
747   if (V1->id < V2->id) {
748     V1->copyFrom(*V2);
749     std::swap(V1, V2);
750   }
751 
752   // Merge V1 segments into V2.
753   for (iterator I = begin(); I != end(); ) {
754     iterator S = I++;
755     if (S->valno != V1) continue;  // Not a V1 Segment.
756 
757     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
758     // range, extend it.
759     if (S != begin()) {
760       iterator Prev = S-1;
761       if (Prev->valno == V2 && Prev->end == S->start) {
762         Prev->end = S->end;
763 
764         // Erase this live-range.
765         segments.erase(S);
766         I = Prev+1;
767         S = Prev;
768       }
769     }
770 
771     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
772     // Ensure that it is a V2 live-range.
773     S->valno = V2;
774 
775     // If we can merge it into later V2 segments, do so now.  We ignore any
776     // following V1 segments, as they will be merged in subsequent iterations
777     // of the loop.
778     if (I != end()) {
779       if (I->start == S->end && I->valno == V2) {
780         S->end = I->end;
781         segments.erase(I);
782         I = S+1;
783       }
784     }
785   }
786 
787   // Now that V1 is dead, remove it.
788   markValNoForDeletion(V1);
789 
790   return V2;
791 }
792 
793 void LiveRange::flushSegmentSet() {
794   assert(segmentSet != nullptr && "segment set must have been created");
795   assert(
796       segments.empty() &&
797       "segment set can be used only initially before switching to the array");
798   segments.append(segmentSet->begin(), segmentSet->end());
799   segmentSet = nullptr;
800   verify();
801 }
802 
803 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
804   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
805   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
806 
807   // If there are no regmask slots, we have nothing to search.
808   if (SlotI == SlotE)
809     return false;
810 
811   // Start our search at the first segment that ends after the first slot.
812   const_iterator SegmentI = find(*SlotI);
813   const_iterator SegmentE = end();
814 
815   // If there are no segments that end after the first slot, we're done.
816   if (SegmentI == SegmentE)
817     return false;
818 
819   // Look for each slot in the live range.
820   for ( ; SlotI != SlotE; ++SlotI) {
821     // Go to the next segment that ends after the current slot.
822     // The slot may be within a hole in the range.
823     SegmentI = advanceTo(SegmentI, *SlotI);
824     if (SegmentI == SegmentE)
825       return false;
826 
827     // If this segment contains the slot, we're done.
828     if (SegmentI->contains(*SlotI))
829       return true;
830     // Otherwise, look for the next slot.
831   }
832 
833   // We didn't find a segment containing any of the slots.
834   return false;
835 }
836 
837 void LiveInterval::freeSubRange(SubRange *S) {
838   S->~SubRange();
839   // Memory was allocated with BumpPtr allocator and is not freed here.
840 }
841 
842 void LiveInterval::removeEmptySubRanges() {
843   SubRange **NextPtr = &SubRanges;
844   SubRange *I = *NextPtr;
845   while (I != nullptr) {
846     if (!I->empty()) {
847       NextPtr = &I->Next;
848       I = *NextPtr;
849       continue;
850     }
851     // Skip empty subranges until we find the first nonempty one.
852     do {
853       SubRange *Next = I->Next;
854       freeSubRange(I);
855       I = Next;
856     } while (I != nullptr && I->empty());
857     *NextPtr = I;
858   }
859 }
860 
861 void LiveInterval::clearSubRanges() {
862   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
863     Next = I->Next;
864     freeSubRange(I);
865   }
866   SubRanges = nullptr;
867 }
868 
869 /// For each VNI in \p SR, check whether or not that value defines part
870 /// of the mask describe by \p LaneMask and if not, remove that value
871 /// from \p SR.
872 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
873                                        LaneBitmask LaneMask,
874                                        const SlotIndexes &Indexes,
875                                        const TargetRegisterInfo &TRI,
876                                        unsigned ComposeSubRegIdx) {
877   // Phys reg should not be tracked at subreg level.
878   // Same for noreg (Reg == 0).
879   if (!Register::isVirtualRegister(Reg) || !Reg)
880     return;
881   // Remove the values that don't define those lanes.
882   SmallVector<VNInfo *, 8> ToBeRemoved;
883   for (VNInfo *VNI : SR.valnos) {
884     if (VNI->isUnused())
885       continue;
886     // PHI definitions don't have MI attached, so there is nothing
887     // we can use to strip the VNI.
888     if (VNI->isPHIDef())
889       continue;
890     const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
891     assert(MI && "Cannot find the definition of a value");
892     bool hasDef = false;
893     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
894       if (!MOI->isReg() || !MOI->isDef())
895         continue;
896       if (MOI->getReg() != Reg)
897         continue;
898       LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
899       LaneBitmask ExpectedDefMask =
900           ComposeSubRegIdx
901               ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
902               : OrigMask;
903       if ((ExpectedDefMask & LaneMask).none())
904         continue;
905       hasDef = true;
906       break;
907     }
908 
909     if (!hasDef)
910       ToBeRemoved.push_back(VNI);
911   }
912   for (VNInfo *VNI : ToBeRemoved)
913     SR.removeValNo(VNI);
914 
915   // If the subrange is empty at this point, the MIR is invalid. Do not assert
916   // and let the verifier catch this case.
917 }
918 
919 void LiveInterval::refineSubRanges(
920     BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
921     std::function<void(LiveInterval::SubRange &)> Apply,
922     const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
923     unsigned ComposeSubRegIdx) {
924   LaneBitmask ToApply = LaneMask;
925   for (SubRange &SR : subranges()) {
926     LaneBitmask SRMask = SR.LaneMask;
927     LaneBitmask Matching = SRMask & LaneMask;
928     if (Matching.none())
929       continue;
930 
931     SubRange *MatchingRange;
932     if (SRMask == Matching) {
933       // The subrange fits (it does not cover bits outside \p LaneMask).
934       MatchingRange = &SR;
935     } else {
936       // We have to split the subrange into a matching and non-matching part.
937       // Reduce lanemask of existing lane to non-matching part.
938       SR.LaneMask = SRMask & ~Matching;
939       // Create a new subrange for the matching part
940       MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
941       // Now that the subrange is split in half, make sure we
942       // only keep in the subranges the VNIs that touch the related half.
943       stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI,
944                                  ComposeSubRegIdx);
945       stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI,
946                                  ComposeSubRegIdx);
947     }
948     Apply(*MatchingRange);
949     ToApply &= ~Matching;
950   }
951   // Create a new subrange if there are uncovered bits left.
952   if (ToApply.any()) {
953     SubRange *NewRange = createSubRange(Allocator, ToApply);
954     Apply(*NewRange);
955   }
956 }
957 
958 unsigned LiveInterval::getSize() const {
959   unsigned Sum = 0;
960   for (const Segment &S : segments)
961     Sum += S.start.distance(S.end);
962   return Sum;
963 }
964 
965 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
966                                          LaneBitmask LaneMask,
967                                          const MachineRegisterInfo &MRI,
968                                          const SlotIndexes &Indexes) const {
969   assert(reg().isVirtual());
970   LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg());
971   assert((VRegMask & LaneMask).any());
972   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
973   for (const MachineOperand &MO : MRI.def_operands(reg())) {
974     if (!MO.isUndef())
975       continue;
976     unsigned SubReg = MO.getSubReg();
977     assert(SubReg != 0 && "Undef should only be set on subreg defs");
978     LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
979     LaneBitmask UndefMask = VRegMask & ~DefMask;
980     if ((UndefMask & LaneMask).any()) {
981       const MachineInstr &MI = *MO.getParent();
982       bool EarlyClobber = MO.isEarlyClobber();
983       SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
984       Undefs.push_back(Pos);
985     }
986   }
987 }
988 
989 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
990   return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
991 }
992 
993 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
994 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
995   dbgs() << *this << '\n';
996 }
997 #endif
998 
999 void LiveRange::print(raw_ostream &OS) const {
1000   if (empty())
1001     OS << "EMPTY";
1002   else {
1003     for (const Segment &S : segments) {
1004       OS << S;
1005       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1006     }
1007   }
1008 
1009   // Print value number info.
1010   if (getNumValNums()) {
1011     OS << ' ';
1012     unsigned vnum = 0;
1013     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1014          ++i, ++vnum) {
1015       const VNInfo *vni = *i;
1016       if (vnum) OS << ' ';
1017       OS << vnum << '@';
1018       if (vni->isUnused()) {
1019         OS << 'x';
1020       } else {
1021         OS << vni->def;
1022         if (vni->isPHIDef())
1023           OS << "-phi";
1024       }
1025     }
1026   }
1027 }
1028 
1029 void LiveInterval::SubRange::print(raw_ostream &OS) const {
1030   OS << "  L" << PrintLaneMask(LaneMask) << ' '
1031      << static_cast<const LiveRange &>(*this);
1032 }
1033 
1034 void LiveInterval::print(raw_ostream &OS) const {
1035   OS << printReg(reg()) << ' ';
1036   super::print(OS);
1037   // Print subranges
1038   for (const SubRange &SR : subranges())
1039     OS << SR;
1040   OS << "  weight:" << Weight;
1041 }
1042 
1043 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1044 LLVM_DUMP_METHOD void LiveRange::dump() const {
1045   dbgs() << *this << '\n';
1046 }
1047 
1048 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1049   dbgs() << *this << '\n';
1050 }
1051 
1052 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1053   dbgs() << *this << '\n';
1054 }
1055 #endif
1056 
1057 #ifndef NDEBUG
1058 void LiveRange::verify() const {
1059   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1060     assert(I->start.isValid());
1061     assert(I->end.isValid());
1062     assert(I->start < I->end);
1063     assert(I->valno != nullptr);
1064     assert(I->valno->id < valnos.size());
1065     assert(I->valno == valnos[I->valno->id]);
1066     if (std::next(I) != E) {
1067       assert(I->end <= std::next(I)->start);
1068       if (I->end == std::next(I)->start)
1069         assert(I->valno != std::next(I)->valno);
1070     }
1071   }
1072 }
1073 
1074 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1075   super::verify();
1076 
1077   // Make sure SubRanges are fine and LaneMasks are disjunct.
1078   LaneBitmask Mask;
1079   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg())
1080                                        : LaneBitmask::getAll();
1081   for (const SubRange &SR : subranges()) {
1082     // Subrange lanemask should be disjunct to any previous subrange masks.
1083     assert((Mask & SR.LaneMask).none());
1084     Mask |= SR.LaneMask;
1085 
1086     // subrange mask should not contained in maximum lane mask for the vreg.
1087     assert((Mask & ~MaxMask).none());
1088     // empty subranges must be removed.
1089     assert(!SR.empty());
1090 
1091     SR.verify();
1092     // Main liverange should cover subrange.
1093     assert(covers(SR));
1094   }
1095 }
1096 #endif
1097 
1098 //===----------------------------------------------------------------------===//
1099 //                           LiveRangeUpdater class
1100 //===----------------------------------------------------------------------===//
1101 //
1102 // The LiveRangeUpdater class always maintains these invariants:
1103 //
1104 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1105 //   This is the initial state, and the state created by flush().
1106 //   In this state, isDirty() returns false.
1107 //
1108 // Otherwise, segments are kept in three separate areas:
1109 //
1110 // 1. [begin; WriteI) at the front of LR.
1111 // 2. [ReadI; end) at the back of LR.
1112 // 3. Spills.
1113 //
1114 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1115 // - Segments in all three areas are fully ordered and coalesced.
1116 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1117 // - Segments in Spills precede and can't coalesce with segments in area 2.
1118 // - No coalescing is possible between segments in Spills and segments in area
1119 //   1, and there are no overlapping segments.
1120 //
1121 // The segments in Spills are not ordered with respect to the segments in area
1122 // 1. They need to be merged.
1123 //
1124 // When they exist, Spills.back().start <= LastStart,
1125 //                 and WriteI[-1].start <= LastStart.
1126 
1127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1128 void LiveRangeUpdater::print(raw_ostream &OS) const {
1129   if (!isDirty()) {
1130     if (LR)
1131       OS << "Clean updater: " << *LR << '\n';
1132     else
1133       OS << "Null updater.\n";
1134     return;
1135   }
1136   assert(LR && "Can't have null LR in dirty updater.");
1137   OS << " updater with gap = " << (ReadI - WriteI)
1138      << ", last start = " << LastStart
1139      << ":\n  Area 1:";
1140   for (const auto &S : make_range(LR->begin(), WriteI))
1141     OS << ' ' << S;
1142   OS << "\n  Spills:";
1143   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1144     OS << ' ' << Spills[I];
1145   OS << "\n  Area 2:";
1146   for (const auto &S : make_range(ReadI, LR->end()))
1147     OS << ' ' << S;
1148   OS << '\n';
1149 }
1150 
1151 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1152   print(errs());
1153 }
1154 #endif
1155 
1156 // Determine if A and B should be coalesced.
1157 static inline bool coalescable(const LiveRange::Segment &A,
1158                                const LiveRange::Segment &B) {
1159   assert(A.start <= B.start && "Unordered live segments.");
1160   if (A.end == B.start)
1161     return A.valno == B.valno;
1162   if (A.end < B.start)
1163     return false;
1164   assert(A.valno == B.valno && "Cannot overlap different values");
1165   return true;
1166 }
1167 
1168 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1169   assert(LR && "Cannot add to a null destination");
1170 
1171   // Fall back to the regular add method if the live range
1172   // is using the segment set instead of the segment vector.
1173   if (LR->segmentSet != nullptr) {
1174     LR->addSegmentToSet(Seg);
1175     return;
1176   }
1177 
1178   // Flush the state if Start moves backwards.
1179   if (!LastStart.isValid() || LastStart > Seg.start) {
1180     if (isDirty())
1181       flush();
1182     // This brings us to an uninitialized state. Reinitialize.
1183     assert(Spills.empty() && "Leftover spilled segments");
1184     WriteI = ReadI = LR->begin();
1185   }
1186 
1187   // Remember start for next time.
1188   LastStart = Seg.start;
1189 
1190   // Advance ReadI until it ends after Seg.start.
1191   LiveRange::iterator E = LR->end();
1192   if (ReadI != E && ReadI->end <= Seg.start) {
1193     // First try to close the gap between WriteI and ReadI with spills.
1194     if (ReadI != WriteI)
1195       mergeSpills();
1196     // Then advance ReadI.
1197     if (ReadI == WriteI)
1198       ReadI = WriteI = LR->find(Seg.start);
1199     else
1200       while (ReadI != E && ReadI->end <= Seg.start)
1201         *WriteI++ = *ReadI++;
1202   }
1203 
1204   assert(ReadI == E || ReadI->end > Seg.start);
1205 
1206   // Check if the ReadI segment begins early.
1207   if (ReadI != E && ReadI->start <= Seg.start) {
1208     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1209     // Bail if Seg is completely contained in ReadI.
1210     if (ReadI->end >= Seg.end)
1211       return;
1212     // Coalesce into Seg.
1213     Seg.start = ReadI->start;
1214     ++ReadI;
1215   }
1216 
1217   // Coalesce as much as possible from ReadI into Seg.
1218   while (ReadI != E && coalescable(Seg, *ReadI)) {
1219     Seg.end = std::max(Seg.end, ReadI->end);
1220     ++ReadI;
1221   }
1222 
1223   // Try coalescing Spills.back() into Seg.
1224   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1225     Seg.start = Spills.back().start;
1226     Seg.end = std::max(Spills.back().end, Seg.end);
1227     Spills.pop_back();
1228   }
1229 
1230   // Try coalescing Seg into WriteI[-1].
1231   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1232     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1233     return;
1234   }
1235 
1236   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1237   if (WriteI != ReadI) {
1238     *WriteI++ = Seg;
1239     return;
1240   }
1241 
1242   // Finally, append to LR or Spills.
1243   if (WriteI == E) {
1244     LR->segments.push_back(Seg);
1245     WriteI = ReadI = LR->end();
1246   } else
1247     Spills.push_back(Seg);
1248 }
1249 
1250 // Merge as many spilled segments as possible into the gap between WriteI
1251 // and ReadI. Advance WriteI to reflect the inserted instructions.
1252 void LiveRangeUpdater::mergeSpills() {
1253   // Perform a backwards merge of Spills and [SpillI;WriteI).
1254   size_t GapSize = ReadI - WriteI;
1255   size_t NumMoved = std::min(Spills.size(), GapSize);
1256   LiveRange::iterator Src = WriteI;
1257   LiveRange::iterator Dst = Src + NumMoved;
1258   LiveRange::iterator SpillSrc = Spills.end();
1259   LiveRange::iterator B = LR->begin();
1260 
1261   // This is the new WriteI position after merging spills.
1262   WriteI = Dst;
1263 
1264   // Now merge Src and Spills backwards.
1265   while (Src != Dst) {
1266     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1267       *--Dst = *--Src;
1268     else
1269       *--Dst = *--SpillSrc;
1270   }
1271   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1272   Spills.erase(SpillSrc, Spills.end());
1273 }
1274 
1275 void LiveRangeUpdater::flush() {
1276   if (!isDirty())
1277     return;
1278   // Clear the dirty state.
1279   LastStart = SlotIndex();
1280 
1281   assert(LR && "Cannot add to a null destination");
1282 
1283   // Nothing to merge?
1284   if (Spills.empty()) {
1285     LR->segments.erase(WriteI, ReadI);
1286     LR->verify();
1287     return;
1288   }
1289 
1290   // Resize the WriteI - ReadI gap to match Spills.
1291   size_t GapSize = ReadI - WriteI;
1292   if (GapSize < Spills.size()) {
1293     // The gap is too small. Make some room.
1294     size_t WritePos = WriteI - LR->begin();
1295     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1296     // This also invalidated ReadI, but it is recomputed below.
1297     WriteI = LR->begin() + WritePos;
1298   } else {
1299     // Shrink the gap if necessary.
1300     LR->segments.erase(WriteI + Spills.size(), ReadI);
1301   }
1302   ReadI = WriteI + Spills.size();
1303   mergeSpills();
1304   LR->verify();
1305 }
1306 
1307 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1308   // Create initial equivalence classes.
1309   EqClass.clear();
1310   EqClass.grow(LR.getNumValNums());
1311 
1312   const VNInfo *used = nullptr, *unused = nullptr;
1313 
1314   // Determine connections.
1315   for (const VNInfo *VNI : LR.valnos) {
1316     // Group all unused values into one class.
1317     if (VNI->isUnused()) {
1318       if (unused)
1319         EqClass.join(unused->id, VNI->id);
1320       unused = VNI;
1321       continue;
1322     }
1323     used = VNI;
1324     if (VNI->isPHIDef()) {
1325       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1326       assert(MBB && "Phi-def has no defining MBB");
1327       // Connect to values live out of predecessors.
1328       for (MachineBasicBlock *Pred : MBB->predecessors())
1329         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred)))
1330           EqClass.join(VNI->id, PVNI->id);
1331     } else {
1332       // Normal value defined by an instruction. Check for two-addr redef.
1333       // FIXME: This could be coincidental. Should we really check for a tied
1334       // operand constraint?
1335       // Note that VNI->def may be a use slot for an early clobber def.
1336       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1337         EqClass.join(VNI->id, UVNI->id);
1338     }
1339   }
1340 
1341   // Lump all the unused values in with the last used value.
1342   if (used && unused)
1343     EqClass.join(used->id, unused->id);
1344 
1345   EqClass.compress();
1346   return EqClass.getNumClasses();
1347 }
1348 
1349 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1350                                           MachineRegisterInfo &MRI) {
1351   // Rewrite instructions.
1352   for (MachineOperand &MO :
1353        llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) {
1354     MachineInstr *MI = MO.getParent();
1355     const VNInfo *VNI;
1356     if (MI->isDebugValue()) {
1357       // DBG_VALUE instructions don't have slot indexes, so get the index of
1358       // the instruction before them. The value is defined there too.
1359       SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1360       VNI = LI.Query(Idx).valueOut();
1361     } else {
1362       SlotIndex Idx = LIS.getInstructionIndex(*MI);
1363       LiveQueryResult LRQ = LI.Query(Idx);
1364       VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1365     }
1366     // In the case of an <undef> use that isn't tied to any def, VNI will be
1367     // NULL. If the use is tied to a def, VNI will be the defined value.
1368     if (!VNI)
1369       continue;
1370     if (unsigned EqClass = getEqClass(VNI))
1371       MO.setReg(LIV[EqClass - 1]->reg());
1372   }
1373 
1374   // Distribute subregister liveranges.
1375   if (LI.hasSubRanges()) {
1376     unsigned NumComponents = EqClass.getNumClasses();
1377     SmallVector<unsigned, 8> VNIMapping;
1378     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1379     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1380     for (LiveInterval::SubRange &SR : LI.subranges()) {
1381       // Create new subranges in the split intervals and construct a mapping
1382       // for the VNInfos in the subrange.
1383       unsigned NumValNos = SR.valnos.size();
1384       VNIMapping.clear();
1385       VNIMapping.reserve(NumValNos);
1386       SubRanges.clear();
1387       SubRanges.resize(NumComponents-1, nullptr);
1388       for (unsigned I = 0; I < NumValNos; ++I) {
1389         const VNInfo &VNI = *SR.valnos[I];
1390         unsigned ComponentNum;
1391         if (VNI.isUnused()) {
1392           ComponentNum = 0;
1393         } else {
1394           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1395           assert(MainRangeVNI != nullptr
1396                  && "SubRange def must have corresponding main range def");
1397           ComponentNum = getEqClass(MainRangeVNI);
1398           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1399             SubRanges[ComponentNum-1]
1400               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1401           }
1402         }
1403         VNIMapping.push_back(ComponentNum);
1404       }
1405       DistributeRange(SR, SubRanges.data(), VNIMapping);
1406     }
1407     LI.removeEmptySubRanges();
1408   }
1409 
1410   // Distribute main liverange.
1411   DistributeRange(LI, LIV, EqClass);
1412 }
1413