xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 18f21f0355481283ceef0ec10e99554f44c205c2)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/MCRegisterInfo.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <iterator>
63 #include <memory>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "livedebugvars"
69 
70 static cl::opt<bool>
71 EnableLDV("live-debug-variables", cl::init(true),
72           cl::desc("Enable the live debug variables pass"), cl::Hidden);
73 
74 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
75 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
76 
77 char LiveDebugVariables::ID = 0;
78 
79 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
80                 "Debug Variable Analysis", false, false)
81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
82 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
83 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
84                 "Debug Variable Analysis", false, false)
85 
86 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
87   AU.addRequired<MachineDominatorTree>();
88   AU.addRequiredTransitive<LiveIntervals>();
89   AU.setPreservesAll();
90   MachineFunctionPass::getAnalysisUsage(AU);
91 }
92 
93 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
94   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
95 }
96 
97 enum : unsigned { UndefLocNo = ~0U };
98 
99 /// Describes a debug variable value by location number and expression along
100 /// with some flags about the original usage of the location.
101 class DbgVariableValue {
102 public:
103   DbgVariableValue(unsigned LocNo, bool WasIndirect,
104                    const DIExpression &Expression)
105       : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) {
106     assert(getLocNo() == LocNo && "location truncation");
107   }
108 
109   DbgVariableValue() : LocNo(0), WasIndirect(0) {}
110 
111   const DIExpression *getExpression() const { return Expression; }
112   unsigned getLocNo() const {
113     // Fix up the undef location number, which gets truncated.
114     return LocNo == INT_MAX ? UndefLocNo : LocNo;
115   }
116   bool getWasIndirect() const { return WasIndirect; }
117   bool isUndef() const { return getLocNo() == UndefLocNo; }
118 
119   DbgVariableValue changeLocNo(unsigned NewLocNo) const {
120     return DbgVariableValue(NewLocNo, WasIndirect, *Expression);
121   }
122 
123   friend inline bool operator==(const DbgVariableValue &LHS,
124                                 const DbgVariableValue &RHS) {
125     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect &&
126            LHS.Expression == RHS.Expression;
127   }
128 
129   friend inline bool operator!=(const DbgVariableValue &LHS,
130                                 const DbgVariableValue &RHS) {
131     return !(LHS == RHS);
132   }
133 
134 private:
135   unsigned LocNo : 31;
136   unsigned WasIndirect : 1;
137   const DIExpression *Expression = nullptr;
138 };
139 
140 /// Map of where a user value is live to that value.
141 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;
142 
143 /// Map of stack slot offsets for spilled locations.
144 /// Non-spilled locations are not added to the map.
145 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
146 
147 namespace {
148 
149 class LDVImpl;
150 
151 /// A user value is a part of a debug info user variable.
152 ///
153 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
154 /// holds part of a user variable. The part is identified by a byte offset.
155 ///
156 /// UserValues are grouped into equivalence classes for easier searching. Two
157 /// user values are related if they are held by the same virtual register. The
158 /// equivalence class is the transitive closure of that relation.
159 class UserValue {
160   const DILocalVariable *Variable; ///< The debug info variable we are part of.
161   /// The part of the variable we describe.
162   const Optional<DIExpression::FragmentInfo> Fragment;
163   DebugLoc dl;            ///< The debug location for the variable. This is
164                           ///< used by dwarf writer to find lexical scope.
165   UserValue *leader;      ///< Equivalence class leader.
166   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
167 
168   /// Numbered locations referenced by locmap.
169   SmallVector<MachineOperand, 4> locations;
170 
171   /// Map of slot indices where this value is live.
172   LocMap locInts;
173 
174   /// Set of interval start indexes that have been trimmed to the
175   /// lexical scope.
176   SmallSet<SlotIndex, 2> trimmedDefs;
177 
178   /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
179   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
180                         SlotIndex StopIdx, DbgVariableValue DbgValue,
181                         bool Spilled, unsigned SpillOffset, LiveIntervals &LIS,
182                         const TargetInstrInfo &TII,
183                         const TargetRegisterInfo &TRI);
184 
185   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
186   /// is live. Returns true if any changes were made.
187   bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
188                      LiveIntervals &LIS);
189 
190 public:
191   /// Create a new UserValue.
192   UserValue(const DILocalVariable *var,
193             Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
194             LocMap::Allocator &alloc)
195       : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
196         locInts(alloc) {}
197 
198   /// Get the leader of this value's equivalence class.
199   UserValue *getLeader() {
200     UserValue *l = leader;
201     while (l != l->leader)
202       l = l->leader;
203     return leader = l;
204   }
205 
206   /// Return the next UserValue in the equivalence class.
207   UserValue *getNext() const { return next; }
208 
209   /// Merge equivalence classes.
210   static UserValue *merge(UserValue *L1, UserValue *L2) {
211     L2 = L2->getLeader();
212     if (!L1)
213       return L2;
214     L1 = L1->getLeader();
215     if (L1 == L2)
216       return L1;
217     // Splice L2 before L1's members.
218     UserValue *End = L2;
219     while (End->next) {
220       End->leader = L1;
221       End = End->next;
222     }
223     End->leader = L1;
224     End->next = L1->next;
225     L1->next = L2;
226     return L1;
227   }
228 
229   /// Return the location number that matches Loc.
230   ///
231   /// For undef values we always return location number UndefLocNo without
232   /// inserting anything in locations. Since locations is a vector and the
233   /// location number is the position in the vector and UndefLocNo is ~0,
234   /// we would need a very big vector to put the value at the right position.
235   unsigned getLocationNo(const MachineOperand &LocMO) {
236     if (LocMO.isReg()) {
237       if (LocMO.getReg() == 0)
238         return UndefLocNo;
239       // For register locations we dont care about use/def and other flags.
240       for (unsigned i = 0, e = locations.size(); i != e; ++i)
241         if (locations[i].isReg() &&
242             locations[i].getReg() == LocMO.getReg() &&
243             locations[i].getSubReg() == LocMO.getSubReg())
244           return i;
245     } else
246       for (unsigned i = 0, e = locations.size(); i != e; ++i)
247         if (LocMO.isIdenticalTo(locations[i]))
248           return i;
249     locations.push_back(LocMO);
250     // We are storing a MachineOperand outside a MachineInstr.
251     locations.back().clearParent();
252     // Don't store def operands.
253     if (locations.back().isReg()) {
254       if (locations.back().isDef())
255         locations.back().setIsDead(false);
256       locations.back().setIsUse();
257     }
258     return locations.size() - 1;
259   }
260 
261   /// Remove (recycle) a location number. If \p LocNo still is used by the
262   /// locInts nothing is done.
263   void removeLocationIfUnused(unsigned LocNo) {
264     // Bail out if LocNo still is used.
265     for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
266       DbgVariableValue DbgValue = I.value();
267       if (DbgValue.getLocNo() == LocNo)
268         return;
269     }
270     // Remove the entry in the locations vector, and adjust all references to
271     // location numbers above the removed entry.
272     locations.erase(locations.begin() + LocNo);
273     for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
274       DbgVariableValue DbgValue = I.value();
275       if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo)
276         I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1));
277     }
278   }
279 
280   /// Ensure that all virtual register locations are mapped.
281   void mapVirtRegs(LDVImpl *LDV);
282 
283   /// Add a definition point to this user value.
284   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect,
285               const DIExpression &Expr) {
286     DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr);
287     // Add a singular (Idx,Idx) -> value mapping.
288     LocMap::iterator I = locInts.find(Idx);
289     if (!I.valid() || I.start() != Idx)
290       I.insert(Idx, Idx.getNextSlot(), DbgValue);
291     else
292       // A later DBG_VALUE at the same SlotIndex overrides the old location.
293       I.setValue(DbgValue);
294   }
295 
296   /// Extend the current definition as far as possible down.
297   ///
298   /// Stop when meeting an existing def or when leaving the live
299   /// range of VNI. End points where VNI is no longer live are added to Kills.
300   ///
301   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
302   /// data-flow analysis to propagate them beyond basic block boundaries.
303   ///
304   /// \param Idx Starting point for the definition.
305   /// \param DbgValue value to propagate.
306   /// \param LR Restrict liveness to where LR has the value VNI. May be null.
307   /// \param VNI When LR is not null, this is the value to restrict to.
308   /// \param [out] Kills Append end points of VNI's live range to Kills.
309   /// \param LIS Live intervals analysis.
310   void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR,
311                  const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
312                  LiveIntervals &LIS);
313 
314   /// The value in LI may be copies to other registers. Determine if
315   /// any of the copies are available at the kill points, and add defs if
316   /// possible.
317   ///
318   /// \param LI Scan for copies of the value in LI->reg.
319   /// \param DbgValue Location number of LI->reg, and DIExpression.
320   /// \param Kills Points where the range of DbgValue could be extended.
321   /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
322   void addDefsFromCopies(
323       LiveInterval *LI, DbgVariableValue DbgValue,
324       const SmallVectorImpl<SlotIndex> &Kills,
325       SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
326       MachineRegisterInfo &MRI, LiveIntervals &LIS);
327 
328   /// Compute the live intervals of all locations after collecting all their
329   /// def points.
330   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
331                         LiveIntervals &LIS, LexicalScopes &LS);
332 
333   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
334   /// live. Returns true if any changes were made.
335   bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
336                      LiveIntervals &LIS);
337 
338   /// Rewrite virtual register locations according to the provided virtual
339   /// register map. Record the stack slot offsets for the locations that
340   /// were spilled.
341   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
342                         const TargetInstrInfo &TII,
343                         const TargetRegisterInfo &TRI,
344                         SpillOffsetMap &SpillOffsets);
345 
346   /// Recreate DBG_VALUE instruction from data structures.
347   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
348                        const TargetInstrInfo &TII,
349                        const TargetRegisterInfo &TRI,
350                        const SpillOffsetMap &SpillOffsets);
351 
352   /// Return DebugLoc of this UserValue.
353   DebugLoc getDebugLoc() { return dl;}
354 
355   void print(raw_ostream &, const TargetRegisterInfo *);
356 };
357 
358 /// A user label is a part of a debug info user label.
359 class UserLabel {
360   const DILabel *Label; ///< The debug info label we are part of.
361   DebugLoc dl;          ///< The debug location for the label. This is
362                         ///< used by dwarf writer to find lexical scope.
363   SlotIndex loc;        ///< Slot used by the debug label.
364 
365   /// Insert a DBG_LABEL into MBB at Idx.
366   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
367                         LiveIntervals &LIS, const TargetInstrInfo &TII);
368 
369 public:
370   /// Create a new UserLabel.
371   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
372       : Label(label), dl(std::move(L)), loc(Idx) {}
373 
374   /// Does this UserLabel match the parameters?
375   bool matches(const DILabel *L, const DILocation *IA,
376              const SlotIndex Index) const {
377     return Label == L && dl->getInlinedAt() == IA && loc == Index;
378   }
379 
380   /// Recreate DBG_LABEL instruction from data structures.
381   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
382 
383   /// Return DebugLoc of this UserLabel.
384   DebugLoc getDebugLoc() { return dl; }
385 
386   void print(raw_ostream &, const TargetRegisterInfo *);
387 };
388 
389 /// Implementation of the LiveDebugVariables pass.
390 class LDVImpl {
391   LiveDebugVariables &pass;
392   LocMap::Allocator allocator;
393   MachineFunction *MF = nullptr;
394   LiveIntervals *LIS;
395   const TargetRegisterInfo *TRI;
396 
397   /// Whether emitDebugValues is called.
398   bool EmitDone = false;
399 
400   /// Whether the machine function is modified during the pass.
401   bool ModifiedMF = false;
402 
403   /// All allocated UserValue instances.
404   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
405 
406   /// All allocated UserLabel instances.
407   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
408 
409   /// Map virtual register to eq class leader.
410   using VRMap = DenseMap<unsigned, UserValue *>;
411   VRMap virtRegToEqClass;
412 
413   /// Map to find existing UserValue instances.
414   using UVMap = DenseMap<DebugVariable, UserValue *>;
415   UVMap userVarMap;
416 
417   /// Find or create a UserValue.
418   UserValue *getUserValue(const DILocalVariable *Var,
419                           Optional<DIExpression::FragmentInfo> Fragment,
420                           const DebugLoc &DL);
421 
422   /// Find the EC leader for VirtReg or null.
423   UserValue *lookupVirtReg(Register VirtReg);
424 
425   /// Add DBG_VALUE instruction to our maps.
426   ///
427   /// \param MI DBG_VALUE instruction
428   /// \param Idx Last valid SLotIndex before instruction.
429   ///
430   /// \returns True if the DBG_VALUE instruction should be deleted.
431   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
432 
433   /// Add DBG_LABEL instruction to UserLabel.
434   ///
435   /// \param MI DBG_LABEL instruction
436   /// \param Idx Last valid SlotIndex before instruction.
437   ///
438   /// \returns True if the DBG_LABEL instruction should be deleted.
439   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
440 
441   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
442   /// for each instruction.
443   ///
444   /// \param mf MachineFunction to be scanned.
445   ///
446   /// \returns True if any debug values were found.
447   bool collectDebugValues(MachineFunction &mf);
448 
449   /// Compute the live intervals of all user values after collecting all
450   /// their def points.
451   void computeIntervals();
452 
453 public:
454   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
455 
456   bool runOnMachineFunction(MachineFunction &mf);
457 
458   /// Release all memory.
459   void clear() {
460     MF = nullptr;
461     userValues.clear();
462     userLabels.clear();
463     virtRegToEqClass.clear();
464     userVarMap.clear();
465     // Make sure we call emitDebugValues if the machine function was modified.
466     assert((!ModifiedMF || EmitDone) &&
467            "Dbg values are not emitted in LDV");
468     EmitDone = false;
469     ModifiedMF = false;
470   }
471 
472   /// Map virtual register to an equivalence class.
473   void mapVirtReg(Register VirtReg, UserValue *EC);
474 
475   /// Replace all references to OldReg with NewRegs.
476   void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);
477 
478   /// Recreate DBG_VALUE instruction from data structures.
479   void emitDebugValues(VirtRegMap *VRM);
480 
481   void print(raw_ostream&);
482 };
483 
484 } // end anonymous namespace
485 
486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
487 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
488                           const LLVMContext &Ctx) {
489   if (!DL)
490     return;
491 
492   auto *Scope = cast<DIScope>(DL.getScope());
493   // Omit the directory, because it's likely to be long and uninteresting.
494   CommentOS << Scope->getFilename();
495   CommentOS << ':' << DL.getLine();
496   if (DL.getCol() != 0)
497     CommentOS << ':' << DL.getCol();
498 
499   DebugLoc InlinedAtDL = DL.getInlinedAt();
500   if (!InlinedAtDL)
501     return;
502 
503   CommentOS << " @[ ";
504   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
505   CommentOS << " ]";
506 }
507 
508 static void printExtendedName(raw_ostream &OS, const DINode *Node,
509                               const DILocation *DL) {
510   const LLVMContext &Ctx = Node->getContext();
511   StringRef Res;
512   unsigned Line = 0;
513   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
514     Res = V->getName();
515     Line = V->getLine();
516   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
517     Res = L->getName();
518     Line = L->getLine();
519   }
520 
521   if (!Res.empty())
522     OS << Res << "," << Line;
523   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
524   if (InlinedAt) {
525     if (DebugLoc InlinedAtDL = InlinedAt) {
526       OS << " @[";
527       printDebugLoc(InlinedAtDL, OS, Ctx);
528       OS << "]";
529     }
530   }
531 }
532 
533 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
534   OS << "!\"";
535   printExtendedName(OS, Variable, dl);
536 
537   OS << "\"\t";
538   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
539     OS << " [" << I.start() << ';' << I.stop() << "):";
540     if (I.value().isUndef())
541       OS << "undef";
542     else {
543       OS << I.value().getLocNo();
544       if (I.value().getWasIndirect())
545         OS << " ind";
546     }
547   }
548   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
549     OS << " Loc" << i << '=';
550     locations[i].print(OS, TRI);
551   }
552   OS << '\n';
553 }
554 
555 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
556   OS << "!\"";
557   printExtendedName(OS, Label, dl);
558 
559   OS << "\"\t";
560   OS << loc;
561   OS << '\n';
562 }
563 
564 void LDVImpl::print(raw_ostream &OS) {
565   OS << "********** DEBUG VARIABLES **********\n";
566   for (auto &userValue : userValues)
567     userValue->print(OS, TRI);
568   OS << "********** DEBUG LABELS **********\n";
569   for (auto &userLabel : userLabels)
570     userLabel->print(OS, TRI);
571 }
572 #endif
573 
574 void UserValue::mapVirtRegs(LDVImpl *LDV) {
575   for (unsigned i = 0, e = locations.size(); i != e; ++i)
576     if (locations[i].isReg() &&
577         Register::isVirtualRegister(locations[i].getReg()))
578       LDV->mapVirtReg(locations[i].getReg(), this);
579 }
580 
581 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
582                                  Optional<DIExpression::FragmentInfo> Fragment,
583                                  const DebugLoc &DL) {
584   // FIXME: Handle partially overlapping fragments. See
585   // https://reviews.llvm.org/D70121#1849741.
586   DebugVariable ID(Var, Fragment, DL->getInlinedAt());
587   UserValue *&UV = userVarMap[ID];
588   if (!UV) {
589     userValues.push_back(
590         std::make_unique<UserValue>(Var, Fragment, DL, allocator));
591     UV = userValues.back().get();
592   }
593   return UV;
594 }
595 
596 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
597   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
598   UserValue *&Leader = virtRegToEqClass[VirtReg];
599   Leader = UserValue::merge(Leader, EC);
600 }
601 
602 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
603   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
604     return UV->getLeader();
605   return nullptr;
606 }
607 
608 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
609   // DBG_VALUE loc, offset, variable
610   if (MI.getNumOperands() != 4 ||
611       !(MI.getDebugOffset().isReg() || MI.getDebugOffset().isImm()) ||
612       !MI.getDebugVariableOp().isMetadata()) {
613     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
614     return false;
615   }
616 
617   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
618   // register that hasn't been defined yet. If we do not remove those here, then
619   // the re-insertion of the DBG_VALUE instruction after register allocation
620   // will be incorrect.
621   // TODO: If earlier passes are corrected to generate sane debug information
622   // (and if the machine verifier is improved to catch this), then these checks
623   // could be removed or replaced by asserts.
624   bool Discard = false;
625   if (MI.getDebugOperand(0).isReg() &&
626       Register::isVirtualRegister(MI.getDebugOperand(0).getReg())) {
627     const Register Reg = MI.getDebugOperand(0).getReg();
628     if (!LIS->hasInterval(Reg)) {
629       // The DBG_VALUE is described by a virtual register that does not have a
630       // live interval. Discard the DBG_VALUE.
631       Discard = true;
632       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
633                         << " " << MI);
634     } else {
635       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
636       // is defined dead at Idx (where Idx is the slot index for the instruction
637       // preceding the DBG_VALUE).
638       const LiveInterval &LI = LIS->getInterval(Reg);
639       LiveQueryResult LRQ = LI.Query(Idx);
640       if (!LRQ.valueOutOrDead()) {
641         // We have found a DBG_VALUE with the value in a virtual register that
642         // is not live. Discard the DBG_VALUE.
643         Discard = true;
644         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
645                           << " " << MI);
646       }
647     }
648   }
649 
650   // Get or create the UserValue for (variable,offset) here.
651   bool IsIndirect = MI.isDebugOffsetImm();
652   if (IsIndirect)
653     assert(MI.getDebugOffset().getImm() == 0 &&
654            "DBG_VALUE with nonzero offset");
655   const DILocalVariable *Var = MI.getDebugVariable();
656   const DIExpression *Expr = MI.getDebugExpression();
657   UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
658   if (!Discard)
659     UV->addDef(Idx, MI.getDebugOperand(0), IsIndirect, *Expr);
660   else {
661     MachineOperand MO = MachineOperand::CreateReg(0U, false);
662     MO.setIsDebug();
663     UV->addDef(Idx, MO, false, *Expr);
664   }
665   return true;
666 }
667 
668 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
669   // DBG_LABEL label
670   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
671     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
672     return false;
673   }
674 
675   // Get or create the UserLabel for label here.
676   const DILabel *Label = MI.getDebugLabel();
677   const DebugLoc &DL = MI.getDebugLoc();
678   bool Found = false;
679   for (auto const &L : userLabels) {
680     if (L->matches(Label, DL->getInlinedAt(), Idx)) {
681       Found = true;
682       break;
683     }
684   }
685   if (!Found)
686     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
687 
688   return true;
689 }
690 
691 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
692   bool Changed = false;
693   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
694        ++MFI) {
695     MachineBasicBlock *MBB = &*MFI;
696     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
697          MBBI != MBBE;) {
698       // Use the first debug instruction in the sequence to get a SlotIndex
699       // for following consecutive debug instructions.
700       if (!MBBI->isDebugInstr()) {
701         ++MBBI;
702         continue;
703       }
704       // Debug instructions has no slot index. Use the previous
705       // non-debug instruction's SlotIndex as its SlotIndex.
706       SlotIndex Idx =
707           MBBI == MBB->begin()
708               ? LIS->getMBBStartIdx(MBB)
709               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
710       // Handle consecutive debug instructions with the same slot index.
711       do {
712         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
713         // kinds of debug instructions.
714         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
715             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
716           MBBI = MBB->erase(MBBI);
717           Changed = true;
718         } else
719           ++MBBI;
720       } while (MBBI != MBBE && MBBI->isDebugInstr());
721     }
722   }
723   return Changed;
724 }
725 
726 void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR,
727                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
728                           LiveIntervals &LIS) {
729   SlotIndex Start = Idx;
730   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
731   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
732   LocMap::iterator I = locInts.find(Start);
733 
734   // Limit to VNI's live range.
735   bool ToEnd = true;
736   if (LR && VNI) {
737     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
738     if (!Segment || Segment->valno != VNI) {
739       if (Kills)
740         Kills->push_back(Start);
741       return;
742     }
743     if (Segment->end < Stop) {
744       Stop = Segment->end;
745       ToEnd = false;
746     }
747   }
748 
749   // There could already be a short def at Start.
750   if (I.valid() && I.start() <= Start) {
751     // Stop when meeting a different location or an already extended interval.
752     Start = Start.getNextSlot();
753     if (I.value() != DbgValue || I.stop() != Start)
754       return;
755     // This is a one-slot placeholder. Just skip it.
756     ++I;
757   }
758 
759   // Limited by the next def.
760   if (I.valid() && I.start() < Stop)
761     Stop = I.start();
762   // Limited by VNI's live range.
763   else if (!ToEnd && Kills)
764     Kills->push_back(Stop);
765 
766   if (Start < Stop)
767     I.insert(Start, Stop, DbgValue);
768 }
769 
770 void UserValue::addDefsFromCopies(
771     LiveInterval *LI, DbgVariableValue DbgValue,
772     const SmallVectorImpl<SlotIndex> &Kills,
773     SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
774     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
775   if (Kills.empty())
776     return;
777   // Don't track copies from physregs, there are too many uses.
778   if (!Register::isVirtualRegister(LI->reg))
779     return;
780 
781   // Collect all the (vreg, valno) pairs that are copies of LI.
782   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
783   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
784     MachineInstr *MI = MO.getParent();
785     // Copies of the full value.
786     if (MO.getSubReg() || !MI->isCopy())
787       continue;
788     Register DstReg = MI->getOperand(0).getReg();
789 
790     // Don't follow copies to physregs. These are usually setting up call
791     // arguments, and the argument registers are always call clobbered. We are
792     // better off in the source register which could be a callee-saved register,
793     // or it could be spilled.
794     if (!Register::isVirtualRegister(DstReg))
795       continue;
796 
797     // Is the value extended to reach this copy? If not, another def may be
798     // blocking it, or we are looking at a wrong value of LI.
799     SlotIndex Idx = LIS.getInstructionIndex(*MI);
800     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
801     if (!I.valid() || I.value() != DbgValue)
802       continue;
803 
804     if (!LIS.hasInterval(DstReg))
805       continue;
806     LiveInterval *DstLI = &LIS.getInterval(DstReg);
807     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
808     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
809     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
810   }
811 
812   if (CopyValues.empty())
813     return;
814 
815   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
816                     << '\n');
817 
818   // Try to add defs of the copied values for each kill point.
819   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
820     SlotIndex Idx = Kills[i];
821     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
822       LiveInterval *DstLI = CopyValues[j].first;
823       const VNInfo *DstVNI = CopyValues[j].second;
824       if (DstLI->getVNInfoAt(Idx) != DstVNI)
825         continue;
826       // Check that there isn't already a def at Idx
827       LocMap::iterator I = locInts.find(Idx);
828       if (I.valid() && I.start() <= Idx)
829         continue;
830       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
831                         << DstVNI->id << " in " << *DstLI << '\n');
832       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
833       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
834       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
835       DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo);
836       I.insert(Idx, Idx.getNextSlot(), NewValue);
837       NewDefs.push_back(std::make_pair(Idx, NewValue));
838       break;
839     }
840   }
841 }
842 
843 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
844                                  const TargetRegisterInfo &TRI,
845                                  LiveIntervals &LIS, LexicalScopes &LS) {
846   SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;
847 
848   // Collect all defs to be extended (Skipping undefs).
849   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
850     if (!I.value().isUndef())
851       Defs.push_back(std::make_pair(I.start(), I.value()));
852 
853   // Extend all defs, and possibly add new ones along the way.
854   for (unsigned i = 0; i != Defs.size(); ++i) {
855     SlotIndex Idx = Defs[i].first;
856     DbgVariableValue DbgValue = Defs[i].second;
857     const MachineOperand &LocMO = locations[DbgValue.getLocNo()];
858 
859     if (!LocMO.isReg()) {
860       extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS);
861       continue;
862     }
863 
864     // Register locations are constrained to where the register value is live.
865     if (Register::isVirtualRegister(LocMO.getReg())) {
866       LiveInterval *LI = nullptr;
867       const VNInfo *VNI = nullptr;
868       if (LIS.hasInterval(LocMO.getReg())) {
869         LI = &LIS.getInterval(LocMO.getReg());
870         VNI = LI->getVNInfoAt(Idx);
871       }
872       SmallVector<SlotIndex, 16> Kills;
873       extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS);
874       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
875       // if the original location for example is %vreg0:sub_hi, and we find a
876       // full register copy in addDefsFromCopies (at the moment it only handles
877       // full register copies), then we must add the sub1 sub-register index to
878       // the new location. However, that is only possible if the new virtual
879       // register is of the same regclass (or if there is an equivalent
880       // sub-register in that regclass). For now, simply skip handling copies if
881       // a sub-register is involved.
882       if (LI && !LocMO.getSubReg())
883         addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS);
884       continue;
885     }
886 
887     // For physregs, we only mark the start slot idx. DwarfDebug will see it
888     // as if the DBG_VALUE is valid up until the end of the basic block, or
889     // the next def of the physical register. So we do not need to extend the
890     // range. It might actually happen that the DBG_VALUE is the last use of
891     // the physical register (e.g. if this is an unused input argument to a
892     // function).
893   }
894 
895   // The computed intervals may extend beyond the range of the debug
896   // location's lexical scope. In this case, splitting of an interval
897   // can result in an interval outside of the scope being created,
898   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
899   // this, trim the intervals to the lexical scope.
900 
901   LexicalScope *Scope = LS.findLexicalScope(dl);
902   if (!Scope)
903     return;
904 
905   SlotIndex PrevEnd;
906   LocMap::iterator I = locInts.begin();
907 
908   // Iterate over the lexical scope ranges. Each time round the loop
909   // we check the intervals for overlap with the end of the previous
910   // range and the start of the next. The first range is handled as
911   // a special case where there is no PrevEnd.
912   for (const InsnRange &Range : Scope->getRanges()) {
913     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
914     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
915 
916     // Variable locations at the first instruction of a block should be
917     // based on the block's SlotIndex, not the first instruction's index.
918     if (Range.first == Range.first->getParent()->begin())
919       RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);
920 
921     // At the start of each iteration I has been advanced so that
922     // I.stop() >= PrevEnd. Check for overlap.
923     if (PrevEnd && I.start() < PrevEnd) {
924       SlotIndex IStop = I.stop();
925       DbgVariableValue DbgValue = I.value();
926 
927       // Stop overlaps previous end - trim the end of the interval to
928       // the scope range.
929       I.setStopUnchecked(PrevEnd);
930       ++I;
931 
932       // If the interval also overlaps the start of the "next" (i.e.
933       // current) range create a new interval for the remainder (which
934       // may be further trimmed).
935       if (RStart < IStop)
936         I.insert(RStart, IStop, DbgValue);
937     }
938 
939     // Advance I so that I.stop() >= RStart, and check for overlap.
940     I.advanceTo(RStart);
941     if (!I.valid())
942       return;
943 
944     if (I.start() < RStart) {
945       // Interval start overlaps range - trim to the scope range.
946       I.setStartUnchecked(RStart);
947       // Remember that this interval was trimmed.
948       trimmedDefs.insert(RStart);
949     }
950 
951     // The end of a lexical scope range is the last instruction in the
952     // range. To convert to an interval we need the index of the
953     // instruction after it.
954     REnd = REnd.getNextIndex();
955 
956     // Advance I to first interval outside current range.
957     I.advanceTo(REnd);
958     if (!I.valid())
959       return;
960 
961     PrevEnd = REnd;
962   }
963 
964   // Check for overlap with end of final range.
965   if (PrevEnd && I.start() < PrevEnd)
966     I.setStopUnchecked(PrevEnd);
967 }
968 
969 void LDVImpl::computeIntervals() {
970   LexicalScopes LS;
971   LS.initialize(*MF);
972 
973   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
974     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
975     userValues[i]->mapVirtRegs(this);
976   }
977 }
978 
979 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
980   clear();
981   MF = &mf;
982   LIS = &pass.getAnalysis<LiveIntervals>();
983   TRI = mf.getSubtarget().getRegisterInfo();
984   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
985                     << mf.getName() << " **********\n");
986 
987   bool Changed = collectDebugValues(mf);
988   computeIntervals();
989   LLVM_DEBUG(print(dbgs()));
990   ModifiedMF = Changed;
991   return Changed;
992 }
993 
994 static void removeDebugValues(MachineFunction &mf) {
995   for (MachineBasicBlock &MBB : mf) {
996     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
997       if (!MBBI->isDebugValue()) {
998         ++MBBI;
999         continue;
1000       }
1001       MBBI = MBB.erase(MBBI);
1002     }
1003   }
1004 }
1005 
1006 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
1007   if (!EnableLDV)
1008     return false;
1009   if (!mf.getFunction().getSubprogram()) {
1010     removeDebugValues(mf);
1011     return false;
1012   }
1013   if (!pImpl)
1014     pImpl = new LDVImpl(this);
1015   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1016 }
1017 
1018 void LiveDebugVariables::releaseMemory() {
1019   if (pImpl)
1020     static_cast<LDVImpl*>(pImpl)->clear();
1021 }
1022 
1023 LiveDebugVariables::~LiveDebugVariables() {
1024   if (pImpl)
1025     delete static_cast<LDVImpl*>(pImpl);
1026 }
1027 
1028 //===----------------------------------------------------------------------===//
1029 //                           Live Range Splitting
1030 //===----------------------------------------------------------------------===//
1031 
1032 bool
1033 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
1034                          LiveIntervals& LIS) {
1035   LLVM_DEBUG({
1036     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1037     print(dbgs(), nullptr);
1038   });
1039   bool DidChange = false;
1040   LocMap::iterator LocMapI;
1041   LocMapI.setMap(locInts);
1042   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1043     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1044     if (LI->empty())
1045       continue;
1046 
1047     // Don't allocate the new LocNo until it is needed.
1048     unsigned NewLocNo = UndefLocNo;
1049 
1050     // Iterate over the overlaps between locInts and LI.
1051     LocMapI.find(LI->beginIndex());
1052     if (!LocMapI.valid())
1053       continue;
1054     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1055     LiveInterval::iterator LIE = LI->end();
1056     while (LocMapI.valid() && LII != LIE) {
1057       // At this point, we know that LocMapI.stop() > LII->start.
1058       LII = LI->advanceTo(LII, LocMapI.start());
1059       if (LII == LIE)
1060         break;
1061 
1062       // Now LII->end > LocMapI.start(). Do we have an overlap?
1063       if (LocMapI.value().getLocNo() == OldLocNo &&
1064           LII->start < LocMapI.stop()) {
1065         // Overlapping correct location. Allocate NewLocNo now.
1066         if (NewLocNo == UndefLocNo) {
1067           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1068           MO.setSubReg(locations[OldLocNo].getSubReg());
1069           NewLocNo = getLocationNo(MO);
1070           DidChange = true;
1071         }
1072 
1073         SlotIndex LStart = LocMapI.start();
1074         SlotIndex LStop = LocMapI.stop();
1075         DbgVariableValue OldDbgValue = LocMapI.value();
1076 
1077         // Trim LocMapI down to the LII overlap.
1078         if (LStart < LII->start)
1079           LocMapI.setStartUnchecked(LII->start);
1080         if (LStop > LII->end)
1081           LocMapI.setStopUnchecked(LII->end);
1082 
1083         // Change the value in the overlap. This may trigger coalescing.
1084         LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo));
1085 
1086         // Re-insert any removed OldDbgValue ranges.
1087         if (LStart < LocMapI.start()) {
1088           LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
1089           ++LocMapI;
1090           assert(LocMapI.valid() && "Unexpected coalescing");
1091         }
1092         if (LStop > LocMapI.stop()) {
1093           ++LocMapI;
1094           LocMapI.insert(LII->end, LStop, OldDbgValue);
1095           --LocMapI;
1096         }
1097       }
1098 
1099       // Advance to the next overlap.
1100       if (LII->end < LocMapI.stop()) {
1101         if (++LII == LIE)
1102           break;
1103         LocMapI.advanceTo(LII->start);
1104       } else {
1105         ++LocMapI;
1106         if (!LocMapI.valid())
1107           break;
1108         LII = LI->advanceTo(LII, LocMapI.start());
1109       }
1110     }
1111   }
1112 
1113   // Finally, remove OldLocNo unless it is still used by some interval in the
1114   // locInts map. One case when OldLocNo still is in use is when the register
1115   // has been spilled. In such situations the spilled register is kept as a
1116   // location until rewriteLocations is called (VirtRegMap is mapping the old
1117   // register to the spill slot). So for a while we can have locations that map
1118   // to virtual registers that have been removed from both the MachineFunction
1119   // and from LiveIntervals.
1120   //
1121   // We may also just be using the location for a value with a different
1122   // expression.
1123   removeLocationIfUnused(OldLocNo);
1124 
1125   LLVM_DEBUG({
1126     dbgs() << "Split result: \t";
1127     print(dbgs(), nullptr);
1128   });
1129   return DidChange;
1130 }
1131 
1132 bool
1133 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
1134                          LiveIntervals &LIS) {
1135   bool DidChange = false;
1136   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1137   // safely erase unused locations.
1138   for (unsigned i = locations.size(); i ; --i) {
1139     unsigned LocNo = i-1;
1140     const MachineOperand *Loc = &locations[LocNo];
1141     if (!Loc->isReg() || Loc->getReg() != OldReg)
1142       continue;
1143     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1144   }
1145   return DidChange;
1146 }
1147 
1148 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1149   bool DidChange = false;
1150   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1151     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1152 
1153   if (!DidChange)
1154     return;
1155 
1156   // Map all of the new virtual registers.
1157   UserValue *UV = lookupVirtReg(OldReg);
1158   for (unsigned i = 0; i != NewRegs.size(); ++i)
1159     mapVirtReg(NewRegs[i], UV);
1160 }
1161 
1162 void LiveDebugVariables::
1163 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
1164   if (pImpl)
1165     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1166 }
1167 
1168 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1169                                  const TargetInstrInfo &TII,
1170                                  const TargetRegisterInfo &TRI,
1171                                  SpillOffsetMap &SpillOffsets) {
1172   // Build a set of new locations with new numbers so we can coalesce our
1173   // IntervalMap if two vreg intervals collapse to the same physical location.
1174   // Use MapVector instead of SetVector because MapVector::insert returns the
1175   // position of the previously or newly inserted element. The boolean value
1176   // tracks if the location was produced by a spill.
1177   // FIXME: This will be problematic if we ever support direct and indirect
1178   // frame index locations, i.e. expressing both variables in memory and
1179   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1180   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1181   SmallVector<unsigned, 4> LocNoMap(locations.size());
1182   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1183     bool Spilled = false;
1184     unsigned SpillOffset = 0;
1185     MachineOperand Loc = locations[I];
1186     // Only virtual registers are rewritten.
1187     if (Loc.isReg() && Loc.getReg() &&
1188         Register::isVirtualRegister(Loc.getReg())) {
1189       Register VirtReg = Loc.getReg();
1190       if (VRM.isAssignedReg(VirtReg) &&
1191           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1192         // This can create a %noreg operand in rare cases when the sub-register
1193         // index is no longer available. That means the user value is in a
1194         // non-existent sub-register, and %noreg is exactly what we want.
1195         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1196       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1197         // Retrieve the stack slot offset.
1198         unsigned SpillSize;
1199         const MachineRegisterInfo &MRI = MF.getRegInfo();
1200         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1201         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1202                                              SpillOffset, MF);
1203 
1204         // FIXME: Invalidate the location if the offset couldn't be calculated.
1205         (void)Success;
1206 
1207         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1208         Spilled = true;
1209       } else {
1210         Loc.setReg(0);
1211         Loc.setSubReg(0);
1212       }
1213     }
1214 
1215     // Insert this location if it doesn't already exist and record a mapping
1216     // from the old number to the new number.
1217     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1218     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1219     LocNoMap[I] = NewLocNo;
1220   }
1221 
1222   // Rewrite the locations and record the stack slot offsets for spills.
1223   locations.clear();
1224   SpillOffsets.clear();
1225   for (auto &Pair : NewLocations) {
1226     bool Spilled;
1227     unsigned SpillOffset;
1228     std::tie(Spilled, SpillOffset) = Pair.second;
1229     locations.push_back(Pair.first);
1230     if (Spilled) {
1231       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1232       SpillOffsets[NewLocNo] = SpillOffset;
1233     }
1234   }
1235 
1236   // Update the interval map, but only coalesce left, since intervals to the
1237   // right use the old location numbers. This should merge two contiguous
1238   // DBG_VALUE intervals with different vregs that were allocated to the same
1239   // physical register.
1240   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1241     DbgVariableValue DbgValue = I.value();
1242     // Undef values don't exist in locations (and thus not in LocNoMap either)
1243     // so skip over them. See getLocationNo().
1244     if (DbgValue.isUndef())
1245       continue;
1246     unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()];
1247     I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo));
1248     I.setStart(I.start());
1249   }
1250 }
1251 
1252 /// Find an iterator for inserting a DBG_VALUE instruction.
1253 static MachineBasicBlock::iterator
1254 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1255                    LiveIntervals &LIS) {
1256   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1257   Idx = Idx.getBaseIndex();
1258 
1259   // Try to find an insert location by going backwards from Idx.
1260   MachineInstr *MI;
1261   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1262     // We've reached the beginning of MBB.
1263     if (Idx == Start) {
1264       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1265       return I;
1266     }
1267     Idx = Idx.getPrevIndex();
1268   }
1269 
1270   // Don't insert anything after the first terminator, though.
1271   return MI->isTerminator() ? MBB->getFirstTerminator() :
1272                               std::next(MachineBasicBlock::iterator(MI));
1273 }
1274 
1275 /// Find an iterator for inserting the next DBG_VALUE instruction
1276 /// (or end if no more insert locations found).
1277 static MachineBasicBlock::iterator
1278 findNextInsertLocation(MachineBasicBlock *MBB,
1279                        MachineBasicBlock::iterator I,
1280                        SlotIndex StopIdx, MachineOperand &LocMO,
1281                        LiveIntervals &LIS,
1282                        const TargetRegisterInfo &TRI) {
1283   if (!LocMO.isReg())
1284     return MBB->instr_end();
1285   Register Reg = LocMO.getReg();
1286 
1287   // Find the next instruction in the MBB that define the register Reg.
1288   while (I != MBB->end() && !I->isTerminator()) {
1289     if (!LIS.isNotInMIMap(*I) &&
1290         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1291       break;
1292     if (I->definesRegister(Reg, &TRI))
1293       // The insert location is directly after the instruction/bundle.
1294       return std::next(I);
1295     ++I;
1296   }
1297   return MBB->end();
1298 }
1299 
1300 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1301                                  SlotIndex StopIdx, DbgVariableValue DbgValue,
1302                                  bool Spilled, unsigned SpillOffset,
1303                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1304                                  const TargetRegisterInfo &TRI) {
1305   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1306   // Only search within the current MBB.
1307   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1308   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1309   // Undef values don't exist in locations so create new "noreg" register MOs
1310   // for them. See getLocationNo().
1311   MachineOperand MO =
1312       !DbgValue.isUndef()
1313           ? locations[DbgValue.getLocNo()]
1314           : MachineOperand::CreateReg(
1315                 /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1316                 /* isKill */ false, /* isDead */ false,
1317                 /* isUndef */ false, /* isEarlyClobber */ false,
1318                 /* SubReg */ 0, /* isDebug */ true);
1319 
1320   ++NumInsertedDebugValues;
1321 
1322   assert(cast<DILocalVariable>(Variable)
1323              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1324          "Expected inlined-at fields to agree");
1325 
1326   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1327   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1328   // that the original virtual register was a pointer. Also, add the stack slot
1329   // offset for the spilled register to the expression.
1330   const DIExpression *Expr = DbgValue.getExpression();
1331   uint8_t DIExprFlags = DIExpression::ApplyOffset;
1332   bool IsIndirect = DbgValue.getWasIndirect();
1333   if (Spilled) {
1334     if (IsIndirect)
1335       DIExprFlags |= DIExpression::DerefAfter;
1336     Expr =
1337         DIExpression::prepend(Expr, DIExprFlags, SpillOffset);
1338     IsIndirect = true;
1339   }
1340 
1341   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1342 
1343   do {
1344     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1345             IsIndirect, MO, Variable, Expr);
1346 
1347     // Continue and insert DBG_VALUES after every redefinition of register
1348     // associated with the debug value within the range
1349     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1350   } while (I != MBB->end());
1351 }
1352 
1353 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1354                                  LiveIntervals &LIS,
1355                                  const TargetInstrInfo &TII) {
1356   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1357   ++NumInsertedDebugLabels;
1358   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1359       .addMetadata(Label);
1360 }
1361 
1362 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1363                                 const TargetInstrInfo &TII,
1364                                 const TargetRegisterInfo &TRI,
1365                                 const SpillOffsetMap &SpillOffsets) {
1366   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1367 
1368   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1369     SlotIndex Start = I.start();
1370     SlotIndex Stop = I.stop();
1371     DbgVariableValue DbgValue = I.value();
1372     auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo())
1373                                        : SpillOffsets.end();
1374     bool Spilled = SpillIt != SpillOffsets.end();
1375     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1376 
1377     // If the interval start was trimmed to the lexical scope insert the
1378     // DBG_VALUE at the previous index (otherwise it appears after the
1379     // first instruction in the range).
1380     if (trimmedDefs.count(Start))
1381       Start = Start.getPrevIndex();
1382 
1383     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop
1384                       << "):" << DbgValue.getLocNo());
1385     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1386     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1387 
1388     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1389     insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS,
1390                      TII, TRI);
1391     // This interval may span multiple basic blocks.
1392     // Insert a DBG_VALUE into each one.
1393     while (Stop > MBBEnd) {
1394       // Move to the next block.
1395       Start = MBBEnd;
1396       if (++MBB == MFEnd)
1397         break;
1398       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1399       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1400       insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS,
1401                        TII, TRI);
1402     }
1403     LLVM_DEBUG(dbgs() << '\n');
1404     if (MBB == MFEnd)
1405       break;
1406 
1407     ++I;
1408   }
1409 }
1410 
1411 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1412   LLVM_DEBUG(dbgs() << "\t" << loc);
1413   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1414 
1415   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1416   insertDebugLabel(&*MBB, loc, LIS, TII);
1417 
1418   LLVM_DEBUG(dbgs() << '\n');
1419 }
1420 
1421 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1422   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1423   if (!MF)
1424     return;
1425   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1426   SpillOffsetMap SpillOffsets;
1427   for (auto &userValue : userValues) {
1428     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1429     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1430     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1431   }
1432   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1433   for (auto &userLabel : userLabels) {
1434     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1435     userLabel->emitDebugLabel(*LIS, *TII);
1436   }
1437   EmitDone = true;
1438 }
1439 
1440 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1441   if (pImpl)
1442     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1443 }
1444 
1445 bool LiveDebugVariables::doInitialization(Module &M) {
1446   return Pass::doInitialization(M);
1447 }
1448 
1449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1450 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1451   if (pImpl)
1452     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1453 }
1454 #endif
1455