1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/LiveInterval.h" 34 #include "llvm/CodeGen/LiveIntervals.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <optional> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 namespace { 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, 104 const DIExpression &Expr) 105 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { 106 assert(!(WasIndirect && WasList) && 107 "DBG_VALUE_LISTs should not be indirect."); 108 SmallVector<unsigned> LocNoVec; 109 for (unsigned LocNo : NewLocs) { 110 auto It = find(LocNoVec, LocNo); 111 if (It == LocNoVec.end()) 112 LocNoVec.push_back(LocNo); 113 else { 114 // Loc duplicates an element in LocNos; replace references to Op 115 // with references to the duplicating element. 116 unsigned OpIdx = LocNoVec.size(); 117 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); 118 Expression = 119 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); 120 } 121 } 122 // FIXME: Debug values referencing 64+ unique machine locations are rare and 123 // currently unsupported for performance reasons. If we can verify that 124 // performance is acceptable for such debug values, we can increase the 125 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine 126 // locations. We will also need to verify that this does not cause issues 127 // with LiveDebugVariables' use of IntervalMap. 128 if (LocNoVec.size() < 64) { 129 LocNoCount = LocNoVec.size(); 130 if (LocNoCount > 0) { 131 LocNos = std::make_unique<unsigned[]>(LocNoCount); 132 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); 133 } 134 } else { 135 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " 136 "locations, dropping...\n"); 137 LocNoCount = 1; 138 // Turn this into an undef debug value list; right now, the simplest form 139 // of this is an expression with one arg, and an undef debug operand. 140 Expression = 141 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0}); 142 if (auto FragmentInfoOpt = Expr.getFragmentInfo()) 143 Expression = *DIExpression::createFragmentExpression( 144 Expression, FragmentInfoOpt->OffsetInBits, 145 FragmentInfoOpt->SizeInBits); 146 LocNos = std::make_unique<unsigned[]>(LocNoCount); 147 LocNos[0] = UndefLocNo; 148 } 149 } 150 151 DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} 152 DbgVariableValue(const DbgVariableValue &Other) 153 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), 154 WasList(Other.getWasList()), Expression(Other.getExpression()) { 155 if (Other.getLocNoCount()) { 156 LocNos.reset(new unsigned[Other.getLocNoCount()]); 157 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 158 } 159 } 160 161 DbgVariableValue &operator=(const DbgVariableValue &Other) { 162 if (this == &Other) 163 return *this; 164 if (Other.getLocNoCount()) { 165 LocNos.reset(new unsigned[Other.getLocNoCount()]); 166 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 167 } else { 168 LocNos.release(); 169 } 170 LocNoCount = Other.getLocNoCount(); 171 WasIndirect = Other.getWasIndirect(); 172 WasList = Other.getWasList(); 173 Expression = Other.getExpression(); 174 return *this; 175 } 176 177 const DIExpression *getExpression() const { return Expression; } 178 uint8_t getLocNoCount() const { return LocNoCount; } 179 bool containsLocNo(unsigned LocNo) const { 180 return is_contained(loc_nos(), LocNo); 181 } 182 bool getWasIndirect() const { return WasIndirect; } 183 bool getWasList() const { return WasList; } 184 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } 185 186 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { 187 SmallVector<unsigned, 4> NewLocNos; 188 for (unsigned LocNo : loc_nos()) 189 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 190 : LocNo); 191 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 192 } 193 194 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { 195 SmallVector<unsigned> NewLocNos; 196 for (unsigned LocNo : loc_nos()) 197 // Undef values don't exist in locations (and thus not in LocNoMap 198 // either) so skip over them. See getLocationNo(). 199 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); 200 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 201 } 202 203 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { 204 SmallVector<unsigned> NewLocNos; 205 NewLocNos.assign(loc_nos_begin(), loc_nos_end()); 206 auto OldLocIt = find(NewLocNos, OldLocNo); 207 assert(OldLocIt != NewLocNos.end() && "Old location must be present."); 208 *OldLocIt = NewLocNo; 209 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 210 } 211 212 bool hasLocNoGreaterThan(unsigned LocNo) const { 213 return any_of(loc_nos(), 214 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); 215 } 216 217 void printLocNos(llvm::raw_ostream &OS) const { 218 for (const unsigned &Loc : loc_nos()) 219 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; 220 } 221 222 friend inline bool operator==(const DbgVariableValue &LHS, 223 const DbgVariableValue &RHS) { 224 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, 225 LHS.Expression) != 226 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) 227 return false; 228 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), 229 RHS.loc_nos_begin()); 230 } 231 232 friend inline bool operator!=(const DbgVariableValue &LHS, 233 const DbgVariableValue &RHS) { 234 return !(LHS == RHS); 235 } 236 237 unsigned *loc_nos_begin() { return LocNos.get(); } 238 const unsigned *loc_nos_begin() const { return LocNos.get(); } 239 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } 240 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } 241 ArrayRef<unsigned> loc_nos() const { 242 return ArrayRef<unsigned>(LocNos.get(), LocNoCount); 243 } 244 245 private: 246 // IntervalMap requires the value object to be very small, to the extent 247 // that we do not have enough room for an std::vector. Using a C-style array 248 // (with a unique_ptr wrapper for convenience) allows us to optimize for this 249 // specific case by packing the array size into only 6 bits (it is highly 250 // unlikely that any debug value will need 64+ locations). 251 std::unique_ptr<unsigned[]> LocNos; 252 uint8_t LocNoCount : 6; 253 bool WasIndirect : 1; 254 bool WasList : 1; 255 const DIExpression *Expression = nullptr; 256 }; 257 } // namespace 258 259 /// Map of where a user value is live to that value. 260 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 261 262 /// Map of stack slot offsets for spilled locations. 263 /// Non-spilled locations are not added to the map. 264 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 265 266 /// Cache to save the location where it can be used as the starting 267 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 268 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 269 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 270 /// if it is called many times for the same block. 271 using BlockSkipInstsMap = 272 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 273 274 namespace { 275 276 class LDVImpl; 277 278 /// A user value is a part of a debug info user variable. 279 /// 280 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 281 /// holds part of a user variable. The part is identified by a byte offset. 282 /// 283 /// UserValues are grouped into equivalence classes for easier searching. Two 284 /// user values are related if they are held by the same virtual register. The 285 /// equivalence class is the transitive closure of that relation. 286 class UserValue { 287 const DILocalVariable *Variable; ///< The debug info variable we are part of. 288 /// The part of the variable we describe. 289 const std::optional<DIExpression::FragmentInfo> Fragment; 290 DebugLoc dl; ///< The debug location for the variable. This is 291 ///< used by dwarf writer to find lexical scope. 292 UserValue *leader; ///< Equivalence class leader. 293 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 294 295 /// Numbered locations referenced by locmap. 296 SmallVector<MachineOperand, 4> locations; 297 298 /// Map of slot indices where this value is live. 299 LocMap locInts; 300 301 /// Set of interval start indexes that have been trimmed to the 302 /// lexical scope. 303 SmallSet<SlotIndex, 2> trimmedDefs; 304 305 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 306 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 307 SlotIndex StopIdx, DbgVariableValue DbgValue, 308 ArrayRef<bool> LocSpills, 309 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, 310 const TargetInstrInfo &TII, 311 const TargetRegisterInfo &TRI, 312 BlockSkipInstsMap &BBSkipInstsMap); 313 314 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 315 /// is live. Returns true if any changes were made. 316 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 317 LiveIntervals &LIS); 318 319 public: 320 /// Create a new UserValue. 321 UserValue(const DILocalVariable *var, 322 std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 323 LocMap::Allocator &alloc) 324 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 325 locInts(alloc) {} 326 327 /// Get the leader of this value's equivalence class. 328 UserValue *getLeader() { 329 UserValue *l = leader; 330 while (l != l->leader) 331 l = l->leader; 332 return leader = l; 333 } 334 335 /// Return the next UserValue in the equivalence class. 336 UserValue *getNext() const { return next; } 337 338 /// Merge equivalence classes. 339 static UserValue *merge(UserValue *L1, UserValue *L2) { 340 L2 = L2->getLeader(); 341 if (!L1) 342 return L2; 343 L1 = L1->getLeader(); 344 if (L1 == L2) 345 return L1; 346 // Splice L2 before L1's members. 347 UserValue *End = L2; 348 while (End->next) { 349 End->leader = L1; 350 End = End->next; 351 } 352 End->leader = L1; 353 End->next = L1->next; 354 L1->next = L2; 355 return L1; 356 } 357 358 /// Return the location number that matches Loc. 359 /// 360 /// For undef values we always return location number UndefLocNo without 361 /// inserting anything in locations. Since locations is a vector and the 362 /// location number is the position in the vector and UndefLocNo is ~0, 363 /// we would need a very big vector to put the value at the right position. 364 unsigned getLocationNo(const MachineOperand &LocMO) { 365 if (LocMO.isReg()) { 366 if (LocMO.getReg() == 0) 367 return UndefLocNo; 368 // For register locations we dont care about use/def and other flags. 369 for (unsigned i = 0, e = locations.size(); i != e; ++i) 370 if (locations[i].isReg() && 371 locations[i].getReg() == LocMO.getReg() && 372 locations[i].getSubReg() == LocMO.getSubReg()) 373 return i; 374 } else 375 for (unsigned i = 0, e = locations.size(); i != e; ++i) 376 if (LocMO.isIdenticalTo(locations[i])) 377 return i; 378 locations.push_back(LocMO); 379 // We are storing a MachineOperand outside a MachineInstr. 380 locations.back().clearParent(); 381 // Don't store def operands. 382 if (locations.back().isReg()) { 383 if (locations.back().isDef()) 384 locations.back().setIsDead(false); 385 locations.back().setIsUse(); 386 } 387 return locations.size() - 1; 388 } 389 390 /// Remove (recycle) a location number. If \p LocNo still is used by the 391 /// locInts nothing is done. 392 void removeLocationIfUnused(unsigned LocNo) { 393 // Bail out if LocNo still is used. 394 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 395 const DbgVariableValue &DbgValue = I.value(); 396 if (DbgValue.containsLocNo(LocNo)) 397 return; 398 } 399 // Remove the entry in the locations vector, and adjust all references to 400 // location numbers above the removed entry. 401 locations.erase(locations.begin() + LocNo); 402 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 403 const DbgVariableValue &DbgValue = I.value(); 404 if (DbgValue.hasLocNoGreaterThan(LocNo)) 405 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); 406 } 407 } 408 409 /// Ensure that all virtual register locations are mapped. 410 void mapVirtRegs(LDVImpl *LDV); 411 412 /// Add a definition point to this user value. 413 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, 414 bool IsList, const DIExpression &Expr) { 415 SmallVector<unsigned> Locs; 416 for (const MachineOperand &Op : LocMOs) 417 Locs.push_back(getLocationNo(Op)); 418 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); 419 // Add a singular (Idx,Idx) -> value mapping. 420 LocMap::iterator I = locInts.find(Idx); 421 if (!I.valid() || I.start() != Idx) 422 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); 423 else 424 // A later DBG_VALUE at the same SlotIndex overrides the old location. 425 I.setValue(std::move(DbgValue)); 426 } 427 428 /// Extend the current definition as far as possible down. 429 /// 430 /// Stop when meeting an existing def or when leaving the live 431 /// range of VNI. End points where VNI is no longer live are added to Kills. 432 /// 433 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 434 /// data-flow analysis to propagate them beyond basic block boundaries. 435 /// 436 /// \param Idx Starting point for the definition. 437 /// \param DbgValue value to propagate. 438 /// \param LiveIntervalInfo For each location number key in this map, 439 /// restricts liveness to where the LiveRange has the value equal to the\ 440 /// VNInfo. 441 /// \param [out] Kills Append end points of VNI's live range to Kills. 442 /// \param LIS Live intervals analysis. 443 void 444 extendDef(SlotIndex Idx, DbgVariableValue DbgValue, 445 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 446 &LiveIntervalInfo, 447 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 448 LiveIntervals &LIS); 449 450 /// The value in LI may be copies to other registers. Determine if 451 /// any of the copies are available at the kill points, and add defs if 452 /// possible. 453 /// 454 /// \param DbgValue Location number of LI->reg, and DIExpression. 455 /// \param LocIntervals Scan for copies of the value for each location in the 456 /// corresponding LiveInterval->reg. 457 /// \param KilledAt The point where the range of DbgValue could be extended. 458 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 459 void addDefsFromCopies( 460 DbgVariableValue DbgValue, 461 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 462 SlotIndex KilledAt, 463 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 464 MachineRegisterInfo &MRI, LiveIntervals &LIS); 465 466 /// Compute the live intervals of all locations after collecting all their 467 /// def points. 468 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 469 LiveIntervals &LIS, LexicalScopes &LS); 470 471 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 472 /// live. Returns true if any changes were made. 473 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 474 LiveIntervals &LIS); 475 476 /// Rewrite virtual register locations according to the provided virtual 477 /// register map. Record the stack slot offsets for the locations that 478 /// were spilled. 479 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 480 const TargetInstrInfo &TII, 481 const TargetRegisterInfo &TRI, 482 SpillOffsetMap &SpillOffsets); 483 484 /// Recreate DBG_VALUE instruction from data structures. 485 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 486 const TargetInstrInfo &TII, 487 const TargetRegisterInfo &TRI, 488 const SpillOffsetMap &SpillOffsets, 489 BlockSkipInstsMap &BBSkipInstsMap); 490 491 /// Return DebugLoc of this UserValue. 492 const DebugLoc &getDebugLoc() { return dl; } 493 494 void print(raw_ostream &, const TargetRegisterInfo *); 495 }; 496 497 /// A user label is a part of a debug info user label. 498 class UserLabel { 499 const DILabel *Label; ///< The debug info label we are part of. 500 DebugLoc dl; ///< The debug location for the label. This is 501 ///< used by dwarf writer to find lexical scope. 502 SlotIndex loc; ///< Slot used by the debug label. 503 504 /// Insert a DBG_LABEL into MBB at Idx. 505 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 506 LiveIntervals &LIS, const TargetInstrInfo &TII, 507 BlockSkipInstsMap &BBSkipInstsMap); 508 509 public: 510 /// Create a new UserLabel. 511 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 512 : Label(label), dl(std::move(L)), loc(Idx) {} 513 514 /// Does this UserLabel match the parameters? 515 bool matches(const DILabel *L, const DILocation *IA, 516 const SlotIndex Index) const { 517 return Label == L && dl->getInlinedAt() == IA && loc == Index; 518 } 519 520 /// Recreate DBG_LABEL instruction from data structures. 521 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 522 BlockSkipInstsMap &BBSkipInstsMap); 523 524 /// Return DebugLoc of this UserLabel. 525 const DebugLoc &getDebugLoc() { return dl; } 526 527 void print(raw_ostream &, const TargetRegisterInfo *); 528 }; 529 530 /// Implementation of the LiveDebugVariables pass. 531 class LDVImpl { 532 LiveDebugVariables &pass; 533 LocMap::Allocator allocator; 534 MachineFunction *MF = nullptr; 535 LiveIntervals *LIS; 536 const TargetRegisterInfo *TRI; 537 538 /// Position and VReg of a PHI instruction during register allocation. 539 struct PHIValPos { 540 SlotIndex SI; /// Slot where this PHI occurs. 541 Register Reg; /// VReg this PHI occurs in. 542 unsigned SubReg; /// Qualifiying subregister for Reg. 543 }; 544 545 /// Map from debug instruction number to PHI position during allocation. 546 std::map<unsigned, PHIValPos> PHIValToPos; 547 /// Index of, for each VReg, which debug instruction numbers and corresponding 548 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, 549 /// at different positions. 550 DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; 551 552 /// Record for any debug instructions unlinked from their blocks during 553 /// regalloc. Stores the instr and it's location, so that they can be 554 /// re-inserted after regalloc is over. 555 struct InstrPos { 556 MachineInstr *MI; ///< Debug instruction, unlinked from it's block. 557 SlotIndex Idx; ///< Slot position where MI should be re-inserted. 558 MachineBasicBlock *MBB; ///< Block that MI was in. 559 }; 560 561 /// Collection of stored debug instructions, preserved until after regalloc. 562 SmallVector<InstrPos, 32> StashedDebugInstrs; 563 564 /// Whether emitDebugValues is called. 565 bool EmitDone = false; 566 567 /// Whether the machine function is modified during the pass. 568 bool ModifiedMF = false; 569 570 /// All allocated UserValue instances. 571 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 572 573 /// All allocated UserLabel instances. 574 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 575 576 /// Map virtual register to eq class leader. 577 using VRMap = DenseMap<unsigned, UserValue *>; 578 VRMap virtRegToEqClass; 579 580 /// Map to find existing UserValue instances. 581 using UVMap = DenseMap<DebugVariable, UserValue *>; 582 UVMap userVarMap; 583 584 /// Find or create a UserValue. 585 UserValue *getUserValue(const DILocalVariable *Var, 586 std::optional<DIExpression::FragmentInfo> Fragment, 587 const DebugLoc &DL); 588 589 /// Find the EC leader for VirtReg or null. 590 UserValue *lookupVirtReg(Register VirtReg); 591 592 /// Add DBG_VALUE instruction to our maps. 593 /// 594 /// \param MI DBG_VALUE instruction 595 /// \param Idx Last valid SLotIndex before instruction. 596 /// 597 /// \returns True if the DBG_VALUE instruction should be deleted. 598 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 599 600 /// Track variable location debug instructions while using the instruction 601 /// referencing implementation. Such debug instructions do not need to be 602 /// updated during regalloc because they identify instructions rather than 603 /// register locations. However, they needs to be removed from the 604 /// MachineFunction during regalloc, then re-inserted later, to avoid 605 /// disrupting the allocator. 606 /// 607 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction 608 /// \param Idx Last valid SlotIndex before instruction 609 /// 610 /// \returns Iterator to continue processing from after unlinking. 611 MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); 612 613 /// Add DBG_LABEL instruction to UserLabel. 614 /// 615 /// \param MI DBG_LABEL instruction 616 /// \param Idx Last valid SlotIndex before instruction. 617 /// 618 /// \returns True if the DBG_LABEL instruction should be deleted. 619 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 620 621 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 622 /// for each instruction. 623 /// 624 /// \param mf MachineFunction to be scanned. 625 /// \param InstrRef Whether to operate in instruction referencing mode. If 626 /// true, most of LiveDebugVariables doesn't run. 627 /// 628 /// \returns True if any debug values were found. 629 bool collectDebugValues(MachineFunction &mf, bool InstrRef); 630 631 /// Compute the live intervals of all user values after collecting all 632 /// their def points. 633 void computeIntervals(); 634 635 public: 636 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 637 638 bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); 639 640 /// Release all memory. 641 void clear() { 642 MF = nullptr; 643 PHIValToPos.clear(); 644 RegToPHIIdx.clear(); 645 StashedDebugInstrs.clear(); 646 userValues.clear(); 647 userLabels.clear(); 648 virtRegToEqClass.clear(); 649 userVarMap.clear(); 650 // Make sure we call emitDebugValues if the machine function was modified. 651 assert((!ModifiedMF || EmitDone) && 652 "Dbg values are not emitted in LDV"); 653 EmitDone = false; 654 ModifiedMF = false; 655 } 656 657 /// Map virtual register to an equivalence class. 658 void mapVirtReg(Register VirtReg, UserValue *EC); 659 660 /// Replace any PHI referring to OldReg with its corresponding NewReg, if 661 /// present. 662 void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); 663 664 /// Replace all references to OldReg with NewRegs. 665 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 666 667 /// Recreate DBG_VALUE instruction from data structures. 668 void emitDebugValues(VirtRegMap *VRM); 669 670 void print(raw_ostream&); 671 }; 672 673 } // end anonymous namespace 674 675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 676 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 677 const LLVMContext &Ctx) { 678 if (!DL) 679 return; 680 681 auto *Scope = cast<DIScope>(DL.getScope()); 682 // Omit the directory, because it's likely to be long and uninteresting. 683 CommentOS << Scope->getFilename(); 684 CommentOS << ':' << DL.getLine(); 685 if (DL.getCol() != 0) 686 CommentOS << ':' << DL.getCol(); 687 688 DebugLoc InlinedAtDL = DL.getInlinedAt(); 689 if (!InlinedAtDL) 690 return; 691 692 CommentOS << " @[ "; 693 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 694 CommentOS << " ]"; 695 } 696 697 static void printExtendedName(raw_ostream &OS, const DINode *Node, 698 const DILocation *DL) { 699 const LLVMContext &Ctx = Node->getContext(); 700 StringRef Res; 701 unsigned Line = 0; 702 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 703 Res = V->getName(); 704 Line = V->getLine(); 705 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 706 Res = L->getName(); 707 Line = L->getLine(); 708 } 709 710 if (!Res.empty()) 711 OS << Res << "," << Line; 712 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 713 if (InlinedAt) { 714 if (DebugLoc InlinedAtDL = InlinedAt) { 715 OS << " @["; 716 printDebugLoc(InlinedAtDL, OS, Ctx); 717 OS << "]"; 718 } 719 } 720 } 721 722 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 723 OS << "!\""; 724 printExtendedName(OS, Variable, dl); 725 726 OS << "\"\t"; 727 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 728 OS << " [" << I.start() << ';' << I.stop() << "):"; 729 if (I.value().isUndef()) 730 OS << " undef"; 731 else { 732 I.value().printLocNos(OS); 733 if (I.value().getWasIndirect()) 734 OS << " ind"; 735 else if (I.value().getWasList()) 736 OS << " list"; 737 } 738 } 739 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 740 OS << " Loc" << i << '='; 741 locations[i].print(OS, TRI); 742 } 743 OS << '\n'; 744 } 745 746 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 747 OS << "!\""; 748 printExtendedName(OS, Label, dl); 749 750 OS << "\"\t"; 751 OS << loc; 752 OS << '\n'; 753 } 754 755 void LDVImpl::print(raw_ostream &OS) { 756 OS << "********** DEBUG VARIABLES **********\n"; 757 for (auto &userValue : userValues) 758 userValue->print(OS, TRI); 759 OS << "********** DEBUG LABELS **********\n"; 760 for (auto &userLabel : userLabels) 761 userLabel->print(OS, TRI); 762 } 763 #endif 764 765 void UserValue::mapVirtRegs(LDVImpl *LDV) { 766 for (unsigned i = 0, e = locations.size(); i != e; ++i) 767 if (locations[i].isReg() && locations[i].getReg().isVirtual()) 768 LDV->mapVirtReg(locations[i].getReg(), this); 769 } 770 771 UserValue * 772 LDVImpl::getUserValue(const DILocalVariable *Var, 773 std::optional<DIExpression::FragmentInfo> Fragment, 774 const DebugLoc &DL) { 775 // FIXME: Handle partially overlapping fragments. See 776 // https://reviews.llvm.org/D70121#1849741. 777 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 778 UserValue *&UV = userVarMap[ID]; 779 if (!UV) { 780 userValues.push_back( 781 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 782 UV = userValues.back().get(); 783 } 784 return UV; 785 } 786 787 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 788 assert(VirtReg.isVirtual() && "Only map VirtRegs"); 789 UserValue *&Leader = virtRegToEqClass[VirtReg]; 790 Leader = UserValue::merge(Leader, EC); 791 } 792 793 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 794 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 795 return UV->getLeader(); 796 return nullptr; 797 } 798 799 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 800 // DBG_VALUE loc, offset, variable, expr 801 // DBG_VALUE_LIST variable, expr, locs... 802 if (!MI.isDebugValue()) { 803 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); 804 return false; 805 } 806 if (!MI.getDebugVariableOp().isMetadata()) { 807 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " 808 << MI); 809 return false; 810 } 811 if (MI.isNonListDebugValue() && 812 (MI.getNumOperands() != 4 || 813 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { 814 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); 815 return false; 816 } 817 818 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 819 // register that hasn't been defined yet. If we do not remove those here, then 820 // the re-insertion of the DBG_VALUE instruction after register allocation 821 // will be incorrect. 822 bool Discard = false; 823 for (const MachineOperand &Op : MI.debug_operands()) { 824 if (Op.isReg() && Op.getReg().isVirtual()) { 825 const Register Reg = Op.getReg(); 826 if (!LIS->hasInterval(Reg)) { 827 // The DBG_VALUE is described by a virtual register that does not have a 828 // live interval. Discard the DBG_VALUE. 829 Discard = true; 830 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 831 << " " << MI); 832 } else { 833 // The DBG_VALUE is only valid if either Reg is live out from Idx, or 834 // Reg is defined dead at Idx (where Idx is the slot index for the 835 // instruction preceding the DBG_VALUE). 836 const LiveInterval &LI = LIS->getInterval(Reg); 837 LiveQueryResult LRQ = LI.Query(Idx); 838 if (!LRQ.valueOutOrDead()) { 839 // We have found a DBG_VALUE with the value in a virtual register that 840 // is not live. Discard the DBG_VALUE. 841 Discard = true; 842 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 843 << " " << MI); 844 } 845 } 846 } 847 } 848 849 // Get or create the UserValue for (variable,offset) here. 850 bool IsIndirect = MI.isDebugOffsetImm(); 851 if (IsIndirect) 852 assert(MI.getDebugOffset().getImm() == 0 && 853 "DBG_VALUE with nonzero offset"); 854 bool IsList = MI.isDebugValueList(); 855 const DILocalVariable *Var = MI.getDebugVariable(); 856 const DIExpression *Expr = MI.getDebugExpression(); 857 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 858 if (!Discard) 859 UV->addDef(Idx, 860 ArrayRef<MachineOperand>(MI.debug_operands().begin(), 861 MI.debug_operands().end()), 862 IsIndirect, IsList, *Expr); 863 else { 864 MachineOperand MO = MachineOperand::CreateReg(0U, false); 865 MO.setIsDebug(); 866 // We should still pass a list the same size as MI.debug_operands() even if 867 // all MOs are undef, so that DbgVariableValue can correctly adjust the 868 // expression while removing the duplicated undefs. 869 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); 870 UV->addDef(Idx, UndefMOs, false, IsList, *Expr); 871 } 872 return true; 873 } 874 875 MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, 876 SlotIndex Idx) { 877 assert(MI.isDebugValueLike() || MI.isDebugPHI()); 878 879 // In instruction referencing mode, there should be no DBG_VALUE instructions 880 // that refer to virtual registers. They might still refer to constants. 881 if (MI.isDebugValueLike()) 882 assert(none_of(MI.debug_operands(), 883 [](const MachineOperand &MO) { 884 return MO.isReg() && MO.getReg().isVirtual(); 885 }) && 886 "MIs should not refer to Virtual Registers in InstrRef mode."); 887 888 // Unlink the instruction, store it in the debug instructions collection. 889 auto NextInst = std::next(MI.getIterator()); 890 auto *MBB = MI.getParent(); 891 MI.removeFromParent(); 892 StashedDebugInstrs.push_back({&MI, Idx, MBB}); 893 return NextInst; 894 } 895 896 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 897 // DBG_LABEL label 898 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 899 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 900 return false; 901 } 902 903 // Get or create the UserLabel for label here. 904 const DILabel *Label = MI.getDebugLabel(); 905 const DebugLoc &DL = MI.getDebugLoc(); 906 bool Found = false; 907 for (auto const &L : userLabels) { 908 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 909 Found = true; 910 break; 911 } 912 } 913 if (!Found) 914 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 915 916 return true; 917 } 918 919 bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { 920 bool Changed = false; 921 for (MachineBasicBlock &MBB : mf) { 922 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 923 MBBI != MBBE;) { 924 // Use the first debug instruction in the sequence to get a SlotIndex 925 // for following consecutive debug instructions. 926 if (!MBBI->isDebugOrPseudoInstr()) { 927 ++MBBI; 928 continue; 929 } 930 // Debug instructions has no slot index. Use the previous 931 // non-debug instruction's SlotIndex as its SlotIndex. 932 SlotIndex Idx = 933 MBBI == MBB.begin() 934 ? LIS->getMBBStartIdx(&MBB) 935 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 936 // Handle consecutive debug instructions with the same slot index. 937 do { 938 // In instruction referencing mode, pass each instr to handleDebugInstr 939 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and 940 // need to go through the normal live interval splitting process. 941 if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || 942 MBBI->isDebugRef())) { 943 MBBI = handleDebugInstr(*MBBI, Idx); 944 Changed = true; 945 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler 946 // to track things through register allocation, and erase the instr. 947 } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 948 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 949 MBBI = MBB.erase(MBBI); 950 Changed = true; 951 } else 952 ++MBBI; 953 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); 954 } 955 } 956 return Changed; 957 } 958 959 void UserValue::extendDef( 960 SlotIndex Idx, DbgVariableValue DbgValue, 961 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 962 &LiveIntervalInfo, 963 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 964 LiveIntervals &LIS) { 965 SlotIndex Start = Idx; 966 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 967 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 968 LocMap::iterator I = locInts.find(Start); 969 970 // Limit to the intersection of the VNIs' live ranges. 971 for (auto &LII : LiveIntervalInfo) { 972 LiveRange *LR = LII.second.first; 973 assert(LR && LII.second.second && "Missing range info for Idx."); 974 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 975 assert(Segment && Segment->valno == LII.second.second && 976 "Invalid VNInfo for Idx given?"); 977 if (Segment->end < Stop) { 978 Stop = Segment->end; 979 Kills = {Stop, {LII.first}}; 980 } else if (Segment->end == Stop && Kills) { 981 // If multiple locations end at the same place, track all of them in 982 // Kills. 983 Kills->second.push_back(LII.first); 984 } 985 } 986 987 // There could already be a short def at Start. 988 if (I.valid() && I.start() <= Start) { 989 // Stop when meeting a different location or an already extended interval. 990 Start = Start.getNextSlot(); 991 if (I.value() != DbgValue || I.stop() != Start) { 992 // Clear `Kills`, as we have a new def available. 993 Kills = std::nullopt; 994 return; 995 } 996 // This is a one-slot placeholder. Just skip it. 997 ++I; 998 } 999 1000 // Limited by the next def. 1001 if (I.valid() && I.start() < Stop) { 1002 Stop = I.start(); 1003 // Clear `Kills`, as we have a new def available. 1004 Kills = std::nullopt; 1005 } 1006 1007 if (Start < Stop) { 1008 DbgVariableValue ExtDbgValue(DbgValue); 1009 I.insert(Start, Stop, std::move(ExtDbgValue)); 1010 } 1011 } 1012 1013 void UserValue::addDefsFromCopies( 1014 DbgVariableValue DbgValue, 1015 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 1016 SlotIndex KilledAt, 1017 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 1018 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 1019 // Don't track copies from physregs, there are too many uses. 1020 if (any_of(LocIntervals, 1021 [](auto LocI) { return !LocI.second->reg().isVirtual(); })) 1022 return; 1023 1024 // Collect all the (vreg, valno) pairs that are copies of LI. 1025 SmallDenseMap<unsigned, 1026 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> 1027 CopyValues; 1028 for (auto &LocInterval : LocIntervals) { 1029 unsigned LocNo = LocInterval.first; 1030 LiveInterval *LI = LocInterval.second; 1031 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 1032 MachineInstr *MI = MO.getParent(); 1033 // Copies of the full value. 1034 if (MO.getSubReg() || !MI->isCopy()) 1035 continue; 1036 Register DstReg = MI->getOperand(0).getReg(); 1037 1038 // Don't follow copies to physregs. These are usually setting up call 1039 // arguments, and the argument registers are always call clobbered. We are 1040 // better off in the source register which could be a callee-saved 1041 // register, or it could be spilled. 1042 if (!DstReg.isVirtual()) 1043 continue; 1044 1045 // Is the value extended to reach this copy? If not, another def may be 1046 // blocking it, or we are looking at a wrong value of LI. 1047 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1048 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 1049 if (!I.valid() || I.value() != DbgValue) 1050 continue; 1051 1052 if (!LIS.hasInterval(DstReg)) 1053 continue; 1054 LiveInterval *DstLI = &LIS.getInterval(DstReg); 1055 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 1056 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 1057 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); 1058 } 1059 } 1060 1061 if (CopyValues.empty()) 1062 return; 1063 1064 #if !defined(NDEBUG) 1065 for (auto &LocInterval : LocIntervals) 1066 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() 1067 << " copies of " << *LocInterval.second << '\n'); 1068 #endif 1069 1070 // Try to add defs of the copied values for the kill point. Check that there 1071 // isn't already a def at Idx. 1072 LocMap::iterator I = locInts.find(KilledAt); 1073 if (I.valid() && I.start() <= KilledAt) 1074 return; 1075 DbgVariableValue NewValue(DbgValue); 1076 for (auto &LocInterval : LocIntervals) { 1077 unsigned LocNo = LocInterval.first; 1078 bool FoundCopy = false; 1079 for (auto &LIAndVNI : CopyValues[LocNo]) { 1080 LiveInterval *DstLI = LIAndVNI.first; 1081 const VNInfo *DstVNI = LIAndVNI.second; 1082 if (DstLI->getVNInfoAt(KilledAt) != DstVNI) 1083 continue; 1084 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" 1085 << DstVNI->id << " in " << *DstLI << '\n'); 1086 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 1087 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 1088 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); 1089 NewValue = NewValue.changeLocNo(LocNo, NewLocNo); 1090 FoundCopy = true; 1091 break; 1092 } 1093 // If there are any killed locations we can't find a copy for, we can't 1094 // extend the variable value. 1095 if (!FoundCopy) 1096 return; 1097 } 1098 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); 1099 NewDefs.push_back(std::make_pair(KilledAt, NewValue)); 1100 } 1101 1102 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 1103 const TargetRegisterInfo &TRI, 1104 LiveIntervals &LIS, LexicalScopes &LS) { 1105 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 1106 1107 // Collect all defs to be extended (Skipping undefs). 1108 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 1109 if (!I.value().isUndef()) 1110 Defs.push_back(std::make_pair(I.start(), I.value())); 1111 1112 // Extend all defs, and possibly add new ones along the way. 1113 for (unsigned i = 0; i != Defs.size(); ++i) { 1114 SlotIndex Idx = Defs[i].first; 1115 DbgVariableValue DbgValue = Defs[i].second; 1116 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; 1117 SmallVector<const VNInfo *, 4> VNIs; 1118 bool ShouldExtendDef = false; 1119 for (unsigned LocNo : DbgValue.loc_nos()) { 1120 const MachineOperand &LocMO = locations[LocNo]; 1121 if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { 1122 ShouldExtendDef |= !LocMO.isReg(); 1123 continue; 1124 } 1125 ShouldExtendDef = true; 1126 LiveInterval *LI = nullptr; 1127 const VNInfo *VNI = nullptr; 1128 if (LIS.hasInterval(LocMO.getReg())) { 1129 LI = &LIS.getInterval(LocMO.getReg()); 1130 VNI = LI->getVNInfoAt(Idx); 1131 } 1132 if (LI && VNI) 1133 LIs[LocNo] = {LI, VNI}; 1134 } 1135 if (ShouldExtendDef) { 1136 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; 1137 extendDef(Idx, DbgValue, LIs, Kills, LIS); 1138 1139 if (Kills) { 1140 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; 1141 bool AnySubreg = false; 1142 for (unsigned LocNo : Kills->second) { 1143 const MachineOperand &LocMO = this->locations[LocNo]; 1144 if (LocMO.getSubReg()) { 1145 AnySubreg = true; 1146 break; 1147 } 1148 LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); 1149 KilledLocIntervals.push_back({LocNo, LI}); 1150 } 1151 1152 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 1153 // if the original location for example is %vreg0:sub_hi, and we find a 1154 // full register copy in addDefsFromCopies (at the moment it only 1155 // handles full register copies), then we must add the sub1 sub-register 1156 // index to the new location. However, that is only possible if the new 1157 // virtual register is of the same regclass (or if there is an 1158 // equivalent sub-register in that regclass). For now, simply skip 1159 // handling copies if a sub-register is involved. 1160 if (!AnySubreg) 1161 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, 1162 MRI, LIS); 1163 } 1164 } 1165 1166 // For physregs, we only mark the start slot idx. DwarfDebug will see it 1167 // as if the DBG_VALUE is valid up until the end of the basic block, or 1168 // the next def of the physical register. So we do not need to extend the 1169 // range. It might actually happen that the DBG_VALUE is the last use of 1170 // the physical register (e.g. if this is an unused input argument to a 1171 // function). 1172 } 1173 1174 // The computed intervals may extend beyond the range of the debug 1175 // location's lexical scope. In this case, splitting of an interval 1176 // can result in an interval outside of the scope being created, 1177 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 1178 // this, trim the intervals to the lexical scope in the case of inlined 1179 // variables, since heavy inlining may cause production of dramatically big 1180 // number of DBG_VALUEs to be generated. 1181 if (!dl.getInlinedAt()) 1182 return; 1183 1184 LexicalScope *Scope = LS.findLexicalScope(dl); 1185 if (!Scope) 1186 return; 1187 1188 SlotIndex PrevEnd; 1189 LocMap::iterator I = locInts.begin(); 1190 1191 // Iterate over the lexical scope ranges. Each time round the loop 1192 // we check the intervals for overlap with the end of the previous 1193 // range and the start of the next. The first range is handled as 1194 // a special case where there is no PrevEnd. 1195 for (const InsnRange &Range : Scope->getRanges()) { 1196 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 1197 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 1198 1199 // Variable locations at the first instruction of a block should be 1200 // based on the block's SlotIndex, not the first instruction's index. 1201 if (Range.first == Range.first->getParent()->begin()) 1202 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 1203 1204 // At the start of each iteration I has been advanced so that 1205 // I.stop() >= PrevEnd. Check for overlap. 1206 if (PrevEnd && I.start() < PrevEnd) { 1207 SlotIndex IStop = I.stop(); 1208 DbgVariableValue DbgValue = I.value(); 1209 1210 // Stop overlaps previous end - trim the end of the interval to 1211 // the scope range. 1212 I.setStopUnchecked(PrevEnd); 1213 ++I; 1214 1215 // If the interval also overlaps the start of the "next" (i.e. 1216 // current) range create a new interval for the remainder (which 1217 // may be further trimmed). 1218 if (RStart < IStop) 1219 I.insert(RStart, IStop, DbgValue); 1220 } 1221 1222 // Advance I so that I.stop() >= RStart, and check for overlap. 1223 I.advanceTo(RStart); 1224 if (!I.valid()) 1225 return; 1226 1227 if (I.start() < RStart) { 1228 // Interval start overlaps range - trim to the scope range. 1229 I.setStartUnchecked(RStart); 1230 // Remember that this interval was trimmed. 1231 trimmedDefs.insert(RStart); 1232 } 1233 1234 // The end of a lexical scope range is the last instruction in the 1235 // range. To convert to an interval we need the index of the 1236 // instruction after it. 1237 REnd = REnd.getNextIndex(); 1238 1239 // Advance I to first interval outside current range. 1240 I.advanceTo(REnd); 1241 if (!I.valid()) 1242 return; 1243 1244 PrevEnd = REnd; 1245 } 1246 1247 // Check for overlap with end of final range. 1248 if (PrevEnd && I.start() < PrevEnd) 1249 I.setStopUnchecked(PrevEnd); 1250 } 1251 1252 void LDVImpl::computeIntervals() { 1253 LexicalScopes LS; 1254 LS.initialize(*MF); 1255 1256 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1257 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1258 userValues[i]->mapVirtRegs(this); 1259 } 1260 } 1261 1262 bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { 1263 clear(); 1264 MF = &mf; 1265 LIS = &pass.getAnalysis<LiveIntervals>(); 1266 TRI = mf.getSubtarget().getRegisterInfo(); 1267 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1268 << mf.getName() << " **********\n"); 1269 1270 bool Changed = collectDebugValues(mf, InstrRef); 1271 computeIntervals(); 1272 LLVM_DEBUG(print(dbgs())); 1273 1274 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive 1275 // VRegs too, for when we're notified of a range split. 1276 SlotIndexes *Slots = LIS->getSlotIndexes(); 1277 for (const auto &PHIIt : MF->DebugPHIPositions) { 1278 const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; 1279 MachineBasicBlock *MBB = Position.MBB; 1280 Register Reg = Position.Reg; 1281 unsigned SubReg = Position.SubReg; 1282 SlotIndex SI = Slots->getMBBStartIdx(MBB); 1283 PHIValPos VP = {SI, Reg, SubReg}; 1284 PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); 1285 RegToPHIIdx[Reg].push_back(PHIIt.first); 1286 } 1287 1288 ModifiedMF = Changed; 1289 return Changed; 1290 } 1291 1292 static void removeDebugInstrs(MachineFunction &mf) { 1293 for (MachineBasicBlock &MBB : mf) { 1294 for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) 1295 if (MI.isDebugInstr()) 1296 MBB.erase(&MI); 1297 } 1298 } 1299 1300 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1301 if (!EnableLDV) 1302 return false; 1303 if (!mf.getFunction().getSubprogram()) { 1304 removeDebugInstrs(mf); 1305 return false; 1306 } 1307 1308 // Have we been asked to track variable locations using instruction 1309 // referencing? 1310 bool InstrRef = mf.useDebugInstrRef(); 1311 1312 if (!pImpl) 1313 pImpl = new LDVImpl(this); 1314 return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); 1315 } 1316 1317 void LiveDebugVariables::releaseMemory() { 1318 if (pImpl) 1319 static_cast<LDVImpl*>(pImpl)->clear(); 1320 } 1321 1322 LiveDebugVariables::~LiveDebugVariables() { 1323 if (pImpl) 1324 delete static_cast<LDVImpl*>(pImpl); 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // Live Range Splitting 1329 //===----------------------------------------------------------------------===// 1330 1331 bool 1332 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1333 LiveIntervals& LIS) { 1334 LLVM_DEBUG({ 1335 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1336 print(dbgs(), nullptr); 1337 }); 1338 bool DidChange = false; 1339 LocMap::iterator LocMapI; 1340 LocMapI.setMap(locInts); 1341 for (Register NewReg : NewRegs) { 1342 LiveInterval *LI = &LIS.getInterval(NewReg); 1343 if (LI->empty()) 1344 continue; 1345 1346 // Don't allocate the new LocNo until it is needed. 1347 unsigned NewLocNo = UndefLocNo; 1348 1349 // Iterate over the overlaps between locInts and LI. 1350 LocMapI.find(LI->beginIndex()); 1351 if (!LocMapI.valid()) 1352 continue; 1353 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1354 LiveInterval::iterator LIE = LI->end(); 1355 while (LocMapI.valid() && LII != LIE) { 1356 // At this point, we know that LocMapI.stop() > LII->start. 1357 LII = LI->advanceTo(LII, LocMapI.start()); 1358 if (LII == LIE) 1359 break; 1360 1361 // Now LII->end > LocMapI.start(). Do we have an overlap? 1362 if (LocMapI.value().containsLocNo(OldLocNo) && 1363 LII->start < LocMapI.stop()) { 1364 // Overlapping correct location. Allocate NewLocNo now. 1365 if (NewLocNo == UndefLocNo) { 1366 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1367 MO.setSubReg(locations[OldLocNo].getSubReg()); 1368 NewLocNo = getLocationNo(MO); 1369 DidChange = true; 1370 } 1371 1372 SlotIndex LStart = LocMapI.start(); 1373 SlotIndex LStop = LocMapI.stop(); 1374 DbgVariableValue OldDbgValue = LocMapI.value(); 1375 1376 // Trim LocMapI down to the LII overlap. 1377 if (LStart < LII->start) 1378 LocMapI.setStartUnchecked(LII->start); 1379 if (LStop > LII->end) 1380 LocMapI.setStopUnchecked(LII->end); 1381 1382 // Change the value in the overlap. This may trigger coalescing. 1383 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); 1384 1385 // Re-insert any removed OldDbgValue ranges. 1386 if (LStart < LocMapI.start()) { 1387 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1388 ++LocMapI; 1389 assert(LocMapI.valid() && "Unexpected coalescing"); 1390 } 1391 if (LStop > LocMapI.stop()) { 1392 ++LocMapI; 1393 LocMapI.insert(LII->end, LStop, OldDbgValue); 1394 --LocMapI; 1395 } 1396 } 1397 1398 // Advance to the next overlap. 1399 if (LII->end < LocMapI.stop()) { 1400 if (++LII == LIE) 1401 break; 1402 LocMapI.advanceTo(LII->start); 1403 } else { 1404 ++LocMapI; 1405 if (!LocMapI.valid()) 1406 break; 1407 LII = LI->advanceTo(LII, LocMapI.start()); 1408 } 1409 } 1410 } 1411 1412 // Finally, remove OldLocNo unless it is still used by some interval in the 1413 // locInts map. One case when OldLocNo still is in use is when the register 1414 // has been spilled. In such situations the spilled register is kept as a 1415 // location until rewriteLocations is called (VirtRegMap is mapping the old 1416 // register to the spill slot). So for a while we can have locations that map 1417 // to virtual registers that have been removed from both the MachineFunction 1418 // and from LiveIntervals. 1419 // 1420 // We may also just be using the location for a value with a different 1421 // expression. 1422 removeLocationIfUnused(OldLocNo); 1423 1424 LLVM_DEBUG({ 1425 dbgs() << "Split result: \t"; 1426 print(dbgs(), nullptr); 1427 }); 1428 return DidChange; 1429 } 1430 1431 bool 1432 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1433 LiveIntervals &LIS) { 1434 bool DidChange = false; 1435 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1436 // safely erase unused locations. 1437 for (unsigned i = locations.size(); i ; --i) { 1438 unsigned LocNo = i-1; 1439 const MachineOperand *Loc = &locations[LocNo]; 1440 if (!Loc->isReg() || Loc->getReg() != OldReg) 1441 continue; 1442 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1443 } 1444 return DidChange; 1445 } 1446 1447 void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1448 auto RegIt = RegToPHIIdx.find(OldReg); 1449 if (RegIt == RegToPHIIdx.end()) 1450 return; 1451 1452 std::vector<std::pair<Register, unsigned>> NewRegIdxes; 1453 // Iterate over all the debug instruction numbers affected by this split. 1454 for (unsigned InstrID : RegIt->second) { 1455 auto PHIIt = PHIValToPos.find(InstrID); 1456 assert(PHIIt != PHIValToPos.end()); 1457 const SlotIndex &Slot = PHIIt->second.SI; 1458 assert(OldReg == PHIIt->second.Reg); 1459 1460 // Find the new register that covers this position. 1461 for (auto NewReg : NewRegs) { 1462 const LiveInterval &LI = LIS->getInterval(NewReg); 1463 auto LII = LI.find(Slot); 1464 if (LII != LI.end() && LII->start <= Slot) { 1465 // This new register covers this PHI position, record this for indexing. 1466 NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); 1467 // Record that this value lives in a different VReg now. 1468 PHIIt->second.Reg = NewReg; 1469 break; 1470 } 1471 } 1472 1473 // If we do not find a new register covering this PHI, then register 1474 // allocation has dropped its location, for example because it's not live. 1475 // The old VReg will not be mapped to a physreg, and the instruction 1476 // number will have been optimized out. 1477 } 1478 1479 // Re-create register index using the new register numbers. 1480 RegToPHIIdx.erase(RegIt); 1481 for (auto &RegAndInstr : NewRegIdxes) 1482 RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); 1483 } 1484 1485 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1486 // Consider whether this split range affects any PHI locations. 1487 splitPHIRegister(OldReg, NewRegs); 1488 1489 // Check whether any intervals mapped by a DBG_VALUE were split and need 1490 // updating. 1491 bool DidChange = false; 1492 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1493 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1494 1495 if (!DidChange) 1496 return; 1497 1498 // Map all of the new virtual registers. 1499 UserValue *UV = lookupVirtReg(OldReg); 1500 for (Register NewReg : NewRegs) 1501 mapVirtReg(NewReg, UV); 1502 } 1503 1504 void LiveDebugVariables:: 1505 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1506 if (pImpl) 1507 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1508 } 1509 1510 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1511 const TargetInstrInfo &TII, 1512 const TargetRegisterInfo &TRI, 1513 SpillOffsetMap &SpillOffsets) { 1514 // Build a set of new locations with new numbers so we can coalesce our 1515 // IntervalMap if two vreg intervals collapse to the same physical location. 1516 // Use MapVector instead of SetVector because MapVector::insert returns the 1517 // position of the previously or newly inserted element. The boolean value 1518 // tracks if the location was produced by a spill. 1519 // FIXME: This will be problematic if we ever support direct and indirect 1520 // frame index locations, i.e. expressing both variables in memory and 1521 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1522 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1523 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1524 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1525 bool Spilled = false; 1526 unsigned SpillOffset = 0; 1527 MachineOperand Loc = locations[I]; 1528 // Only virtual registers are rewritten. 1529 if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { 1530 Register VirtReg = Loc.getReg(); 1531 if (VRM.isAssignedReg(VirtReg) && 1532 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1533 // This can create a %noreg operand in rare cases when the sub-register 1534 // index is no longer available. That means the user value is in a 1535 // non-existent sub-register, and %noreg is exactly what we want. 1536 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1537 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1538 // Retrieve the stack slot offset. 1539 unsigned SpillSize; 1540 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1541 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1542 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1543 SpillOffset, MF); 1544 1545 // FIXME: Invalidate the location if the offset couldn't be calculated. 1546 (void)Success; 1547 1548 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1549 Spilled = true; 1550 } else { 1551 Loc.setReg(0); 1552 Loc.setSubReg(0); 1553 } 1554 } 1555 1556 // Insert this location if it doesn't already exist and record a mapping 1557 // from the old number to the new number. 1558 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1559 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1560 LocNoMap[I] = NewLocNo; 1561 } 1562 1563 // Rewrite the locations and record the stack slot offsets for spills. 1564 locations.clear(); 1565 SpillOffsets.clear(); 1566 for (auto &Pair : NewLocations) { 1567 bool Spilled; 1568 unsigned SpillOffset; 1569 std::tie(Spilled, SpillOffset) = Pair.second; 1570 locations.push_back(Pair.first); 1571 if (Spilled) { 1572 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1573 SpillOffsets[NewLocNo] = SpillOffset; 1574 } 1575 } 1576 1577 // Update the interval map, but only coalesce left, since intervals to the 1578 // right use the old location numbers. This should merge two contiguous 1579 // DBG_VALUE intervals with different vregs that were allocated to the same 1580 // physical register. 1581 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1582 I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); 1583 I.setStart(I.start()); 1584 } 1585 } 1586 1587 /// Find an iterator for inserting a DBG_VALUE instruction. 1588 static MachineBasicBlock::iterator 1589 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1590 BlockSkipInstsMap &BBSkipInstsMap) { 1591 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1592 Idx = Idx.getBaseIndex(); 1593 1594 // Try to find an insert location by going backwards from Idx. 1595 MachineInstr *MI; 1596 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1597 // We've reached the beginning of MBB. 1598 if (Idx == Start) { 1599 // Retrieve the last PHI/Label/Debug location found when calling 1600 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1601 // 1602 // Note the iterator kept in BBSkipInstsMap is one step back based 1603 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1604 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1605 // BBSkipInstsMap won't save it. This is to consider the case that 1606 // new instructions may be inserted at the beginning of MBB after 1607 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1608 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1609 // are inserted at the beginning of the MBB, the iterator in 1610 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1611 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1612 // newly added instructions and that is unwanted. 1613 MachineBasicBlock::iterator BeginIt; 1614 auto MapIt = BBSkipInstsMap.find(MBB); 1615 if (MapIt == BBSkipInstsMap.end()) 1616 BeginIt = MBB->begin(); 1617 else 1618 BeginIt = std::next(MapIt->second); 1619 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1620 if (I != BeginIt) 1621 BBSkipInstsMap[MBB] = std::prev(I); 1622 return I; 1623 } 1624 Idx = Idx.getPrevIndex(); 1625 } 1626 1627 // Don't insert anything after the first terminator, though. 1628 return MI->isTerminator() ? MBB->getFirstTerminator() : 1629 std::next(MachineBasicBlock::iterator(MI)); 1630 } 1631 1632 /// Find an iterator for inserting the next DBG_VALUE instruction 1633 /// (or end if no more insert locations found). 1634 static MachineBasicBlock::iterator 1635 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, 1636 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, 1637 LiveIntervals &LIS, const TargetRegisterInfo &TRI) { 1638 SmallVector<Register, 4> Regs; 1639 for (const MachineOperand &LocMO : LocMOs) 1640 if (LocMO.isReg()) 1641 Regs.push_back(LocMO.getReg()); 1642 if (Regs.empty()) 1643 return MBB->instr_end(); 1644 1645 // Find the next instruction in the MBB that define the register Reg. 1646 while (I != MBB->end() && !I->isTerminator()) { 1647 if (!LIS.isNotInMIMap(*I) && 1648 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1649 break; 1650 if (any_of(Regs, [&I, &TRI](Register &Reg) { 1651 return I->definesRegister(Reg, &TRI); 1652 })) 1653 // The insert location is directly after the instruction/bundle. 1654 return std::next(I); 1655 ++I; 1656 } 1657 return MBB->end(); 1658 } 1659 1660 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1661 SlotIndex StopIdx, DbgVariableValue DbgValue, 1662 ArrayRef<bool> LocSpills, 1663 ArrayRef<unsigned> SpillOffsets, 1664 LiveIntervals &LIS, const TargetInstrInfo &TII, 1665 const TargetRegisterInfo &TRI, 1666 BlockSkipInstsMap &BBSkipInstsMap) { 1667 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1668 // Only search within the current MBB. 1669 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1670 MachineBasicBlock::iterator I = 1671 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1672 // Undef values don't exist in locations so create new "noreg" register MOs 1673 // for them. See getLocationNo(). 1674 SmallVector<MachineOperand, 8> MOs; 1675 if (DbgValue.isUndef()) { 1676 MOs.assign(DbgValue.loc_nos().size(), 1677 MachineOperand::CreateReg( 1678 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1679 /* isKill */ false, /* isDead */ false, 1680 /* isUndef */ false, /* isEarlyClobber */ false, 1681 /* SubReg */ 0, /* isDebug */ true)); 1682 } else { 1683 for (unsigned LocNo : DbgValue.loc_nos()) 1684 MOs.push_back(locations[LocNo]); 1685 } 1686 1687 ++NumInsertedDebugValues; 1688 1689 assert(cast<DILocalVariable>(Variable) 1690 ->isValidLocationForIntrinsic(getDebugLoc()) && 1691 "Expected inlined-at fields to agree"); 1692 1693 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1694 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1695 // that the original virtual register was a pointer. Also, add the stack slot 1696 // offset for the spilled register to the expression. 1697 const DIExpression *Expr = DbgValue.getExpression(); 1698 bool IsIndirect = DbgValue.getWasIndirect(); 1699 bool IsList = DbgValue.getWasList(); 1700 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { 1701 if (LocSpills[I]) { 1702 if (!IsList) { 1703 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1704 if (IsIndirect) 1705 DIExprFlags |= DIExpression::DerefAfter; 1706 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); 1707 IsIndirect = true; 1708 } else { 1709 SmallVector<uint64_t, 4> Ops; 1710 DIExpression::appendOffset(Ops, SpillOffsets[I]); 1711 Ops.push_back(dwarf::DW_OP_deref); 1712 Expr = DIExpression::appendOpsToArg(Expr, Ops, I); 1713 } 1714 } 1715 1716 assert((!LocSpills[I] || MOs[I].isFI()) && 1717 "a spilled location must be a frame index"); 1718 } 1719 1720 unsigned DbgValueOpcode = 1721 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; 1722 do { 1723 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, 1724 Variable, Expr); 1725 1726 // Continue and insert DBG_VALUES after every redefinition of a register 1727 // associated with the debug value within the range 1728 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); 1729 } while (I != MBB->end()); 1730 } 1731 1732 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1733 LiveIntervals &LIS, const TargetInstrInfo &TII, 1734 BlockSkipInstsMap &BBSkipInstsMap) { 1735 MachineBasicBlock::iterator I = 1736 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1737 ++NumInsertedDebugLabels; 1738 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1739 .addMetadata(Label); 1740 } 1741 1742 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1743 const TargetInstrInfo &TII, 1744 const TargetRegisterInfo &TRI, 1745 const SpillOffsetMap &SpillOffsets, 1746 BlockSkipInstsMap &BBSkipInstsMap) { 1747 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1748 1749 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1750 SlotIndex Start = I.start(); 1751 SlotIndex Stop = I.stop(); 1752 DbgVariableValue DbgValue = I.value(); 1753 1754 SmallVector<bool> SpilledLocs; 1755 SmallVector<unsigned> LocSpillOffsets; 1756 for (unsigned LocNo : DbgValue.loc_nos()) { 1757 auto SpillIt = 1758 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); 1759 bool Spilled = SpillIt != SpillOffsets.end(); 1760 SpilledLocs.push_back(Spilled); 1761 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); 1762 } 1763 1764 // If the interval start was trimmed to the lexical scope insert the 1765 // DBG_VALUE at the previous index (otherwise it appears after the 1766 // first instruction in the range). 1767 if (trimmedDefs.count(Start)) 1768 Start = Start.getPrevIndex(); 1769 1770 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; 1771 DbgValue.printLocNos(dbg)); 1772 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1773 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1774 1775 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1776 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, 1777 LIS, TII, TRI, BBSkipInstsMap); 1778 // This interval may span multiple basic blocks. 1779 // Insert a DBG_VALUE into each one. 1780 while (Stop > MBBEnd) { 1781 // Move to the next block. 1782 Start = MBBEnd; 1783 if (++MBB == MFEnd) 1784 break; 1785 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1786 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1787 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, 1788 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); 1789 } 1790 LLVM_DEBUG(dbgs() << '\n'); 1791 if (MBB == MFEnd) 1792 break; 1793 1794 ++I; 1795 } 1796 } 1797 1798 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1799 BlockSkipInstsMap &BBSkipInstsMap) { 1800 LLVM_DEBUG(dbgs() << "\t" << loc); 1801 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1802 1803 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1804 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1805 1806 LLVM_DEBUG(dbgs() << '\n'); 1807 } 1808 1809 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1810 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1811 if (!MF) 1812 return; 1813 1814 BlockSkipInstsMap BBSkipInstsMap; 1815 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1816 SpillOffsetMap SpillOffsets; 1817 for (auto &userValue : userValues) { 1818 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1819 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1820 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1821 BBSkipInstsMap); 1822 } 1823 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1824 for (auto &userLabel : userLabels) { 1825 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1826 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1827 } 1828 1829 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); 1830 1831 auto Slots = LIS->getSlotIndexes(); 1832 for (auto &It : PHIValToPos) { 1833 // For each ex-PHI, identify its physreg location or stack slot, and emit 1834 // a DBG_PHI for it. 1835 unsigned InstNum = It.first; 1836 auto Slot = It.second.SI; 1837 Register Reg = It.second.Reg; 1838 unsigned SubReg = It.second.SubReg; 1839 1840 MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); 1841 if (VRM->isAssignedReg(Reg) && 1842 Register::isPhysicalRegister(VRM->getPhys(Reg))) { 1843 unsigned PhysReg = VRM->getPhys(Reg); 1844 if (SubReg != 0) 1845 PhysReg = TRI->getSubReg(PhysReg, SubReg); 1846 1847 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1848 TII->get(TargetOpcode::DBG_PHI)); 1849 Builder.addReg(PhysReg); 1850 Builder.addImm(InstNum); 1851 } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { 1852 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1853 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 1854 unsigned SpillSize, SpillOffset; 1855 1856 unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); 1857 if (SubReg) 1858 regSizeInBits = TRI->getSubRegIdxSize(SubReg); 1859 1860 // Test whether this location is legal with the given subreg. If the 1861 // subregister has a nonzero offset, drop this location, it's too complex 1862 // to describe. (TODO: future work). 1863 bool Success = 1864 TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); 1865 1866 if (Success && SpillOffset == 0) { 1867 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1868 TII->get(TargetOpcode::DBG_PHI)); 1869 Builder.addFrameIndex(VRM->getStackSlot(Reg)); 1870 Builder.addImm(InstNum); 1871 // Record how large the original value is. The stack slot might be 1872 // merged and altered during optimisation, but we will want to know how 1873 // large the value is, at this DBG_PHI. 1874 Builder.addImm(regSizeInBits); 1875 } 1876 1877 LLVM_DEBUG( 1878 if (SpillOffset != 0) { 1879 dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << 1880 " has nonzero offset\n"; 1881 } 1882 ); 1883 } 1884 // If there was no mapping for a value ID, it's optimized out. Create no 1885 // DBG_PHI, and any variables using this value will become optimized out. 1886 } 1887 MF->DebugPHIPositions.clear(); 1888 1889 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1890 1891 // Re-insert any debug instrs back in the position they were. We must 1892 // re-insert in the same order to ensure that debug instructions don't swap, 1893 // which could re-order assignments. Do so in a batch -- once we find the 1894 // insert position, insert all instructions at the same SlotIdx. They are 1895 // guaranteed to appear in-sequence in StashedDebugInstrs because we insert 1896 // them in order. 1897 for (auto *StashIt = StashedDebugInstrs.begin(); 1898 StashIt != StashedDebugInstrs.end(); ++StashIt) { 1899 SlotIndex Idx = StashIt->Idx; 1900 MachineBasicBlock *MBB = StashIt->MBB; 1901 MachineInstr *MI = StashIt->MI; 1902 1903 auto EmitInstsHere = [this, &StashIt, MBB, Idx, 1904 MI](MachineBasicBlock::iterator InsertPos) { 1905 // Insert this debug instruction. 1906 MBB->insert(InsertPos, MI); 1907 1908 // Look at subsequent stashed debug instructions: if they're at the same 1909 // index, insert those too. 1910 auto NextItem = std::next(StashIt); 1911 while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { 1912 assert(NextItem->MBB == MBB && "Instrs with same slot index should be" 1913 "in the same block"); 1914 MBB->insert(InsertPos, NextItem->MI); 1915 StashIt = NextItem; 1916 NextItem = std::next(StashIt); 1917 }; 1918 }; 1919 1920 // Start block index: find the first non-debug instr in the block, and 1921 // insert before it. 1922 if (Idx == Slots->getMBBStartIdx(MBB)) { 1923 MachineBasicBlock::iterator InsertPos = 1924 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1925 EmitInstsHere(InsertPos); 1926 continue; 1927 } 1928 1929 if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { 1930 // Insert at the end of any debug instructions. 1931 auto PostDebug = std::next(Pos->getIterator()); 1932 PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); 1933 EmitInstsHere(PostDebug); 1934 } else { 1935 // Insert position disappeared; walk forwards through slots until we 1936 // find a new one. 1937 SlotIndex End = Slots->getMBBEndIdx(MBB); 1938 for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { 1939 Pos = Slots->getInstructionFromIndex(Idx); 1940 if (Pos) { 1941 EmitInstsHere(Pos->getIterator()); 1942 break; 1943 } 1944 } 1945 1946 // We have reached the end of the block and didn't find anywhere to 1947 // insert! It's not safe to discard any debug instructions; place them 1948 // in front of the first terminator, or in front of end(). 1949 if (Idx >= End) { 1950 auto TermIt = MBB->getFirstTerminator(); 1951 EmitInstsHere(TermIt); 1952 } 1953 } 1954 } 1955 1956 EmitDone = true; 1957 BBSkipInstsMap.clear(); 1958 } 1959 1960 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1961 if (pImpl) 1962 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1963 } 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1967 if (pImpl) 1968 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1969 } 1970 #endif 1971