1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/MC/MCRegisterInfo.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 /// Describes a location by number along with some flags about the original 99 /// usage of the location. 100 class DbgValueLocation { 101 public: 102 DbgValueLocation(unsigned LocNo, bool WasIndirect) 103 : LocNo(LocNo), WasIndirect(WasIndirect) { 104 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 105 assert(locNo() == LocNo && "location truncation"); 106 } 107 108 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 109 110 unsigned locNo() const { 111 // Fix up the undef location number, which gets truncated. 112 return LocNo == INT_MAX ? UndefLocNo : LocNo; 113 } 114 bool wasIndirect() const { return WasIndirect; } 115 bool isUndef() const { return locNo() == UndefLocNo; } 116 117 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 118 return DbgValueLocation(NewLocNo, WasIndirect); 119 } 120 121 friend inline bool operator==(const DbgValueLocation &LHS, 122 const DbgValueLocation &RHS) { 123 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 124 } 125 126 friend inline bool operator!=(const DbgValueLocation &LHS, 127 const DbgValueLocation &RHS) { 128 return !(LHS == RHS); 129 } 130 131 private: 132 unsigned LocNo : 31; 133 unsigned WasIndirect : 1; 134 }; 135 136 /// Map of where a user value is live, and its location. 137 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 138 139 /// Map of stack slot offsets for spilled locations. 140 /// Non-spilled locations are not added to the map. 141 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 142 143 namespace { 144 145 class LDVImpl; 146 147 /// A user value is a part of a debug info user variable. 148 /// 149 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 150 /// holds part of a user variable. The part is identified by a byte offset. 151 /// 152 /// UserValues are grouped into equivalence classes for easier searching. Two 153 /// user values are related if they refer to the same variable, or if they are 154 /// held by the same virtual register. The equivalence class is the transitive 155 /// closure of that relation. 156 class UserValue { 157 const DILocalVariable *Variable; ///< The debug info variable we are part of. 158 const DIExpression *Expression; ///< Any complex address expression. 159 DebugLoc dl; ///< The debug location for the variable. This is 160 ///< used by dwarf writer to find lexical scope. 161 UserValue *leader; ///< Equivalence class leader. 162 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 163 164 /// Numbered locations referenced by locmap. 165 SmallVector<MachineOperand, 4> locations; 166 167 /// Map of slot indices where this value is live. 168 LocMap locInts; 169 170 /// Insert a DBG_VALUE into MBB at Idx for LocNo. 171 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 172 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled, 173 unsigned SpillOffset, LiveIntervals &LIS, 174 const TargetInstrInfo &TII, 175 const TargetRegisterInfo &TRI); 176 177 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 178 /// is live. Returns true if any changes were made. 179 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 180 LiveIntervals &LIS); 181 182 public: 183 /// Create a new UserValue. 184 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 185 LocMap::Allocator &alloc) 186 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 187 locInts(alloc) {} 188 189 /// Get the leader of this value's equivalence class. 190 UserValue *getLeader() { 191 UserValue *l = leader; 192 while (l != l->leader) 193 l = l->leader; 194 return leader = l; 195 } 196 197 /// Return the next UserValue in the equivalence class. 198 UserValue *getNext() const { return next; } 199 200 /// Does this UserValue match the parameters? 201 bool match(const DILocalVariable *Var, const DIExpression *Expr, 202 const DILocation *IA) const { 203 // FIXME: The fragment should be part of the equivalence class, but not 204 // other things in the expression like stack values. 205 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 206 } 207 208 /// Merge equivalence classes. 209 static UserValue *merge(UserValue *L1, UserValue *L2) { 210 L2 = L2->getLeader(); 211 if (!L1) 212 return L2; 213 L1 = L1->getLeader(); 214 if (L1 == L2) 215 return L1; 216 // Splice L2 before L1's members. 217 UserValue *End = L2; 218 while (End->next) { 219 End->leader = L1; 220 End = End->next; 221 } 222 End->leader = L1; 223 End->next = L1->next; 224 L1->next = L2; 225 return L1; 226 } 227 228 /// Return the location number that matches Loc. 229 /// 230 /// For undef values we always return location number UndefLocNo without 231 /// inserting anything in locations. Since locations is a vector and the 232 /// location number is the position in the vector and UndefLocNo is ~0, 233 /// we would need a very big vector to put the value at the right position. 234 unsigned getLocationNo(const MachineOperand &LocMO) { 235 if (LocMO.isReg()) { 236 if (LocMO.getReg() == 0) 237 return UndefLocNo; 238 // For register locations we dont care about use/def and other flags. 239 for (unsigned i = 0, e = locations.size(); i != e; ++i) 240 if (locations[i].isReg() && 241 locations[i].getReg() == LocMO.getReg() && 242 locations[i].getSubReg() == LocMO.getSubReg()) 243 return i; 244 } else 245 for (unsigned i = 0, e = locations.size(); i != e; ++i) 246 if (LocMO.isIdenticalTo(locations[i])) 247 return i; 248 locations.push_back(LocMO); 249 // We are storing a MachineOperand outside a MachineInstr. 250 locations.back().clearParent(); 251 // Don't store def operands. 252 if (locations.back().isReg()) { 253 if (locations.back().isDef()) 254 locations.back().setIsDead(false); 255 locations.back().setIsUse(); 256 } 257 return locations.size() - 1; 258 } 259 260 /// Ensure that all virtual register locations are mapped. 261 void mapVirtRegs(LDVImpl *LDV); 262 263 /// Add a definition point to this value. 264 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 265 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 266 // Add a singular (Idx,Idx) -> Loc mapping. 267 LocMap::iterator I = locInts.find(Idx); 268 if (!I.valid() || I.start() != Idx) 269 I.insert(Idx, Idx.getNextSlot(), Loc); 270 else 271 // A later DBG_VALUE at the same SlotIndex overrides the old location. 272 I.setValue(Loc); 273 } 274 275 /// Extend the current definition as far as possible down. 276 /// 277 /// Stop when meeting an existing def or when leaving the live 278 /// range of VNI. End points where VNI is no longer live are added to Kills. 279 /// 280 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 281 /// data-flow analysis to propagate them beyond basic block boundaries. 282 /// 283 /// \param Idx Starting point for the definition. 284 /// \param Loc Location number to propagate. 285 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 286 /// \param VNI When LR is not null, this is the value to restrict to. 287 /// \param [out] Kills Append end points of VNI's live range to Kills. 288 /// \param LIS Live intervals analysis. 289 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 290 LiveRange *LR, const VNInfo *VNI, 291 SmallVectorImpl<SlotIndex> *Kills, 292 LiveIntervals &LIS); 293 294 /// The value in LI/LocNo may be copies to other registers. Determine if 295 /// any of the copies are available at the kill points, and add defs if 296 /// possible. 297 /// 298 /// \param LI Scan for copies of the value in LI->reg. 299 /// \param LocNo Location number of LI->reg. 300 /// \param WasIndirect Indicates if the original use of LI->reg was indirect 301 /// \param Kills Points where the range of LocNo could be extended. 302 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here. 303 void addDefsFromCopies( 304 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 305 const SmallVectorImpl<SlotIndex> &Kills, 306 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 307 MachineRegisterInfo &MRI, LiveIntervals &LIS); 308 309 /// Compute the live intervals of all locations after collecting all their 310 /// def points. 311 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 312 LiveIntervals &LIS, LexicalScopes &LS); 313 314 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 315 /// live. Returns true if any changes were made. 316 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 317 LiveIntervals &LIS); 318 319 /// Rewrite virtual register locations according to the provided virtual 320 /// register map. Record the stack slot offsets for the locations that 321 /// were spilled. 322 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 323 const TargetInstrInfo &TII, 324 const TargetRegisterInfo &TRI, 325 SpillOffsetMap &SpillOffsets); 326 327 /// Recreate DBG_VALUE instruction from data structures. 328 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 329 const TargetInstrInfo &TII, 330 const TargetRegisterInfo &TRI, 331 const SpillOffsetMap &SpillOffsets); 332 333 /// Return DebugLoc of this UserValue. 334 DebugLoc getDebugLoc() { return dl;} 335 336 void print(raw_ostream &, const TargetRegisterInfo *); 337 }; 338 339 /// A user label is a part of a debug info user label. 340 class UserLabel { 341 const DILabel *Label; ///< The debug info label we are part of. 342 DebugLoc dl; ///< The debug location for the label. This is 343 ///< used by dwarf writer to find lexical scope. 344 SlotIndex loc; ///< Slot used by the debug label. 345 346 /// Insert a DBG_LABEL into MBB at Idx. 347 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 348 LiveIntervals &LIS, const TargetInstrInfo &TII); 349 350 public: 351 /// Create a new UserLabel. 352 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 353 : Label(label), dl(std::move(L)), loc(Idx) {} 354 355 /// Does this UserLabel match the parameters? 356 bool match(const DILabel *L, const DILocation *IA, 357 const SlotIndex Index) const { 358 return Label == L && dl->getInlinedAt() == IA && loc == Index; 359 } 360 361 /// Recreate DBG_LABEL instruction from data structures. 362 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 363 364 /// Return DebugLoc of this UserLabel. 365 DebugLoc getDebugLoc() { return dl; } 366 367 void print(raw_ostream &, const TargetRegisterInfo *); 368 }; 369 370 /// Implementation of the LiveDebugVariables pass. 371 class LDVImpl { 372 LiveDebugVariables &pass; 373 LocMap::Allocator allocator; 374 MachineFunction *MF = nullptr; 375 LiveIntervals *LIS; 376 const TargetRegisterInfo *TRI; 377 378 /// Whether emitDebugValues is called. 379 bool EmitDone = false; 380 381 /// Whether the machine function is modified during the pass. 382 bool ModifiedMF = false; 383 384 /// All allocated UserValue instances. 385 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 386 387 /// All allocated UserLabel instances. 388 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 389 390 /// Map virtual register to eq class leader. 391 using VRMap = DenseMap<unsigned, UserValue *>; 392 VRMap virtRegToEqClass; 393 394 /// Map user variable to eq class leader. 395 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 396 UVMap userVarMap; 397 398 /// Find or create a UserValue. 399 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 400 const DebugLoc &DL); 401 402 /// Find the EC leader for VirtReg or null. 403 UserValue *lookupVirtReg(unsigned VirtReg); 404 405 /// Add DBG_VALUE instruction to our maps. 406 /// 407 /// \param MI DBG_VALUE instruction 408 /// \param Idx Last valid SLotIndex before instruction. 409 /// 410 /// \returns True if the DBG_VALUE instruction should be deleted. 411 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 412 413 /// Add DBG_LABEL instruction to UserLabel. 414 /// 415 /// \param MI DBG_LABEL instruction 416 /// \param Idx Last valid SlotIndex before instruction. 417 /// 418 /// \returns True if the DBG_LABEL instruction should be deleted. 419 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 420 421 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 422 /// for each instruction. 423 /// 424 /// \param mf MachineFunction to be scanned. 425 /// 426 /// \returns True if any debug values were found. 427 bool collectDebugValues(MachineFunction &mf); 428 429 /// Compute the live intervals of all user values after collecting all 430 /// their def points. 431 void computeIntervals(); 432 433 public: 434 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 435 436 bool runOnMachineFunction(MachineFunction &mf); 437 438 /// Release all memory. 439 void clear() { 440 MF = nullptr; 441 userValues.clear(); 442 userLabels.clear(); 443 virtRegToEqClass.clear(); 444 userVarMap.clear(); 445 // Make sure we call emitDebugValues if the machine function was modified. 446 assert((!ModifiedMF || EmitDone) && 447 "Dbg values are not emitted in LDV"); 448 EmitDone = false; 449 ModifiedMF = false; 450 } 451 452 /// Map virtual register to an equivalence class. 453 void mapVirtReg(unsigned VirtReg, UserValue *EC); 454 455 /// Replace all references to OldReg with NewRegs. 456 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 457 458 /// Recreate DBG_VALUE instruction from data structures. 459 void emitDebugValues(VirtRegMap *VRM); 460 461 void print(raw_ostream&); 462 }; 463 464 } // end anonymous namespace 465 466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 467 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 468 const LLVMContext &Ctx) { 469 if (!DL) 470 return; 471 472 auto *Scope = cast<DIScope>(DL.getScope()); 473 // Omit the directory, because it's likely to be long and uninteresting. 474 CommentOS << Scope->getFilename(); 475 CommentOS << ':' << DL.getLine(); 476 if (DL.getCol() != 0) 477 CommentOS << ':' << DL.getCol(); 478 479 DebugLoc InlinedAtDL = DL.getInlinedAt(); 480 if (!InlinedAtDL) 481 return; 482 483 CommentOS << " @[ "; 484 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 485 CommentOS << " ]"; 486 } 487 488 static void printExtendedName(raw_ostream &OS, const DINode *Node, 489 const DILocation *DL) { 490 const LLVMContext &Ctx = Node->getContext(); 491 StringRef Res; 492 unsigned Line; 493 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 494 Res = V->getName(); 495 Line = V->getLine(); 496 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 497 Res = L->getName(); 498 Line = L->getLine(); 499 } 500 501 if (!Res.empty()) 502 OS << Res << "," << Line; 503 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 504 if (InlinedAt) { 505 if (DebugLoc InlinedAtDL = InlinedAt) { 506 OS << " @["; 507 printDebugLoc(InlinedAtDL, OS, Ctx); 508 OS << "]"; 509 } 510 } 511 } 512 513 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 514 OS << "!\""; 515 printExtendedName(OS, Variable, dl); 516 517 OS << "\"\t"; 518 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 519 OS << " [" << I.start() << ';' << I.stop() << "):"; 520 if (I.value().isUndef()) 521 OS << "undef"; 522 else { 523 OS << I.value().locNo(); 524 if (I.value().wasIndirect()) 525 OS << " ind"; 526 } 527 } 528 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 529 OS << " Loc" << i << '='; 530 locations[i].print(OS, TRI); 531 } 532 OS << '\n'; 533 } 534 535 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 536 OS << "!\""; 537 printExtendedName(OS, Label, dl); 538 539 OS << "\"\t"; 540 OS << loc; 541 OS << '\n'; 542 } 543 544 void LDVImpl::print(raw_ostream &OS) { 545 OS << "********** DEBUG VARIABLES **********\n"; 546 for (auto &userValue : userValues) 547 userValue->print(OS, TRI); 548 OS << "********** DEBUG LABELS **********\n"; 549 for (auto &userLabel : userLabels) 550 userLabel->print(OS, TRI); 551 } 552 #endif 553 554 void UserValue::mapVirtRegs(LDVImpl *LDV) { 555 for (unsigned i = 0, e = locations.size(); i != e; ++i) 556 if (locations[i].isReg() && 557 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 558 LDV->mapVirtReg(locations[i].getReg(), this); 559 } 560 561 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 562 const DIExpression *Expr, const DebugLoc &DL) { 563 UserValue *&Leader = userVarMap[Var]; 564 if (Leader) { 565 UserValue *UV = Leader->getLeader(); 566 Leader = UV; 567 for (; UV; UV = UV->getNext()) 568 if (UV->match(Var, Expr, DL->getInlinedAt())) 569 return UV; 570 } 571 572 userValues.push_back( 573 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 574 UserValue *UV = userValues.back().get(); 575 Leader = UserValue::merge(Leader, UV); 576 return UV; 577 } 578 579 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 580 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 581 UserValue *&Leader = virtRegToEqClass[VirtReg]; 582 Leader = UserValue::merge(Leader, EC); 583 } 584 585 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 586 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 587 return UV->getLeader(); 588 return nullptr; 589 } 590 591 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 592 // DBG_VALUE loc, offset, variable 593 if (MI.getNumOperands() != 4 || 594 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 595 !MI.getOperand(2).isMetadata()) { 596 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 597 return false; 598 } 599 600 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 601 // register that hasn't been defined yet. If we do not remove those here, then 602 // the re-insertion of the DBG_VALUE instruction after register allocation 603 // will be incorrect. 604 // TODO: If earlier passes are corrected to generate sane debug information 605 // (and if the machine verifier is improved to catch this), then these checks 606 // could be removed or replaced by asserts. 607 bool Discard = false; 608 if (MI.getOperand(0).isReg() && 609 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) { 610 const unsigned Reg = MI.getOperand(0).getReg(); 611 if (!LIS->hasInterval(Reg)) { 612 // The DBG_VALUE is described by a virtual register that does not have a 613 // live interval. Discard the DBG_VALUE. 614 Discard = true; 615 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 616 << " " << MI); 617 } else { 618 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 619 // is defined dead at Idx (where Idx is the slot index for the instruction 620 // preceding the DBG_VALUE). 621 const LiveInterval &LI = LIS->getInterval(Reg); 622 LiveQueryResult LRQ = LI.Query(Idx); 623 if (!LRQ.valueOutOrDead()) { 624 // We have found a DBG_VALUE with the value in a virtual register that 625 // is not live. Discard the DBG_VALUE. 626 Discard = true; 627 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 628 << " " << MI); 629 } 630 } 631 } 632 633 // Get or create the UserValue for (variable,offset) here. 634 bool IsIndirect = MI.getOperand(1).isImm(); 635 if (IsIndirect) 636 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 637 const DILocalVariable *Var = MI.getDebugVariable(); 638 const DIExpression *Expr = MI.getDebugExpression(); 639 UserValue *UV = 640 getUserValue(Var, Expr, MI.getDebugLoc()); 641 if (!Discard) 642 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 643 else { 644 MachineOperand MO = MachineOperand::CreateReg(0U, false); 645 MO.setIsDebug(); 646 UV->addDef(Idx, MO, false); 647 } 648 return true; 649 } 650 651 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 652 // DBG_LABEL label 653 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 654 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 655 return false; 656 } 657 658 // Get or create the UserLabel for label here. 659 const DILabel *Label = MI.getDebugLabel(); 660 const DebugLoc &DL = MI.getDebugLoc(); 661 bool Found = false; 662 for (auto const &L : userLabels) { 663 if (L->match(Label, DL->getInlinedAt(), Idx)) { 664 Found = true; 665 break; 666 } 667 } 668 if (!Found) 669 userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx)); 670 671 return true; 672 } 673 674 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 675 bool Changed = false; 676 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 677 ++MFI) { 678 MachineBasicBlock *MBB = &*MFI; 679 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 680 MBBI != MBBE;) { 681 // Use the first debug instruction in the sequence to get a SlotIndex 682 // for following consecutive debug instructions. 683 if (!MBBI->isDebugInstr()) { 684 ++MBBI; 685 continue; 686 } 687 // Debug instructions has no slot index. Use the previous 688 // non-debug instruction's SlotIndex as its SlotIndex. 689 SlotIndex Idx = 690 MBBI == MBB->begin() 691 ? LIS->getMBBStartIdx(MBB) 692 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 693 // Handle consecutive debug instructions with the same slot index. 694 do { 695 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 696 // kinds of debug instructions. 697 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 698 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 699 MBBI = MBB->erase(MBBI); 700 Changed = true; 701 } else 702 ++MBBI; 703 } while (MBBI != MBBE && MBBI->isDebugInstr()); 704 } 705 } 706 return Changed; 707 } 708 709 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 710 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 711 LiveIntervals &LIS) { 712 SlotIndex Start = Idx; 713 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 714 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 715 LocMap::iterator I = locInts.find(Start); 716 717 // Limit to VNI's live range. 718 bool ToEnd = true; 719 if (LR && VNI) { 720 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 721 if (!Segment || Segment->valno != VNI) { 722 if (Kills) 723 Kills->push_back(Start); 724 return; 725 } 726 if (Segment->end < Stop) { 727 Stop = Segment->end; 728 ToEnd = false; 729 } 730 } 731 732 // There could already be a short def at Start. 733 if (I.valid() && I.start() <= Start) { 734 // Stop when meeting a different location or an already extended interval. 735 Start = Start.getNextSlot(); 736 if (I.value() != Loc || I.stop() != Start) 737 return; 738 // This is a one-slot placeholder. Just skip it. 739 ++I; 740 } 741 742 // Limited by the next def. 743 if (I.valid() && I.start() < Stop) 744 Stop = I.start(); 745 // Limited by VNI's live range. 746 else if (!ToEnd && Kills) 747 Kills->push_back(Stop); 748 749 if (Start < Stop) 750 I.insert(Start, Stop, Loc); 751 } 752 753 void UserValue::addDefsFromCopies( 754 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 755 const SmallVectorImpl<SlotIndex> &Kills, 756 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 757 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 758 if (Kills.empty()) 759 return; 760 // Don't track copies from physregs, there are too many uses. 761 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 762 return; 763 764 // Collect all the (vreg, valno) pairs that are copies of LI. 765 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 766 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 767 MachineInstr *MI = MO.getParent(); 768 // Copies of the full value. 769 if (MO.getSubReg() || !MI->isCopy()) 770 continue; 771 unsigned DstReg = MI->getOperand(0).getReg(); 772 773 // Don't follow copies to physregs. These are usually setting up call 774 // arguments, and the argument registers are always call clobbered. We are 775 // better off in the source register which could be a callee-saved register, 776 // or it could be spilled. 777 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 778 continue; 779 780 // Is LocNo extended to reach this copy? If not, another def may be blocking 781 // it, or we are looking at a wrong value of LI. 782 SlotIndex Idx = LIS.getInstructionIndex(*MI); 783 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 784 if (!I.valid() || I.value().locNo() != LocNo) 785 continue; 786 787 if (!LIS.hasInterval(DstReg)) 788 continue; 789 LiveInterval *DstLI = &LIS.getInterval(DstReg); 790 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 791 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 792 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 793 } 794 795 if (CopyValues.empty()) 796 return; 797 798 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 799 << '\n'); 800 801 // Try to add defs of the copied values for each kill point. 802 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 803 SlotIndex Idx = Kills[i]; 804 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 805 LiveInterval *DstLI = CopyValues[j].first; 806 const VNInfo *DstVNI = CopyValues[j].second; 807 if (DstLI->getVNInfoAt(Idx) != DstVNI) 808 continue; 809 // Check that there isn't already a def at Idx 810 LocMap::iterator I = locInts.find(Idx); 811 if (I.valid() && I.start() <= Idx) 812 continue; 813 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 814 << DstVNI->id << " in " << *DstLI << '\n'); 815 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 816 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 817 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 818 DbgValueLocation NewLoc(LocNo, WasIndirect); 819 I.insert(Idx, Idx.getNextSlot(), NewLoc); 820 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 821 break; 822 } 823 } 824 } 825 826 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 827 const TargetRegisterInfo &TRI, 828 LiveIntervals &LIS, LexicalScopes &LS) { 829 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 830 831 // Collect all defs to be extended (Skipping undefs). 832 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 833 if (!I.value().isUndef()) 834 Defs.push_back(std::make_pair(I.start(), I.value())); 835 836 // Extend all defs, and possibly add new ones along the way. 837 for (unsigned i = 0; i != Defs.size(); ++i) { 838 SlotIndex Idx = Defs[i].first; 839 DbgValueLocation Loc = Defs[i].second; 840 const MachineOperand &LocMO = locations[Loc.locNo()]; 841 842 if (!LocMO.isReg()) { 843 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 844 continue; 845 } 846 847 // Register locations are constrained to where the register value is live. 848 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 849 LiveInterval *LI = nullptr; 850 const VNInfo *VNI = nullptr; 851 if (LIS.hasInterval(LocMO.getReg())) { 852 LI = &LIS.getInterval(LocMO.getReg()); 853 VNI = LI->getVNInfoAt(Idx); 854 } 855 SmallVector<SlotIndex, 16> Kills; 856 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 857 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 858 // if the original location for example is %vreg0:sub_hi, and we find a 859 // full register copy in addDefsFromCopies (at the moment it only handles 860 // full register copies), then we must add the sub1 sub-register index to 861 // the new location. However, that is only possible if the new virtual 862 // register is of the same regclass (or if there is an equivalent 863 // sub-register in that regclass). For now, simply skip handling copies if 864 // a sub-register is involved. 865 if (LI && !LocMO.getSubReg()) 866 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 867 LIS); 868 continue; 869 } 870 871 // For physregs, we only mark the start slot idx. DwarfDebug will see it 872 // as if the DBG_VALUE is valid up until the end of the basic block, or 873 // the next def of the physical register. So we do not need to extend the 874 // range. It might actually happen that the DBG_VALUE is the last use of 875 // the physical register (e.g. if this is an unused input argument to a 876 // function). 877 } 878 879 // The computed intervals may extend beyond the range of the debug 880 // location's lexical scope. In this case, splitting of an interval 881 // can result in an interval outside of the scope being created, 882 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 883 // this, trim the intervals to the lexical scope. 884 885 LexicalScope *Scope = LS.findLexicalScope(dl); 886 if (!Scope) 887 return; 888 889 SlotIndex PrevEnd; 890 LocMap::iterator I = locInts.begin(); 891 892 // Iterate over the lexical scope ranges. Each time round the loop 893 // we check the intervals for overlap with the end of the previous 894 // range and the start of the next. The first range is handled as 895 // a special case where there is no PrevEnd. 896 for (const InsnRange &Range : Scope->getRanges()) { 897 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 898 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 899 900 // At the start of each iteration I has been advanced so that 901 // I.stop() >= PrevEnd. Check for overlap. 902 if (PrevEnd && I.start() < PrevEnd) { 903 SlotIndex IStop = I.stop(); 904 DbgValueLocation Loc = I.value(); 905 906 // Stop overlaps previous end - trim the end of the interval to 907 // the scope range. 908 I.setStopUnchecked(PrevEnd); 909 ++I; 910 911 // If the interval also overlaps the start of the "next" (i.e. 912 // current) range create a new interval for the remainder 913 if (RStart < IStop) 914 I.insert(RStart, IStop, Loc); 915 } 916 917 // Advance I so that I.stop() >= RStart, and check for overlap. 918 I.advanceTo(RStart); 919 if (!I.valid()) 920 return; 921 922 // The end of a lexical scope range is the last instruction in the 923 // range. To convert to an interval we need the index of the 924 // instruction after it. 925 REnd = REnd.getNextIndex(); 926 927 // Advance I to first interval outside current range. 928 I.advanceTo(REnd); 929 if (!I.valid()) 930 return; 931 932 PrevEnd = REnd; 933 } 934 935 // Check for overlap with end of final range. 936 if (PrevEnd && I.start() < PrevEnd) 937 I.setStopUnchecked(PrevEnd); 938 } 939 940 void LDVImpl::computeIntervals() { 941 LexicalScopes LS; 942 LS.initialize(*MF); 943 944 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 945 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 946 userValues[i]->mapVirtRegs(this); 947 } 948 } 949 950 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 951 clear(); 952 MF = &mf; 953 LIS = &pass.getAnalysis<LiveIntervals>(); 954 TRI = mf.getSubtarget().getRegisterInfo(); 955 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 956 << mf.getName() << " **********\n"); 957 958 bool Changed = collectDebugValues(mf); 959 computeIntervals(); 960 LLVM_DEBUG(print(dbgs())); 961 ModifiedMF = Changed; 962 return Changed; 963 } 964 965 static void removeDebugValues(MachineFunction &mf) { 966 for (MachineBasicBlock &MBB : mf) { 967 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 968 if (!MBBI->isDebugValue()) { 969 ++MBBI; 970 continue; 971 } 972 MBBI = MBB.erase(MBBI); 973 } 974 } 975 } 976 977 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 978 if (!EnableLDV) 979 return false; 980 if (!mf.getFunction().getSubprogram()) { 981 removeDebugValues(mf); 982 return false; 983 } 984 if (!pImpl) 985 pImpl = new LDVImpl(this); 986 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 987 } 988 989 void LiveDebugVariables::releaseMemory() { 990 if (pImpl) 991 static_cast<LDVImpl*>(pImpl)->clear(); 992 } 993 994 LiveDebugVariables::~LiveDebugVariables() { 995 if (pImpl) 996 delete static_cast<LDVImpl*>(pImpl); 997 } 998 999 //===----------------------------------------------------------------------===// 1000 // Live Range Splitting 1001 //===----------------------------------------------------------------------===// 1002 1003 bool 1004 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1005 LiveIntervals& LIS) { 1006 LLVM_DEBUG({ 1007 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1008 print(dbgs(), nullptr); 1009 }); 1010 bool DidChange = false; 1011 LocMap::iterator LocMapI; 1012 LocMapI.setMap(locInts); 1013 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1014 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1015 if (LI->empty()) 1016 continue; 1017 1018 // Don't allocate the new LocNo until it is needed. 1019 unsigned NewLocNo = UndefLocNo; 1020 1021 // Iterate over the overlaps between locInts and LI. 1022 LocMapI.find(LI->beginIndex()); 1023 if (!LocMapI.valid()) 1024 continue; 1025 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1026 LiveInterval::iterator LIE = LI->end(); 1027 while (LocMapI.valid() && LII != LIE) { 1028 // At this point, we know that LocMapI.stop() > LII->start. 1029 LII = LI->advanceTo(LII, LocMapI.start()); 1030 if (LII == LIE) 1031 break; 1032 1033 // Now LII->end > LocMapI.start(). Do we have an overlap? 1034 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 1035 // Overlapping correct location. Allocate NewLocNo now. 1036 if (NewLocNo == UndefLocNo) { 1037 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1038 MO.setSubReg(locations[OldLocNo].getSubReg()); 1039 NewLocNo = getLocationNo(MO); 1040 DidChange = true; 1041 } 1042 1043 SlotIndex LStart = LocMapI.start(); 1044 SlotIndex LStop = LocMapI.stop(); 1045 DbgValueLocation OldLoc = LocMapI.value(); 1046 1047 // Trim LocMapI down to the LII overlap. 1048 if (LStart < LII->start) 1049 LocMapI.setStartUnchecked(LII->start); 1050 if (LStop > LII->end) 1051 LocMapI.setStopUnchecked(LII->end); 1052 1053 // Change the value in the overlap. This may trigger coalescing. 1054 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 1055 1056 // Re-insert any removed OldLocNo ranges. 1057 if (LStart < LocMapI.start()) { 1058 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 1059 ++LocMapI; 1060 assert(LocMapI.valid() && "Unexpected coalescing"); 1061 } 1062 if (LStop > LocMapI.stop()) { 1063 ++LocMapI; 1064 LocMapI.insert(LII->end, LStop, OldLoc); 1065 --LocMapI; 1066 } 1067 } 1068 1069 // Advance to the next overlap. 1070 if (LII->end < LocMapI.stop()) { 1071 if (++LII == LIE) 1072 break; 1073 LocMapI.advanceTo(LII->start); 1074 } else { 1075 ++LocMapI; 1076 if (!LocMapI.valid()) 1077 break; 1078 LII = LI->advanceTo(LII, LocMapI.start()); 1079 } 1080 } 1081 } 1082 1083 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 1084 locations.erase(locations.begin() + OldLocNo); 1085 LocMapI.goToBegin(); 1086 while (LocMapI.valid()) { 1087 DbgValueLocation v = LocMapI.value(); 1088 if (v.locNo() == OldLocNo) { 1089 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 1090 << LocMapI.stop() << ")\n"); 1091 LocMapI.erase(); 1092 } else { 1093 // Undef values always have location number UndefLocNo, so don't change 1094 // locNo in that case. See getLocationNo(). 1095 if (!v.isUndef() && v.locNo() > OldLocNo) 1096 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 1097 ++LocMapI; 1098 } 1099 } 1100 1101 LLVM_DEBUG({ 1102 dbgs() << "Split result: \t"; 1103 print(dbgs(), nullptr); 1104 }); 1105 return DidChange; 1106 } 1107 1108 bool 1109 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1110 LiveIntervals &LIS) { 1111 bool DidChange = false; 1112 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1113 // safely erase unused locations. 1114 for (unsigned i = locations.size(); i ; --i) { 1115 unsigned LocNo = i-1; 1116 const MachineOperand *Loc = &locations[LocNo]; 1117 if (!Loc->isReg() || Loc->getReg() != OldReg) 1118 continue; 1119 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1120 } 1121 return DidChange; 1122 } 1123 1124 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1125 bool DidChange = false; 1126 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1127 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1128 1129 if (!DidChange) 1130 return; 1131 1132 // Map all of the new virtual registers. 1133 UserValue *UV = lookupVirtReg(OldReg); 1134 for (unsigned i = 0; i != NewRegs.size(); ++i) 1135 mapVirtReg(NewRegs[i], UV); 1136 } 1137 1138 void LiveDebugVariables:: 1139 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1140 if (pImpl) 1141 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1142 } 1143 1144 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1145 const TargetInstrInfo &TII, 1146 const TargetRegisterInfo &TRI, 1147 SpillOffsetMap &SpillOffsets) { 1148 // Build a set of new locations with new numbers so we can coalesce our 1149 // IntervalMap if two vreg intervals collapse to the same physical location. 1150 // Use MapVector instead of SetVector because MapVector::insert returns the 1151 // position of the previously or newly inserted element. The boolean value 1152 // tracks if the location was produced by a spill. 1153 // FIXME: This will be problematic if we ever support direct and indirect 1154 // frame index locations, i.e. expressing both variables in memory and 1155 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1156 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1157 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1158 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1159 bool Spilled = false; 1160 unsigned SpillOffset = 0; 1161 MachineOperand Loc = locations[I]; 1162 // Only virtual registers are rewritten. 1163 if (Loc.isReg() && Loc.getReg() && 1164 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1165 unsigned VirtReg = Loc.getReg(); 1166 if (VRM.isAssignedReg(VirtReg) && 1167 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1168 // This can create a %noreg operand in rare cases when the sub-register 1169 // index is no longer available. That means the user value is in a 1170 // non-existent sub-register, and %noreg is exactly what we want. 1171 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1172 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1173 // Retrieve the stack slot offset. 1174 unsigned SpillSize; 1175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1176 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1177 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1178 SpillOffset, MF); 1179 1180 // FIXME: Invalidate the location if the offset couldn't be calculated. 1181 (void)Success; 1182 1183 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1184 Spilled = true; 1185 } else { 1186 Loc.setReg(0); 1187 Loc.setSubReg(0); 1188 } 1189 } 1190 1191 // Insert this location if it doesn't already exist and record a mapping 1192 // from the old number to the new number. 1193 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1194 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1195 LocNoMap[I] = NewLocNo; 1196 } 1197 1198 // Rewrite the locations and record the stack slot offsets for spills. 1199 locations.clear(); 1200 SpillOffsets.clear(); 1201 for (auto &Pair : NewLocations) { 1202 bool Spilled; 1203 unsigned SpillOffset; 1204 std::tie(Spilled, SpillOffset) = Pair.second; 1205 locations.push_back(Pair.first); 1206 if (Spilled) { 1207 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1208 SpillOffsets[NewLocNo] = SpillOffset; 1209 } 1210 } 1211 1212 // Update the interval map, but only coalesce left, since intervals to the 1213 // right use the old location numbers. This should merge two contiguous 1214 // DBG_VALUE intervals with different vregs that were allocated to the same 1215 // physical register. 1216 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1217 DbgValueLocation Loc = I.value(); 1218 // Undef values don't exist in locations (and thus not in LocNoMap either) 1219 // so skip over them. See getLocationNo(). 1220 if (Loc.isUndef()) 1221 continue; 1222 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1223 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1224 I.setStart(I.start()); 1225 } 1226 } 1227 1228 /// Find an iterator for inserting a DBG_VALUE instruction. 1229 static MachineBasicBlock::iterator 1230 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1231 LiveIntervals &LIS) { 1232 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1233 Idx = Idx.getBaseIndex(); 1234 1235 // Try to find an insert location by going backwards from Idx. 1236 MachineInstr *MI; 1237 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1238 // We've reached the beginning of MBB. 1239 if (Idx == Start) { 1240 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1241 return I; 1242 } 1243 Idx = Idx.getPrevIndex(); 1244 } 1245 1246 // Don't insert anything after the first terminator, though. 1247 return MI->isTerminator() ? MBB->getFirstTerminator() : 1248 std::next(MachineBasicBlock::iterator(MI)); 1249 } 1250 1251 /// Find an iterator for inserting the next DBG_VALUE instruction 1252 /// (or end if no more insert locations found). 1253 static MachineBasicBlock::iterator 1254 findNextInsertLocation(MachineBasicBlock *MBB, 1255 MachineBasicBlock::iterator I, 1256 SlotIndex StopIdx, MachineOperand &LocMO, 1257 LiveIntervals &LIS, 1258 const TargetRegisterInfo &TRI) { 1259 if (!LocMO.isReg()) 1260 return MBB->instr_end(); 1261 unsigned Reg = LocMO.getReg(); 1262 1263 // Find the next instruction in the MBB that define the register Reg. 1264 while (I != MBB->end() && !I->isTerminator()) { 1265 if (!LIS.isNotInMIMap(*I) && 1266 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1267 break; 1268 if (I->definesRegister(Reg, &TRI)) 1269 // The insert location is directly after the instruction/bundle. 1270 return std::next(I); 1271 ++I; 1272 } 1273 return MBB->end(); 1274 } 1275 1276 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1277 SlotIndex StopIdx, DbgValueLocation Loc, 1278 bool Spilled, unsigned SpillOffset, 1279 LiveIntervals &LIS, const TargetInstrInfo &TII, 1280 const TargetRegisterInfo &TRI) { 1281 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1282 // Only search within the current MBB. 1283 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1284 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1285 // Undef values don't exist in locations so create new "noreg" register MOs 1286 // for them. See getLocationNo(). 1287 MachineOperand MO = !Loc.isUndef() ? 1288 locations[Loc.locNo()] : 1289 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false, 1290 /* isKill */ false, /* isDead */ false, 1291 /* isUndef */ false, /* isEarlyClobber */ false, 1292 /* SubReg */ 0, /* isDebug */ true); 1293 1294 ++NumInsertedDebugValues; 1295 1296 assert(cast<DILocalVariable>(Variable) 1297 ->isValidLocationForIntrinsic(getDebugLoc()) && 1298 "Expected inlined-at fields to agree"); 1299 1300 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1301 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1302 // that the original virtual register was a pointer. Also, add the stack slot 1303 // offset for the spilled register to the expression. 1304 const DIExpression *Expr = Expression; 1305 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1306 bool IsIndirect = Loc.wasIndirect(); 1307 if (Spilled) { 1308 if (IsIndirect) 1309 DIExprFlags |= DIExpression::DerefAfter; 1310 Expr = 1311 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1312 IsIndirect = true; 1313 } 1314 1315 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1316 1317 do { 1318 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1319 IsIndirect, MO, Variable, Expr); 1320 1321 // Continue and insert DBG_VALUES after every redefinition of register 1322 // associated with the debug value within the range 1323 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1324 } while (I != MBB->end()); 1325 } 1326 1327 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1328 LiveIntervals &LIS, 1329 const TargetInstrInfo &TII) { 1330 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1331 ++NumInsertedDebugLabels; 1332 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1333 .addMetadata(Label); 1334 } 1335 1336 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1337 const TargetInstrInfo &TII, 1338 const TargetRegisterInfo &TRI, 1339 const SpillOffsetMap &SpillOffsets) { 1340 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1341 1342 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1343 SlotIndex Start = I.start(); 1344 SlotIndex Stop = I.stop(); 1345 DbgValueLocation Loc = I.value(); 1346 auto SpillIt = 1347 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end(); 1348 bool Spilled = SpillIt != SpillOffsets.end(); 1349 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1350 1351 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1352 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1353 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1354 1355 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1356 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1357 TRI); 1358 // This interval may span multiple basic blocks. 1359 // Insert a DBG_VALUE into each one. 1360 while (Stop > MBBEnd) { 1361 // Move to the next block. 1362 Start = MBBEnd; 1363 if (++MBB == MFEnd) 1364 break; 1365 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1366 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1367 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1368 TRI); 1369 } 1370 LLVM_DEBUG(dbgs() << '\n'); 1371 if (MBB == MFEnd) 1372 break; 1373 1374 ++I; 1375 } 1376 } 1377 1378 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1379 LLVM_DEBUG(dbgs() << "\t" << loc); 1380 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1381 1382 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1383 insertDebugLabel(&*MBB, loc, LIS, TII); 1384 1385 LLVM_DEBUG(dbgs() << '\n'); 1386 } 1387 1388 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1389 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1390 if (!MF) 1391 return; 1392 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1393 SpillOffsetMap SpillOffsets; 1394 for (auto &userValue : userValues) { 1395 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1396 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1397 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1398 } 1399 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1400 for (auto &userLabel : userLabels) { 1401 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1402 userLabel->emitDebugLabel(*LIS, *TII); 1403 } 1404 EmitDone = true; 1405 } 1406 1407 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1408 if (pImpl) 1409 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1410 } 1411 1412 bool LiveDebugVariables::doInitialization(Module &M) { 1413 return Pass::doInitialization(M); 1414 } 1415 1416 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1417 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1418 if (pImpl) 1419 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1420 } 1421 #endif 1422