1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <iterator> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "livedebugvars" 69 70 static cl::opt<bool> 71 EnableLDV("live-debug-variables", cl::init(true), 72 cl::desc("Enable the live debug variables pass"), cl::Hidden); 73 74 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 75 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 76 77 char LiveDebugVariables::ID = 0; 78 79 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 80 "Debug Variable Analysis", false, false) 81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 82 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 83 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 84 "Debug Variable Analysis", false, false) 85 86 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addRequiredTransitive<LiveIntervals>(); 89 AU.setPreservesAll(); 90 MachineFunctionPass::getAnalysisUsage(AU); 91 } 92 93 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 94 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 95 } 96 97 enum : unsigned { UndefLocNo = ~0U }; 98 99 /// Describes a location by number along with some flags about the original 100 /// usage of the location. 101 class DbgValueLocation { 102 public: 103 DbgValueLocation(unsigned LocNo, bool WasIndirect) 104 : LocNo(LocNo), WasIndirect(WasIndirect) { 105 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 106 assert(locNo() == LocNo && "location truncation"); 107 } 108 109 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 110 111 unsigned locNo() const { 112 // Fix up the undef location number, which gets truncated. 113 return LocNo == INT_MAX ? UndefLocNo : LocNo; 114 } 115 bool wasIndirect() const { return WasIndirect; } 116 bool isUndef() const { return locNo() == UndefLocNo; } 117 118 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 119 return DbgValueLocation(NewLocNo, WasIndirect); 120 } 121 122 friend inline bool operator==(const DbgValueLocation &LHS, 123 const DbgValueLocation &RHS) { 124 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 125 } 126 127 friend inline bool operator!=(const DbgValueLocation &LHS, 128 const DbgValueLocation &RHS) { 129 return !(LHS == RHS); 130 } 131 132 private: 133 unsigned LocNo : 31; 134 unsigned WasIndirect : 1; 135 }; 136 137 /// Map of where a user value is live, and its location. 138 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 139 140 /// Map of stack slot offsets for spilled locations. 141 /// Non-spilled locations are not added to the map. 142 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 143 144 namespace { 145 146 class LDVImpl; 147 148 /// A user value is a part of a debug info user variable. 149 /// 150 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 151 /// holds part of a user variable. The part is identified by a byte offset. 152 /// 153 /// UserValues are grouped into equivalence classes for easier searching. Two 154 /// user values are related if they refer to the same variable, or if they are 155 /// held by the same virtual register. The equivalence class is the transitive 156 /// closure of that relation. 157 class UserValue { 158 const DILocalVariable *Variable; ///< The debug info variable we are part of. 159 const DIExpression *Expression; ///< Any complex address expression. 160 DebugLoc dl; ///< The debug location for the variable. This is 161 ///< used by dwarf writer to find lexical scope. 162 UserValue *leader; ///< Equivalence class leader. 163 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 164 165 /// Numbered locations referenced by locmap. 166 SmallVector<MachineOperand, 4> locations; 167 168 /// Map of slot indices where this value is live. 169 LocMap locInts; 170 171 /// Set of interval start indexes that have been trimmed to the 172 /// lexical scope. 173 SmallSet<SlotIndex, 2> trimmedDefs; 174 175 /// Insert a DBG_VALUE into MBB at Idx for LocNo. 176 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 177 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled, 178 unsigned SpillOffset, LiveIntervals &LIS, 179 const TargetInstrInfo &TII, 180 const TargetRegisterInfo &TRI); 181 182 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 183 /// is live. Returns true if any changes were made. 184 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 185 LiveIntervals &LIS); 186 187 public: 188 /// Create a new UserValue. 189 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 190 LocMap::Allocator &alloc) 191 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 192 locInts(alloc) {} 193 194 /// Get the leader of this value's equivalence class. 195 UserValue *getLeader() { 196 UserValue *l = leader; 197 while (l != l->leader) 198 l = l->leader; 199 return leader = l; 200 } 201 202 /// Return the next UserValue in the equivalence class. 203 UserValue *getNext() const { return next; } 204 205 /// Does this UserValue match the parameters? 206 bool match(const DILocalVariable *Var, const DIExpression *Expr, 207 const DILocation *IA) const { 208 // FIXME: The fragment should be part of the equivalence class, but not 209 // other things in the expression like stack values. 210 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 211 } 212 213 /// Merge equivalence classes. 214 static UserValue *merge(UserValue *L1, UserValue *L2) { 215 L2 = L2->getLeader(); 216 if (!L1) 217 return L2; 218 L1 = L1->getLeader(); 219 if (L1 == L2) 220 return L1; 221 // Splice L2 before L1's members. 222 UserValue *End = L2; 223 while (End->next) { 224 End->leader = L1; 225 End = End->next; 226 } 227 End->leader = L1; 228 End->next = L1->next; 229 L1->next = L2; 230 return L1; 231 } 232 233 /// Return the location number that matches Loc. 234 /// 235 /// For undef values we always return location number UndefLocNo without 236 /// inserting anything in locations. Since locations is a vector and the 237 /// location number is the position in the vector and UndefLocNo is ~0, 238 /// we would need a very big vector to put the value at the right position. 239 unsigned getLocationNo(const MachineOperand &LocMO) { 240 if (LocMO.isReg()) { 241 if (LocMO.getReg() == 0) 242 return UndefLocNo; 243 // For register locations we dont care about use/def and other flags. 244 for (unsigned i = 0, e = locations.size(); i != e; ++i) 245 if (locations[i].isReg() && 246 locations[i].getReg() == LocMO.getReg() && 247 locations[i].getSubReg() == LocMO.getSubReg()) 248 return i; 249 } else 250 for (unsigned i = 0, e = locations.size(); i != e; ++i) 251 if (LocMO.isIdenticalTo(locations[i])) 252 return i; 253 locations.push_back(LocMO); 254 // We are storing a MachineOperand outside a MachineInstr. 255 locations.back().clearParent(); 256 // Don't store def operands. 257 if (locations.back().isReg()) { 258 if (locations.back().isDef()) 259 locations.back().setIsDead(false); 260 locations.back().setIsUse(); 261 } 262 return locations.size() - 1; 263 } 264 265 /// Remove (recycle) a location number. If \p LocNo still is used by the 266 /// locInts nothing is done. 267 void removeLocationIfUnused(unsigned LocNo) { 268 // Bail out if LocNo still is used. 269 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 270 DbgValueLocation Loc = I.value(); 271 if (Loc.locNo() == LocNo) 272 return; 273 } 274 // Remove the entry in the locations vector, and adjust all references to 275 // location numbers above the removed entry. 276 locations.erase(locations.begin() + LocNo); 277 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 278 DbgValueLocation Loc = I.value(); 279 if (!Loc.isUndef() && Loc.locNo() > LocNo) 280 I.setValueUnchecked(Loc.changeLocNo(Loc.locNo() - 1)); 281 } 282 } 283 284 /// Ensure that all virtual register locations are mapped. 285 void mapVirtRegs(LDVImpl *LDV); 286 287 /// Add a definition point to this value. 288 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 289 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 290 // Add a singular (Idx,Idx) -> Loc mapping. 291 LocMap::iterator I = locInts.find(Idx); 292 if (!I.valid() || I.start() != Idx) 293 I.insert(Idx, Idx.getNextSlot(), Loc); 294 else 295 // A later DBG_VALUE at the same SlotIndex overrides the old location. 296 I.setValue(Loc); 297 } 298 299 /// Extend the current definition as far as possible down. 300 /// 301 /// Stop when meeting an existing def or when leaving the live 302 /// range of VNI. End points where VNI is no longer live are added to Kills. 303 /// 304 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 305 /// data-flow analysis to propagate them beyond basic block boundaries. 306 /// 307 /// \param Idx Starting point for the definition. 308 /// \param Loc Location number to propagate. 309 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 310 /// \param VNI When LR is not null, this is the value to restrict to. 311 /// \param [out] Kills Append end points of VNI's live range to Kills. 312 /// \param LIS Live intervals analysis. 313 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 314 LiveRange *LR, const VNInfo *VNI, 315 SmallVectorImpl<SlotIndex> *Kills, 316 LiveIntervals &LIS); 317 318 /// The value in LI/LocNo may be copies to other registers. Determine if 319 /// any of the copies are available at the kill points, and add defs if 320 /// possible. 321 /// 322 /// \param LI Scan for copies of the value in LI->reg. 323 /// \param LocNo Location number of LI->reg. 324 /// \param WasIndirect Indicates if the original use of LI->reg was indirect 325 /// \param Kills Points where the range of LocNo could be extended. 326 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here. 327 void addDefsFromCopies( 328 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 329 const SmallVectorImpl<SlotIndex> &Kills, 330 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 331 MachineRegisterInfo &MRI, LiveIntervals &LIS); 332 333 /// Compute the live intervals of all locations after collecting all their 334 /// def points. 335 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 336 LiveIntervals &LIS, LexicalScopes &LS); 337 338 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 339 /// live. Returns true if any changes were made. 340 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 341 LiveIntervals &LIS); 342 343 /// Rewrite virtual register locations according to the provided virtual 344 /// register map. Record the stack slot offsets for the locations that 345 /// were spilled. 346 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 347 const TargetInstrInfo &TII, 348 const TargetRegisterInfo &TRI, 349 SpillOffsetMap &SpillOffsets); 350 351 /// Recreate DBG_VALUE instruction from data structures. 352 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 353 const TargetInstrInfo &TII, 354 const TargetRegisterInfo &TRI, 355 const SpillOffsetMap &SpillOffsets); 356 357 /// Return DebugLoc of this UserValue. 358 DebugLoc getDebugLoc() { return dl;} 359 360 void print(raw_ostream &, const TargetRegisterInfo *); 361 }; 362 363 /// A user label is a part of a debug info user label. 364 class UserLabel { 365 const DILabel *Label; ///< The debug info label we are part of. 366 DebugLoc dl; ///< The debug location for the label. This is 367 ///< used by dwarf writer to find lexical scope. 368 SlotIndex loc; ///< Slot used by the debug label. 369 370 /// Insert a DBG_LABEL into MBB at Idx. 371 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 372 LiveIntervals &LIS, const TargetInstrInfo &TII); 373 374 public: 375 /// Create a new UserLabel. 376 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 377 : Label(label), dl(std::move(L)), loc(Idx) {} 378 379 /// Does this UserLabel match the parameters? 380 bool match(const DILabel *L, const DILocation *IA, 381 const SlotIndex Index) const { 382 return Label == L && dl->getInlinedAt() == IA && loc == Index; 383 } 384 385 /// Recreate DBG_LABEL instruction from data structures. 386 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 387 388 /// Return DebugLoc of this UserLabel. 389 DebugLoc getDebugLoc() { return dl; } 390 391 void print(raw_ostream &, const TargetRegisterInfo *); 392 }; 393 394 /// Implementation of the LiveDebugVariables pass. 395 class LDVImpl { 396 LiveDebugVariables &pass; 397 LocMap::Allocator allocator; 398 MachineFunction *MF = nullptr; 399 LiveIntervals *LIS; 400 const TargetRegisterInfo *TRI; 401 402 /// Whether emitDebugValues is called. 403 bool EmitDone = false; 404 405 /// Whether the machine function is modified during the pass. 406 bool ModifiedMF = false; 407 408 /// All allocated UserValue instances. 409 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 410 411 /// All allocated UserLabel instances. 412 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 413 414 /// Map virtual register to eq class leader. 415 using VRMap = DenseMap<unsigned, UserValue *>; 416 VRMap virtRegToEqClass; 417 418 /// Map user variable to eq class leader. 419 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 420 UVMap userVarMap; 421 422 /// Find or create a UserValue. 423 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 424 const DebugLoc &DL); 425 426 /// Find the EC leader for VirtReg or null. 427 UserValue *lookupVirtReg(unsigned VirtReg); 428 429 /// Add DBG_VALUE instruction to our maps. 430 /// 431 /// \param MI DBG_VALUE instruction 432 /// \param Idx Last valid SLotIndex before instruction. 433 /// 434 /// \returns True if the DBG_VALUE instruction should be deleted. 435 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 436 437 /// Add DBG_LABEL instruction to UserLabel. 438 /// 439 /// \param MI DBG_LABEL instruction 440 /// \param Idx Last valid SlotIndex before instruction. 441 /// 442 /// \returns True if the DBG_LABEL instruction should be deleted. 443 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 444 445 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 446 /// for each instruction. 447 /// 448 /// \param mf MachineFunction to be scanned. 449 /// 450 /// \returns True if any debug values were found. 451 bool collectDebugValues(MachineFunction &mf); 452 453 /// Compute the live intervals of all user values after collecting all 454 /// their def points. 455 void computeIntervals(); 456 457 public: 458 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 459 460 bool runOnMachineFunction(MachineFunction &mf); 461 462 /// Release all memory. 463 void clear() { 464 MF = nullptr; 465 userValues.clear(); 466 userLabels.clear(); 467 virtRegToEqClass.clear(); 468 userVarMap.clear(); 469 // Make sure we call emitDebugValues if the machine function was modified. 470 assert((!ModifiedMF || EmitDone) && 471 "Dbg values are not emitted in LDV"); 472 EmitDone = false; 473 ModifiedMF = false; 474 } 475 476 /// Map virtual register to an equivalence class. 477 void mapVirtReg(unsigned VirtReg, UserValue *EC); 478 479 /// Replace all references to OldReg with NewRegs. 480 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 481 482 /// Recreate DBG_VALUE instruction from data structures. 483 void emitDebugValues(VirtRegMap *VRM); 484 485 void print(raw_ostream&); 486 }; 487 488 } // end anonymous namespace 489 490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 491 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 492 const LLVMContext &Ctx) { 493 if (!DL) 494 return; 495 496 auto *Scope = cast<DIScope>(DL.getScope()); 497 // Omit the directory, because it's likely to be long and uninteresting. 498 CommentOS << Scope->getFilename(); 499 CommentOS << ':' << DL.getLine(); 500 if (DL.getCol() != 0) 501 CommentOS << ':' << DL.getCol(); 502 503 DebugLoc InlinedAtDL = DL.getInlinedAt(); 504 if (!InlinedAtDL) 505 return; 506 507 CommentOS << " @[ "; 508 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 509 CommentOS << " ]"; 510 } 511 512 static void printExtendedName(raw_ostream &OS, const DINode *Node, 513 const DILocation *DL) { 514 const LLVMContext &Ctx = Node->getContext(); 515 StringRef Res; 516 unsigned Line = 0; 517 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 518 Res = V->getName(); 519 Line = V->getLine(); 520 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 521 Res = L->getName(); 522 Line = L->getLine(); 523 } 524 525 if (!Res.empty()) 526 OS << Res << "," << Line; 527 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 528 if (InlinedAt) { 529 if (DebugLoc InlinedAtDL = InlinedAt) { 530 OS << " @["; 531 printDebugLoc(InlinedAtDL, OS, Ctx); 532 OS << "]"; 533 } 534 } 535 } 536 537 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 538 OS << "!\""; 539 printExtendedName(OS, Variable, dl); 540 541 OS << "\"\t"; 542 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 543 OS << " [" << I.start() << ';' << I.stop() << "):"; 544 if (I.value().isUndef()) 545 OS << "undef"; 546 else { 547 OS << I.value().locNo(); 548 if (I.value().wasIndirect()) 549 OS << " ind"; 550 } 551 } 552 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 553 OS << " Loc" << i << '='; 554 locations[i].print(OS, TRI); 555 } 556 OS << '\n'; 557 } 558 559 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 560 OS << "!\""; 561 printExtendedName(OS, Label, dl); 562 563 OS << "\"\t"; 564 OS << loc; 565 OS << '\n'; 566 } 567 568 void LDVImpl::print(raw_ostream &OS) { 569 OS << "********** DEBUG VARIABLES **********\n"; 570 for (auto &userValue : userValues) 571 userValue->print(OS, TRI); 572 OS << "********** DEBUG LABELS **********\n"; 573 for (auto &userLabel : userLabels) 574 userLabel->print(OS, TRI); 575 } 576 #endif 577 578 void UserValue::mapVirtRegs(LDVImpl *LDV) { 579 for (unsigned i = 0, e = locations.size(); i != e; ++i) 580 if (locations[i].isReg() && 581 Register::isVirtualRegister(locations[i].getReg())) 582 LDV->mapVirtReg(locations[i].getReg(), this); 583 } 584 585 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 586 const DIExpression *Expr, const DebugLoc &DL) { 587 UserValue *&Leader = userVarMap[Var]; 588 if (Leader) { 589 UserValue *UV = Leader->getLeader(); 590 Leader = UV; 591 for (; UV; UV = UV->getNext()) 592 if (UV->match(Var, Expr, DL->getInlinedAt())) 593 return UV; 594 } 595 596 userValues.push_back( 597 std::make_unique<UserValue>(Var, Expr, DL, allocator)); 598 UserValue *UV = userValues.back().get(); 599 Leader = UserValue::merge(Leader, UV); 600 return UV; 601 } 602 603 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 604 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 605 UserValue *&Leader = virtRegToEqClass[VirtReg]; 606 Leader = UserValue::merge(Leader, EC); 607 } 608 609 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 610 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 611 return UV->getLeader(); 612 return nullptr; 613 } 614 615 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 616 // DBG_VALUE loc, offset, variable 617 if (MI.getNumOperands() != 4 || 618 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 619 !MI.getOperand(2).isMetadata()) { 620 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 621 return false; 622 } 623 624 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 625 // register that hasn't been defined yet. If we do not remove those here, then 626 // the re-insertion of the DBG_VALUE instruction after register allocation 627 // will be incorrect. 628 // TODO: If earlier passes are corrected to generate sane debug information 629 // (and if the machine verifier is improved to catch this), then these checks 630 // could be removed or replaced by asserts. 631 bool Discard = false; 632 if (MI.getOperand(0).isReg() && 633 Register::isVirtualRegister(MI.getOperand(0).getReg())) { 634 const Register Reg = MI.getOperand(0).getReg(); 635 if (!LIS->hasInterval(Reg)) { 636 // The DBG_VALUE is described by a virtual register that does not have a 637 // live interval. Discard the DBG_VALUE. 638 Discard = true; 639 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 640 << " " << MI); 641 } else { 642 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 643 // is defined dead at Idx (where Idx is the slot index for the instruction 644 // preceding the DBG_VALUE). 645 const LiveInterval &LI = LIS->getInterval(Reg); 646 LiveQueryResult LRQ = LI.Query(Idx); 647 if (!LRQ.valueOutOrDead()) { 648 // We have found a DBG_VALUE with the value in a virtual register that 649 // is not live. Discard the DBG_VALUE. 650 Discard = true; 651 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 652 << " " << MI); 653 } 654 } 655 } 656 657 // Get or create the UserValue for (variable,offset) here. 658 bool IsIndirect = MI.getOperand(1).isImm(); 659 if (IsIndirect) 660 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 661 const DILocalVariable *Var = MI.getDebugVariable(); 662 const DIExpression *Expr = MI.getDebugExpression(); 663 UserValue *UV = 664 getUserValue(Var, Expr, MI.getDebugLoc()); 665 if (!Discard) 666 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 667 else { 668 MachineOperand MO = MachineOperand::CreateReg(0U, false); 669 MO.setIsDebug(); 670 UV->addDef(Idx, MO, false); 671 } 672 return true; 673 } 674 675 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 676 // DBG_LABEL label 677 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 678 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 679 return false; 680 } 681 682 // Get or create the UserLabel for label here. 683 const DILabel *Label = MI.getDebugLabel(); 684 const DebugLoc &DL = MI.getDebugLoc(); 685 bool Found = false; 686 for (auto const &L : userLabels) { 687 if (L->match(Label, DL->getInlinedAt(), Idx)) { 688 Found = true; 689 break; 690 } 691 } 692 if (!Found) 693 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 694 695 return true; 696 } 697 698 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 699 bool Changed = false; 700 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 701 ++MFI) { 702 MachineBasicBlock *MBB = &*MFI; 703 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 704 MBBI != MBBE;) { 705 // Use the first debug instruction in the sequence to get a SlotIndex 706 // for following consecutive debug instructions. 707 if (!MBBI->isDebugInstr()) { 708 ++MBBI; 709 continue; 710 } 711 // Debug instructions has no slot index. Use the previous 712 // non-debug instruction's SlotIndex as its SlotIndex. 713 SlotIndex Idx = 714 MBBI == MBB->begin() 715 ? LIS->getMBBStartIdx(MBB) 716 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 717 // Handle consecutive debug instructions with the same slot index. 718 do { 719 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 720 // kinds of debug instructions. 721 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 722 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 723 MBBI = MBB->erase(MBBI); 724 Changed = true; 725 } else 726 ++MBBI; 727 } while (MBBI != MBBE && MBBI->isDebugInstr()); 728 } 729 } 730 return Changed; 731 } 732 733 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 734 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 735 LiveIntervals &LIS) { 736 SlotIndex Start = Idx; 737 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 738 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 739 LocMap::iterator I = locInts.find(Start); 740 741 // Limit to VNI's live range. 742 bool ToEnd = true; 743 if (LR && VNI) { 744 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 745 if (!Segment || Segment->valno != VNI) { 746 if (Kills) 747 Kills->push_back(Start); 748 return; 749 } 750 if (Segment->end < Stop) { 751 Stop = Segment->end; 752 ToEnd = false; 753 } 754 } 755 756 // There could already be a short def at Start. 757 if (I.valid() && I.start() <= Start) { 758 // Stop when meeting a different location or an already extended interval. 759 Start = Start.getNextSlot(); 760 if (I.value() != Loc || I.stop() != Start) 761 return; 762 // This is a one-slot placeholder. Just skip it. 763 ++I; 764 } 765 766 // Limited by the next def. 767 if (I.valid() && I.start() < Stop) 768 Stop = I.start(); 769 // Limited by VNI's live range. 770 else if (!ToEnd && Kills) 771 Kills->push_back(Stop); 772 773 if (Start < Stop) 774 I.insert(Start, Stop, Loc); 775 } 776 777 void UserValue::addDefsFromCopies( 778 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 779 const SmallVectorImpl<SlotIndex> &Kills, 780 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 781 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 782 if (Kills.empty()) 783 return; 784 // Don't track copies from physregs, there are too many uses. 785 if (!Register::isVirtualRegister(LI->reg)) 786 return; 787 788 // Collect all the (vreg, valno) pairs that are copies of LI. 789 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 790 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 791 MachineInstr *MI = MO.getParent(); 792 // Copies of the full value. 793 if (MO.getSubReg() || !MI->isCopy()) 794 continue; 795 Register DstReg = MI->getOperand(0).getReg(); 796 797 // Don't follow copies to physregs. These are usually setting up call 798 // arguments, and the argument registers are always call clobbered. We are 799 // better off in the source register which could be a callee-saved register, 800 // or it could be spilled. 801 if (!Register::isVirtualRegister(DstReg)) 802 continue; 803 804 // Is LocNo extended to reach this copy? If not, another def may be blocking 805 // it, or we are looking at a wrong value of LI. 806 SlotIndex Idx = LIS.getInstructionIndex(*MI); 807 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 808 if (!I.valid() || I.value().locNo() != LocNo) 809 continue; 810 811 if (!LIS.hasInterval(DstReg)) 812 continue; 813 LiveInterval *DstLI = &LIS.getInterval(DstReg); 814 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 815 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 816 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 817 } 818 819 if (CopyValues.empty()) 820 return; 821 822 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 823 << '\n'); 824 825 // Try to add defs of the copied values for each kill point. 826 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 827 SlotIndex Idx = Kills[i]; 828 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 829 LiveInterval *DstLI = CopyValues[j].first; 830 const VNInfo *DstVNI = CopyValues[j].second; 831 if (DstLI->getVNInfoAt(Idx) != DstVNI) 832 continue; 833 // Check that there isn't already a def at Idx 834 LocMap::iterator I = locInts.find(Idx); 835 if (I.valid() && I.start() <= Idx) 836 continue; 837 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 838 << DstVNI->id << " in " << *DstLI << '\n'); 839 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 840 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 841 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 842 DbgValueLocation NewLoc(LocNo, WasIndirect); 843 I.insert(Idx, Idx.getNextSlot(), NewLoc); 844 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 845 break; 846 } 847 } 848 } 849 850 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 851 const TargetRegisterInfo &TRI, 852 LiveIntervals &LIS, LexicalScopes &LS) { 853 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 854 855 // Collect all defs to be extended (Skipping undefs). 856 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 857 if (!I.value().isUndef()) 858 Defs.push_back(std::make_pair(I.start(), I.value())); 859 860 // Extend all defs, and possibly add new ones along the way. 861 for (unsigned i = 0; i != Defs.size(); ++i) { 862 SlotIndex Idx = Defs[i].first; 863 DbgValueLocation Loc = Defs[i].second; 864 const MachineOperand &LocMO = locations[Loc.locNo()]; 865 866 if (!LocMO.isReg()) { 867 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 868 continue; 869 } 870 871 // Register locations are constrained to where the register value is live. 872 if (Register::isVirtualRegister(LocMO.getReg())) { 873 LiveInterval *LI = nullptr; 874 const VNInfo *VNI = nullptr; 875 if (LIS.hasInterval(LocMO.getReg())) { 876 LI = &LIS.getInterval(LocMO.getReg()); 877 VNI = LI->getVNInfoAt(Idx); 878 } 879 SmallVector<SlotIndex, 16> Kills; 880 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 881 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 882 // if the original location for example is %vreg0:sub_hi, and we find a 883 // full register copy in addDefsFromCopies (at the moment it only handles 884 // full register copies), then we must add the sub1 sub-register index to 885 // the new location. However, that is only possible if the new virtual 886 // register is of the same regclass (or if there is an equivalent 887 // sub-register in that regclass). For now, simply skip handling copies if 888 // a sub-register is involved. 889 if (LI && !LocMO.getSubReg()) 890 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 891 LIS); 892 continue; 893 } 894 895 // For physregs, we only mark the start slot idx. DwarfDebug will see it 896 // as if the DBG_VALUE is valid up until the end of the basic block, or 897 // the next def of the physical register. So we do not need to extend the 898 // range. It might actually happen that the DBG_VALUE is the last use of 899 // the physical register (e.g. if this is an unused input argument to a 900 // function). 901 } 902 903 // The computed intervals may extend beyond the range of the debug 904 // location's lexical scope. In this case, splitting of an interval 905 // can result in an interval outside of the scope being created, 906 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 907 // this, trim the intervals to the lexical scope. 908 909 LexicalScope *Scope = LS.findLexicalScope(dl); 910 if (!Scope) 911 return; 912 913 SlotIndex PrevEnd; 914 LocMap::iterator I = locInts.begin(); 915 916 // Iterate over the lexical scope ranges. Each time round the loop 917 // we check the intervals for overlap with the end of the previous 918 // range and the start of the next. The first range is handled as 919 // a special case where there is no PrevEnd. 920 for (const InsnRange &Range : Scope->getRanges()) { 921 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 922 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 923 924 // Variable locations at the first instruction of a block should be 925 // based on the block's SlotIndex, not the first instruction's index. 926 if (Range.first == Range.first->getParent()->begin()) 927 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 928 929 // At the start of each iteration I has been advanced so that 930 // I.stop() >= PrevEnd. Check for overlap. 931 if (PrevEnd && I.start() < PrevEnd) { 932 SlotIndex IStop = I.stop(); 933 DbgValueLocation Loc = I.value(); 934 935 // Stop overlaps previous end - trim the end of the interval to 936 // the scope range. 937 I.setStopUnchecked(PrevEnd); 938 ++I; 939 940 // If the interval also overlaps the start of the "next" (i.e. 941 // current) range create a new interval for the remainder (which 942 // may be further trimmed). 943 if (RStart < IStop) 944 I.insert(RStart, IStop, Loc); 945 } 946 947 // Advance I so that I.stop() >= RStart, and check for overlap. 948 I.advanceTo(RStart); 949 if (!I.valid()) 950 return; 951 952 if (I.start() < RStart) { 953 // Interval start overlaps range - trim to the scope range. 954 I.setStartUnchecked(RStart); 955 // Remember that this interval was trimmed. 956 trimmedDefs.insert(RStart); 957 } 958 959 // The end of a lexical scope range is the last instruction in the 960 // range. To convert to an interval we need the index of the 961 // instruction after it. 962 REnd = REnd.getNextIndex(); 963 964 // Advance I to first interval outside current range. 965 I.advanceTo(REnd); 966 if (!I.valid()) 967 return; 968 969 PrevEnd = REnd; 970 } 971 972 // Check for overlap with end of final range. 973 if (PrevEnd && I.start() < PrevEnd) 974 I.setStopUnchecked(PrevEnd); 975 } 976 977 void LDVImpl::computeIntervals() { 978 LexicalScopes LS; 979 LS.initialize(*MF); 980 981 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 982 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 983 userValues[i]->mapVirtRegs(this); 984 } 985 } 986 987 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 988 clear(); 989 MF = &mf; 990 LIS = &pass.getAnalysis<LiveIntervals>(); 991 TRI = mf.getSubtarget().getRegisterInfo(); 992 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 993 << mf.getName() << " **********\n"); 994 995 bool Changed = collectDebugValues(mf); 996 computeIntervals(); 997 LLVM_DEBUG(print(dbgs())); 998 ModifiedMF = Changed; 999 return Changed; 1000 } 1001 1002 static void removeDebugValues(MachineFunction &mf) { 1003 for (MachineBasicBlock &MBB : mf) { 1004 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 1005 if (!MBBI->isDebugValue()) { 1006 ++MBBI; 1007 continue; 1008 } 1009 MBBI = MBB.erase(MBBI); 1010 } 1011 } 1012 } 1013 1014 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1015 if (!EnableLDV) 1016 return false; 1017 if (!mf.getFunction().getSubprogram()) { 1018 removeDebugValues(mf); 1019 return false; 1020 } 1021 if (!pImpl) 1022 pImpl = new LDVImpl(this); 1023 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1024 } 1025 1026 void LiveDebugVariables::releaseMemory() { 1027 if (pImpl) 1028 static_cast<LDVImpl*>(pImpl)->clear(); 1029 } 1030 1031 LiveDebugVariables::~LiveDebugVariables() { 1032 if (pImpl) 1033 delete static_cast<LDVImpl*>(pImpl); 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // Live Range Splitting 1038 //===----------------------------------------------------------------------===// 1039 1040 bool 1041 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1042 LiveIntervals& LIS) { 1043 LLVM_DEBUG({ 1044 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1045 print(dbgs(), nullptr); 1046 }); 1047 bool DidChange = false; 1048 LocMap::iterator LocMapI; 1049 LocMapI.setMap(locInts); 1050 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1051 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1052 if (LI->empty()) 1053 continue; 1054 1055 // Don't allocate the new LocNo until it is needed. 1056 unsigned NewLocNo = UndefLocNo; 1057 1058 // Iterate over the overlaps between locInts and LI. 1059 LocMapI.find(LI->beginIndex()); 1060 if (!LocMapI.valid()) 1061 continue; 1062 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1063 LiveInterval::iterator LIE = LI->end(); 1064 while (LocMapI.valid() && LII != LIE) { 1065 // At this point, we know that LocMapI.stop() > LII->start. 1066 LII = LI->advanceTo(LII, LocMapI.start()); 1067 if (LII == LIE) 1068 break; 1069 1070 // Now LII->end > LocMapI.start(). Do we have an overlap? 1071 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 1072 // Overlapping correct location. Allocate NewLocNo now. 1073 if (NewLocNo == UndefLocNo) { 1074 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1075 MO.setSubReg(locations[OldLocNo].getSubReg()); 1076 NewLocNo = getLocationNo(MO); 1077 DidChange = true; 1078 } 1079 1080 SlotIndex LStart = LocMapI.start(); 1081 SlotIndex LStop = LocMapI.stop(); 1082 DbgValueLocation OldLoc = LocMapI.value(); 1083 1084 // Trim LocMapI down to the LII overlap. 1085 if (LStart < LII->start) 1086 LocMapI.setStartUnchecked(LII->start); 1087 if (LStop > LII->end) 1088 LocMapI.setStopUnchecked(LII->end); 1089 1090 // Change the value in the overlap. This may trigger coalescing. 1091 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 1092 1093 // Re-insert any removed OldLocNo ranges. 1094 if (LStart < LocMapI.start()) { 1095 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 1096 ++LocMapI; 1097 assert(LocMapI.valid() && "Unexpected coalescing"); 1098 } 1099 if (LStop > LocMapI.stop()) { 1100 ++LocMapI; 1101 LocMapI.insert(LII->end, LStop, OldLoc); 1102 --LocMapI; 1103 } 1104 } 1105 1106 // Advance to the next overlap. 1107 if (LII->end < LocMapI.stop()) { 1108 if (++LII == LIE) 1109 break; 1110 LocMapI.advanceTo(LII->start); 1111 } else { 1112 ++LocMapI; 1113 if (!LocMapI.valid()) 1114 break; 1115 LII = LI->advanceTo(LII, LocMapI.start()); 1116 } 1117 } 1118 } 1119 1120 // Finally, remove OldLocNo unless it is still used by some interval in the 1121 // locInts map. One case when OldLocNo still is in use is when the register 1122 // has been spilled. In such situations the spilled register is kept as a 1123 // location until rewriteLocations is called (VirtRegMap is mapping the old 1124 // register to the spill slot). So for a while we can have locations that map 1125 // to virtual registers that have been removed from both the MachineFunction 1126 // and from LiveIntervals. 1127 removeLocationIfUnused(OldLocNo); 1128 1129 LLVM_DEBUG({ 1130 dbgs() << "Split result: \t"; 1131 print(dbgs(), nullptr); 1132 }); 1133 return DidChange; 1134 } 1135 1136 bool 1137 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1138 LiveIntervals &LIS) { 1139 bool DidChange = false; 1140 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1141 // safely erase unused locations. 1142 for (unsigned i = locations.size(); i ; --i) { 1143 unsigned LocNo = i-1; 1144 const MachineOperand *Loc = &locations[LocNo]; 1145 if (!Loc->isReg() || Loc->getReg() != OldReg) 1146 continue; 1147 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1148 } 1149 return DidChange; 1150 } 1151 1152 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1153 bool DidChange = false; 1154 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1155 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1156 1157 if (!DidChange) 1158 return; 1159 1160 // Map all of the new virtual registers. 1161 UserValue *UV = lookupVirtReg(OldReg); 1162 for (unsigned i = 0; i != NewRegs.size(); ++i) 1163 mapVirtReg(NewRegs[i], UV); 1164 } 1165 1166 void LiveDebugVariables:: 1167 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1168 if (pImpl) 1169 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1170 } 1171 1172 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1173 const TargetInstrInfo &TII, 1174 const TargetRegisterInfo &TRI, 1175 SpillOffsetMap &SpillOffsets) { 1176 // Build a set of new locations with new numbers so we can coalesce our 1177 // IntervalMap if two vreg intervals collapse to the same physical location. 1178 // Use MapVector instead of SetVector because MapVector::insert returns the 1179 // position of the previously or newly inserted element. The boolean value 1180 // tracks if the location was produced by a spill. 1181 // FIXME: This will be problematic if we ever support direct and indirect 1182 // frame index locations, i.e. expressing both variables in memory and 1183 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1184 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1185 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1186 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1187 bool Spilled = false; 1188 unsigned SpillOffset = 0; 1189 MachineOperand Loc = locations[I]; 1190 // Only virtual registers are rewritten. 1191 if (Loc.isReg() && Loc.getReg() && 1192 Register::isVirtualRegister(Loc.getReg())) { 1193 Register VirtReg = Loc.getReg(); 1194 if (VRM.isAssignedReg(VirtReg) && 1195 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1196 // This can create a %noreg operand in rare cases when the sub-register 1197 // index is no longer available. That means the user value is in a 1198 // non-existent sub-register, and %noreg is exactly what we want. 1199 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1200 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1201 // Retrieve the stack slot offset. 1202 unsigned SpillSize; 1203 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1204 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1205 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1206 SpillOffset, MF); 1207 1208 // FIXME: Invalidate the location if the offset couldn't be calculated. 1209 (void)Success; 1210 1211 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1212 Spilled = true; 1213 } else { 1214 Loc.setReg(0); 1215 Loc.setSubReg(0); 1216 } 1217 } 1218 1219 // Insert this location if it doesn't already exist and record a mapping 1220 // from the old number to the new number. 1221 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1222 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1223 LocNoMap[I] = NewLocNo; 1224 } 1225 1226 // Rewrite the locations and record the stack slot offsets for spills. 1227 locations.clear(); 1228 SpillOffsets.clear(); 1229 for (auto &Pair : NewLocations) { 1230 bool Spilled; 1231 unsigned SpillOffset; 1232 std::tie(Spilled, SpillOffset) = Pair.second; 1233 locations.push_back(Pair.first); 1234 if (Spilled) { 1235 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1236 SpillOffsets[NewLocNo] = SpillOffset; 1237 } 1238 } 1239 1240 // Update the interval map, but only coalesce left, since intervals to the 1241 // right use the old location numbers. This should merge two contiguous 1242 // DBG_VALUE intervals with different vregs that were allocated to the same 1243 // physical register. 1244 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1245 DbgValueLocation Loc = I.value(); 1246 // Undef values don't exist in locations (and thus not in LocNoMap either) 1247 // so skip over them. See getLocationNo(). 1248 if (Loc.isUndef()) 1249 continue; 1250 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1251 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1252 I.setStart(I.start()); 1253 } 1254 } 1255 1256 /// Find an iterator for inserting a DBG_VALUE instruction. 1257 static MachineBasicBlock::iterator 1258 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1259 LiveIntervals &LIS) { 1260 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1261 Idx = Idx.getBaseIndex(); 1262 1263 // Try to find an insert location by going backwards from Idx. 1264 MachineInstr *MI; 1265 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1266 // We've reached the beginning of MBB. 1267 if (Idx == Start) { 1268 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1269 return I; 1270 } 1271 Idx = Idx.getPrevIndex(); 1272 } 1273 1274 // Don't insert anything after the first terminator, though. 1275 return MI->isTerminator() ? MBB->getFirstTerminator() : 1276 std::next(MachineBasicBlock::iterator(MI)); 1277 } 1278 1279 /// Find an iterator for inserting the next DBG_VALUE instruction 1280 /// (or end if no more insert locations found). 1281 static MachineBasicBlock::iterator 1282 findNextInsertLocation(MachineBasicBlock *MBB, 1283 MachineBasicBlock::iterator I, 1284 SlotIndex StopIdx, MachineOperand &LocMO, 1285 LiveIntervals &LIS, 1286 const TargetRegisterInfo &TRI) { 1287 if (!LocMO.isReg()) 1288 return MBB->instr_end(); 1289 Register Reg = LocMO.getReg(); 1290 1291 // Find the next instruction in the MBB that define the register Reg. 1292 while (I != MBB->end() && !I->isTerminator()) { 1293 if (!LIS.isNotInMIMap(*I) && 1294 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1295 break; 1296 if (I->definesRegister(Reg, &TRI)) 1297 // The insert location is directly after the instruction/bundle. 1298 return std::next(I); 1299 ++I; 1300 } 1301 return MBB->end(); 1302 } 1303 1304 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1305 SlotIndex StopIdx, DbgValueLocation Loc, 1306 bool Spilled, unsigned SpillOffset, 1307 LiveIntervals &LIS, const TargetInstrInfo &TII, 1308 const TargetRegisterInfo &TRI) { 1309 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1310 // Only search within the current MBB. 1311 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1312 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1313 // Undef values don't exist in locations so create new "noreg" register MOs 1314 // for them. See getLocationNo(). 1315 MachineOperand MO = !Loc.isUndef() ? 1316 locations[Loc.locNo()] : 1317 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false, 1318 /* isKill */ false, /* isDead */ false, 1319 /* isUndef */ false, /* isEarlyClobber */ false, 1320 /* SubReg */ 0, /* isDebug */ true); 1321 1322 ++NumInsertedDebugValues; 1323 1324 assert(cast<DILocalVariable>(Variable) 1325 ->isValidLocationForIntrinsic(getDebugLoc()) && 1326 "Expected inlined-at fields to agree"); 1327 1328 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1329 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1330 // that the original virtual register was a pointer. Also, add the stack slot 1331 // offset for the spilled register to the expression. 1332 const DIExpression *Expr = Expression; 1333 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1334 bool IsIndirect = Loc.wasIndirect(); 1335 if (Spilled) { 1336 if (IsIndirect) 1337 DIExprFlags |= DIExpression::DerefAfter; 1338 Expr = 1339 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1340 IsIndirect = true; 1341 } 1342 1343 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1344 1345 do { 1346 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1347 IsIndirect, MO, Variable, Expr); 1348 1349 // Continue and insert DBG_VALUES after every redefinition of register 1350 // associated with the debug value within the range 1351 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1352 } while (I != MBB->end()); 1353 } 1354 1355 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1356 LiveIntervals &LIS, 1357 const TargetInstrInfo &TII) { 1358 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1359 ++NumInsertedDebugLabels; 1360 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1361 .addMetadata(Label); 1362 } 1363 1364 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1365 const TargetInstrInfo &TII, 1366 const TargetRegisterInfo &TRI, 1367 const SpillOffsetMap &SpillOffsets) { 1368 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1369 1370 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1371 SlotIndex Start = I.start(); 1372 SlotIndex Stop = I.stop(); 1373 DbgValueLocation Loc = I.value(); 1374 auto SpillIt = 1375 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end(); 1376 bool Spilled = SpillIt != SpillOffsets.end(); 1377 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1378 1379 // If the interval start was trimmed to the lexical scope insert the 1380 // DBG_VALUE at the previous index (otherwise it appears after the 1381 // first instruction in the range). 1382 if (trimmedDefs.count(Start)) 1383 Start = Start.getPrevIndex(); 1384 1385 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1386 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1387 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1388 1389 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1390 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1391 TRI); 1392 // This interval may span multiple basic blocks. 1393 // Insert a DBG_VALUE into each one. 1394 while (Stop > MBBEnd) { 1395 // Move to the next block. 1396 Start = MBBEnd; 1397 if (++MBB == MFEnd) 1398 break; 1399 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1400 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1401 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1402 TRI); 1403 } 1404 LLVM_DEBUG(dbgs() << '\n'); 1405 if (MBB == MFEnd) 1406 break; 1407 1408 ++I; 1409 } 1410 } 1411 1412 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1413 LLVM_DEBUG(dbgs() << "\t" << loc); 1414 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1415 1416 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1417 insertDebugLabel(&*MBB, loc, LIS, TII); 1418 1419 LLVM_DEBUG(dbgs() << '\n'); 1420 } 1421 1422 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1423 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1424 if (!MF) 1425 return; 1426 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1427 SpillOffsetMap SpillOffsets; 1428 for (auto &userValue : userValues) { 1429 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1430 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1431 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1432 } 1433 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1434 for (auto &userLabel : userLabels) { 1435 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1436 userLabel->emitDebugLabel(*LIS, *TII); 1437 } 1438 EmitDone = true; 1439 } 1440 1441 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1442 if (pImpl) 1443 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1444 } 1445 1446 bool LiveDebugVariables::doInitialization(Module &M) { 1447 return Pass::doInitialization(M); 1448 } 1449 1450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1451 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1452 if (pImpl) 1453 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1454 } 1455 #endif 1456