1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/LiveInterval.h" 34 #include "llvm/CodeGen/LiveIntervals.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 74 75 char LiveDebugVariables::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 78 "Debug Variable Analysis", false, false) 79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 82 "Debug Variable Analysis", false, false) 83 84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.addRequired<MachineDominatorTree>(); 86 AU.addRequiredTransitive<LiveIntervals>(); 87 AU.setPreservesAll(); 88 MachineFunctionPass::getAnalysisUsage(AU); 89 } 90 91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 92 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 93 } 94 95 enum : unsigned { UndefLocNo = ~0U }; 96 97 namespace { 98 /// Describes a debug variable value by location number and expression along 99 /// with some flags about the original usage of the location. 100 class DbgVariableValue { 101 public: 102 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, 103 const DIExpression &Expr) 104 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { 105 assert(!(WasIndirect && WasList) && 106 "DBG_VALUE_LISTs should not be indirect."); 107 SmallVector<unsigned> LocNoVec; 108 for (unsigned LocNo : NewLocs) { 109 auto It = find(LocNoVec, LocNo); 110 if (It == LocNoVec.end()) 111 LocNoVec.push_back(LocNo); 112 else { 113 // Loc duplicates an element in LocNos; replace references to Op 114 // with references to the duplicating element. 115 unsigned OpIdx = LocNoVec.size(); 116 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); 117 Expression = 118 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); 119 } 120 } 121 // FIXME: Debug values referencing 64+ unique machine locations are rare and 122 // currently unsupported for performance reasons. If we can verify that 123 // performance is acceptable for such debug values, we can increase the 124 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine 125 // locations. We will also need to verify that this does not cause issues 126 // with LiveDebugVariables' use of IntervalMap. 127 if (LocNoVec.size() < 64) { 128 LocNoCount = LocNoVec.size(); 129 if (LocNoCount > 0) { 130 LocNos = std::make_unique<unsigned[]>(LocNoCount); 131 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); 132 } 133 } else { 134 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " 135 "locations, dropping...\n"); 136 LocNoCount = 1; 137 // Turn this into an undef debug value list; right now, the simplest form 138 // of this is an expression with one arg, and an undef debug operand. 139 Expression = 140 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0, 141 dwarf::DW_OP_stack_value}); 142 if (auto FragmentInfoOpt = Expr.getFragmentInfo()) 143 Expression = *DIExpression::createFragmentExpression( 144 Expression, FragmentInfoOpt->OffsetInBits, 145 FragmentInfoOpt->SizeInBits); 146 LocNos = std::make_unique<unsigned[]>(LocNoCount); 147 LocNos[0] = UndefLocNo; 148 } 149 } 150 151 DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} 152 DbgVariableValue(const DbgVariableValue &Other) 153 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), 154 WasList(Other.getWasList()), Expression(Other.getExpression()) { 155 if (Other.getLocNoCount()) { 156 LocNos.reset(new unsigned[Other.getLocNoCount()]); 157 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 158 } 159 } 160 161 DbgVariableValue &operator=(const DbgVariableValue &Other) { 162 if (this == &Other) 163 return *this; 164 if (Other.getLocNoCount()) { 165 LocNos.reset(new unsigned[Other.getLocNoCount()]); 166 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 167 } else { 168 LocNos.release(); 169 } 170 LocNoCount = Other.getLocNoCount(); 171 WasIndirect = Other.getWasIndirect(); 172 WasList = Other.getWasList(); 173 Expression = Other.getExpression(); 174 return *this; 175 } 176 177 const DIExpression *getExpression() const { return Expression; } 178 uint8_t getLocNoCount() const { return LocNoCount; } 179 bool containsLocNo(unsigned LocNo) const { 180 return is_contained(loc_nos(), LocNo); 181 } 182 bool getWasIndirect() const { return WasIndirect; } 183 bool getWasList() const { return WasList; } 184 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } 185 186 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { 187 SmallVector<unsigned, 4> NewLocNos; 188 for (unsigned LocNo : loc_nos()) 189 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 190 : LocNo); 191 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 192 } 193 194 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { 195 SmallVector<unsigned> NewLocNos; 196 for (unsigned LocNo : loc_nos()) 197 // Undef values don't exist in locations (and thus not in LocNoMap 198 // either) so skip over them. See getLocationNo(). 199 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); 200 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 201 } 202 203 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { 204 SmallVector<unsigned> NewLocNos; 205 NewLocNos.assign(loc_nos_begin(), loc_nos_end()); 206 auto OldLocIt = find(NewLocNos, OldLocNo); 207 assert(OldLocIt != NewLocNos.end() && "Old location must be present."); 208 *OldLocIt = NewLocNo; 209 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 210 } 211 212 bool hasLocNoGreaterThan(unsigned LocNo) const { 213 return any_of(loc_nos(), 214 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); 215 } 216 217 void printLocNos(llvm::raw_ostream &OS) const { 218 for (const unsigned &Loc : loc_nos()) 219 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; 220 } 221 222 friend inline bool operator==(const DbgVariableValue &LHS, 223 const DbgVariableValue &RHS) { 224 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, 225 LHS.Expression) != 226 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) 227 return false; 228 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), 229 RHS.loc_nos_begin()); 230 } 231 232 friend inline bool operator!=(const DbgVariableValue &LHS, 233 const DbgVariableValue &RHS) { 234 return !(LHS == RHS); 235 } 236 237 unsigned *loc_nos_begin() { return LocNos.get(); } 238 const unsigned *loc_nos_begin() const { return LocNos.get(); } 239 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } 240 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } 241 ArrayRef<unsigned> loc_nos() const { 242 return ArrayRef<unsigned>(LocNos.get(), LocNoCount); 243 } 244 245 private: 246 // IntervalMap requires the value object to be very small, to the extent 247 // that we do not have enough room for an std::vector. Using a C-style array 248 // (with a unique_ptr wrapper for convenience) allows us to optimize for this 249 // specific case by packing the array size into only 6 bits (it is highly 250 // unlikely that any debug value will need 64+ locations). 251 std::unique_ptr<unsigned[]> LocNos; 252 uint8_t LocNoCount : 6; 253 bool WasIndirect : 1; 254 bool WasList : 1; 255 const DIExpression *Expression = nullptr; 256 }; 257 } // namespace 258 259 /// Map of where a user value is live to that value. 260 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 261 262 /// Map of stack slot offsets for spilled locations. 263 /// Non-spilled locations are not added to the map. 264 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 265 266 /// Cache to save the location where it can be used as the starting 267 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 268 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 269 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 270 /// if it is called many times for the same block. 271 using BlockSkipInstsMap = 272 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 273 274 namespace { 275 276 class LDVImpl; 277 278 /// A user value is a part of a debug info user variable. 279 /// 280 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 281 /// holds part of a user variable. The part is identified by a byte offset. 282 /// 283 /// UserValues are grouped into equivalence classes for easier searching. Two 284 /// user values are related if they are held by the same virtual register. The 285 /// equivalence class is the transitive closure of that relation. 286 class UserValue { 287 const DILocalVariable *Variable; ///< The debug info variable we are part of. 288 /// The part of the variable we describe. 289 const Optional<DIExpression::FragmentInfo> Fragment; 290 DebugLoc dl; ///< The debug location for the variable. This is 291 ///< used by dwarf writer to find lexical scope. 292 UserValue *leader; ///< Equivalence class leader. 293 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 294 295 /// Numbered locations referenced by locmap. 296 SmallVector<MachineOperand, 4> locations; 297 298 /// Map of slot indices where this value is live. 299 LocMap locInts; 300 301 /// Set of interval start indexes that have been trimmed to the 302 /// lexical scope. 303 SmallSet<SlotIndex, 2> trimmedDefs; 304 305 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 306 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 307 SlotIndex StopIdx, DbgVariableValue DbgValue, 308 ArrayRef<bool> LocSpills, 309 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, 310 const TargetInstrInfo &TII, 311 const TargetRegisterInfo &TRI, 312 BlockSkipInstsMap &BBSkipInstsMap); 313 314 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 315 /// is live. Returns true if any changes were made. 316 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 317 LiveIntervals &LIS); 318 319 public: 320 /// Create a new UserValue. 321 UserValue(const DILocalVariable *var, 322 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 323 LocMap::Allocator &alloc) 324 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 325 locInts(alloc) {} 326 327 /// Get the leader of this value's equivalence class. 328 UserValue *getLeader() { 329 UserValue *l = leader; 330 while (l != l->leader) 331 l = l->leader; 332 return leader = l; 333 } 334 335 /// Return the next UserValue in the equivalence class. 336 UserValue *getNext() const { return next; } 337 338 /// Merge equivalence classes. 339 static UserValue *merge(UserValue *L1, UserValue *L2) { 340 L2 = L2->getLeader(); 341 if (!L1) 342 return L2; 343 L1 = L1->getLeader(); 344 if (L1 == L2) 345 return L1; 346 // Splice L2 before L1's members. 347 UserValue *End = L2; 348 while (End->next) { 349 End->leader = L1; 350 End = End->next; 351 } 352 End->leader = L1; 353 End->next = L1->next; 354 L1->next = L2; 355 return L1; 356 } 357 358 /// Return the location number that matches Loc. 359 /// 360 /// For undef values we always return location number UndefLocNo without 361 /// inserting anything in locations. Since locations is a vector and the 362 /// location number is the position in the vector and UndefLocNo is ~0, 363 /// we would need a very big vector to put the value at the right position. 364 unsigned getLocationNo(const MachineOperand &LocMO) { 365 if (LocMO.isReg()) { 366 if (LocMO.getReg() == 0) 367 return UndefLocNo; 368 // For register locations we dont care about use/def and other flags. 369 for (unsigned i = 0, e = locations.size(); i != e; ++i) 370 if (locations[i].isReg() && 371 locations[i].getReg() == LocMO.getReg() && 372 locations[i].getSubReg() == LocMO.getSubReg()) 373 return i; 374 } else 375 for (unsigned i = 0, e = locations.size(); i != e; ++i) 376 if (LocMO.isIdenticalTo(locations[i])) 377 return i; 378 locations.push_back(LocMO); 379 // We are storing a MachineOperand outside a MachineInstr. 380 locations.back().clearParent(); 381 // Don't store def operands. 382 if (locations.back().isReg()) { 383 if (locations.back().isDef()) 384 locations.back().setIsDead(false); 385 locations.back().setIsUse(); 386 } 387 return locations.size() - 1; 388 } 389 390 /// Remove (recycle) a location number. If \p LocNo still is used by the 391 /// locInts nothing is done. 392 void removeLocationIfUnused(unsigned LocNo) { 393 // Bail out if LocNo still is used. 394 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 395 const DbgVariableValue &DbgValue = I.value(); 396 if (DbgValue.containsLocNo(LocNo)) 397 return; 398 } 399 // Remove the entry in the locations vector, and adjust all references to 400 // location numbers above the removed entry. 401 locations.erase(locations.begin() + LocNo); 402 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 403 const DbgVariableValue &DbgValue = I.value(); 404 if (DbgValue.hasLocNoGreaterThan(LocNo)) 405 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); 406 } 407 } 408 409 /// Ensure that all virtual register locations are mapped. 410 void mapVirtRegs(LDVImpl *LDV); 411 412 /// Add a definition point to this user value. 413 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, 414 bool IsList, const DIExpression &Expr) { 415 SmallVector<unsigned> Locs; 416 for (const MachineOperand &Op : LocMOs) 417 Locs.push_back(getLocationNo(Op)); 418 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); 419 // Add a singular (Idx,Idx) -> value mapping. 420 LocMap::iterator I = locInts.find(Idx); 421 if (!I.valid() || I.start() != Idx) 422 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); 423 else 424 // A later DBG_VALUE at the same SlotIndex overrides the old location. 425 I.setValue(std::move(DbgValue)); 426 } 427 428 /// Extend the current definition as far as possible down. 429 /// 430 /// Stop when meeting an existing def or when leaving the live 431 /// range of VNI. End points where VNI is no longer live are added to Kills. 432 /// 433 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 434 /// data-flow analysis to propagate them beyond basic block boundaries. 435 /// 436 /// \param Idx Starting point for the definition. 437 /// \param DbgValue value to propagate. 438 /// \param LiveIntervalInfo For each location number key in this map, 439 /// restricts liveness to where the LiveRange has the value equal to the\ 440 /// VNInfo. 441 /// \param [out] Kills Append end points of VNI's live range to Kills. 442 /// \param LIS Live intervals analysis. 443 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, 444 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 445 &LiveIntervalInfo, 446 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 447 LiveIntervals &LIS); 448 449 /// The value in LI may be copies to other registers. Determine if 450 /// any of the copies are available at the kill points, and add defs if 451 /// possible. 452 /// 453 /// \param DbgValue Location number of LI->reg, and DIExpression. 454 /// \param LocIntervals Scan for copies of the value for each location in the 455 /// corresponding LiveInterval->reg. 456 /// \param KilledAt The point where the range of DbgValue could be extended. 457 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 458 void addDefsFromCopies( 459 DbgVariableValue DbgValue, 460 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 461 SlotIndex KilledAt, 462 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 463 MachineRegisterInfo &MRI, LiveIntervals &LIS); 464 465 /// Compute the live intervals of all locations after collecting all their 466 /// def points. 467 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 468 LiveIntervals &LIS, LexicalScopes &LS); 469 470 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 471 /// live. Returns true if any changes were made. 472 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 473 LiveIntervals &LIS); 474 475 /// Rewrite virtual register locations according to the provided virtual 476 /// register map. Record the stack slot offsets for the locations that 477 /// were spilled. 478 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 479 const TargetInstrInfo &TII, 480 const TargetRegisterInfo &TRI, 481 SpillOffsetMap &SpillOffsets); 482 483 /// Recreate DBG_VALUE instruction from data structures. 484 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 485 const TargetInstrInfo &TII, 486 const TargetRegisterInfo &TRI, 487 const SpillOffsetMap &SpillOffsets, 488 BlockSkipInstsMap &BBSkipInstsMap); 489 490 /// Return DebugLoc of this UserValue. 491 const DebugLoc &getDebugLoc() { return dl; } 492 493 void print(raw_ostream &, const TargetRegisterInfo *); 494 }; 495 496 /// A user label is a part of a debug info user label. 497 class UserLabel { 498 const DILabel *Label; ///< The debug info label we are part of. 499 DebugLoc dl; ///< The debug location for the label. This is 500 ///< used by dwarf writer to find lexical scope. 501 SlotIndex loc; ///< Slot used by the debug label. 502 503 /// Insert a DBG_LABEL into MBB at Idx. 504 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 505 LiveIntervals &LIS, const TargetInstrInfo &TII, 506 BlockSkipInstsMap &BBSkipInstsMap); 507 508 public: 509 /// Create a new UserLabel. 510 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 511 : Label(label), dl(std::move(L)), loc(Idx) {} 512 513 /// Does this UserLabel match the parameters? 514 bool matches(const DILabel *L, const DILocation *IA, 515 const SlotIndex Index) const { 516 return Label == L && dl->getInlinedAt() == IA && loc == Index; 517 } 518 519 /// Recreate DBG_LABEL instruction from data structures. 520 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 521 BlockSkipInstsMap &BBSkipInstsMap); 522 523 /// Return DebugLoc of this UserLabel. 524 const DebugLoc &getDebugLoc() { return dl; } 525 526 void print(raw_ostream &, const TargetRegisterInfo *); 527 }; 528 529 /// Implementation of the LiveDebugVariables pass. 530 class LDVImpl { 531 LiveDebugVariables &pass; 532 LocMap::Allocator allocator; 533 MachineFunction *MF = nullptr; 534 LiveIntervals *LIS; 535 const TargetRegisterInfo *TRI; 536 537 /// Position and VReg of a PHI instruction during register allocation. 538 struct PHIValPos { 539 SlotIndex SI; /// Slot where this PHI occurs. 540 Register Reg; /// VReg this PHI occurs in. 541 unsigned SubReg; /// Qualifiying subregister for Reg. 542 }; 543 544 /// Map from debug instruction number to PHI position during allocation. 545 std::map<unsigned, PHIValPos> PHIValToPos; 546 /// Index of, for each VReg, which debug instruction numbers and corresponding 547 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, 548 /// at different positions. 549 DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; 550 551 /// Record for any debug instructions unlinked from their blocks during 552 /// regalloc. Stores the instr and it's location, so that they can be 553 /// re-inserted after regalloc is over. 554 struct InstrPos { 555 MachineInstr *MI; ///< Debug instruction, unlinked from it's block. 556 SlotIndex Idx; ///< Slot position where MI should be re-inserted. 557 MachineBasicBlock *MBB; ///< Block that MI was in. 558 }; 559 560 /// Collection of stored debug instructions, preserved until after regalloc. 561 SmallVector<InstrPos, 32> StashedDebugInstrs; 562 563 /// Whether emitDebugValues is called. 564 bool EmitDone = false; 565 566 /// Whether the machine function is modified during the pass. 567 bool ModifiedMF = false; 568 569 /// All allocated UserValue instances. 570 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 571 572 /// All allocated UserLabel instances. 573 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 574 575 /// Map virtual register to eq class leader. 576 using VRMap = DenseMap<unsigned, UserValue *>; 577 VRMap virtRegToEqClass; 578 579 /// Map to find existing UserValue instances. 580 using UVMap = DenseMap<DebugVariable, UserValue *>; 581 UVMap userVarMap; 582 583 /// Find or create a UserValue. 584 UserValue *getUserValue(const DILocalVariable *Var, 585 Optional<DIExpression::FragmentInfo> Fragment, 586 const DebugLoc &DL); 587 588 /// Find the EC leader for VirtReg or null. 589 UserValue *lookupVirtReg(Register VirtReg); 590 591 /// Add DBG_VALUE instruction to our maps. 592 /// 593 /// \param MI DBG_VALUE instruction 594 /// \param Idx Last valid SLotIndex before instruction. 595 /// 596 /// \returns True if the DBG_VALUE instruction should be deleted. 597 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 598 599 /// Track variable location debug instructions while using the instruction 600 /// referencing implementation. Such debug instructions do not need to be 601 /// updated during regalloc because they identify instructions rather than 602 /// register locations. However, they needs to be removed from the 603 /// MachineFunction during regalloc, then re-inserted later, to avoid 604 /// disrupting the allocator. 605 /// 606 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction 607 /// \param Idx Last valid SlotIndex before instruction 608 /// 609 /// \returns Iterator to continue processing from after unlinking. 610 MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); 611 612 /// Add DBG_LABEL instruction to UserLabel. 613 /// 614 /// \param MI DBG_LABEL instruction 615 /// \param Idx Last valid SlotIndex before instruction. 616 /// 617 /// \returns True if the DBG_LABEL instruction should be deleted. 618 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 619 620 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 621 /// for each instruction. 622 /// 623 /// \param mf MachineFunction to be scanned. 624 /// \param InstrRef Whether to operate in instruction referencing mode. If 625 /// true, most of LiveDebugVariables doesn't run. 626 /// 627 /// \returns True if any debug values were found. 628 bool collectDebugValues(MachineFunction &mf, bool InstrRef); 629 630 /// Compute the live intervals of all user values after collecting all 631 /// their def points. 632 void computeIntervals(); 633 634 public: 635 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 636 637 bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); 638 639 /// Release all memory. 640 void clear() { 641 MF = nullptr; 642 PHIValToPos.clear(); 643 RegToPHIIdx.clear(); 644 StashedDebugInstrs.clear(); 645 userValues.clear(); 646 userLabels.clear(); 647 virtRegToEqClass.clear(); 648 userVarMap.clear(); 649 // Make sure we call emitDebugValues if the machine function was modified. 650 assert((!ModifiedMF || EmitDone) && 651 "Dbg values are not emitted in LDV"); 652 EmitDone = false; 653 ModifiedMF = false; 654 } 655 656 /// Map virtual register to an equivalence class. 657 void mapVirtReg(Register VirtReg, UserValue *EC); 658 659 /// Replace any PHI referring to OldReg with its corresponding NewReg, if 660 /// present. 661 void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); 662 663 /// Replace all references to OldReg with NewRegs. 664 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 665 666 /// Recreate DBG_VALUE instruction from data structures. 667 void emitDebugValues(VirtRegMap *VRM); 668 669 void print(raw_ostream&); 670 }; 671 672 } // end anonymous namespace 673 674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 675 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 676 const LLVMContext &Ctx) { 677 if (!DL) 678 return; 679 680 auto *Scope = cast<DIScope>(DL.getScope()); 681 // Omit the directory, because it's likely to be long and uninteresting. 682 CommentOS << Scope->getFilename(); 683 CommentOS << ':' << DL.getLine(); 684 if (DL.getCol() != 0) 685 CommentOS << ':' << DL.getCol(); 686 687 DebugLoc InlinedAtDL = DL.getInlinedAt(); 688 if (!InlinedAtDL) 689 return; 690 691 CommentOS << " @[ "; 692 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 693 CommentOS << " ]"; 694 } 695 696 static void printExtendedName(raw_ostream &OS, const DINode *Node, 697 const DILocation *DL) { 698 const LLVMContext &Ctx = Node->getContext(); 699 StringRef Res; 700 unsigned Line = 0; 701 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 702 Res = V->getName(); 703 Line = V->getLine(); 704 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 705 Res = L->getName(); 706 Line = L->getLine(); 707 } 708 709 if (!Res.empty()) 710 OS << Res << "," << Line; 711 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 712 if (InlinedAt) { 713 if (DebugLoc InlinedAtDL = InlinedAt) { 714 OS << " @["; 715 printDebugLoc(InlinedAtDL, OS, Ctx); 716 OS << "]"; 717 } 718 } 719 } 720 721 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 722 OS << "!\""; 723 printExtendedName(OS, Variable, dl); 724 725 OS << "\"\t"; 726 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 727 OS << " [" << I.start() << ';' << I.stop() << "):"; 728 if (I.value().isUndef()) 729 OS << " undef"; 730 else { 731 I.value().printLocNos(OS); 732 if (I.value().getWasIndirect()) 733 OS << " ind"; 734 else if (I.value().getWasList()) 735 OS << " list"; 736 } 737 } 738 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 739 OS << " Loc" << i << '='; 740 locations[i].print(OS, TRI); 741 } 742 OS << '\n'; 743 } 744 745 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 746 OS << "!\""; 747 printExtendedName(OS, Label, dl); 748 749 OS << "\"\t"; 750 OS << loc; 751 OS << '\n'; 752 } 753 754 void LDVImpl::print(raw_ostream &OS) { 755 OS << "********** DEBUG VARIABLES **********\n"; 756 for (auto &userValue : userValues) 757 userValue->print(OS, TRI); 758 OS << "********** DEBUG LABELS **********\n"; 759 for (auto &userLabel : userLabels) 760 userLabel->print(OS, TRI); 761 } 762 #endif 763 764 void UserValue::mapVirtRegs(LDVImpl *LDV) { 765 for (unsigned i = 0, e = locations.size(); i != e; ++i) 766 if (locations[i].isReg() && 767 Register::isVirtualRegister(locations[i].getReg())) 768 LDV->mapVirtReg(locations[i].getReg(), this); 769 } 770 771 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 772 Optional<DIExpression::FragmentInfo> Fragment, 773 const DebugLoc &DL) { 774 // FIXME: Handle partially overlapping fragments. See 775 // https://reviews.llvm.org/D70121#1849741. 776 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 777 UserValue *&UV = userVarMap[ID]; 778 if (!UV) { 779 userValues.push_back( 780 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 781 UV = userValues.back().get(); 782 } 783 return UV; 784 } 785 786 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 787 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 788 UserValue *&Leader = virtRegToEqClass[VirtReg]; 789 Leader = UserValue::merge(Leader, EC); 790 } 791 792 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 793 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 794 return UV->getLeader(); 795 return nullptr; 796 } 797 798 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 799 // DBG_VALUE loc, offset, variable, expr 800 // DBG_VALUE_LIST variable, expr, locs... 801 if (!MI.isDebugValue()) { 802 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); 803 return false; 804 } 805 if (!MI.getDebugVariableOp().isMetadata()) { 806 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " 807 << MI); 808 return false; 809 } 810 if (MI.isNonListDebugValue() && 811 (MI.getNumOperands() != 4 || 812 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { 813 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); 814 return false; 815 } 816 817 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 818 // register that hasn't been defined yet. If we do not remove those here, then 819 // the re-insertion of the DBG_VALUE instruction after register allocation 820 // will be incorrect. 821 bool Discard = false; 822 for (const MachineOperand &Op : MI.debug_operands()) { 823 if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) { 824 const Register Reg = Op.getReg(); 825 if (!LIS->hasInterval(Reg)) { 826 // The DBG_VALUE is described by a virtual register that does not have a 827 // live interval. Discard the DBG_VALUE. 828 Discard = true; 829 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 830 << " " << MI); 831 } else { 832 // The DBG_VALUE is only valid if either Reg is live out from Idx, or 833 // Reg is defined dead at Idx (where Idx is the slot index for the 834 // instruction preceding the DBG_VALUE). 835 const LiveInterval &LI = LIS->getInterval(Reg); 836 LiveQueryResult LRQ = LI.Query(Idx); 837 if (!LRQ.valueOutOrDead()) { 838 // We have found a DBG_VALUE with the value in a virtual register that 839 // is not live. Discard the DBG_VALUE. 840 Discard = true; 841 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 842 << " " << MI); 843 } 844 } 845 } 846 } 847 848 // Get or create the UserValue for (variable,offset) here. 849 bool IsIndirect = MI.isDebugOffsetImm(); 850 if (IsIndirect) 851 assert(MI.getDebugOffset().getImm() == 0 && 852 "DBG_VALUE with nonzero offset"); 853 bool IsList = MI.isDebugValueList(); 854 const DILocalVariable *Var = MI.getDebugVariable(); 855 const DIExpression *Expr = MI.getDebugExpression(); 856 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 857 if (!Discard) 858 UV->addDef(Idx, 859 ArrayRef<MachineOperand>(MI.debug_operands().begin(), 860 MI.debug_operands().end()), 861 IsIndirect, IsList, *Expr); 862 else { 863 MachineOperand MO = MachineOperand::CreateReg(0U, false); 864 MO.setIsDebug(); 865 // We should still pass a list the same size as MI.debug_operands() even if 866 // all MOs are undef, so that DbgVariableValue can correctly adjust the 867 // expression while removing the duplicated undefs. 868 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); 869 UV->addDef(Idx, UndefMOs, false, IsList, *Expr); 870 } 871 return true; 872 } 873 874 MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, 875 SlotIndex Idx) { 876 assert(MI.isDebugValue() || MI.isDebugRef() || MI.isDebugPHI()); 877 878 // In instruction referencing mode, there should be no DBG_VALUE instructions 879 // that refer to virtual registers. They might still refer to constants. 880 if (MI.isDebugValue()) 881 assert(!MI.getOperand(0).isReg() || !MI.getOperand(0).getReg().isVirtual()); 882 883 // Unlink the instruction, store it in the debug instructions collection. 884 auto NextInst = std::next(MI.getIterator()); 885 auto *MBB = MI.getParent(); 886 MI.removeFromParent(); 887 StashedDebugInstrs.push_back({&MI, Idx, MBB}); 888 return NextInst; 889 } 890 891 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 892 // DBG_LABEL label 893 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 894 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 895 return false; 896 } 897 898 // Get or create the UserLabel for label here. 899 const DILabel *Label = MI.getDebugLabel(); 900 const DebugLoc &DL = MI.getDebugLoc(); 901 bool Found = false; 902 for (auto const &L : userLabels) { 903 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 904 Found = true; 905 break; 906 } 907 } 908 if (!Found) 909 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 910 911 return true; 912 } 913 914 bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { 915 bool Changed = false; 916 for (MachineBasicBlock &MBB : mf) { 917 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 918 MBBI != MBBE;) { 919 // Use the first debug instruction in the sequence to get a SlotIndex 920 // for following consecutive debug instructions. 921 if (!MBBI->isDebugOrPseudoInstr()) { 922 ++MBBI; 923 continue; 924 } 925 // Debug instructions has no slot index. Use the previous 926 // non-debug instruction's SlotIndex as its SlotIndex. 927 SlotIndex Idx = 928 MBBI == MBB.begin() 929 ? LIS->getMBBStartIdx(&MBB) 930 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 931 // Handle consecutive debug instructions with the same slot index. 932 do { 933 // In instruction referencing mode, pass each instr to handleDebugInstr 934 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and 935 // need to go through the normal live interval splitting process. 936 if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || 937 MBBI->isDebugRef())) { 938 MBBI = handleDebugInstr(*MBBI, Idx); 939 Changed = true; 940 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler 941 // to track things through register allocation, and erase the instr. 942 } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 943 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 944 MBBI = MBB.erase(MBBI); 945 Changed = true; 946 } else 947 ++MBBI; 948 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); 949 } 950 } 951 return Changed; 952 } 953 954 void UserValue::extendDef( 955 SlotIndex Idx, DbgVariableValue DbgValue, 956 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 957 &LiveIntervalInfo, 958 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 959 LiveIntervals &LIS) { 960 SlotIndex Start = Idx; 961 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 962 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 963 LocMap::iterator I = locInts.find(Start); 964 965 // Limit to the intersection of the VNIs' live ranges. 966 for (auto &LII : LiveIntervalInfo) { 967 LiveRange *LR = LII.second.first; 968 assert(LR && LII.second.second && "Missing range info for Idx."); 969 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 970 assert(Segment && Segment->valno == LII.second.second && 971 "Invalid VNInfo for Idx given?"); 972 if (Segment->end < Stop) { 973 Stop = Segment->end; 974 Kills = {Stop, {LII.first}}; 975 } else if (Segment->end == Stop && Kills) { 976 // If multiple locations end at the same place, track all of them in 977 // Kills. 978 Kills->second.push_back(LII.first); 979 } 980 } 981 982 // There could already be a short def at Start. 983 if (I.valid() && I.start() <= Start) { 984 // Stop when meeting a different location or an already extended interval. 985 Start = Start.getNextSlot(); 986 if (I.value() != DbgValue || I.stop() != Start) { 987 // Clear `Kills`, as we have a new def available. 988 Kills = None; 989 return; 990 } 991 // This is a one-slot placeholder. Just skip it. 992 ++I; 993 } 994 995 // Limited by the next def. 996 if (I.valid() && I.start() < Stop) { 997 Stop = I.start(); 998 // Clear `Kills`, as we have a new def available. 999 Kills = None; 1000 } 1001 1002 if (Start < Stop) { 1003 DbgVariableValue ExtDbgValue(DbgValue); 1004 I.insert(Start, Stop, std::move(ExtDbgValue)); 1005 } 1006 } 1007 1008 void UserValue::addDefsFromCopies( 1009 DbgVariableValue DbgValue, 1010 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 1011 SlotIndex KilledAt, 1012 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 1013 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 1014 // Don't track copies from physregs, there are too many uses. 1015 if (any_of(LocIntervals, [](auto LocI) { 1016 return !Register::isVirtualRegister(LocI.second->reg()); 1017 })) 1018 return; 1019 1020 // Collect all the (vreg, valno) pairs that are copies of LI. 1021 SmallDenseMap<unsigned, 1022 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> 1023 CopyValues; 1024 for (auto &LocInterval : LocIntervals) { 1025 unsigned LocNo = LocInterval.first; 1026 LiveInterval *LI = LocInterval.second; 1027 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 1028 MachineInstr *MI = MO.getParent(); 1029 // Copies of the full value. 1030 if (MO.getSubReg() || !MI->isCopy()) 1031 continue; 1032 Register DstReg = MI->getOperand(0).getReg(); 1033 1034 // Don't follow copies to physregs. These are usually setting up call 1035 // arguments, and the argument registers are always call clobbered. We are 1036 // better off in the source register which could be a callee-saved 1037 // register, or it could be spilled. 1038 if (!Register::isVirtualRegister(DstReg)) 1039 continue; 1040 1041 // Is the value extended to reach this copy? If not, another def may be 1042 // blocking it, or we are looking at a wrong value of LI. 1043 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1044 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 1045 if (!I.valid() || I.value() != DbgValue) 1046 continue; 1047 1048 if (!LIS.hasInterval(DstReg)) 1049 continue; 1050 LiveInterval *DstLI = &LIS.getInterval(DstReg); 1051 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 1052 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 1053 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); 1054 } 1055 } 1056 1057 if (CopyValues.empty()) 1058 return; 1059 1060 #if !defined(NDEBUG) 1061 for (auto &LocInterval : LocIntervals) 1062 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() 1063 << " copies of " << *LocInterval.second << '\n'); 1064 #endif 1065 1066 // Try to add defs of the copied values for the kill point. Check that there 1067 // isn't already a def at Idx. 1068 LocMap::iterator I = locInts.find(KilledAt); 1069 if (I.valid() && I.start() <= KilledAt) 1070 return; 1071 DbgVariableValue NewValue(DbgValue); 1072 for (auto &LocInterval : LocIntervals) { 1073 unsigned LocNo = LocInterval.first; 1074 bool FoundCopy = false; 1075 for (auto &LIAndVNI : CopyValues[LocNo]) { 1076 LiveInterval *DstLI = LIAndVNI.first; 1077 const VNInfo *DstVNI = LIAndVNI.second; 1078 if (DstLI->getVNInfoAt(KilledAt) != DstVNI) 1079 continue; 1080 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" 1081 << DstVNI->id << " in " << *DstLI << '\n'); 1082 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 1083 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 1084 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); 1085 NewValue = NewValue.changeLocNo(LocNo, NewLocNo); 1086 FoundCopy = true; 1087 break; 1088 } 1089 // If there are any killed locations we can't find a copy for, we can't 1090 // extend the variable value. 1091 if (!FoundCopy) 1092 return; 1093 } 1094 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); 1095 NewDefs.push_back(std::make_pair(KilledAt, NewValue)); 1096 } 1097 1098 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 1099 const TargetRegisterInfo &TRI, 1100 LiveIntervals &LIS, LexicalScopes &LS) { 1101 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 1102 1103 // Collect all defs to be extended (Skipping undefs). 1104 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 1105 if (!I.value().isUndef()) 1106 Defs.push_back(std::make_pair(I.start(), I.value())); 1107 1108 // Extend all defs, and possibly add new ones along the way. 1109 for (unsigned i = 0; i != Defs.size(); ++i) { 1110 SlotIndex Idx = Defs[i].first; 1111 DbgVariableValue DbgValue = Defs[i].second; 1112 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; 1113 SmallVector<const VNInfo *, 4> VNIs; 1114 bool ShouldExtendDef = false; 1115 for (unsigned LocNo : DbgValue.loc_nos()) { 1116 const MachineOperand &LocMO = locations[LocNo]; 1117 if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) { 1118 ShouldExtendDef |= !LocMO.isReg(); 1119 continue; 1120 } 1121 ShouldExtendDef = true; 1122 LiveInterval *LI = nullptr; 1123 const VNInfo *VNI = nullptr; 1124 if (LIS.hasInterval(LocMO.getReg())) { 1125 LI = &LIS.getInterval(LocMO.getReg()); 1126 VNI = LI->getVNInfoAt(Idx); 1127 } 1128 if (LI && VNI) 1129 LIs[LocNo] = {LI, VNI}; 1130 } 1131 if (ShouldExtendDef) { 1132 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; 1133 extendDef(Idx, DbgValue, LIs, Kills, LIS); 1134 1135 if (Kills) { 1136 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; 1137 bool AnySubreg = false; 1138 for (unsigned LocNo : Kills->second) { 1139 const MachineOperand &LocMO = this->locations[LocNo]; 1140 if (LocMO.getSubReg()) { 1141 AnySubreg = true; 1142 break; 1143 } 1144 LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); 1145 KilledLocIntervals.push_back({LocNo, LI}); 1146 } 1147 1148 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 1149 // if the original location for example is %vreg0:sub_hi, and we find a 1150 // full register copy in addDefsFromCopies (at the moment it only 1151 // handles full register copies), then we must add the sub1 sub-register 1152 // index to the new location. However, that is only possible if the new 1153 // virtual register is of the same regclass (or if there is an 1154 // equivalent sub-register in that regclass). For now, simply skip 1155 // handling copies if a sub-register is involved. 1156 if (!AnySubreg) 1157 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, 1158 MRI, LIS); 1159 } 1160 } 1161 1162 // For physregs, we only mark the start slot idx. DwarfDebug will see it 1163 // as if the DBG_VALUE is valid up until the end of the basic block, or 1164 // the next def of the physical register. So we do not need to extend the 1165 // range. It might actually happen that the DBG_VALUE is the last use of 1166 // the physical register (e.g. if this is an unused input argument to a 1167 // function). 1168 } 1169 1170 // The computed intervals may extend beyond the range of the debug 1171 // location's lexical scope. In this case, splitting of an interval 1172 // can result in an interval outside of the scope being created, 1173 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 1174 // this, trim the intervals to the lexical scope in the case of inlined 1175 // variables, since heavy inlining may cause production of dramatically big 1176 // number of DBG_VALUEs to be generated. 1177 if (!dl.getInlinedAt()) 1178 return; 1179 1180 LexicalScope *Scope = LS.findLexicalScope(dl); 1181 if (!Scope) 1182 return; 1183 1184 SlotIndex PrevEnd; 1185 LocMap::iterator I = locInts.begin(); 1186 1187 // Iterate over the lexical scope ranges. Each time round the loop 1188 // we check the intervals for overlap with the end of the previous 1189 // range and the start of the next. The first range is handled as 1190 // a special case where there is no PrevEnd. 1191 for (const InsnRange &Range : Scope->getRanges()) { 1192 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 1193 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 1194 1195 // Variable locations at the first instruction of a block should be 1196 // based on the block's SlotIndex, not the first instruction's index. 1197 if (Range.first == Range.first->getParent()->begin()) 1198 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 1199 1200 // At the start of each iteration I has been advanced so that 1201 // I.stop() >= PrevEnd. Check for overlap. 1202 if (PrevEnd && I.start() < PrevEnd) { 1203 SlotIndex IStop = I.stop(); 1204 DbgVariableValue DbgValue = I.value(); 1205 1206 // Stop overlaps previous end - trim the end of the interval to 1207 // the scope range. 1208 I.setStopUnchecked(PrevEnd); 1209 ++I; 1210 1211 // If the interval also overlaps the start of the "next" (i.e. 1212 // current) range create a new interval for the remainder (which 1213 // may be further trimmed). 1214 if (RStart < IStop) 1215 I.insert(RStart, IStop, DbgValue); 1216 } 1217 1218 // Advance I so that I.stop() >= RStart, and check for overlap. 1219 I.advanceTo(RStart); 1220 if (!I.valid()) 1221 return; 1222 1223 if (I.start() < RStart) { 1224 // Interval start overlaps range - trim to the scope range. 1225 I.setStartUnchecked(RStart); 1226 // Remember that this interval was trimmed. 1227 trimmedDefs.insert(RStart); 1228 } 1229 1230 // The end of a lexical scope range is the last instruction in the 1231 // range. To convert to an interval we need the index of the 1232 // instruction after it. 1233 REnd = REnd.getNextIndex(); 1234 1235 // Advance I to first interval outside current range. 1236 I.advanceTo(REnd); 1237 if (!I.valid()) 1238 return; 1239 1240 PrevEnd = REnd; 1241 } 1242 1243 // Check for overlap with end of final range. 1244 if (PrevEnd && I.start() < PrevEnd) 1245 I.setStopUnchecked(PrevEnd); 1246 } 1247 1248 void LDVImpl::computeIntervals() { 1249 LexicalScopes LS; 1250 LS.initialize(*MF); 1251 1252 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1253 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1254 userValues[i]->mapVirtRegs(this); 1255 } 1256 } 1257 1258 bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { 1259 clear(); 1260 MF = &mf; 1261 LIS = &pass.getAnalysis<LiveIntervals>(); 1262 TRI = mf.getSubtarget().getRegisterInfo(); 1263 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1264 << mf.getName() << " **********\n"); 1265 1266 bool Changed = collectDebugValues(mf, InstrRef); 1267 computeIntervals(); 1268 LLVM_DEBUG(print(dbgs())); 1269 1270 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive 1271 // VRegs too, for when we're notified of a range split. 1272 SlotIndexes *Slots = LIS->getSlotIndexes(); 1273 for (const auto &PHIIt : MF->DebugPHIPositions) { 1274 const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; 1275 MachineBasicBlock *MBB = Position.MBB; 1276 Register Reg = Position.Reg; 1277 unsigned SubReg = Position.SubReg; 1278 SlotIndex SI = Slots->getMBBStartIdx(MBB); 1279 PHIValPos VP = {SI, Reg, SubReg}; 1280 PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); 1281 RegToPHIIdx[Reg].push_back(PHIIt.first); 1282 } 1283 1284 ModifiedMF = Changed; 1285 return Changed; 1286 } 1287 1288 static void removeDebugInstrs(MachineFunction &mf) { 1289 for (MachineBasicBlock &MBB : mf) { 1290 for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) 1291 if (MI.isDebugInstr()) 1292 MBB.erase(&MI); 1293 } 1294 } 1295 1296 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1297 if (!EnableLDV) 1298 return false; 1299 if (!mf.getFunction().getSubprogram()) { 1300 removeDebugInstrs(mf); 1301 return false; 1302 } 1303 1304 // Have we been asked to track variable locations using instruction 1305 // referencing? 1306 bool InstrRef = mf.useDebugInstrRef(); 1307 1308 if (!pImpl) 1309 pImpl = new LDVImpl(this); 1310 return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); 1311 } 1312 1313 void LiveDebugVariables::releaseMemory() { 1314 if (pImpl) 1315 static_cast<LDVImpl*>(pImpl)->clear(); 1316 } 1317 1318 LiveDebugVariables::~LiveDebugVariables() { 1319 if (pImpl) 1320 delete static_cast<LDVImpl*>(pImpl); 1321 } 1322 1323 //===----------------------------------------------------------------------===// 1324 // Live Range Splitting 1325 //===----------------------------------------------------------------------===// 1326 1327 bool 1328 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1329 LiveIntervals& LIS) { 1330 LLVM_DEBUG({ 1331 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1332 print(dbgs(), nullptr); 1333 }); 1334 bool DidChange = false; 1335 LocMap::iterator LocMapI; 1336 LocMapI.setMap(locInts); 1337 for (Register NewReg : NewRegs) { 1338 LiveInterval *LI = &LIS.getInterval(NewReg); 1339 if (LI->empty()) 1340 continue; 1341 1342 // Don't allocate the new LocNo until it is needed. 1343 unsigned NewLocNo = UndefLocNo; 1344 1345 // Iterate over the overlaps between locInts and LI. 1346 LocMapI.find(LI->beginIndex()); 1347 if (!LocMapI.valid()) 1348 continue; 1349 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1350 LiveInterval::iterator LIE = LI->end(); 1351 while (LocMapI.valid() && LII != LIE) { 1352 // At this point, we know that LocMapI.stop() > LII->start. 1353 LII = LI->advanceTo(LII, LocMapI.start()); 1354 if (LII == LIE) 1355 break; 1356 1357 // Now LII->end > LocMapI.start(). Do we have an overlap? 1358 if (LocMapI.value().containsLocNo(OldLocNo) && 1359 LII->start < LocMapI.stop()) { 1360 // Overlapping correct location. Allocate NewLocNo now. 1361 if (NewLocNo == UndefLocNo) { 1362 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1363 MO.setSubReg(locations[OldLocNo].getSubReg()); 1364 NewLocNo = getLocationNo(MO); 1365 DidChange = true; 1366 } 1367 1368 SlotIndex LStart = LocMapI.start(); 1369 SlotIndex LStop = LocMapI.stop(); 1370 DbgVariableValue OldDbgValue = LocMapI.value(); 1371 1372 // Trim LocMapI down to the LII overlap. 1373 if (LStart < LII->start) 1374 LocMapI.setStartUnchecked(LII->start); 1375 if (LStop > LII->end) 1376 LocMapI.setStopUnchecked(LII->end); 1377 1378 // Change the value in the overlap. This may trigger coalescing. 1379 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); 1380 1381 // Re-insert any removed OldDbgValue ranges. 1382 if (LStart < LocMapI.start()) { 1383 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1384 ++LocMapI; 1385 assert(LocMapI.valid() && "Unexpected coalescing"); 1386 } 1387 if (LStop > LocMapI.stop()) { 1388 ++LocMapI; 1389 LocMapI.insert(LII->end, LStop, OldDbgValue); 1390 --LocMapI; 1391 } 1392 } 1393 1394 // Advance to the next overlap. 1395 if (LII->end < LocMapI.stop()) { 1396 if (++LII == LIE) 1397 break; 1398 LocMapI.advanceTo(LII->start); 1399 } else { 1400 ++LocMapI; 1401 if (!LocMapI.valid()) 1402 break; 1403 LII = LI->advanceTo(LII, LocMapI.start()); 1404 } 1405 } 1406 } 1407 1408 // Finally, remove OldLocNo unless it is still used by some interval in the 1409 // locInts map. One case when OldLocNo still is in use is when the register 1410 // has been spilled. In such situations the spilled register is kept as a 1411 // location until rewriteLocations is called (VirtRegMap is mapping the old 1412 // register to the spill slot). So for a while we can have locations that map 1413 // to virtual registers that have been removed from both the MachineFunction 1414 // and from LiveIntervals. 1415 // 1416 // We may also just be using the location for a value with a different 1417 // expression. 1418 removeLocationIfUnused(OldLocNo); 1419 1420 LLVM_DEBUG({ 1421 dbgs() << "Split result: \t"; 1422 print(dbgs(), nullptr); 1423 }); 1424 return DidChange; 1425 } 1426 1427 bool 1428 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1429 LiveIntervals &LIS) { 1430 bool DidChange = false; 1431 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1432 // safely erase unused locations. 1433 for (unsigned i = locations.size(); i ; --i) { 1434 unsigned LocNo = i-1; 1435 const MachineOperand *Loc = &locations[LocNo]; 1436 if (!Loc->isReg() || Loc->getReg() != OldReg) 1437 continue; 1438 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1439 } 1440 return DidChange; 1441 } 1442 1443 void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1444 auto RegIt = RegToPHIIdx.find(OldReg); 1445 if (RegIt == RegToPHIIdx.end()) 1446 return; 1447 1448 std::vector<std::pair<Register, unsigned>> NewRegIdxes; 1449 // Iterate over all the debug instruction numbers affected by this split. 1450 for (unsigned InstrID : RegIt->second) { 1451 auto PHIIt = PHIValToPos.find(InstrID); 1452 assert(PHIIt != PHIValToPos.end()); 1453 const SlotIndex &Slot = PHIIt->second.SI; 1454 assert(OldReg == PHIIt->second.Reg); 1455 1456 // Find the new register that covers this position. 1457 for (auto NewReg : NewRegs) { 1458 const LiveInterval &LI = LIS->getInterval(NewReg); 1459 auto LII = LI.find(Slot); 1460 if (LII != LI.end() && LII->start <= Slot) { 1461 // This new register covers this PHI position, record this for indexing. 1462 NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); 1463 // Record that this value lives in a different VReg now. 1464 PHIIt->second.Reg = NewReg; 1465 break; 1466 } 1467 } 1468 1469 // If we do not find a new register covering this PHI, then register 1470 // allocation has dropped its location, for example because it's not live. 1471 // The old VReg will not be mapped to a physreg, and the instruction 1472 // number will have been optimized out. 1473 } 1474 1475 // Re-create register index using the new register numbers. 1476 RegToPHIIdx.erase(RegIt); 1477 for (auto &RegAndInstr : NewRegIdxes) 1478 RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); 1479 } 1480 1481 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1482 // Consider whether this split range affects any PHI locations. 1483 splitPHIRegister(OldReg, NewRegs); 1484 1485 // Check whether any intervals mapped by a DBG_VALUE were split and need 1486 // updating. 1487 bool DidChange = false; 1488 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1489 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1490 1491 if (!DidChange) 1492 return; 1493 1494 // Map all of the new virtual registers. 1495 UserValue *UV = lookupVirtReg(OldReg); 1496 for (Register NewReg : NewRegs) 1497 mapVirtReg(NewReg, UV); 1498 } 1499 1500 void LiveDebugVariables:: 1501 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1502 if (pImpl) 1503 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1504 } 1505 1506 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1507 const TargetInstrInfo &TII, 1508 const TargetRegisterInfo &TRI, 1509 SpillOffsetMap &SpillOffsets) { 1510 // Build a set of new locations with new numbers so we can coalesce our 1511 // IntervalMap if two vreg intervals collapse to the same physical location. 1512 // Use MapVector instead of SetVector because MapVector::insert returns the 1513 // position of the previously or newly inserted element. The boolean value 1514 // tracks if the location was produced by a spill. 1515 // FIXME: This will be problematic if we ever support direct and indirect 1516 // frame index locations, i.e. expressing both variables in memory and 1517 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1518 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1519 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1520 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1521 bool Spilled = false; 1522 unsigned SpillOffset = 0; 1523 MachineOperand Loc = locations[I]; 1524 // Only virtual registers are rewritten. 1525 if (Loc.isReg() && Loc.getReg() && 1526 Register::isVirtualRegister(Loc.getReg())) { 1527 Register VirtReg = Loc.getReg(); 1528 if (VRM.isAssignedReg(VirtReg) && 1529 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1530 // This can create a %noreg operand in rare cases when the sub-register 1531 // index is no longer available. That means the user value is in a 1532 // non-existent sub-register, and %noreg is exactly what we want. 1533 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1534 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1535 // Retrieve the stack slot offset. 1536 unsigned SpillSize; 1537 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1538 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1539 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1540 SpillOffset, MF); 1541 1542 // FIXME: Invalidate the location if the offset couldn't be calculated. 1543 (void)Success; 1544 1545 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1546 Spilled = true; 1547 } else { 1548 Loc.setReg(0); 1549 Loc.setSubReg(0); 1550 } 1551 } 1552 1553 // Insert this location if it doesn't already exist and record a mapping 1554 // from the old number to the new number. 1555 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1556 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1557 LocNoMap[I] = NewLocNo; 1558 } 1559 1560 // Rewrite the locations and record the stack slot offsets for spills. 1561 locations.clear(); 1562 SpillOffsets.clear(); 1563 for (auto &Pair : NewLocations) { 1564 bool Spilled; 1565 unsigned SpillOffset; 1566 std::tie(Spilled, SpillOffset) = Pair.second; 1567 locations.push_back(Pair.first); 1568 if (Spilled) { 1569 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1570 SpillOffsets[NewLocNo] = SpillOffset; 1571 } 1572 } 1573 1574 // Update the interval map, but only coalesce left, since intervals to the 1575 // right use the old location numbers. This should merge two contiguous 1576 // DBG_VALUE intervals with different vregs that were allocated to the same 1577 // physical register. 1578 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1579 I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); 1580 I.setStart(I.start()); 1581 } 1582 } 1583 1584 /// Find an iterator for inserting a DBG_VALUE instruction. 1585 static MachineBasicBlock::iterator 1586 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1587 BlockSkipInstsMap &BBSkipInstsMap) { 1588 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1589 Idx = Idx.getBaseIndex(); 1590 1591 // Try to find an insert location by going backwards from Idx. 1592 MachineInstr *MI; 1593 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1594 // We've reached the beginning of MBB. 1595 if (Idx == Start) { 1596 // Retrieve the last PHI/Label/Debug location found when calling 1597 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1598 // 1599 // Note the iterator kept in BBSkipInstsMap is one step back based 1600 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1601 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1602 // BBSkipInstsMap won't save it. This is to consider the case that 1603 // new instructions may be inserted at the beginning of MBB after 1604 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1605 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1606 // are inserted at the beginning of the MBB, the iterator in 1607 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1608 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1609 // newly added instructions and that is unwanted. 1610 MachineBasicBlock::iterator BeginIt; 1611 auto MapIt = BBSkipInstsMap.find(MBB); 1612 if (MapIt == BBSkipInstsMap.end()) 1613 BeginIt = MBB->begin(); 1614 else 1615 BeginIt = std::next(MapIt->second); 1616 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1617 if (I != BeginIt) 1618 BBSkipInstsMap[MBB] = std::prev(I); 1619 return I; 1620 } 1621 Idx = Idx.getPrevIndex(); 1622 } 1623 1624 // Don't insert anything after the first terminator, though. 1625 return MI->isTerminator() ? MBB->getFirstTerminator() : 1626 std::next(MachineBasicBlock::iterator(MI)); 1627 } 1628 1629 /// Find an iterator for inserting the next DBG_VALUE instruction 1630 /// (or end if no more insert locations found). 1631 static MachineBasicBlock::iterator 1632 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, 1633 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, 1634 LiveIntervals &LIS, const TargetRegisterInfo &TRI) { 1635 SmallVector<Register, 4> Regs; 1636 for (const MachineOperand &LocMO : LocMOs) 1637 if (LocMO.isReg()) 1638 Regs.push_back(LocMO.getReg()); 1639 if (Regs.empty()) 1640 return MBB->instr_end(); 1641 1642 // Find the next instruction in the MBB that define the register Reg. 1643 while (I != MBB->end() && !I->isTerminator()) { 1644 if (!LIS.isNotInMIMap(*I) && 1645 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1646 break; 1647 if (any_of(Regs, [&I, &TRI](Register &Reg) { 1648 return I->definesRegister(Reg, &TRI); 1649 })) 1650 // The insert location is directly after the instruction/bundle. 1651 return std::next(I); 1652 ++I; 1653 } 1654 return MBB->end(); 1655 } 1656 1657 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1658 SlotIndex StopIdx, DbgVariableValue DbgValue, 1659 ArrayRef<bool> LocSpills, 1660 ArrayRef<unsigned> SpillOffsets, 1661 LiveIntervals &LIS, const TargetInstrInfo &TII, 1662 const TargetRegisterInfo &TRI, 1663 BlockSkipInstsMap &BBSkipInstsMap) { 1664 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1665 // Only search within the current MBB. 1666 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1667 MachineBasicBlock::iterator I = 1668 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1669 // Undef values don't exist in locations so create new "noreg" register MOs 1670 // for them. See getLocationNo(). 1671 SmallVector<MachineOperand, 8> MOs; 1672 if (DbgValue.isUndef()) { 1673 MOs.assign(DbgValue.loc_nos().size(), 1674 MachineOperand::CreateReg( 1675 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1676 /* isKill */ false, /* isDead */ false, 1677 /* isUndef */ false, /* isEarlyClobber */ false, 1678 /* SubReg */ 0, /* isDebug */ true)); 1679 } else { 1680 for (unsigned LocNo : DbgValue.loc_nos()) 1681 MOs.push_back(locations[LocNo]); 1682 } 1683 1684 ++NumInsertedDebugValues; 1685 1686 assert(cast<DILocalVariable>(Variable) 1687 ->isValidLocationForIntrinsic(getDebugLoc()) && 1688 "Expected inlined-at fields to agree"); 1689 1690 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1691 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1692 // that the original virtual register was a pointer. Also, add the stack slot 1693 // offset for the spilled register to the expression. 1694 const DIExpression *Expr = DbgValue.getExpression(); 1695 bool IsIndirect = DbgValue.getWasIndirect(); 1696 bool IsList = DbgValue.getWasList(); 1697 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { 1698 if (LocSpills[I]) { 1699 if (!IsList) { 1700 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1701 if (IsIndirect) 1702 DIExprFlags |= DIExpression::DerefAfter; 1703 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); 1704 IsIndirect = true; 1705 } else { 1706 SmallVector<uint64_t, 4> Ops; 1707 DIExpression::appendOffset(Ops, SpillOffsets[I]); 1708 Ops.push_back(dwarf::DW_OP_deref); 1709 Expr = DIExpression::appendOpsToArg(Expr, Ops, I); 1710 } 1711 } 1712 1713 assert((!LocSpills[I] || MOs[I].isFI()) && 1714 "a spilled location must be a frame index"); 1715 } 1716 1717 unsigned DbgValueOpcode = 1718 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; 1719 do { 1720 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, 1721 Variable, Expr); 1722 1723 // Continue and insert DBG_VALUES after every redefinition of a register 1724 // associated with the debug value within the range 1725 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); 1726 } while (I != MBB->end()); 1727 } 1728 1729 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1730 LiveIntervals &LIS, const TargetInstrInfo &TII, 1731 BlockSkipInstsMap &BBSkipInstsMap) { 1732 MachineBasicBlock::iterator I = 1733 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1734 ++NumInsertedDebugLabels; 1735 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1736 .addMetadata(Label); 1737 } 1738 1739 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1740 const TargetInstrInfo &TII, 1741 const TargetRegisterInfo &TRI, 1742 const SpillOffsetMap &SpillOffsets, 1743 BlockSkipInstsMap &BBSkipInstsMap) { 1744 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1745 1746 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1747 SlotIndex Start = I.start(); 1748 SlotIndex Stop = I.stop(); 1749 DbgVariableValue DbgValue = I.value(); 1750 1751 SmallVector<bool> SpilledLocs; 1752 SmallVector<unsigned> LocSpillOffsets; 1753 for (unsigned LocNo : DbgValue.loc_nos()) { 1754 auto SpillIt = 1755 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); 1756 bool Spilled = SpillIt != SpillOffsets.end(); 1757 SpilledLocs.push_back(Spilled); 1758 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); 1759 } 1760 1761 // If the interval start was trimmed to the lexical scope insert the 1762 // DBG_VALUE at the previous index (otherwise it appears after the 1763 // first instruction in the range). 1764 if (trimmedDefs.count(Start)) 1765 Start = Start.getPrevIndex(); 1766 1767 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; 1768 DbgValue.printLocNos(dbg)); 1769 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1770 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1771 1772 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1773 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, 1774 LIS, TII, TRI, BBSkipInstsMap); 1775 // This interval may span multiple basic blocks. 1776 // Insert a DBG_VALUE into each one. 1777 while (Stop > MBBEnd) { 1778 // Move to the next block. 1779 Start = MBBEnd; 1780 if (++MBB == MFEnd) 1781 break; 1782 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1783 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1784 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, 1785 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); 1786 } 1787 LLVM_DEBUG(dbgs() << '\n'); 1788 if (MBB == MFEnd) 1789 break; 1790 1791 ++I; 1792 } 1793 } 1794 1795 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1796 BlockSkipInstsMap &BBSkipInstsMap) { 1797 LLVM_DEBUG(dbgs() << "\t" << loc); 1798 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1799 1800 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1801 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1802 1803 LLVM_DEBUG(dbgs() << '\n'); 1804 } 1805 1806 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1807 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1808 if (!MF) 1809 return; 1810 1811 BlockSkipInstsMap BBSkipInstsMap; 1812 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1813 SpillOffsetMap SpillOffsets; 1814 for (auto &userValue : userValues) { 1815 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1816 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1817 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1818 BBSkipInstsMap); 1819 } 1820 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1821 for (auto &userLabel : userLabels) { 1822 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1823 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1824 } 1825 1826 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); 1827 1828 auto Slots = LIS->getSlotIndexes(); 1829 for (auto &It : PHIValToPos) { 1830 // For each ex-PHI, identify its physreg location or stack slot, and emit 1831 // a DBG_PHI for it. 1832 unsigned InstNum = It.first; 1833 auto Slot = It.second.SI; 1834 Register Reg = It.second.Reg; 1835 unsigned SubReg = It.second.SubReg; 1836 1837 MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); 1838 if (VRM->isAssignedReg(Reg) && 1839 Register::isPhysicalRegister(VRM->getPhys(Reg))) { 1840 unsigned PhysReg = VRM->getPhys(Reg); 1841 if (SubReg != 0) 1842 PhysReg = TRI->getSubReg(PhysReg, SubReg); 1843 1844 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1845 TII->get(TargetOpcode::DBG_PHI)); 1846 Builder.addReg(PhysReg); 1847 Builder.addImm(InstNum); 1848 } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { 1849 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1850 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 1851 unsigned SpillSize, SpillOffset; 1852 1853 unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); 1854 if (SubReg) 1855 regSizeInBits = TRI->getSubRegIdxSize(SubReg); 1856 1857 // Test whether this location is legal with the given subreg. If the 1858 // subregister has a nonzero offset, drop this location, it's too complex 1859 // to describe. (TODO: future work). 1860 bool Success = 1861 TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); 1862 1863 if (Success && SpillOffset == 0) { 1864 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1865 TII->get(TargetOpcode::DBG_PHI)); 1866 Builder.addFrameIndex(VRM->getStackSlot(Reg)); 1867 Builder.addImm(InstNum); 1868 // Record how large the original value is. The stack slot might be 1869 // merged and altered during optimisation, but we will want to know how 1870 // large the value is, at this DBG_PHI. 1871 Builder.addImm(regSizeInBits); 1872 } 1873 1874 LLVM_DEBUG( 1875 if (SpillOffset != 0) { 1876 dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << 1877 " has nonzero offset\n"; 1878 } 1879 ); 1880 } 1881 // If there was no mapping for a value ID, it's optimized out. Create no 1882 // DBG_PHI, and any variables using this value will become optimized out. 1883 } 1884 MF->DebugPHIPositions.clear(); 1885 1886 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1887 1888 // Re-insert any debug instrs back in the position they were. We must 1889 // re-insert in the same order to ensure that debug instructions don't swap, 1890 // which could re-order assignments. Do so in a batch -- once we find the 1891 // insert position, insert all instructions at the same SlotIdx. They are 1892 // guaranteed to appear in-sequence in StashedDebugInstrs because we insert 1893 // them in order. 1894 for (auto *StashIt = StashedDebugInstrs.begin(); 1895 StashIt != StashedDebugInstrs.end(); ++StashIt) { 1896 SlotIndex Idx = StashIt->Idx; 1897 MachineBasicBlock *MBB = StashIt->MBB; 1898 MachineInstr *MI = StashIt->MI; 1899 1900 auto EmitInstsHere = [this, &StashIt, MBB, Idx, 1901 MI](MachineBasicBlock::iterator InsertPos) { 1902 // Insert this debug instruction. 1903 MBB->insert(InsertPos, MI); 1904 1905 // Look at subsequent stashed debug instructions: if they're at the same 1906 // index, insert those too. 1907 auto NextItem = std::next(StashIt); 1908 while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { 1909 assert(NextItem->MBB == MBB && "Instrs with same slot index should be" 1910 "in the same block"); 1911 MBB->insert(InsertPos, NextItem->MI); 1912 StashIt = NextItem; 1913 NextItem = std::next(StashIt); 1914 }; 1915 }; 1916 1917 // Start block index: find the first non-debug instr in the block, and 1918 // insert before it. 1919 if (Idx == Slots->getMBBStartIdx(MBB)) { 1920 MachineBasicBlock::iterator InsertPos = 1921 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1922 EmitInstsHere(InsertPos); 1923 continue; 1924 } 1925 1926 if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { 1927 // Insert at the end of any debug instructions. 1928 auto PostDebug = std::next(Pos->getIterator()); 1929 PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); 1930 EmitInstsHere(PostDebug); 1931 } else { 1932 // Insert position disappeared; walk forwards through slots until we 1933 // find a new one. 1934 SlotIndex End = Slots->getMBBEndIdx(MBB); 1935 for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { 1936 Pos = Slots->getInstructionFromIndex(Idx); 1937 if (Pos) { 1938 EmitInstsHere(Pos->getIterator()); 1939 break; 1940 } 1941 } 1942 1943 // We have reached the end of the block and didn't find anywhere to 1944 // insert! It's not safe to discard any debug instructions; place them 1945 // in front of the first terminator, or in front of end(). 1946 if (Idx >= End) { 1947 auto TermIt = MBB->getFirstTerminator(); 1948 EmitInstsHere(TermIt); 1949 } 1950 } 1951 } 1952 1953 EmitDone = true; 1954 BBSkipInstsMap.clear(); 1955 } 1956 1957 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1958 if (pImpl) 1959 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1960 } 1961 1962 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1963 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1964 if (pImpl) 1965 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1966 } 1967 #endif 1968