xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants) that a variable fragment might be
14 /// located, qualified by a DIExpression and indirect-ness flag, while each
15 /// variable is identified by a DebugVariable object. The availability of an
16 /// expression begins when a DBG_VALUE instruction specifies the location of a
17 /// DebugVariable, and continues until that location is clobbered or
18 /// re-specified by a different DBG_VALUE for the same DebugVariable.
19 ///
20 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
21 /// placed to extend variable locations as far they're available. This file
22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
23 /// locations, using the VarLoc class.
24 ///
25 /// The canonical "available expressions" problem doesn't have expression
26 /// clobbering, instead when a variable is re-assigned, any expressions using
27 /// that variable get invalidated. LiveDebugValues can map onto "available
28 /// expressions" by having every register represented by a variable, which is
29 /// used in an expression that becomes available at a DBG_VALUE instruction.
30 /// When the register is clobbered, its variable is effectively reassigned, and
31 /// expressions computed from it become unavailable. A similar construct is
32 /// needed when a DebugVariable has its location re-specified, to invalidate
33 /// all other locations for that DebugVariable.
34 ///
35 /// Using the dataflow analysis to compute the available expressions, we create
36 /// a DBG_VALUE at the beginning of each block where the expression is
37 /// live-in. This propagates variable locations into every basic block where
38 /// the location can be determined, rather than only having DBG_VALUEs in blocks
39 /// where locations are specified due to an assignment or some optimization.
40 /// Movements of values between registers and spill slots are annotated with
41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
42 /// DbgEntityHistoryCalculator to focus on only the locations within individual
43 /// blocks, facilitating testing and improving modularity.
44 ///
45 /// We follow an optimisic dataflow approach, with this lattice:
46 ///
47 /// \verbatim
48 ///                    ┬ "Unknown"
49 ///                          |
50 ///                          v
51 ///                         True
52 ///                          |
53 ///                          v
54 ///                      ⊥ False
55 /// \endverbatim With "True" signifying that the expression is available (and
56 /// thus a DebugVariable's location is the corresponding register), while
57 /// "False" signifies that the expression is unavailable. "Unknown"s never
58 /// survive to the end of the analysis (see below).
59 ///
60 /// Formally, all DebugVariable locations that are live-out of a block are
61 /// initialized to \top.  A blocks live-in values take the meet of the lattice
62 /// value for every predecessors live-outs, except for the entry block, where
63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64 /// function for a block assigns an expression for a DebugVariable to be "True"
65 /// if a DBG_VALUE in the block specifies it; "False" if the location is
66 /// clobbered; or the live-in value if it is unaffected by the block. We
67 /// visit each block in reverse post order until a fixedpoint is reached. The
68 /// solution produced is maximal.
69 ///
70 /// Intuitively, we start by assuming that every expression / variable location
71 /// is at least "True", and then propagate "False" from the entry block and any
72 /// clobbers until there are no more changes to make. This gives us an accurate
73 /// solution because all incorrect locations will have a "False" propagated into
74 /// them. It also gives us a solution that copes well with loops by assuming
75 /// that variable locations are live-through every loop, and then removing those
76 /// that are not through dataflow.
77 ///
78 /// Within LiveDebugValues: each variable location is represented by a
79 /// VarLoc object that identifies the source variable, the set of
80 /// machine-locations that currently describe it (a single location for
81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
84 /// corresponds to one of the VarLoc's machine-locations and can be used to
85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
86 /// locations, the dataflow analysis in this pass identifies locations by their
87 /// indices in the VarLocMap, meaning all the variable locations in a block can
88 /// be described by a sparse vector of VarLocMap indicies.
89 ///
90 /// All the storage for the dataflow analysis is local to the ExtendRanges
91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
92 /// in and out lattice values for each block. "OpenRanges" maintains a list of
93 /// variable locations and, with the "process" method, evaluates the transfer
94 /// function of each block. "flushPendingLocs" installs debug value instructions
95 /// for each live-in location at the start of blocks, while "Transfers" records
96 /// transfers of values between machine-locations.
97 ///
98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
99 /// implementation. Instead, unvisited blocks implicitly have all lattice
100 /// values set as "Unknown". After being visited, there will be path back to
101 /// the entry block where the lattice value is "False", and as the transfer
102 /// function cannot make new "Unknown" locations, there are no scenarios where
103 /// a block can have an "Unknown" location after being visited. Similarly, we
104 /// don't enumerate all possible variable locations before exploring the
105 /// function: when a new location is discovered, all blocks previously explored
106 /// were implicitly "False" but unrecorded, and become explicitly "False" when
107 /// a new VarLoc is created with its bit not set in predecessor InLocs or
108 /// OutLocs.
109 ///
110 //===----------------------------------------------------------------------===//
111 
112 #include "LiveDebugValues.h"
113 
114 #include "llvm/ADT/CoalescingBitVector.h"
115 #include "llvm/ADT/DenseMap.h"
116 #include "llvm/ADT/PostOrderIterator.h"
117 #include "llvm/ADT/SmallPtrSet.h"
118 #include "llvm/ADT/SmallSet.h"
119 #include "llvm/ADT/SmallVector.h"
120 #include "llvm/ADT/Statistic.h"
121 #include "llvm/ADT/UniqueVector.h"
122 #include "llvm/CodeGen/LexicalScopes.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineFunctionPass.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineMemOperand.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/PseudoSourceValue.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetFrameLowering.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetLowering.h"
136 #include "llvm/CodeGen/TargetPassConfig.h"
137 #include "llvm/CodeGen/TargetRegisterInfo.h"
138 #include "llvm/CodeGen/TargetSubtargetInfo.h"
139 #include "llvm/Config/llvm-config.h"
140 #include "llvm/IR/DIBuilder.h"
141 #include "llvm/IR/DebugInfoMetadata.h"
142 #include "llvm/IR/DebugLoc.h"
143 #include "llvm/IR/Function.h"
144 #include "llvm/IR/Module.h"
145 #include "llvm/InitializePasses.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Pass.h"
148 #include "llvm/Support/Casting.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/TypeSize.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstdint>
157 #include <functional>
158 #include <queue>
159 #include <tuple>
160 #include <utility>
161 #include <vector>
162 
163 using namespace llvm;
164 
165 #define DEBUG_TYPE "livedebugvalues"
166 
167 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
168 
169 // Options to prevent pathological compile-time behavior. If InputBBLimit and
170 // InputDbgValueLimit are both exceeded, range extension is disabled.
171 static cl::opt<unsigned> InputBBLimit(
172     "livedebugvalues-input-bb-limit",
173     cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
174     cl::init(10000), cl::Hidden);
175 static cl::opt<unsigned> InputDbgValueLimit(
176     "livedebugvalues-input-dbg-value-limit",
177     cl::desc(
178         "Maximum input DBG_VALUE insts supported by debug range extension"),
179     cl::init(50000), cl::Hidden);
180 
181 /// If \p Op is a stack or frame register return true, otherwise return false.
182 /// This is used to avoid basing the debug entry values on the registers, since
183 /// we do not support it at the moment.
184 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
185                                   const MachineInstr &MI,
186                                   const TargetRegisterInfo *TRI) {
187   if (!Op.isReg())
188     return false;
189 
190   const MachineFunction *MF = MI.getParent()->getParent();
191   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
192   Register SP = TLI->getStackPointerRegisterToSaveRestore();
193   Register FP = TRI->getFrameRegister(*MF);
194   Register Reg = Op.getReg();
195 
196   return Reg && Reg != SP && Reg != FP;
197 }
198 
199 namespace {
200 
201 // Max out the number of statically allocated elements in DefinedRegsSet, as
202 // this prevents fallback to std::set::count() operations.
203 using DefinedRegsSet = SmallSet<Register, 32>;
204 
205 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
206 // that represent Entry Values; every VarLoc in the set will also appear
207 // exactly once at Location=0.
208 // As a result, each VarLoc may appear more than once in this "set", but each
209 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
210 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
211 // is the set of all VarLocs.
212 using VarLocSet = CoalescingBitVector<uint64_t>;
213 
214 /// A type-checked pair of {Register Location (or 0), Index}, used to index
215 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
216 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
217 /// type-checker helps ensure that the conversions aren't lossy.
218 ///
219 /// Why encode a location /into/ the VarLocMap index? This makes it possible
220 /// to find the open VarLocs killed by a register def very quickly. This is a
221 /// performance-critical operation for LiveDebugValues.
222 struct LocIndex {
223   using u32_location_t = uint32_t;
224   using u32_index_t = uint32_t;
225 
226   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
227                            // \ref MCRegister), so we have plenty of range left
228                            // here to encode non-register locations.
229   u32_index_t Index;
230 
231   /// The location that has an entry for every VarLoc in the map.
232   static constexpr u32_location_t kUniversalLocation = 0;
233 
234   /// The first location that is reserved for VarLocs with locations of kind
235   /// RegisterKind.
236   static constexpr u32_location_t kFirstRegLocation = 1;
237 
238   /// The first location greater than 0 that is not reserved for VarLocs with
239   /// locations of kind RegisterKind.
240   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
241 
242   /// A special location reserved for VarLocs with locations of kind
243   /// SpillLocKind.
244   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
245 
246   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
247   /// EntryValueCopyBackupKind.
248   static constexpr u32_location_t kEntryValueBackupLocation =
249       kFirstInvalidRegLocation + 1;
250 
251   LocIndex(u32_location_t Location, u32_index_t Index)
252       : Location(Location), Index(Index) {}
253 
254   uint64_t getAsRawInteger() const {
255     return (static_cast<uint64_t>(Location) << 32) | Index;
256   }
257 
258   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
259     static_assert(std::is_unsigned<IntT>::value &&
260                       sizeof(ID) == sizeof(uint64_t),
261                   "Cannot convert raw integer to LocIndex");
262     return {static_cast<u32_location_t>(ID >> 32),
263             static_cast<u32_index_t>(ID)};
264   }
265 
266   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
267   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
268   static uint64_t rawIndexForReg(Register Reg) {
269     return LocIndex(Reg, 0).getAsRawInteger();
270   }
271 
272   /// Return a range covering all set indices in the interval reserved for
273   /// \p Location in \p Set.
274   static auto indexRangeForLocation(const VarLocSet &Set,
275                                     u32_location_t Location) {
276     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
277     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
278     return Set.half_open_range(Start, End);
279   }
280 };
281 
282 // Simple Set for storing all the VarLoc Indices at a Location bucket.
283 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
284 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
285 // appear in any two of these, as each VarLoc appears at most once in any
286 // Location bucket.
287 using LocIndices = SmallVector<LocIndex, 2>;
288 
289 class VarLocBasedLDV : public LDVImpl {
290 private:
291   const TargetRegisterInfo *TRI;
292   const TargetInstrInfo *TII;
293   const TargetFrameLowering *TFI;
294   TargetPassConfig *TPC;
295   BitVector CalleeSavedRegs;
296   LexicalScopes LS;
297   VarLocSet::Allocator Alloc;
298 
299   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
300 
301   using FragmentInfo = DIExpression::FragmentInfo;
302   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
303 
304   /// A pair of debug variable and value location.
305   struct VarLoc {
306     // The location at which a spilled variable resides. It consists of a
307     // register and an offset.
308     struct SpillLoc {
309       unsigned SpillBase;
310       StackOffset SpillOffset;
311       bool operator==(const SpillLoc &Other) const {
312         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
313       }
314       bool operator!=(const SpillLoc &Other) const {
315         return !(*this == Other);
316       }
317     };
318 
319     /// Identity of the variable at this location.
320     const DebugVariable Var;
321 
322     /// The expression applied to this location.
323     const DIExpression *Expr;
324 
325     /// DBG_VALUE to clone var/expr information from if this location
326     /// is moved.
327     const MachineInstr &MI;
328 
329     enum class MachineLocKind {
330       InvalidKind = 0,
331       RegisterKind,
332       SpillLocKind,
333       ImmediateKind
334     };
335 
336     enum class EntryValueLocKind {
337       NonEntryValueKind = 0,
338       EntryValueKind,
339       EntryValueBackupKind,
340       EntryValueCopyBackupKind
341     } EVKind;
342 
343     /// The value location. Stored separately to avoid repeatedly
344     /// extracting it from MI.
345     union MachineLocValue {
346       uint64_t RegNo;
347       SpillLoc SpillLocation;
348       uint64_t Hash;
349       int64_t Immediate;
350       const ConstantFP *FPImm;
351       const ConstantInt *CImm;
352       MachineLocValue() : Hash(0) {}
353     };
354 
355     /// A single machine location; its Kind is either a register, spill
356     /// location, or immediate value.
357     /// If the VarLoc is not a NonEntryValueKind, then it will use only a
358     /// single MachineLoc of RegisterKind.
359     struct MachineLoc {
360       MachineLocKind Kind;
361       MachineLocValue Value;
362       bool operator==(const MachineLoc &Other) const {
363         if (Kind != Other.Kind)
364           return false;
365         switch (Kind) {
366         case MachineLocKind::SpillLocKind:
367           return Value.SpillLocation == Other.Value.SpillLocation;
368         case MachineLocKind::RegisterKind:
369         case MachineLocKind::ImmediateKind:
370           return Value.Hash == Other.Value.Hash;
371         default:
372           llvm_unreachable("Invalid kind");
373         }
374       }
375       bool operator<(const MachineLoc &Other) const {
376         switch (Kind) {
377         case MachineLocKind::SpillLocKind:
378           return std::make_tuple(
379                      Kind, Value.SpillLocation.SpillBase,
380                      Value.SpillLocation.SpillOffset.getFixed(),
381                      Value.SpillLocation.SpillOffset.getScalable()) <
382                  std::make_tuple(
383                      Other.Kind, Other.Value.SpillLocation.SpillBase,
384                      Other.Value.SpillLocation.SpillOffset.getFixed(),
385                      Other.Value.SpillLocation.SpillOffset.getScalable());
386         case MachineLocKind::RegisterKind:
387         case MachineLocKind::ImmediateKind:
388           return std::tie(Kind, Value.Hash) <
389                  std::tie(Other.Kind, Other.Value.Hash);
390         default:
391           llvm_unreachable("Invalid kind");
392         }
393       }
394     };
395 
396     /// The set of machine locations used to determine the variable's value, in
397     /// conjunction with Expr. Initially populated with MI's debug operands,
398     /// but may be transformed independently afterwards.
399     SmallVector<MachineLoc, 8> Locs;
400     /// Used to map the index of each location in Locs back to the index of its
401     /// original debug operand in MI. Used when multiple location operands are
402     /// coalesced and the original MI's operands need to be accessed while
403     /// emitting a debug value.
404     SmallVector<unsigned, 8> OrigLocMap;
405 
406     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
407         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
408               MI.getDebugLoc()->getInlinedAt()),
409           Expr(MI.getDebugExpression()), MI(MI),
410           EVKind(EntryValueLocKind::NonEntryValueKind) {
411       assert(MI.isDebugValue() && "not a DBG_VALUE");
412       assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
413              "malformed DBG_VALUE");
414       for (const MachineOperand &Op : MI.debug_operands()) {
415         MachineLoc ML = GetLocForOp(Op);
416         auto It = find(Locs, ML);
417         if (It == Locs.end()) {
418           Locs.push_back(ML);
419           OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
420         } else {
421           // ML duplicates an element in Locs; replace references to Op
422           // with references to the duplicating element.
423           unsigned OpIdx = Locs.size();
424           unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
425           Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
426         }
427       }
428 
429       // We create the debug entry values from the factory functions rather
430       // than from this ctor.
431       assert(EVKind != EntryValueLocKind::EntryValueKind &&
432              !isEntryBackupLoc());
433     }
434 
435     static MachineLoc GetLocForOp(const MachineOperand &Op) {
436       MachineLocKind Kind;
437       MachineLocValue Loc;
438       if (Op.isReg()) {
439         Kind = MachineLocKind::RegisterKind;
440         Loc.RegNo = Op.getReg();
441       } else if (Op.isImm()) {
442         Kind = MachineLocKind::ImmediateKind;
443         Loc.Immediate = Op.getImm();
444       } else if (Op.isFPImm()) {
445         Kind = MachineLocKind::ImmediateKind;
446         Loc.FPImm = Op.getFPImm();
447       } else if (Op.isCImm()) {
448         Kind = MachineLocKind::ImmediateKind;
449         Loc.CImm = Op.getCImm();
450       } else
451         llvm_unreachable("Invalid Op kind for MachineLoc.");
452       return {Kind, Loc};
453     }
454 
455     /// Take the variable and machine-location in DBG_VALUE MI, and build an
456     /// entry location using the given expression.
457     static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
458                                  const DIExpression *EntryExpr, Register Reg) {
459       VarLoc VL(MI, LS);
460       assert(VL.Locs.size() == 1 &&
461              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
462       VL.EVKind = EntryValueLocKind::EntryValueKind;
463       VL.Expr = EntryExpr;
464       VL.Locs[0].Value.RegNo = Reg;
465       return VL;
466     }
467 
468     /// Take the variable and machine-location from the DBG_VALUE (from the
469     /// function entry), and build an entry value backup location. The backup
470     /// location will turn into the normal location if the backup is valid at
471     /// the time of the primary location clobbering.
472     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
473                                        LexicalScopes &LS,
474                                        const DIExpression *EntryExpr) {
475       VarLoc VL(MI, LS);
476       assert(VL.Locs.size() == 1 &&
477              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
478       VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
479       VL.Expr = EntryExpr;
480       return VL;
481     }
482 
483     /// Take the variable and machine-location from the DBG_VALUE (from the
484     /// function entry), and build a copy of an entry value backup location by
485     /// setting the register location to NewReg.
486     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
487                                            LexicalScopes &LS,
488                                            const DIExpression *EntryExpr,
489                                            Register NewReg) {
490       VarLoc VL(MI, LS);
491       assert(VL.Locs.size() == 1 &&
492              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
493       VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
494       VL.Expr = EntryExpr;
495       VL.Locs[0].Value.RegNo = NewReg;
496       return VL;
497     }
498 
499     /// Copy the register location in DBG_VALUE MI, updating the register to
500     /// be NewReg.
501     static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
502                                 Register NewReg) {
503       VarLoc VL = OldVL;
504       for (size_t I = 0, E = VL.Locs.size(); I < E; ++I)
505         if (VL.Locs[I] == OldML) {
506           VL.Locs[I].Kind = MachineLocKind::RegisterKind;
507           VL.Locs[I].Value.RegNo = NewReg;
508           return VL;
509         }
510       llvm_unreachable("Should have found OldML in new VarLoc.");
511     }
512 
513     /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
514     /// locating it in the specified spill location.
515     static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
516                                  unsigned SpillBase, StackOffset SpillOffset) {
517       VarLoc VL = OldVL;
518       for (int I = 0, E = VL.Locs.size(); I < E; ++I)
519         if (VL.Locs[I] == OldML) {
520           VL.Locs[I].Kind = MachineLocKind::SpillLocKind;
521           VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset};
522           return VL;
523         }
524       llvm_unreachable("Should have found OldML in new VarLoc.");
525     }
526 
527     /// Create a DBG_VALUE representing this VarLoc in the given function.
528     /// Copies variable-specific information such as DILocalVariable and
529     /// inlining information from the original DBG_VALUE instruction, which may
530     /// have been several transfers ago.
531     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
532       assert(!isEntryBackupLoc() &&
533              "Tried to produce DBG_VALUE for backup VarLoc");
534       const DebugLoc &DbgLoc = MI.getDebugLoc();
535       bool Indirect = MI.isIndirectDebugValue();
536       const auto &IID = MI.getDesc();
537       const DILocalVariable *Var = MI.getDebugVariable();
538       NumInserted++;
539 
540       const DIExpression *DIExpr = Expr;
541       SmallVector<MachineOperand, 8> MOs;
542       for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
543         MachineLocKind LocKind = Locs[I].Kind;
544         MachineLocValue Loc = Locs[I].Value;
545         const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
546         switch (LocKind) {
547         case MachineLocKind::RegisterKind:
548           // An entry value is a register location -- but with an updated
549           // expression. The register location of such DBG_VALUE is always the
550           // one from the entry DBG_VALUE, it does not matter if the entry value
551           // was copied in to another register due to some optimizations.
552           // Non-entry value register locations are like the source
553           // DBG_VALUE, but with the register number from this VarLoc.
554           MOs.push_back(MachineOperand::CreateReg(
555               EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
556                                                           : Register(Loc.RegNo),
557               false));
558           MOs.back().setIsDebug();
559           break;
560         case MachineLocKind::SpillLocKind: {
561           // Spills are indirect DBG_VALUEs, with a base register and offset.
562           // Use the original DBG_VALUEs expression to build the spilt location
563           // on top of. FIXME: spill locations created before this pass runs
564           // are not recognized, and not handled here.
565           unsigned Base = Loc.SpillLocation.SpillBase;
566           auto *TRI = MF.getSubtarget().getRegisterInfo();
567           if (MI.isNonListDebugValue()) {
568             DIExpr =
569                 TRI->prependOffsetExpression(DIExpr, DIExpression::ApplyOffset,
570                                              Loc.SpillLocation.SpillOffset);
571             Indirect = true;
572           } else {
573             SmallVector<uint64_t, 4> Ops;
574             TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
575             Ops.push_back(dwarf::DW_OP_deref);
576             DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
577           }
578           MOs.push_back(MachineOperand::CreateReg(Base, false));
579           MOs.back().setIsDebug();
580           break;
581         }
582         case MachineLocKind::ImmediateKind: {
583           MOs.push_back(Orig);
584           break;
585         }
586         case MachineLocKind::InvalidKind:
587           llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
588         }
589       }
590       return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
591     }
592 
593     /// Is the Loc field a constant or constant object?
594     bool isConstant(MachineLocKind Kind) const {
595       return Kind == MachineLocKind::ImmediateKind;
596     }
597 
598     /// Check if the Loc field is an entry backup location.
599     bool isEntryBackupLoc() const {
600       return EVKind == EntryValueLocKind::EntryValueBackupKind ||
601              EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
602     }
603 
604     /// If this variable is described by register \p Reg holding the entry
605     /// value, return true.
606     bool isEntryValueBackupReg(Register Reg) const {
607       return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
608     }
609 
610     /// If this variable is described by register \p Reg holding a copy of the
611     /// entry value, return true.
612     bool isEntryValueCopyBackupReg(Register Reg) const {
613       return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
614              usesReg(Reg);
615     }
616 
617     /// If this variable is described in whole or part by \p Reg, return true.
618     bool usesReg(Register Reg) const {
619       MachineLoc RegML;
620       RegML.Kind = MachineLocKind::RegisterKind;
621       RegML.Value.RegNo = Reg;
622       return is_contained(Locs, RegML);
623     }
624 
625     /// If this variable is described in whole or part by \p Reg, return true.
626     unsigned getRegIdx(Register Reg) const {
627       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
628         if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
629             Locs[Idx].Value.RegNo == Reg)
630           return Idx;
631       llvm_unreachable("Could not find given Reg in Locs");
632     }
633 
634     /// If this variable is described in whole or part by 1 or more registers,
635     /// add each of them to \p Regs and return true.
636     bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
637       bool AnyRegs = false;
638       for (auto Loc : Locs)
639         if (Loc.Kind == MachineLocKind::RegisterKind) {
640           Regs.push_back(Loc.Value.RegNo);
641           AnyRegs = true;
642         }
643       return AnyRegs;
644     }
645 
646     bool containsSpillLocs() const {
647       return any_of(Locs, [](VarLoc::MachineLoc ML) {
648         return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
649       });
650     }
651 
652     /// If this variable is described in whole or part by \p SpillLocation,
653     /// return true.
654     bool usesSpillLoc(SpillLoc SpillLocation) const {
655       MachineLoc SpillML;
656       SpillML.Kind = MachineLocKind::SpillLocKind;
657       SpillML.Value.SpillLocation = SpillLocation;
658       return is_contained(Locs, SpillML);
659     }
660 
661     /// If this variable is described in whole or part by \p SpillLocation,
662     /// return the index .
663     unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
664       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
665         if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
666             Locs[Idx].Value.SpillLocation == SpillLocation)
667           return Idx;
668       llvm_unreachable("Could not find given SpillLoc in Locs");
669     }
670 
671     /// Determine whether the lexical scope of this value's debug location
672     /// dominates MBB.
673     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
674       return LS.dominates(MI.getDebugLoc().get(), &MBB);
675     }
676 
677 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
678     // TRI can be null.
679     void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
680       Out << "VarLoc(";
681       for (const MachineLoc &MLoc : Locs) {
682         if (Locs.begin() != &MLoc)
683           Out << ", ";
684         switch (MLoc.Kind) {
685         case MachineLocKind::RegisterKind:
686           Out << printReg(MLoc.Value.RegNo, TRI);
687           break;
688         case MachineLocKind::SpillLocKind:
689           Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
690           Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
691               << MLoc.Value.SpillLocation.SpillOffset.getScalable()
692               << "x vscale"
693               << "]";
694           break;
695         case MachineLocKind::ImmediateKind:
696           Out << MLoc.Value.Immediate;
697           break;
698         case MachineLocKind::InvalidKind:
699           llvm_unreachable("Invalid VarLoc in dump method");
700         }
701       }
702 
703       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
704       if (Var.getInlinedAt())
705         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
706       else
707         Out << "(null))";
708 
709       if (isEntryBackupLoc())
710         Out << " (backup loc)\n";
711       else
712         Out << "\n";
713     }
714 #endif
715 
716     bool operator==(const VarLoc &Other) const {
717       return std::tie(EVKind, Var, Expr, Locs) ==
718              std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
719     }
720 
721     /// This operator guarantees that VarLocs are sorted by Variable first.
722     bool operator<(const VarLoc &Other) const {
723       return std::tie(Var, EVKind, Locs, Expr) <
724              std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
725     }
726   };
727 
728 #ifndef NDEBUG
729   using VarVec = SmallVector<VarLoc, 32>;
730 #endif
731 
732   /// VarLocMap is used for two things:
733   /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
734   ///    virtually insert a VarLoc into a VarLocSet.
735   /// 2) Given a LocIndex, look up the unique associated VarLoc.
736   class VarLocMap {
737     /// Map a VarLoc to an index within the vector reserved for its location
738     /// within Loc2Vars.
739     std::map<VarLoc, LocIndices> Var2Indices;
740 
741     /// Map a location to a vector which holds VarLocs which live in that
742     /// location.
743     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
744 
745   public:
746     /// Retrieve LocIndices for \p VL.
747     LocIndices insert(const VarLoc &VL) {
748       LocIndices &Indices = Var2Indices[VL];
749       // If Indices is not empty, VL is already in the map.
750       if (!Indices.empty())
751         return Indices;
752       SmallVector<LocIndex::u32_location_t, 4> Locations;
753       // LocIndices are determined by EVKind and MLs; each Register has a
754       // unique location, while all SpillLocs use a single bucket, and any EV
755       // VarLocs use only the Backup bucket or none at all (except the
756       // compulsory entry at the universal location index). LocIndices will
757       // always have an index at the universal location index as the last index.
758       if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
759         VL.getDescribingRegs(Locations);
760         assert(all_of(Locations,
761                       [](auto RegNo) {
762                         return RegNo < LocIndex::kFirstInvalidRegLocation;
763                       }) &&
764                "Physreg out of range?");
765         if (VL.containsSpillLocs()) {
766           LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
767           Locations.push_back(Loc);
768         }
769       } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
770         LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
771         Locations.push_back(Loc);
772       }
773       Locations.push_back(LocIndex::kUniversalLocation);
774       for (LocIndex::u32_location_t Location : Locations) {
775         auto &Vars = Loc2Vars[Location];
776         Indices.push_back(
777             {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
778         Vars.push_back(VL);
779       }
780       return Indices;
781     }
782 
783     LocIndices getAllIndices(const VarLoc &VL) const {
784       auto IndIt = Var2Indices.find(VL);
785       assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
786       return IndIt->second;
787     }
788 
789     /// Retrieve the unique VarLoc associated with \p ID.
790     const VarLoc &operator[](LocIndex ID) const {
791       auto LocIt = Loc2Vars.find(ID.Location);
792       assert(LocIt != Loc2Vars.end() && "Location not tracked");
793       return LocIt->second[ID.Index];
794     }
795   };
796 
797   using VarLocInMBB =
798       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
799   struct TransferDebugPair {
800     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
801     LocIndex LocationID;        ///< Location number for the transfer dest.
802   };
803   using TransferMap = SmallVector<TransferDebugPair, 4>;
804 
805   // Types for recording sets of variable fragments that overlap. For a given
806   // local variable, we record all other fragments of that variable that could
807   // overlap it, to reduce search time.
808   using FragmentOfVar =
809       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
810   using OverlapMap =
811       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
812 
813   // Helper while building OverlapMap, a map of all fragments seen for a given
814   // DILocalVariable.
815   using VarToFragments =
816       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
817 
818   /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
819   /// to \p Collected once, in order of insertion into \p VarLocIDs.
820   static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
821                                 const VarLocSet &CollectFrom,
822                                 const VarLocMap &VarLocIDs);
823 
824   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
825   /// by \p CollectFrom.
826   void getUsedRegs(const VarLocSet &CollectFrom,
827                    SmallVectorImpl<Register> &UsedRegs) const;
828 
829   /// This holds the working set of currently open ranges. For fast
830   /// access, this is done both as a set of VarLocIDs, and a map of
831   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
832   /// previous open ranges for the same variable. In addition, we keep
833   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
834   /// methods act differently depending on whether a VarLoc is primary
835   /// location or backup one. In the case the VarLoc is backup location
836   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
837   /// we perform the operation on the Vars.
838   class OpenRangesSet {
839     VarLocSet::Allocator &Alloc;
840     VarLocSet VarLocs;
841     // Map the DebugVariable to recent primary location ID.
842     SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
843     // Map the DebugVariable to recent backup location ID.
844     SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
845     OverlapMap &OverlappingFragments;
846 
847   public:
848     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
849         : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
850 
851     const VarLocSet &getVarLocs() const { return VarLocs; }
852 
853     // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
854     // This method is needed to get every VarLoc once, as each VarLoc may have
855     // multiple indices in a VarLocMap (corresponding to each applicable
856     // location), but all VarLocs appear exactly once at the universal location
857     // index.
858     void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
859                           const VarLocMap &VarLocIDs) const {
860       collectAllVarLocs(Collected, VarLocs, VarLocIDs);
861     }
862 
863     /// Terminate all open ranges for VL.Var by removing it from the set.
864     void erase(const VarLoc &VL);
865 
866     /// Terminate all open ranges listed as indices in \c KillSet with
867     /// \c Location by removing them from the set.
868     void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
869                LocIndex::u32_location_t Location);
870 
871     /// Insert a new range into the set.
872     void insert(LocIndices VarLocIDs, const VarLoc &VL);
873 
874     /// Insert a set of ranges.
875     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
876 
877     llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);
878 
879     /// Empty the set.
880     void clear() {
881       VarLocs.clear();
882       Vars.clear();
883       EntryValuesBackupVars.clear();
884     }
885 
886     /// Return whether the set is empty or not.
887     bool empty() const {
888       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
889              Vars.empty() == VarLocs.empty() &&
890              "open ranges are inconsistent");
891       return VarLocs.empty();
892     }
893 
894     /// Get an empty range of VarLoc IDs.
895     auto getEmptyVarLocRange() const {
896       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
897                                                        getVarLocs().end());
898     }
899 
900     /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
901     auto getRegisterVarLocs(Register Reg) const {
902       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
903     }
904 
905     /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
906     auto getSpillVarLocs() const {
907       return LocIndex::indexRangeForLocation(getVarLocs(),
908                                              LocIndex::kSpillLocation);
909     }
910 
911     /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
912     /// EntryValueCopyBackupKind.
913     auto getEntryValueBackupVarLocs() const {
914       return LocIndex::indexRangeForLocation(
915           getVarLocs(), LocIndex::kEntryValueBackupLocation);
916     }
917   };
918 
919   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
920   /// RegisterKind which are located in any reg in \p Regs. The IDs for each
921   /// VarLoc correspond to entries in the universal location bucket, which every
922   /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
923   static void collectIDsForRegs(VarLocsInRange &Collected,
924                                 const DefinedRegsSet &Regs,
925                                 const VarLocSet &CollectFrom,
926                                 const VarLocMap &VarLocIDs);
927 
928   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
929     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
930     if (!VLS)
931       VLS = std::make_unique<VarLocSet>(Alloc);
932     return *VLS.get();
933   }
934 
935   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
936                                    const VarLocInMBB &Locs) const {
937     auto It = Locs.find(MBB);
938     assert(It != Locs.end() && "MBB not in map");
939     return *It->second.get();
940   }
941 
942   /// Tests whether this instruction is a spill to a stack location.
943   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
944 
945   /// Decide if @MI is a spill instruction and return true if it is. We use 2
946   /// criteria to make this decision:
947   /// - Is this instruction a store to a spill slot?
948   /// - Is there a register operand that is both used and killed?
949   /// TODO: Store optimization can fold spills into other stores (including
950   /// other spills). We do not handle this yet (more than one memory operand).
951   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
952                        Register &Reg);
953 
954   /// Returns true if the given machine instruction is a debug value which we
955   /// can emit entry values for.
956   ///
957   /// Currently, we generate debug entry values only for parameters that are
958   /// unmodified throughout the function and located in a register.
959   bool isEntryValueCandidate(const MachineInstr &MI,
960                              const DefinedRegsSet &Regs) const;
961 
962   /// If a given instruction is identified as a spill, return the spill location
963   /// and set \p Reg to the spilled register.
964   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
965                                                   MachineFunction *MF,
966                                                   Register &Reg);
967   /// Given a spill instruction, extract the register and offset used to
968   /// address the spill location in a target independent way.
969   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
970   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
971                                TransferMap &Transfers, VarLocMap &VarLocIDs,
972                                LocIndex OldVarID, TransferKind Kind,
973                                const VarLoc::MachineLoc &OldLoc,
974                                Register NewReg = Register());
975 
976   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
977                           VarLocMap &VarLocIDs);
978   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
979                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
980   bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
981                         VarLocMap &VarLocIDs, const VarLoc &EntryVL);
982   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
983                        VarLocMap &VarLocIDs, TransferMap &Transfers,
984                        VarLocsInRange &KillSet);
985   void recordEntryValue(const MachineInstr &MI,
986                         const DefinedRegsSet &DefinedRegs,
987                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
988   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
989                             VarLocMap &VarLocIDs, TransferMap &Transfers);
990   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
991                            VarLocMap &VarLocIDs, TransferMap &Transfers);
992   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
993                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
994 
995   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
996                VarLocMap &VarLocIDs, TransferMap &Transfers);
997 
998   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
999                              OverlapMap &OLapMap);
1000 
1001   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1002             const VarLocMap &VarLocIDs,
1003             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1004             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1005 
1006   /// Create DBG_VALUE insts for inlocs that have been propagated but
1007   /// had their instruction creation deferred.
1008   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1009 
1010   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1011 
1012 public:
1013   /// Default construct and initialize the pass.
1014   VarLocBasedLDV();
1015 
1016   ~VarLocBasedLDV();
1017 
1018   /// Print to ostream with a message.
1019   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1020                         const VarLocMap &VarLocIDs, const char *msg,
1021                         raw_ostream &Out) const;
1022 };
1023 
1024 } // end anonymous namespace
1025 
1026 //===----------------------------------------------------------------------===//
1027 //            Implementation
1028 //===----------------------------------------------------------------------===//
1029 
1030 VarLocBasedLDV::VarLocBasedLDV() { }
1031 
1032 VarLocBasedLDV::~VarLocBasedLDV() { }
1033 
1034 /// Erase a variable from the set of open ranges, and additionally erase any
1035 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1036 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1037 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1038 /// location, erase the variable from the Vars set.
1039 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1040   // Erasure helper.
1041   auto DoErase = [VL, this](DebugVariable VarToErase) {
1042     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1043     auto It = EraseFrom->find(VarToErase);
1044     if (It != EraseFrom->end()) {
1045       LocIndices IDs = It->second;
1046       for (LocIndex ID : IDs)
1047         VarLocs.reset(ID.getAsRawInteger());
1048       EraseFrom->erase(It);
1049     }
1050   };
1051 
1052   DebugVariable Var = VL.Var;
1053 
1054   // Erase the variable/fragment that ends here.
1055   DoErase(Var);
1056 
1057   // Extract the fragment. Interpret an empty fragment as one that covers all
1058   // possible bits.
1059   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1060 
1061   // There may be fragments that overlap the designated fragment. Look them up
1062   // in the pre-computed overlap map, and erase them too.
1063   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1064   if (MapIt != OverlappingFragments.end()) {
1065     for (auto Fragment : MapIt->second) {
1066       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1067       if (!DebugVariable::isDefaultFragment(Fragment))
1068         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1069       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1070     }
1071   }
1072 }
1073 
1074 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1075                                           const VarLocMap &VarLocIDs,
1076                                           LocIndex::u32_location_t Location) {
1077   VarLocSet RemoveSet(Alloc);
1078   for (LocIndex::u32_index_t ID : KillSet) {
1079     const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1080     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1081     EraseFrom->erase(VL.Var);
1082     LocIndices VLI = VarLocIDs.getAllIndices(VL);
1083     for (LocIndex ID : VLI)
1084       RemoveSet.set(ID.getAsRawInteger());
1085   }
1086   VarLocs.intersectWithComplement(RemoveSet);
1087 }
1088 
1089 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1090                                                      const VarLocMap &Map) {
1091   VarLocsInRange UniqueVarLocIDs;
1092   DefinedRegsSet Regs;
1093   Regs.insert(LocIndex::kUniversalLocation);
1094   collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1095   for (uint64_t ID : UniqueVarLocIDs) {
1096     LocIndex Idx = LocIndex::fromRawInteger(ID);
1097     const VarLoc &VarL = Map[Idx];
1098     const LocIndices Indices = Map.getAllIndices(VarL);
1099     insert(Indices, VarL);
1100   }
1101 }
1102 
1103 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1104                                            const VarLoc &VL) {
1105   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1106   for (LocIndex ID : VarLocIDs)
1107     VarLocs.set(ID.getAsRawInteger());
1108   InsertInto->insert({VL.Var, VarLocIDs});
1109 }
1110 
1111 /// Return the Loc ID of an entry value backup location, if it exists for the
1112 /// variable.
1113 llvm::Optional<LocIndices>
1114 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1115   auto It = EntryValuesBackupVars.find(Var);
1116   if (It != EntryValuesBackupVars.end())
1117     return It->second;
1118 
1119   return llvm::None;
1120 }
1121 
1122 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1123                                        const DefinedRegsSet &Regs,
1124                                        const VarLocSet &CollectFrom,
1125                                        const VarLocMap &VarLocIDs) {
1126   assert(!Regs.empty() && "Nothing to collect");
1127   SmallVector<Register, 32> SortedRegs;
1128   append_range(SortedRegs, Regs);
1129   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1130   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1131   auto End = CollectFrom.end();
1132   for (Register Reg : SortedRegs) {
1133     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1134     // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1135     // live in Reg.
1136     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1137     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1138     It.advanceToLowerBound(FirstIndexForReg);
1139 
1140     // Iterate through that half-open interval and collect all the set IDs.
1141     for (; It != End && *It < FirstInvalidIndex; ++It) {
1142       LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1143       const VarLoc &VL = VarLocIDs[ItIdx];
1144       LocIndices LI = VarLocIDs.getAllIndices(VL);
1145       // For now, the back index is always the universal location index.
1146       assert(LI.back().Location == LocIndex::kUniversalLocation &&
1147              "Unexpected order of LocIndices for VarLoc; was it inserted into "
1148              "the VarLocMap correctly?");
1149       Collected.insert(LI.back().Index);
1150     }
1151 
1152     if (It == End)
1153       return;
1154   }
1155 }
1156 
1157 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1158                                  SmallVectorImpl<Register> &UsedRegs) const {
1159   // All register-based VarLocs are assigned indices greater than or equal to
1160   // FirstRegIndex.
1161   uint64_t FirstRegIndex =
1162       LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1163   uint64_t FirstInvalidIndex =
1164       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1165   for (auto It = CollectFrom.find(FirstRegIndex),
1166             End = CollectFrom.find(FirstInvalidIndex);
1167        It != End;) {
1168     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1169     // which register and add it to UsedRegs.
1170     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1171     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1172            "Duplicate used reg");
1173     UsedRegs.push_back(FoundReg);
1174 
1175     // Skip to the next /set/ register. Note that this finds a lower bound, so
1176     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1177     // guaranteed to move on to the next register (or to end()).
1178     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1179     It.advanceToLowerBound(NextRegIndex);
1180   }
1181 }
1182 
1183 //===----------------------------------------------------------------------===//
1184 //            Debug Range Extension Implementation
1185 //===----------------------------------------------------------------------===//
1186 
1187 #ifndef NDEBUG
1188 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1189                                        const VarLocInMBB &V,
1190                                        const VarLocMap &VarLocIDs,
1191                                        const char *msg,
1192                                        raw_ostream &Out) const {
1193   Out << '\n' << msg << '\n';
1194   for (const MachineBasicBlock &BB : MF) {
1195     if (!V.count(&BB))
1196       continue;
1197     const VarLocSet &L = getVarLocsInMBB(&BB, V);
1198     if (L.empty())
1199       continue;
1200     SmallVector<VarLoc, 32> VarLocs;
1201     collectAllVarLocs(VarLocs, L, VarLocIDs);
1202     Out << "MBB: " << BB.getNumber() << ":\n";
1203     for (const VarLoc &VL : VarLocs) {
1204       Out << " Var: " << VL.Var.getVariable()->getName();
1205       Out << " MI: ";
1206       VL.dump(TRI, Out);
1207     }
1208   }
1209   Out << "\n";
1210 }
1211 #endif
1212 
1213 VarLocBasedLDV::VarLoc::SpillLoc
1214 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1215   assert(MI.hasOneMemOperand() &&
1216          "Spill instruction does not have exactly one memory operand?");
1217   auto MMOI = MI.memoperands_begin();
1218   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1219   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1220          "Inconsistent memory operand in spill instruction");
1221   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1222   const MachineBasicBlock *MBB = MI.getParent();
1223   Register Reg;
1224   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1225   return {Reg, Offset};
1226 }
1227 
1228 /// Try to salvage the debug entry value if we encounter a new debug value
1229 /// describing the same parameter, otherwise stop tracking the value. Return
1230 /// true if we should stop tracking the entry value, otherwise return false.
1231 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1232                                        OpenRangesSet &OpenRanges,
1233                                        VarLocMap &VarLocIDs,
1234                                        const VarLoc &EntryVL) {
1235   // Skip the DBG_VALUE which is the debug entry value itself.
1236   if (MI.isIdenticalTo(EntryVL.MI))
1237     return false;
1238 
1239   // If the parameter's location is not register location, we can not track
1240   // the entry value any more. In addition, if the debug expression from the
1241   // DBG_VALUE is not empty, we can assume the parameter's value has changed
1242   // indicating that we should stop tracking its entry value as well.
1243   if (!MI.getDebugOperand(0).isReg() ||
1244       MI.getDebugExpression()->getNumElements() != 0)
1245     return true;
1246 
1247   // If the DBG_VALUE comes from a copy instruction that copies the entry value,
1248   // it means the parameter's value has not changed and we should be able to use
1249   // its entry value.
1250   Register Reg = MI.getDebugOperand(0).getReg();
1251   auto I = std::next(MI.getReverseIterator());
1252   const MachineOperand *SrcRegOp, *DestRegOp;
1253   if (I != MI.getParent()->rend()) {
1254 
1255     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1256     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1257     // does not indicate the parameter modification.)
1258     auto DestSrc = TII->isCopyInstr(*I);
1259     if (!DestSrc)
1260       return true;
1261 
1262     SrcRegOp = DestSrc->Source;
1263     DestRegOp = DestSrc->Destination;
1264     if (Reg != DestRegOp->getReg())
1265       return true;
1266 
1267     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1268       const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1269       if (VL.isEntryValueCopyBackupReg(Reg) &&
1270           // Entry Values should not be variadic.
1271           VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1272         return false;
1273     }
1274   }
1275 
1276   return true;
1277 }
1278 
1279 /// End all previous ranges related to @MI and start a new range from @MI
1280 /// if it is a DBG_VALUE instr.
1281 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1282                                          OpenRangesSet &OpenRanges,
1283                                          VarLocMap &VarLocIDs) {
1284   if (!MI.isDebugValue())
1285     return;
1286   const DILocalVariable *Var = MI.getDebugVariable();
1287   const DIExpression *Expr = MI.getDebugExpression();
1288   const DILocation *DebugLoc = MI.getDebugLoc();
1289   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1290   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1291          "Expected inlined-at fields to agree");
1292 
1293   DebugVariable V(Var, Expr, InlinedAt);
1294 
1295   // Check if this DBG_VALUE indicates a parameter's value changing.
1296   // If that is the case, we should stop tracking its entry value.
1297   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1298   if (Var->isParameter() && EntryValBackupID) {
1299     const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1300     if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
1301       LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1302                  MI.print(dbgs(), /*IsStandalone*/ false,
1303                           /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1304                           /*AddNewLine*/ true, TII));
1305       OpenRanges.erase(EntryVL);
1306     }
1307   }
1308 
1309   if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1310         return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1311                MO.isCImm();
1312       })) {
1313     // Use normal VarLoc constructor for registers and immediates.
1314     VarLoc VL(MI, LS);
1315     // End all previous ranges of VL.Var.
1316     OpenRanges.erase(VL);
1317 
1318     LocIndices IDs = VarLocIDs.insert(VL);
1319     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1320     OpenRanges.insert(IDs, VL);
1321   } else if (MI.memoperands().size() > 0) {
1322     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1323   } else {
1324     // This must be an undefined location. If it has an open range, erase it.
1325     assert(MI.isUndefDebugValue() &&
1326            "Unexpected non-undef DBG_VALUE encountered");
1327     VarLoc VL(MI, LS);
1328     OpenRanges.erase(VL);
1329   }
1330 }
1331 
1332 // This should be removed later, doesn't fit the new design.
1333 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1334                                        const VarLocSet &CollectFrom,
1335                                        const VarLocMap &VarLocIDs) {
1336   // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1337   // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1338   // in Reg.
1339   uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1340   uint64_t FirstInvalidIndex =
1341       LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1342   // Iterate through that half-open interval and collect all the set IDs.
1343   for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1344        It != End && *It < FirstInvalidIndex; ++It) {
1345     LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1346     Collected.push_back(VarLocIDs[RegIdx]);
1347   }
1348 }
1349 
1350 /// Turn the entry value backup locations into primary locations.
1351 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1352                                      OpenRangesSet &OpenRanges,
1353                                      VarLocMap &VarLocIDs,
1354                                      TransferMap &Transfers,
1355                                      VarLocsInRange &KillSet) {
1356   // Do not insert entry value locations after a terminator.
1357   if (MI.isTerminator())
1358     return;
1359 
1360   for (uint32_t ID : KillSet) {
1361     // The KillSet IDs are indices for the universal location bucket.
1362     LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1363     const VarLoc &VL = VarLocIDs[Idx];
1364     if (!VL.Var.getVariable()->isParameter())
1365       continue;
1366 
1367     auto DebugVar = VL.Var;
1368     Optional<LocIndices> EntryValBackupIDs =
1369         OpenRanges.getEntryValueBackup(DebugVar);
1370 
1371     // If the parameter has the entry value backup, it means we should
1372     // be able to use its entry value.
1373     if (!EntryValBackupIDs)
1374       continue;
1375 
1376     const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1377     VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
1378                                              EntryVL.Locs[0].Value.RegNo);
1379     LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1380     Transfers.push_back({&MI, EntryValueIDs.back()});
1381     OpenRanges.insert(EntryValueIDs, EntryLoc);
1382   }
1383 }
1384 
1385 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1386 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1387 /// new VarLoc. If \p NewReg is different than default zero value then the
1388 /// new location will be register location created by the copy like instruction,
1389 /// otherwise it is variable's location on the stack.
1390 void VarLocBasedLDV::insertTransferDebugPair(
1391     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1392     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1393     const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1394   const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1395 
1396   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1397     LocIndices LocIds = VarLocIDs.insert(VL);
1398 
1399     // Close this variable's previous location range.
1400     OpenRanges.erase(VL);
1401 
1402     // Record the new location as an open range, and a postponed transfer
1403     // inserting a DBG_VALUE for this location.
1404     OpenRanges.insert(LocIds, VL);
1405     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1406     TransferDebugPair MIP = {&MI, LocIds.back()};
1407     Transfers.push_back(MIP);
1408   };
1409 
1410   // End all previous ranges of VL.Var.
1411   OpenRanges.erase(VarLocIDs[OldVarID]);
1412   switch (Kind) {
1413   case TransferKind::TransferCopy: {
1414     assert(NewReg &&
1415            "No register supplied when handling a copy of a debug value");
1416     // Create a DBG_VALUE instruction to describe the Var in its new
1417     // register location.
1418     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1419     ProcessVarLoc(VL);
1420     LLVM_DEBUG({
1421       dbgs() << "Creating VarLoc for register copy:";
1422       VL.dump(TRI);
1423     });
1424     return;
1425   }
1426   case TransferKind::TransferSpill: {
1427     // Create a DBG_VALUE instruction to describe the Var in its spilled
1428     // location.
1429     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1430     VarLoc VL = VarLoc::CreateSpillLoc(
1431         OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1432     ProcessVarLoc(VL);
1433     LLVM_DEBUG({
1434       dbgs() << "Creating VarLoc for spill:";
1435       VL.dump(TRI);
1436     });
1437     return;
1438   }
1439   case TransferKind::TransferRestore: {
1440     assert(NewReg &&
1441            "No register supplied when handling a restore of a debug value");
1442     // DebugInstr refers to the pre-spill location, therefore we can reuse
1443     // its expression.
1444     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1445     ProcessVarLoc(VL);
1446     LLVM_DEBUG({
1447       dbgs() << "Creating VarLoc for restore:";
1448       VL.dump(TRI);
1449     });
1450     return;
1451   }
1452   }
1453   llvm_unreachable("Invalid transfer kind");
1454 }
1455 
1456 /// A definition of a register may mark the end of a range.
1457 void VarLocBasedLDV::transferRegisterDef(
1458     MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1459     TransferMap &Transfers) {
1460 
1461   // Meta Instructions do not affect the debug liveness of any register they
1462   // define.
1463   if (MI.isMetaInstruction())
1464     return;
1465 
1466   MachineFunction *MF = MI.getMF();
1467   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1468   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1469 
1470   // Find the regs killed by MI, and find regmasks of preserved regs.
1471   DefinedRegsSet DeadRegs;
1472   SmallVector<const uint32_t *, 4> RegMasks;
1473   for (const MachineOperand &MO : MI.operands()) {
1474     // Determine whether the operand is a register def.
1475     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1476         Register::isPhysicalRegister(MO.getReg()) &&
1477         !(MI.isCall() && MO.getReg() == SP)) {
1478       // Remove ranges of all aliased registers.
1479       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1480         // FIXME: Can we break out of this loop early if no insertion occurs?
1481         DeadRegs.insert(*RAI);
1482     } else if (MO.isRegMask()) {
1483       RegMasks.push_back(MO.getRegMask());
1484     }
1485   }
1486 
1487   // Erase VarLocs which reside in one of the dead registers. For performance
1488   // reasons, it's critical to not iterate over the full set of open VarLocs.
1489   // Iterate over the set of dying/used regs instead.
1490   if (!RegMasks.empty()) {
1491     SmallVector<Register, 32> UsedRegs;
1492     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1493     for (Register Reg : UsedRegs) {
1494       // Remove ranges of all clobbered registers. Register masks don't usually
1495       // list SP as preserved. Assume that call instructions never clobber SP,
1496       // because some backends (e.g., AArch64) never list SP in the regmask.
1497       // While the debug info may be off for an instruction or two around
1498       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1499       // still a better user experience.
1500       if (Reg == SP)
1501         continue;
1502       bool AnyRegMaskKillsReg =
1503           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1504             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1505           });
1506       if (AnyRegMaskKillsReg)
1507         DeadRegs.insert(Reg);
1508     }
1509   }
1510 
1511   if (DeadRegs.empty())
1512     return;
1513 
1514   VarLocsInRange KillSet;
1515   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1516   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1517 
1518   if (TPC) {
1519     auto &TM = TPC->getTM<TargetMachine>();
1520     if (TM.Options.ShouldEmitDebugEntryValues())
1521       emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
1522   }
1523 }
1524 
1525 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1526                                          MachineFunction *MF) {
1527   // TODO: Handle multiple stores folded into one.
1528   if (!MI.hasOneMemOperand())
1529     return false;
1530 
1531   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1532     return false; // This is not a spill instruction, since no valid size was
1533                   // returned from either function.
1534 
1535   return true;
1536 }
1537 
1538 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1539                                       MachineFunction *MF, Register &Reg) {
1540   if (!isSpillInstruction(MI, MF))
1541     return false;
1542 
1543   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1544     if (!MO.isReg() || !MO.isUse()) {
1545       Reg = 0;
1546       return false;
1547     }
1548     Reg = MO.getReg();
1549     return MO.isKill();
1550   };
1551 
1552   for (const MachineOperand &MO : MI.operands()) {
1553     // In a spill instruction generated by the InlineSpiller the spilled
1554     // register has its kill flag set.
1555     if (isKilledReg(MO, Reg))
1556       return true;
1557     if (Reg != 0) {
1558       // Check whether next instruction kills the spilled register.
1559       // FIXME: Current solution does not cover search for killed register in
1560       // bundles and instructions further down the chain.
1561       auto NextI = std::next(MI.getIterator());
1562       // Skip next instruction that points to basic block end iterator.
1563       if (MI.getParent()->end() == NextI)
1564         continue;
1565       Register RegNext;
1566       for (const MachineOperand &MONext : NextI->operands()) {
1567         // Return true if we came across the register from the
1568         // previous spill instruction that is killed in NextI.
1569         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1570           return true;
1571       }
1572     }
1573   }
1574   // Return false if we didn't find spilled register.
1575   return false;
1576 }
1577 
1578 Optional<VarLocBasedLDV::VarLoc::SpillLoc>
1579 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1580                                       MachineFunction *MF, Register &Reg) {
1581   if (!MI.hasOneMemOperand())
1582     return None;
1583 
1584   // FIXME: Handle folded restore instructions with more than one memory
1585   // operand.
1586   if (MI.getRestoreSize(TII)) {
1587     Reg = MI.getOperand(0).getReg();
1588     return extractSpillBaseRegAndOffset(MI);
1589   }
1590   return None;
1591 }
1592 
1593 /// A spilled register may indicate that we have to end the current range of
1594 /// a variable and create a new one for the spill location.
1595 /// A restored register may indicate the reverse situation.
1596 /// We don't want to insert any instructions in process(), so we just create
1597 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1598 /// It will be inserted into the BB when we're done iterating over the
1599 /// instructions.
1600 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1601                                                  OpenRangesSet &OpenRanges,
1602                                                  VarLocMap &VarLocIDs,
1603                                                  TransferMap &Transfers) {
1604   MachineFunction *MF = MI.getMF();
1605   TransferKind TKind;
1606   Register Reg;
1607   Optional<VarLoc::SpillLoc> Loc;
1608 
1609   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1610 
1611   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1612   // written to, then close the variable location. The value in memory
1613   // will have changed.
1614   VarLocsInRange KillSet;
1615   if (isSpillInstruction(MI, MF)) {
1616     Loc = extractSpillBaseRegAndOffset(MI);
1617     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1618       LocIndex Idx = LocIndex::fromRawInteger(ID);
1619       const VarLoc &VL = VarLocIDs[Idx];
1620       assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1621       if (VL.usesSpillLoc(*Loc)) {
1622         // This location is overwritten by the current instruction -- terminate
1623         // the open range, and insert an explicit DBG_VALUE $noreg.
1624         //
1625         // Doing this at a later stage would require re-interpreting all
1626         // DBG_VALUes and DIExpressions to identify whether they point at
1627         // memory, and then analysing all memory writes to see if they
1628         // overwrite that memory, which is expensive.
1629         //
1630         // At this stage, we already know which DBG_VALUEs are for spills and
1631         // where they are located; it's best to fix handle overwrites now.
1632         KillSet.insert(ID);
1633         unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1634         VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1635         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1636         LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1637         Transfers.push_back({&MI, UndefLocIDs.back()});
1638       }
1639     }
1640     OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1641   }
1642 
1643   // Try to recognise spill and restore instructions that may create a new
1644   // variable location.
1645   if (isLocationSpill(MI, MF, Reg)) {
1646     TKind = TransferKind::TransferSpill;
1647     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1648     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1649                       << "\n");
1650   } else {
1651     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1652       return;
1653     TKind = TransferKind::TransferRestore;
1654     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1655     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1656                       << "\n");
1657   }
1658   // Check if the register or spill location is the location of a debug value.
1659   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1660   if (TKind == TransferKind::TransferSpill)
1661     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1662   else if (TKind == TransferKind::TransferRestore)
1663     TransferCandidates = OpenRanges.getSpillVarLocs();
1664   for (uint64_t ID : TransferCandidates) {
1665     LocIndex Idx = LocIndex::fromRawInteger(ID);
1666     const VarLoc &VL = VarLocIDs[Idx];
1667     unsigned LocIdx;
1668     if (TKind == TransferKind::TransferSpill) {
1669       assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1670       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1671                         << VL.Var.getVariable()->getName() << ")\n");
1672       LocIdx = VL.getRegIdx(Reg);
1673     } else {
1674       assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1675              "Broken VarLocSet?");
1676       if (!VL.usesSpillLoc(*Loc))
1677         // The spill location is not the location of a debug value.
1678         continue;
1679       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1680                         << VL.Var.getVariable()->getName() << ")\n");
1681       LocIdx = VL.getSpillLocIdx(*Loc);
1682     }
1683     VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1684     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1685                             MLoc, Reg);
1686     // FIXME: A comment should explain why it's correct to return early here,
1687     // if that is in fact correct.
1688     return;
1689   }
1690 }
1691 
1692 /// If \p MI is a register copy instruction, that copies a previously tracked
1693 /// value from one register to another register that is callee saved, we
1694 /// create new DBG_VALUE instruction  described with copy destination register.
1695 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1696                                            OpenRangesSet &OpenRanges,
1697                                            VarLocMap &VarLocIDs,
1698                                            TransferMap &Transfers) {
1699   auto DestSrc = TII->isCopyInstr(MI);
1700   if (!DestSrc)
1701     return;
1702 
1703   const MachineOperand *DestRegOp = DestSrc->Destination;
1704   const MachineOperand *SrcRegOp = DestSrc->Source;
1705 
1706   if (!DestRegOp->isDef())
1707     return;
1708 
1709   auto isCalleeSavedReg = [&](Register Reg) {
1710     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1711       if (CalleeSavedRegs.test(*RAI))
1712         return true;
1713     return false;
1714   };
1715 
1716   Register SrcReg = SrcRegOp->getReg();
1717   Register DestReg = DestRegOp->getReg();
1718 
1719   // We want to recognize instructions where destination register is callee
1720   // saved register. If register that could be clobbered by the call is
1721   // included, there would be a great chance that it is going to be clobbered
1722   // soon. It is more likely that previous register location, which is callee
1723   // saved, is going to stay unclobbered longer, even if it is killed.
1724   if (!isCalleeSavedReg(DestReg))
1725     return;
1726 
1727   // Remember an entry value movement. If we encounter a new debug value of
1728   // a parameter describing only a moving of the value around, rather then
1729   // modifying it, we are still able to use the entry value if needed.
1730   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1731     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1732       LocIndex Idx = LocIndex::fromRawInteger(ID);
1733       const VarLoc &VL = VarLocIDs[Idx];
1734       if (VL.isEntryValueBackupReg(SrcReg)) {
1735         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1736         VarLoc EntryValLocCopyBackup =
1737             VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1738         // Stop tracking the original entry value.
1739         OpenRanges.erase(VL);
1740 
1741         // Start tracking the entry value copy.
1742         LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1743         OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1744         break;
1745       }
1746     }
1747   }
1748 
1749   if (!SrcRegOp->isKill())
1750     return;
1751 
1752   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1753     LocIndex Idx = LocIndex::fromRawInteger(ID);
1754     assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1755     VarLoc::MachineLocValue Loc;
1756     Loc.RegNo = SrcReg;
1757     VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1758     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1759                             TransferKind::TransferCopy, MLoc, DestReg);
1760     // FIXME: A comment should explain why it's correct to return early here,
1761     // if that is in fact correct.
1762     return;
1763   }
1764 }
1765 
1766 /// Terminate all open ranges at the end of the current basic block.
1767 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1768                                          OpenRangesSet &OpenRanges,
1769                                          VarLocInMBB &OutLocs,
1770                                          const VarLocMap &VarLocIDs) {
1771   bool Changed = false;
1772   LLVM_DEBUG({
1773     VarVec VarLocs;
1774     OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1775     for (VarLoc &VL : VarLocs) {
1776       // Copy OpenRanges to OutLocs, if not already present.
1777       dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1778       VL.dump(TRI);
1779     }
1780   });
1781   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1782   Changed = VLS != OpenRanges.getVarLocs();
1783   // New OutLocs set may be different due to spill, restore or register
1784   // copy instruction processing.
1785   if (Changed)
1786     VLS = OpenRanges.getVarLocs();
1787   OpenRanges.clear();
1788   return Changed;
1789 }
1790 
1791 /// Accumulate a mapping between each DILocalVariable fragment and other
1792 /// fragments of that DILocalVariable which overlap. This reduces work during
1793 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1794 /// known-to-overlap fragments are present".
1795 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1796 ///           fragment usage.
1797 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1798 ///           Variable which are known to exist.
1799 /// \param OverlappingFragments The overlap map being constructed, from one
1800 ///           Var/Fragment pair to a vector of fragments known to overlap.
1801 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1802                                             VarToFragments &SeenFragments,
1803                                             OverlapMap &OverlappingFragments) {
1804   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1805                       MI.getDebugLoc()->getInlinedAt());
1806   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1807 
1808   // If this is the first sighting of this variable, then we are guaranteed
1809   // there are currently no overlapping fragments either. Initialize the set
1810   // of seen fragments, record no overlaps for the current one, and return.
1811   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1812   if (SeenIt == SeenFragments.end()) {
1813     SmallSet<FragmentInfo, 4> OneFragment;
1814     OneFragment.insert(ThisFragment);
1815     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1816 
1817     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1818     return;
1819   }
1820 
1821   // If this particular Variable/Fragment pair already exists in the overlap
1822   // map, it has already been accounted for.
1823   auto IsInOLapMap =
1824       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1825   if (!IsInOLapMap.second)
1826     return;
1827 
1828   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1829   auto &AllSeenFragments = SeenIt->second;
1830 
1831   // Otherwise, examine all other seen fragments for this variable, with "this"
1832   // fragment being a previously unseen fragment. Record any pair of
1833   // overlapping fragments.
1834   for (auto &ASeenFragment : AllSeenFragments) {
1835     // Does this previously seen fragment overlap?
1836     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1837       // Yes: Mark the current fragment as being overlapped.
1838       ThisFragmentsOverlaps.push_back(ASeenFragment);
1839       // Mark the previously seen fragment as being overlapped by the current
1840       // one.
1841       auto ASeenFragmentsOverlaps =
1842           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1843       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1844              "Previously seen var fragment has no vector of overlaps");
1845       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1846     }
1847   }
1848 
1849   AllSeenFragments.insert(ThisFragment);
1850 }
1851 
1852 /// This routine creates OpenRanges.
1853 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1854                               VarLocMap &VarLocIDs, TransferMap &Transfers) {
1855   transferDebugValue(MI, OpenRanges, VarLocIDs);
1856   transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
1857   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1858   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1859 }
1860 
1861 /// This routine joins the analysis results of all incoming edges in @MBB by
1862 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1863 /// source variable in all the predecessors of @MBB reside in the same location.
1864 bool VarLocBasedLDV::join(
1865     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1866     const VarLocMap &VarLocIDs,
1867     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1868     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1869   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1870 
1871   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1872 
1873   // For all predecessors of this MBB, find the set of VarLocs that
1874   // can be joined.
1875   int NumVisited = 0;
1876   for (auto p : MBB.predecessors()) {
1877     // Ignore backedges if we have not visited the predecessor yet. As the
1878     // predecessor hasn't yet had locations propagated into it, most locations
1879     // will not yet be valid, so treat them as all being uninitialized and
1880     // potentially valid. If a location guessed to be correct here is
1881     // invalidated later, we will remove it when we revisit this block.
1882     if (!Visited.count(p)) {
1883       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
1884                         << "\n");
1885       continue;
1886     }
1887     auto OL = OutLocs.find(p);
1888     // Join is null in case of empty OutLocs from any of the pred.
1889     if (OL == OutLocs.end())
1890       return false;
1891 
1892     // Just copy over the Out locs to incoming locs for the first visited
1893     // predecessor, and for all other predecessors join the Out locs.
1894     VarLocSet &OutLocVLS = *OL->second.get();
1895     if (!NumVisited)
1896       InLocsT = OutLocVLS;
1897     else
1898       InLocsT &= OutLocVLS;
1899 
1900     LLVM_DEBUG({
1901       if (!InLocsT.empty()) {
1902         VarVec VarLocs;
1903         collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
1904         for (const VarLoc &VL : VarLocs)
1905           dbgs() << "  gathered candidate incoming var: "
1906                  << VL.Var.getVariable()->getName() << "\n";
1907       }
1908     });
1909 
1910     NumVisited++;
1911   }
1912 
1913   // Filter out DBG_VALUES that are out of scope.
1914   VarLocSet KillSet(Alloc);
1915   bool IsArtificial = ArtificialBlocks.count(&MBB);
1916   if (!IsArtificial) {
1917     for (uint64_t ID : InLocsT) {
1918       LocIndex Idx = LocIndex::fromRawInteger(ID);
1919       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1920         KillSet.set(ID);
1921         LLVM_DEBUG({
1922           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
1923           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
1924         });
1925       }
1926     }
1927   }
1928   InLocsT.intersectWithComplement(KillSet);
1929 
1930   // As we are processing blocks in reverse post-order we
1931   // should have processed at least one predecessor, unless it
1932   // is the entry block which has no predecessor.
1933   assert((NumVisited || MBB.pred_empty()) &&
1934          "Should have processed at least one predecessor");
1935 
1936   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1937   bool Changed = false;
1938   if (ILS != InLocsT) {
1939     ILS = InLocsT;
1940     Changed = true;
1941   }
1942 
1943   return Changed;
1944 }
1945 
1946 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
1947                                        VarLocMap &VarLocIDs) {
1948   // PendingInLocs records all locations propagated into blocks, which have
1949   // not had DBG_VALUE insts created. Go through and create those insts now.
1950   for (auto &Iter : PendingInLocs) {
1951     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1952     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1953     VarLocSet &Pending = *Iter.second.get();
1954 
1955     SmallVector<VarLoc, 32> VarLocs;
1956     collectAllVarLocs(VarLocs, Pending, VarLocIDs);
1957 
1958     for (VarLoc DiffIt : VarLocs) {
1959       // The ID location is live-in to MBB -- work out what kind of machine
1960       // location it is and create a DBG_VALUE.
1961       if (DiffIt.isEntryBackupLoc())
1962         continue;
1963       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
1964       MBB.insert(MBB.instr_begin(), MI);
1965 
1966       (void)MI;
1967       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1968     }
1969   }
1970 }
1971 
1972 bool VarLocBasedLDV::isEntryValueCandidate(
1973     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
1974   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
1975 
1976   // TODO: Add support for local variables that are expressed in terms of
1977   // parameters entry values.
1978   // TODO: Add support for modified arguments that can be expressed
1979   // by using its entry value.
1980   auto *DIVar = MI.getDebugVariable();
1981   if (!DIVar->isParameter())
1982     return false;
1983 
1984   // Do not consider parameters that belong to an inlined function.
1985   if (MI.getDebugLoc()->getInlinedAt())
1986     return false;
1987 
1988   // Only consider parameters that are described using registers. Parameters
1989   // that are passed on the stack are not yet supported, so ignore debug
1990   // values that are described by the frame or stack pointer.
1991   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
1992     return false;
1993 
1994   // If a parameter's value has been propagated from the caller, then the
1995   // parameter's DBG_VALUE may be described using a register defined by some
1996   // instruction in the entry block, in which case we shouldn't create an
1997   // entry value.
1998   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
1999     return false;
2000 
2001   // TODO: Add support for parameters that have a pre-existing debug expressions
2002   // (e.g. fragments).
2003   if (MI.getDebugExpression()->getNumElements() > 0)
2004     return false;
2005 
2006   return true;
2007 }
2008 
2009 /// Collect all register defines (including aliases) for the given instruction.
2010 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2011                            const TargetRegisterInfo *TRI) {
2012   for (const MachineOperand &MO : MI.operands())
2013     if (MO.isReg() && MO.isDef() && MO.getReg())
2014       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2015         Regs.insert(*AI);
2016 }
2017 
2018 /// This routine records the entry values of function parameters. The values
2019 /// could be used as backup values. If we loose the track of some unmodified
2020 /// parameters, the backup values will be used as a primary locations.
2021 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2022                                        const DefinedRegsSet &DefinedRegs,
2023                                        OpenRangesSet &OpenRanges,
2024                                        VarLocMap &VarLocIDs) {
2025   if (TPC) {
2026     auto &TM = TPC->getTM<TargetMachine>();
2027     if (!TM.Options.ShouldEmitDebugEntryValues())
2028       return;
2029   }
2030 
2031   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2032                   MI.getDebugLoc()->getInlinedAt());
2033 
2034   if (!isEntryValueCandidate(MI, DefinedRegs) ||
2035       OpenRanges.getEntryValueBackup(V))
2036     return;
2037 
2038   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2039 
2040   // Create the entry value and use it as a backup location until it is
2041   // valid. It is valid until a parameter is not changed.
2042   DIExpression *NewExpr =
2043       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2044   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
2045   LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2046   OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2047 }
2048 
2049 /// Calculate the liveness information for the given machine function and
2050 /// extend ranges across basic blocks.
2051 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
2052   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2053 
2054   if (!MF.getFunction().getSubprogram())
2055     // VarLocBaseLDV will already have removed all DBG_VALUEs.
2056     return false;
2057 
2058   // Skip functions from NoDebug compilation units.
2059   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2060       DICompileUnit::NoDebug)
2061     return false;
2062 
2063   TRI = MF.getSubtarget().getRegisterInfo();
2064   TII = MF.getSubtarget().getInstrInfo();
2065   TFI = MF.getSubtarget().getFrameLowering();
2066   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2067   this->TPC = TPC;
2068   LS.initialize(MF);
2069 
2070   bool Changed = false;
2071   bool OLChanged = false;
2072   bool MBBJoined = false;
2073 
2074   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
2075   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2076   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2077                               // Ranges that are open until end of bb.
2078   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
2079   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
2080   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
2081                               // spills, copies and restores).
2082 
2083   VarToFragments SeenFragments;
2084 
2085   // Blocks which are artificial, i.e. blocks which exclusively contain
2086   // instructions without locations, or with line 0 locations.
2087   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2088 
2089   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2090   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2091   std::priority_queue<unsigned int, std::vector<unsigned int>,
2092                       std::greater<unsigned int>>
2093       Worklist;
2094   std::priority_queue<unsigned int, std::vector<unsigned int>,
2095                       std::greater<unsigned int>>
2096       Pending;
2097 
2098   // Set of register defines that are seen when traversing the entry block
2099   // looking for debug entry value candidates.
2100   DefinedRegsSet DefinedRegs;
2101 
2102   // Only in the case of entry MBB collect DBG_VALUEs representing
2103   // function parameters in order to generate debug entry values for them.
2104   MachineBasicBlock &First_MBB = *(MF.begin());
2105   for (auto &MI : First_MBB) {
2106     collectRegDefs(MI, DefinedRegs, TRI);
2107     if (MI.isDebugValue())
2108       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2109   }
2110 
2111   // Initialize per-block structures and scan for fragment overlaps.
2112   for (auto &MBB : MF)
2113     for (auto &MI : MBB)
2114       if (MI.isDebugValue())
2115         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2116 
2117   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2118     if (const DebugLoc &DL = MI.getDebugLoc())
2119       return DL.getLine() != 0;
2120     return false;
2121   };
2122   for (auto &MBB : MF)
2123     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2124       ArtificialBlocks.insert(&MBB);
2125 
2126   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2127                               "OutLocs after initialization", dbgs()));
2128 
2129   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2130   unsigned int RPONumber = 0;
2131   for (MachineBasicBlock *MBB : RPOT) {
2132     OrderToBB[RPONumber] = MBB;
2133     BBToOrder[MBB] = RPONumber;
2134     Worklist.push(RPONumber);
2135     ++RPONumber;
2136   }
2137 
2138   if (RPONumber > InputBBLimit) {
2139     unsigned NumInputDbgValues = 0;
2140     for (auto &MBB : MF)
2141       for (auto &MI : MBB)
2142         if (MI.isDebugValue())
2143           ++NumInputDbgValues;
2144     if (NumInputDbgValues > InputDbgValueLimit) {
2145       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2146                         << " has " << RPONumber << " basic blocks and "
2147                         << NumInputDbgValues
2148                         << " input DBG_VALUEs, exceeding limits.\n");
2149       return false;
2150     }
2151   }
2152 
2153   // This is a standard "union of predecessor outs" dataflow problem.
2154   // To solve it, we perform join() and process() using the two worklist method
2155   // until the ranges converge.
2156   // Ranges have converged when both worklists are empty.
2157   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2158   while (!Worklist.empty() || !Pending.empty()) {
2159     // We track what is on the pending worklist to avoid inserting the same
2160     // thing twice.  We could avoid this with a custom priority queue, but this
2161     // is probably not worth it.
2162     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2163     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2164     while (!Worklist.empty()) {
2165       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2166       Worklist.pop();
2167       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2168                        ArtificialBlocks);
2169       MBBJoined |= Visited.insert(MBB).second;
2170       if (MBBJoined) {
2171         MBBJoined = false;
2172         Changed = true;
2173         // Now that we have started to extend ranges across BBs we need to
2174         // examine spill, copy and restore instructions to see whether they
2175         // operate with registers that correspond to user variables.
2176         // First load any pending inlocs.
2177         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2178         for (auto &MI : *MBB)
2179           process(MI, OpenRanges, VarLocIDs, Transfers);
2180         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2181 
2182         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2183                                     "OutLocs after propagating", dbgs()));
2184         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2185                                     "InLocs after propagating", dbgs()));
2186 
2187         if (OLChanged) {
2188           OLChanged = false;
2189           for (auto s : MBB->successors())
2190             if (OnPending.insert(s).second) {
2191               Pending.push(BBToOrder[s]);
2192             }
2193         }
2194       }
2195     }
2196     Worklist.swap(Pending);
2197     // At this point, pending must be empty, since it was just the empty
2198     // worklist
2199     assert(Pending.empty() && "Pending should be empty");
2200   }
2201 
2202   // Add any DBG_VALUE instructions created by location transfers.
2203   for (auto &TR : Transfers) {
2204     assert(!TR.TransferInst->isTerminator() &&
2205            "Cannot insert DBG_VALUE after terminator");
2206     MachineBasicBlock *MBB = TR.TransferInst->getParent();
2207     const VarLoc &VL = VarLocIDs[TR.LocationID];
2208     MachineInstr *MI = VL.BuildDbgValue(MF);
2209     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2210   }
2211   Transfers.clear();
2212 
2213   // Deferred inlocs will not have had any DBG_VALUE insts created; do
2214   // that now.
2215   flushPendingLocs(InLocs, VarLocIDs);
2216 
2217   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2218   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2219   return Changed;
2220 }
2221 
2222 LDVImpl *
2223 llvm::makeVarLocBasedLiveDebugValues()
2224 {
2225   return new VarLocBasedLDV();
2226 }
2227