xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants) that a variable fragment might be
14 /// located, qualified by a DIExpression and indirect-ness flag, while each
15 /// variable is identified by a DebugVariable object. The availability of an
16 /// expression begins when a DBG_VALUE instruction specifies the location of a
17 /// DebugVariable, and continues until that location is clobbered or
18 /// re-specified by a different DBG_VALUE for the same DebugVariable.
19 ///
20 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
21 /// placed to extend variable locations as far they're available. This file
22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
23 /// locations, using the VarLoc class.
24 ///
25 /// The canonical "available expressions" problem doesn't have expression
26 /// clobbering, instead when a variable is re-assigned, any expressions using
27 /// that variable get invalidated. LiveDebugValues can map onto "available
28 /// expressions" by having every register represented by a variable, which is
29 /// used in an expression that becomes available at a DBG_VALUE instruction.
30 /// When the register is clobbered, its variable is effectively reassigned, and
31 /// expressions computed from it become unavailable. A similar construct is
32 /// needed when a DebugVariable has its location re-specified, to invalidate
33 /// all other locations for that DebugVariable.
34 ///
35 /// Using the dataflow analysis to compute the available expressions, we create
36 /// a DBG_VALUE at the beginning of each block where the expression is
37 /// live-in. This propagates variable locations into every basic block where
38 /// the location can be determined, rather than only having DBG_VALUEs in blocks
39 /// where locations are specified due to an assignment or some optimization.
40 /// Movements of values between registers and spill slots are annotated with
41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
42 /// DbgEntityHistoryCalculator to focus on only the locations within individual
43 /// blocks, facilitating testing and improving modularity.
44 ///
45 /// We follow an optimisic dataflow approach, with this lattice:
46 ///
47 /// \verbatim
48 ///                    ┬ "Unknown"
49 ///                          |
50 ///                          v
51 ///                         True
52 ///                          |
53 ///                          v
54 ///                      ⊥ False
55 /// \endverbatim With "True" signifying that the expression is available (and
56 /// thus a DebugVariable's location is the corresponding register), while
57 /// "False" signifies that the expression is unavailable. "Unknown"s never
58 /// survive to the end of the analysis (see below).
59 ///
60 /// Formally, all DebugVariable locations that are live-out of a block are
61 /// initialized to \top.  A blocks live-in values take the meet of the lattice
62 /// value for every predecessors live-outs, except for the entry block, where
63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64 /// function for a block assigns an expression for a DebugVariable to be "True"
65 /// if a DBG_VALUE in the block specifies it; "False" if the location is
66 /// clobbered; or the live-in value if it is unaffected by the block. We
67 /// visit each block in reverse post order until a fixedpoint is reached. The
68 /// solution produced is maximal.
69 ///
70 /// Intuitively, we start by assuming that every expression / variable location
71 /// is at least "True", and then propagate "False" from the entry block and any
72 /// clobbers until there are no more changes to make. This gives us an accurate
73 /// solution because all incorrect locations will have a "False" propagated into
74 /// them. It also gives us a solution that copes well with loops by assuming
75 /// that variable locations are live-through every loop, and then removing those
76 /// that are not through dataflow.
77 ///
78 /// Within LiveDebugValues: each variable location is represented by a
79 /// VarLoc object that identifies the source variable, the set of
80 /// machine-locations that currently describe it (a single location for
81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
84 /// corresponds to one of the VarLoc's machine-locations and can be used to
85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
86 /// locations, the dataflow analysis in this pass identifies locations by their
87 /// indices in the VarLocMap, meaning all the variable locations in a block can
88 /// be described by a sparse vector of VarLocMap indicies.
89 ///
90 /// All the storage for the dataflow analysis is local to the ExtendRanges
91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
92 /// in and out lattice values for each block. "OpenRanges" maintains a list of
93 /// variable locations and, with the "process" method, evaluates the transfer
94 /// function of each block. "flushPendingLocs" installs debug value instructions
95 /// for each live-in location at the start of blocks, while "Transfers" records
96 /// transfers of values between machine-locations.
97 ///
98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
99 /// implementation. Instead, unvisited blocks implicitly have all lattice
100 /// values set as "Unknown". After being visited, there will be path back to
101 /// the entry block where the lattice value is "False", and as the transfer
102 /// function cannot make new "Unknown" locations, there are no scenarios where
103 /// a block can have an "Unknown" location after being visited. Similarly, we
104 /// don't enumerate all possible variable locations before exploring the
105 /// function: when a new location is discovered, all blocks previously explored
106 /// were implicitly "False" but unrecorded, and become explicitly "False" when
107 /// a new VarLoc is created with its bit not set in predecessor InLocs or
108 /// OutLocs.
109 ///
110 //===----------------------------------------------------------------------===//
111 
112 #include "LiveDebugValues.h"
113 
114 #include "llvm/ADT/CoalescingBitVector.h"
115 #include "llvm/ADT/DenseMap.h"
116 #include "llvm/ADT/PostOrderIterator.h"
117 #include "llvm/ADT/SmallPtrSet.h"
118 #include "llvm/ADT/SmallSet.h"
119 #include "llvm/ADT/SmallVector.h"
120 #include "llvm/ADT/Statistic.h"
121 #include "llvm/BinaryFormat/Dwarf.h"
122 #include "llvm/CodeGen/LexicalScopes.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineFunction.h"
125 #include "llvm/CodeGen/MachineInstr.h"
126 #include "llvm/CodeGen/MachineInstrBuilder.h"
127 #include "llvm/CodeGen/MachineMemOperand.h"
128 #include "llvm/CodeGen/MachineOperand.h"
129 #include "llvm/CodeGen/PseudoSourceValue.h"
130 #include "llvm/CodeGen/TargetFrameLowering.h"
131 #include "llvm/CodeGen/TargetInstrInfo.h"
132 #include "llvm/CodeGen/TargetLowering.h"
133 #include "llvm/CodeGen/TargetPassConfig.h"
134 #include "llvm/CodeGen/TargetRegisterInfo.h"
135 #include "llvm/CodeGen/TargetSubtargetInfo.h"
136 #include "llvm/Config/llvm-config.h"
137 #include "llvm/IR/DebugInfoMetadata.h"
138 #include "llvm/IR/DebugLoc.h"
139 #include "llvm/IR/Function.h"
140 #include "llvm/MC/MCRegisterInfo.h"
141 #include "llvm/Support/Casting.h"
142 #include "llvm/Support/Debug.h"
143 #include "llvm/Support/TypeSize.h"
144 #include "llvm/Support/raw_ostream.h"
145 #include "llvm/Target/TargetMachine.h"
146 #include <algorithm>
147 #include <cassert>
148 #include <cstdint>
149 #include <functional>
150 #include <map>
151 #include <queue>
152 #include <tuple>
153 #include <utility>
154 #include <vector>
155 
156 using namespace llvm;
157 
158 #define DEBUG_TYPE "livedebugvalues"
159 
160 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
161 
162 /// If \p Op is a stack or frame register return true, otherwise return false.
163 /// This is used to avoid basing the debug entry values on the registers, since
164 /// we do not support it at the moment.
165 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
166                                   const MachineInstr &MI,
167                                   const TargetRegisterInfo *TRI) {
168   if (!Op.isReg())
169     return false;
170 
171   const MachineFunction *MF = MI.getParent()->getParent();
172   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
173   Register SP = TLI->getStackPointerRegisterToSaveRestore();
174   Register FP = TRI->getFrameRegister(*MF);
175   Register Reg = Op.getReg();
176 
177   return Reg && Reg != SP && Reg != FP;
178 }
179 
180 namespace {
181 
182 // Max out the number of statically allocated elements in DefinedRegsSet, as
183 // this prevents fallback to std::set::count() operations.
184 using DefinedRegsSet = SmallSet<Register, 32>;
185 
186 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
187 // that represent Entry Values; every VarLoc in the set will also appear
188 // exactly once at Location=0.
189 // As a result, each VarLoc may appear more than once in this "set", but each
190 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
191 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
192 // is the set of all VarLocs.
193 using VarLocSet = CoalescingBitVector<uint64_t>;
194 
195 /// A type-checked pair of {Register Location (or 0), Index}, used to index
196 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
197 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
198 /// type-checker helps ensure that the conversions aren't lossy.
199 ///
200 /// Why encode a location /into/ the VarLocMap index? This makes it possible
201 /// to find the open VarLocs killed by a register def very quickly. This is a
202 /// performance-critical operation for LiveDebugValues.
203 struct LocIndex {
204   using u32_location_t = uint32_t;
205   using u32_index_t = uint32_t;
206 
207   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
208                            // \ref MCRegister), so we have plenty of range left
209                            // here to encode non-register locations.
210   u32_index_t Index;
211 
212   /// The location that has an entry for every VarLoc in the map.
213   static constexpr u32_location_t kUniversalLocation = 0;
214 
215   /// The first location that is reserved for VarLocs with locations of kind
216   /// RegisterKind.
217   static constexpr u32_location_t kFirstRegLocation = 1;
218 
219   /// The first location greater than 0 that is not reserved for VarLocs with
220   /// locations of kind RegisterKind.
221   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
222 
223   /// A special location reserved for VarLocs with locations of kind
224   /// SpillLocKind.
225   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
226 
227   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
228   /// EntryValueCopyBackupKind.
229   static constexpr u32_location_t kEntryValueBackupLocation =
230       kFirstInvalidRegLocation + 1;
231 
232   LocIndex(u32_location_t Location, u32_index_t Index)
233       : Location(Location), Index(Index) {}
234 
235   uint64_t getAsRawInteger() const {
236     return (static_cast<uint64_t>(Location) << 32) | Index;
237   }
238 
239   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
240     static_assert(std::is_unsigned<IntT>::value &&
241                       sizeof(ID) == sizeof(uint64_t),
242                   "Cannot convert raw integer to LocIndex");
243     return {static_cast<u32_location_t>(ID >> 32),
244             static_cast<u32_index_t>(ID)};
245   }
246 
247   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
248   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
249   static uint64_t rawIndexForReg(Register Reg) {
250     return LocIndex(Reg, 0).getAsRawInteger();
251   }
252 
253   /// Return a range covering all set indices in the interval reserved for
254   /// \p Location in \p Set.
255   static auto indexRangeForLocation(const VarLocSet &Set,
256                                     u32_location_t Location) {
257     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
258     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
259     return Set.half_open_range(Start, End);
260   }
261 };
262 
263 // Simple Set for storing all the VarLoc Indices at a Location bucket.
264 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
265 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
266 // appear in any two of these, as each VarLoc appears at most once in any
267 // Location bucket.
268 using LocIndices = SmallVector<LocIndex, 2>;
269 
270 class VarLocBasedLDV : public LDVImpl {
271 private:
272   const TargetRegisterInfo *TRI;
273   const TargetInstrInfo *TII;
274   const TargetFrameLowering *TFI;
275   TargetPassConfig *TPC;
276   BitVector CalleeSavedRegs;
277   LexicalScopes LS;
278   VarLocSet::Allocator Alloc;
279 
280   const MachineInstr *LastNonDbgMI;
281 
282   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
283 
284   using FragmentInfo = DIExpression::FragmentInfo;
285   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
286 
287   /// A pair of debug variable and value location.
288   struct VarLoc {
289     // The location at which a spilled variable resides. It consists of a
290     // register and an offset.
291     struct SpillLoc {
292       unsigned SpillBase;
293       StackOffset SpillOffset;
294       bool operator==(const SpillLoc &Other) const {
295         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
296       }
297       bool operator!=(const SpillLoc &Other) const {
298         return !(*this == Other);
299       }
300     };
301 
302     /// Identity of the variable at this location.
303     const DebugVariable Var;
304 
305     /// The expression applied to this location.
306     const DIExpression *Expr;
307 
308     /// DBG_VALUE to clone var/expr information from if this location
309     /// is moved.
310     const MachineInstr &MI;
311 
312     enum class MachineLocKind {
313       InvalidKind = 0,
314       RegisterKind,
315       SpillLocKind,
316       ImmediateKind
317     };
318 
319     enum class EntryValueLocKind {
320       NonEntryValueKind = 0,
321       EntryValueKind,
322       EntryValueBackupKind,
323       EntryValueCopyBackupKind
324     } EVKind = EntryValueLocKind::NonEntryValueKind;
325 
326     /// The value location. Stored separately to avoid repeatedly
327     /// extracting it from MI.
328     union MachineLocValue {
329       uint64_t RegNo;
330       SpillLoc SpillLocation;
331       uint64_t Hash;
332       int64_t Immediate;
333       const ConstantFP *FPImm;
334       const ConstantInt *CImm;
335       MachineLocValue() : Hash(0) {}
336     };
337 
338     /// A single machine location; its Kind is either a register, spill
339     /// location, or immediate value.
340     /// If the VarLoc is not a NonEntryValueKind, then it will use only a
341     /// single MachineLoc of RegisterKind.
342     struct MachineLoc {
343       MachineLocKind Kind;
344       MachineLocValue Value;
345       bool operator==(const MachineLoc &Other) const {
346         if (Kind != Other.Kind)
347           return false;
348         switch (Kind) {
349         case MachineLocKind::SpillLocKind:
350           return Value.SpillLocation == Other.Value.SpillLocation;
351         case MachineLocKind::RegisterKind:
352         case MachineLocKind::ImmediateKind:
353           return Value.Hash == Other.Value.Hash;
354         default:
355           llvm_unreachable("Invalid kind");
356         }
357       }
358       bool operator<(const MachineLoc &Other) const {
359         switch (Kind) {
360         case MachineLocKind::SpillLocKind:
361           return std::make_tuple(
362                      Kind, Value.SpillLocation.SpillBase,
363                      Value.SpillLocation.SpillOffset.getFixed(),
364                      Value.SpillLocation.SpillOffset.getScalable()) <
365                  std::make_tuple(
366                      Other.Kind, Other.Value.SpillLocation.SpillBase,
367                      Other.Value.SpillLocation.SpillOffset.getFixed(),
368                      Other.Value.SpillLocation.SpillOffset.getScalable());
369         case MachineLocKind::RegisterKind:
370         case MachineLocKind::ImmediateKind:
371           return std::tie(Kind, Value.Hash) <
372                  std::tie(Other.Kind, Other.Value.Hash);
373         default:
374           llvm_unreachable("Invalid kind");
375         }
376       }
377     };
378 
379     /// The set of machine locations used to determine the variable's value, in
380     /// conjunction with Expr. Initially populated with MI's debug operands,
381     /// but may be transformed independently afterwards.
382     SmallVector<MachineLoc, 8> Locs;
383     /// Used to map the index of each location in Locs back to the index of its
384     /// original debug operand in MI. Used when multiple location operands are
385     /// coalesced and the original MI's operands need to be accessed while
386     /// emitting a debug value.
387     SmallVector<unsigned, 8> OrigLocMap;
388 
389     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
390         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
391               MI.getDebugLoc()->getInlinedAt()),
392           Expr(MI.getDebugExpression()), MI(MI) {
393       assert(MI.isDebugValue() && "not a DBG_VALUE");
394       assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
395              "malformed DBG_VALUE");
396       for (const MachineOperand &Op : MI.debug_operands()) {
397         MachineLoc ML = GetLocForOp(Op);
398         auto It = find(Locs, ML);
399         if (It == Locs.end()) {
400           Locs.push_back(ML);
401           OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
402         } else {
403           // ML duplicates an element in Locs; replace references to Op
404           // with references to the duplicating element.
405           unsigned OpIdx = Locs.size();
406           unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
407           Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
408         }
409       }
410 
411       // We create the debug entry values from the factory functions rather
412       // than from this ctor.
413       assert(EVKind != EntryValueLocKind::EntryValueKind &&
414              !isEntryBackupLoc());
415     }
416 
417     static MachineLoc GetLocForOp(const MachineOperand &Op) {
418       MachineLocKind Kind;
419       MachineLocValue Loc;
420       if (Op.isReg()) {
421         Kind = MachineLocKind::RegisterKind;
422         Loc.RegNo = Op.getReg();
423       } else if (Op.isImm()) {
424         Kind = MachineLocKind::ImmediateKind;
425         Loc.Immediate = Op.getImm();
426       } else if (Op.isFPImm()) {
427         Kind = MachineLocKind::ImmediateKind;
428         Loc.FPImm = Op.getFPImm();
429       } else if (Op.isCImm()) {
430         Kind = MachineLocKind::ImmediateKind;
431         Loc.CImm = Op.getCImm();
432       } else
433         llvm_unreachable("Invalid Op kind for MachineLoc.");
434       return {Kind, Loc};
435     }
436 
437     /// Take the variable and machine-location in DBG_VALUE MI, and build an
438     /// entry location using the given expression.
439     static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
440                                  const DIExpression *EntryExpr, Register Reg) {
441       VarLoc VL(MI, LS);
442       assert(VL.Locs.size() == 1 &&
443              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
444       VL.EVKind = EntryValueLocKind::EntryValueKind;
445       VL.Expr = EntryExpr;
446       VL.Locs[0].Value.RegNo = Reg;
447       return VL;
448     }
449 
450     /// Take the variable and machine-location from the DBG_VALUE (from the
451     /// function entry), and build an entry value backup location. The backup
452     /// location will turn into the normal location if the backup is valid at
453     /// the time of the primary location clobbering.
454     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
455                                        LexicalScopes &LS,
456                                        const DIExpression *EntryExpr) {
457       VarLoc VL(MI, LS);
458       assert(VL.Locs.size() == 1 &&
459              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
460       VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
461       VL.Expr = EntryExpr;
462       return VL;
463     }
464 
465     /// Take the variable and machine-location from the DBG_VALUE (from the
466     /// function entry), and build a copy of an entry value backup location by
467     /// setting the register location to NewReg.
468     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
469                                            LexicalScopes &LS,
470                                            const DIExpression *EntryExpr,
471                                            Register NewReg) {
472       VarLoc VL(MI, LS);
473       assert(VL.Locs.size() == 1 &&
474              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
475       VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
476       VL.Expr = EntryExpr;
477       VL.Locs[0].Value.RegNo = NewReg;
478       return VL;
479     }
480 
481     /// Copy the register location in DBG_VALUE MI, updating the register to
482     /// be NewReg.
483     static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
484                                 Register NewReg) {
485       VarLoc VL = OldVL;
486       for (MachineLoc &ML : VL.Locs)
487         if (ML == OldML) {
488           ML.Kind = MachineLocKind::RegisterKind;
489           ML.Value.RegNo = NewReg;
490           return VL;
491         }
492       llvm_unreachable("Should have found OldML in new VarLoc.");
493     }
494 
495     /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
496     /// locating it in the specified spill location.
497     static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
498                                  unsigned SpillBase, StackOffset SpillOffset) {
499       VarLoc VL = OldVL;
500       for (MachineLoc &ML : VL.Locs)
501         if (ML == OldML) {
502           ML.Kind = MachineLocKind::SpillLocKind;
503           ML.Value.SpillLocation = {SpillBase, SpillOffset};
504           return VL;
505         }
506       llvm_unreachable("Should have found OldML in new VarLoc.");
507     }
508 
509     /// Create a DBG_VALUE representing this VarLoc in the given function.
510     /// Copies variable-specific information such as DILocalVariable and
511     /// inlining information from the original DBG_VALUE instruction, which may
512     /// have been several transfers ago.
513     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
514       assert(!isEntryBackupLoc() &&
515              "Tried to produce DBG_VALUE for backup VarLoc");
516       const DebugLoc &DbgLoc = MI.getDebugLoc();
517       bool Indirect = MI.isIndirectDebugValue();
518       const auto &IID = MI.getDesc();
519       const DILocalVariable *Var = MI.getDebugVariable();
520       NumInserted++;
521 
522       const DIExpression *DIExpr = Expr;
523       SmallVector<MachineOperand, 8> MOs;
524       for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
525         MachineLocKind LocKind = Locs[I].Kind;
526         MachineLocValue Loc = Locs[I].Value;
527         const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
528         switch (LocKind) {
529         case MachineLocKind::RegisterKind:
530           // An entry value is a register location -- but with an updated
531           // expression. The register location of such DBG_VALUE is always the
532           // one from the entry DBG_VALUE, it does not matter if the entry value
533           // was copied in to another register due to some optimizations.
534           // Non-entry value register locations are like the source
535           // DBG_VALUE, but with the register number from this VarLoc.
536           MOs.push_back(MachineOperand::CreateReg(
537               EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
538                                                           : Register(Loc.RegNo),
539               false));
540           break;
541         case MachineLocKind::SpillLocKind: {
542           // Spills are indirect DBG_VALUEs, with a base register and offset.
543           // Use the original DBG_VALUEs expression to build the spilt location
544           // on top of. FIXME: spill locations created before this pass runs
545           // are not recognized, and not handled here.
546           unsigned Base = Loc.SpillLocation.SpillBase;
547           auto *TRI = MF.getSubtarget().getRegisterInfo();
548           if (MI.isNonListDebugValue()) {
549             auto Deref = Indirect ? DIExpression::DerefAfter : 0;
550             DIExpr = TRI->prependOffsetExpression(
551                 DIExpr, DIExpression::ApplyOffset | Deref,
552                 Loc.SpillLocation.SpillOffset);
553             Indirect = true;
554           } else {
555             SmallVector<uint64_t, 4> Ops;
556             TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
557             Ops.push_back(dwarf::DW_OP_deref);
558             DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
559           }
560           MOs.push_back(MachineOperand::CreateReg(Base, false));
561           break;
562         }
563         case MachineLocKind::ImmediateKind: {
564           MOs.push_back(Orig);
565           break;
566         }
567         case MachineLocKind::InvalidKind:
568           llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
569         }
570       }
571       return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
572     }
573 
574     /// Is the Loc field a constant or constant object?
575     bool isConstant(MachineLocKind Kind) const {
576       return Kind == MachineLocKind::ImmediateKind;
577     }
578 
579     /// Check if the Loc field is an entry backup location.
580     bool isEntryBackupLoc() const {
581       return EVKind == EntryValueLocKind::EntryValueBackupKind ||
582              EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
583     }
584 
585     /// If this variable is described by register \p Reg holding the entry
586     /// value, return true.
587     bool isEntryValueBackupReg(Register Reg) const {
588       return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
589     }
590 
591     /// If this variable is described by register \p Reg holding a copy of the
592     /// entry value, return true.
593     bool isEntryValueCopyBackupReg(Register Reg) const {
594       return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
595              usesReg(Reg);
596     }
597 
598     /// If this variable is described in whole or part by \p Reg, return true.
599     bool usesReg(Register Reg) const {
600       MachineLoc RegML;
601       RegML.Kind = MachineLocKind::RegisterKind;
602       RegML.Value.RegNo = Reg;
603       return is_contained(Locs, RegML);
604     }
605 
606     /// If this variable is described in whole or part by \p Reg, return true.
607     unsigned getRegIdx(Register Reg) const {
608       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
609         if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
610             Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
611           return Idx;
612       llvm_unreachable("Could not find given Reg in Locs");
613     }
614 
615     /// If this variable is described in whole or part by 1 or more registers,
616     /// add each of them to \p Regs and return true.
617     bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
618       bool AnyRegs = false;
619       for (const auto &Loc : Locs)
620         if (Loc.Kind == MachineLocKind::RegisterKind) {
621           Regs.push_back(Loc.Value.RegNo);
622           AnyRegs = true;
623         }
624       return AnyRegs;
625     }
626 
627     bool containsSpillLocs() const {
628       return any_of(Locs, [](VarLoc::MachineLoc ML) {
629         return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
630       });
631     }
632 
633     /// If this variable is described in whole or part by \p SpillLocation,
634     /// return true.
635     bool usesSpillLoc(SpillLoc SpillLocation) const {
636       MachineLoc SpillML;
637       SpillML.Kind = MachineLocKind::SpillLocKind;
638       SpillML.Value.SpillLocation = SpillLocation;
639       return is_contained(Locs, SpillML);
640     }
641 
642     /// If this variable is described in whole or part by \p SpillLocation,
643     /// return the index .
644     unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
645       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
646         if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
647             Locs[Idx].Value.SpillLocation == SpillLocation)
648           return Idx;
649       llvm_unreachable("Could not find given SpillLoc in Locs");
650     }
651 
652     /// Determine whether the lexical scope of this value's debug location
653     /// dominates MBB.
654     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
655       return LS.dominates(MI.getDebugLoc().get(), &MBB);
656     }
657 
658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
659     // TRI can be null.
660     void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
661       Out << "VarLoc(";
662       for (const MachineLoc &MLoc : Locs) {
663         if (Locs.begin() != &MLoc)
664           Out << ", ";
665         switch (MLoc.Kind) {
666         case MachineLocKind::RegisterKind:
667           Out << printReg(MLoc.Value.RegNo, TRI);
668           break;
669         case MachineLocKind::SpillLocKind:
670           Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
671           Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
672               << MLoc.Value.SpillLocation.SpillOffset.getScalable()
673               << "x vscale"
674               << "]";
675           break;
676         case MachineLocKind::ImmediateKind:
677           Out << MLoc.Value.Immediate;
678           break;
679         case MachineLocKind::InvalidKind:
680           llvm_unreachable("Invalid VarLoc in dump method");
681         }
682       }
683 
684       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
685       if (Var.getInlinedAt())
686         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
687       else
688         Out << "(null))";
689 
690       if (isEntryBackupLoc())
691         Out << " (backup loc)\n";
692       else
693         Out << "\n";
694     }
695 #endif
696 
697     bool operator==(const VarLoc &Other) const {
698       return std::tie(EVKind, Var, Expr, Locs) ==
699              std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
700     }
701 
702     /// This operator guarantees that VarLocs are sorted by Variable first.
703     bool operator<(const VarLoc &Other) const {
704       return std::tie(Var, EVKind, Locs, Expr) <
705              std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
706     }
707   };
708 
709 #ifndef NDEBUG
710   using VarVec = SmallVector<VarLoc, 32>;
711 #endif
712 
713   /// VarLocMap is used for two things:
714   /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
715   ///    virtually insert a VarLoc into a VarLocSet.
716   /// 2) Given a LocIndex, look up the unique associated VarLoc.
717   class VarLocMap {
718     /// Map a VarLoc to an index within the vector reserved for its location
719     /// within Loc2Vars.
720     std::map<VarLoc, LocIndices> Var2Indices;
721 
722     /// Map a location to a vector which holds VarLocs which live in that
723     /// location.
724     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
725 
726   public:
727     /// Retrieve LocIndices for \p VL.
728     LocIndices insert(const VarLoc &VL) {
729       LocIndices &Indices = Var2Indices[VL];
730       // If Indices is not empty, VL is already in the map.
731       if (!Indices.empty())
732         return Indices;
733       SmallVector<LocIndex::u32_location_t, 4> Locations;
734       // LocIndices are determined by EVKind and MLs; each Register has a
735       // unique location, while all SpillLocs use a single bucket, and any EV
736       // VarLocs use only the Backup bucket or none at all (except the
737       // compulsory entry at the universal location index). LocIndices will
738       // always have an index at the universal location index as the last index.
739       if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
740         VL.getDescribingRegs(Locations);
741         assert(all_of(Locations,
742                       [](auto RegNo) {
743                         return RegNo < LocIndex::kFirstInvalidRegLocation;
744                       }) &&
745                "Physreg out of range?");
746         if (VL.containsSpillLocs()) {
747           LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
748           Locations.push_back(Loc);
749         }
750       } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
751         LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
752         Locations.push_back(Loc);
753       }
754       Locations.push_back(LocIndex::kUniversalLocation);
755       for (LocIndex::u32_location_t Location : Locations) {
756         auto &Vars = Loc2Vars[Location];
757         Indices.push_back(
758             {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
759         Vars.push_back(VL);
760       }
761       return Indices;
762     }
763 
764     LocIndices getAllIndices(const VarLoc &VL) const {
765       auto IndIt = Var2Indices.find(VL);
766       assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
767       return IndIt->second;
768     }
769 
770     /// Retrieve the unique VarLoc associated with \p ID.
771     const VarLoc &operator[](LocIndex ID) const {
772       auto LocIt = Loc2Vars.find(ID.Location);
773       assert(LocIt != Loc2Vars.end() && "Location not tracked");
774       return LocIt->second[ID.Index];
775     }
776   };
777 
778   using VarLocInMBB =
779       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
780   struct TransferDebugPair {
781     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
782     LocIndex LocationID;        ///< Location number for the transfer dest.
783   };
784   using TransferMap = SmallVector<TransferDebugPair, 4>;
785   // Types for recording Entry Var Locations emitted by a single MachineInstr,
786   // as well as recording MachineInstr which last defined a register.
787   using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
788   using RegDefToInstMap = DenseMap<Register, MachineInstr *>;
789 
790   // Types for recording sets of variable fragments that overlap. For a given
791   // local variable, we record all other fragments of that variable that could
792   // overlap it, to reduce search time.
793   using FragmentOfVar =
794       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
795   using OverlapMap =
796       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
797 
798   // Helper while building OverlapMap, a map of all fragments seen for a given
799   // DILocalVariable.
800   using VarToFragments =
801       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
802 
803   /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
804   /// to \p Collected once, in order of insertion into \p VarLocIDs.
805   static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
806                                 const VarLocSet &CollectFrom,
807                                 const VarLocMap &VarLocIDs);
808 
809   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
810   /// by \p CollectFrom.
811   void getUsedRegs(const VarLocSet &CollectFrom,
812                    SmallVectorImpl<Register> &UsedRegs) const;
813 
814   /// This holds the working set of currently open ranges. For fast
815   /// access, this is done both as a set of VarLocIDs, and a map of
816   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
817   /// previous open ranges for the same variable. In addition, we keep
818   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
819   /// methods act differently depending on whether a VarLoc is primary
820   /// location or backup one. In the case the VarLoc is backup location
821   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
822   /// we perform the operation on the Vars.
823   class OpenRangesSet {
824     VarLocSet::Allocator &Alloc;
825     VarLocSet VarLocs;
826     // Map the DebugVariable to recent primary location ID.
827     SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
828     // Map the DebugVariable to recent backup location ID.
829     SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
830     OverlapMap &OverlappingFragments;
831 
832   public:
833     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
834         : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
835 
836     const VarLocSet &getVarLocs() const { return VarLocs; }
837 
838     // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
839     // This method is needed to get every VarLoc once, as each VarLoc may have
840     // multiple indices in a VarLocMap (corresponding to each applicable
841     // location), but all VarLocs appear exactly once at the universal location
842     // index.
843     void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
844                           const VarLocMap &VarLocIDs) const {
845       collectAllVarLocs(Collected, VarLocs, VarLocIDs);
846     }
847 
848     /// Terminate all open ranges for VL.Var by removing it from the set.
849     void erase(const VarLoc &VL);
850 
851     /// Terminate all open ranges listed as indices in \c KillSet with
852     /// \c Location by removing them from the set.
853     void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
854                LocIndex::u32_location_t Location);
855 
856     /// Insert a new range into the set.
857     void insert(LocIndices VarLocIDs, const VarLoc &VL);
858 
859     /// Insert a set of ranges.
860     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
861 
862     llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);
863 
864     /// Empty the set.
865     void clear() {
866       VarLocs.clear();
867       Vars.clear();
868       EntryValuesBackupVars.clear();
869     }
870 
871     /// Return whether the set is empty or not.
872     bool empty() const {
873       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
874              Vars.empty() == VarLocs.empty() &&
875              "open ranges are inconsistent");
876       return VarLocs.empty();
877     }
878 
879     /// Get an empty range of VarLoc IDs.
880     auto getEmptyVarLocRange() const {
881       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
882                                                        getVarLocs().end());
883     }
884 
885     /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
886     auto getRegisterVarLocs(Register Reg) const {
887       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
888     }
889 
890     /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
891     auto getSpillVarLocs() const {
892       return LocIndex::indexRangeForLocation(getVarLocs(),
893                                              LocIndex::kSpillLocation);
894     }
895 
896     /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
897     /// EntryValueCopyBackupKind.
898     auto getEntryValueBackupVarLocs() const {
899       return LocIndex::indexRangeForLocation(
900           getVarLocs(), LocIndex::kEntryValueBackupLocation);
901     }
902   };
903 
904   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
905   /// RegisterKind which are located in any reg in \p Regs. The IDs for each
906   /// VarLoc correspond to entries in the universal location bucket, which every
907   /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
908   static void collectIDsForRegs(VarLocsInRange &Collected,
909                                 const DefinedRegsSet &Regs,
910                                 const VarLocSet &CollectFrom,
911                                 const VarLocMap &VarLocIDs);
912 
913   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
914     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
915     if (!VLS)
916       VLS = std::make_unique<VarLocSet>(Alloc);
917     return *VLS;
918   }
919 
920   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
921                                    const VarLocInMBB &Locs) const {
922     auto It = Locs.find(MBB);
923     assert(It != Locs.end() && "MBB not in map");
924     return *It->second;
925   }
926 
927   /// Tests whether this instruction is a spill to a stack location.
928   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
929 
930   /// Decide if @MI is a spill instruction and return true if it is. We use 2
931   /// criteria to make this decision:
932   /// - Is this instruction a store to a spill slot?
933   /// - Is there a register operand that is both used and killed?
934   /// TODO: Store optimization can fold spills into other stores (including
935   /// other spills). We do not handle this yet (more than one memory operand).
936   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
937                        Register &Reg);
938 
939   /// Returns true if the given machine instruction is a debug value which we
940   /// can emit entry values for.
941   ///
942   /// Currently, we generate debug entry values only for parameters that are
943   /// unmodified throughout the function and located in a register.
944   bool isEntryValueCandidate(const MachineInstr &MI,
945                              const DefinedRegsSet &Regs) const;
946 
947   /// If a given instruction is identified as a spill, return the spill location
948   /// and set \p Reg to the spilled register.
949   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
950                                                   MachineFunction *MF,
951                                                   Register &Reg);
952   /// Given a spill instruction, extract the register and offset used to
953   /// address the spill location in a target independent way.
954   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
955   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
956                                TransferMap &Transfers, VarLocMap &VarLocIDs,
957                                LocIndex OldVarID, TransferKind Kind,
958                                const VarLoc::MachineLoc &OldLoc,
959                                Register NewReg = Register());
960 
961   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
962                           VarLocMap &VarLocIDs,
963                           InstToEntryLocMap &EntryValTransfers,
964                           RegDefToInstMap &RegSetInstrs);
965   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
966                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
967   void cleanupEntryValueTransfers(const MachineInstr *MI,
968                                   OpenRangesSet &OpenRanges,
969                                   VarLocMap &VarLocIDs, const VarLoc &EntryVL,
970                                   InstToEntryLocMap &EntryValTransfers);
971   void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
972                         VarLocMap &VarLocIDs, const VarLoc &EntryVL,
973                         InstToEntryLocMap &EntryValTransfers,
974                         RegDefToInstMap &RegSetInstrs);
975   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
976                        VarLocMap &VarLocIDs,
977                        InstToEntryLocMap &EntryValTransfers,
978                        VarLocsInRange &KillSet);
979   void recordEntryValue(const MachineInstr &MI,
980                         const DefinedRegsSet &DefinedRegs,
981                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
982   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
983                             VarLocMap &VarLocIDs, TransferMap &Transfers);
984   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
985                            VarLocMap &VarLocIDs,
986                            InstToEntryLocMap &EntryValTransfers,
987                            RegDefToInstMap &RegSetInstrs);
988   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
989                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
990 
991   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
992                VarLocMap &VarLocIDs, TransferMap &Transfers,
993                InstToEntryLocMap &EntryValTransfers,
994                RegDefToInstMap &RegSetInstrs);
995 
996   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
997                              OverlapMap &OLapMap);
998 
999   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1000             const VarLocMap &VarLocIDs,
1001             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1002             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1003 
1004   /// Create DBG_VALUE insts for inlocs that have been propagated but
1005   /// had their instruction creation deferred.
1006   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1007 
1008   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1009                     TargetPassConfig *TPC, unsigned InputBBLimit,
1010                     unsigned InputDbgValLimit) override;
1011 
1012 public:
1013   /// Default construct and initialize the pass.
1014   VarLocBasedLDV();
1015 
1016   ~VarLocBasedLDV();
1017 
1018   /// Print to ostream with a message.
1019   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1020                         const VarLocMap &VarLocIDs, const char *msg,
1021                         raw_ostream &Out) const;
1022 };
1023 
1024 } // end anonymous namespace
1025 
1026 //===----------------------------------------------------------------------===//
1027 //            Implementation
1028 //===----------------------------------------------------------------------===//
1029 
1030 VarLocBasedLDV::VarLocBasedLDV() = default;
1031 
1032 VarLocBasedLDV::~VarLocBasedLDV() = default;
1033 
1034 /// Erase a variable from the set of open ranges, and additionally erase any
1035 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1036 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1037 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1038 /// location, erase the variable from the Vars set.
1039 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1040   // Erasure helper.
1041   auto DoErase = [VL, this](DebugVariable VarToErase) {
1042     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1043     auto It = EraseFrom->find(VarToErase);
1044     if (It != EraseFrom->end()) {
1045       LocIndices IDs = It->second;
1046       for (LocIndex ID : IDs)
1047         VarLocs.reset(ID.getAsRawInteger());
1048       EraseFrom->erase(It);
1049     }
1050   };
1051 
1052   DebugVariable Var = VL.Var;
1053 
1054   // Erase the variable/fragment that ends here.
1055   DoErase(Var);
1056 
1057   // Extract the fragment. Interpret an empty fragment as one that covers all
1058   // possible bits.
1059   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1060 
1061   // There may be fragments that overlap the designated fragment. Look them up
1062   // in the pre-computed overlap map, and erase them too.
1063   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1064   if (MapIt != OverlappingFragments.end()) {
1065     for (auto Fragment : MapIt->second) {
1066       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1067       if (!DebugVariable::isDefaultFragment(Fragment))
1068         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1069       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1070     }
1071   }
1072 }
1073 
1074 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1075                                           const VarLocMap &VarLocIDs,
1076                                           LocIndex::u32_location_t Location) {
1077   VarLocSet RemoveSet(Alloc);
1078   for (LocIndex::u32_index_t ID : KillSet) {
1079     const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1080     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1081     EraseFrom->erase(VL.Var);
1082     LocIndices VLI = VarLocIDs.getAllIndices(VL);
1083     for (LocIndex ID : VLI)
1084       RemoveSet.set(ID.getAsRawInteger());
1085   }
1086   VarLocs.intersectWithComplement(RemoveSet);
1087 }
1088 
1089 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1090                                                      const VarLocMap &Map) {
1091   VarLocsInRange UniqueVarLocIDs;
1092   DefinedRegsSet Regs;
1093   Regs.insert(LocIndex::kUniversalLocation);
1094   collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1095   for (uint64_t ID : UniqueVarLocIDs) {
1096     LocIndex Idx = LocIndex::fromRawInteger(ID);
1097     const VarLoc &VarL = Map[Idx];
1098     const LocIndices Indices = Map.getAllIndices(VarL);
1099     insert(Indices, VarL);
1100   }
1101 }
1102 
1103 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1104                                            const VarLoc &VL) {
1105   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1106   for (LocIndex ID : VarLocIDs)
1107     VarLocs.set(ID.getAsRawInteger());
1108   InsertInto->insert({VL.Var, VarLocIDs});
1109 }
1110 
1111 /// Return the Loc ID of an entry value backup location, if it exists for the
1112 /// variable.
1113 llvm::Optional<LocIndices>
1114 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1115   auto It = EntryValuesBackupVars.find(Var);
1116   if (It != EntryValuesBackupVars.end())
1117     return It->second;
1118 
1119   return llvm::None;
1120 }
1121 
1122 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1123                                        const DefinedRegsSet &Regs,
1124                                        const VarLocSet &CollectFrom,
1125                                        const VarLocMap &VarLocIDs) {
1126   assert(!Regs.empty() && "Nothing to collect");
1127   SmallVector<Register, 32> SortedRegs;
1128   append_range(SortedRegs, Regs);
1129   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1130   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1131   auto End = CollectFrom.end();
1132   for (Register Reg : SortedRegs) {
1133     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1134     // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1135     // live in Reg.
1136     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1137     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1138     It.advanceToLowerBound(FirstIndexForReg);
1139 
1140     // Iterate through that half-open interval and collect all the set IDs.
1141     for (; It != End && *It < FirstInvalidIndex; ++It) {
1142       LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1143       const VarLoc &VL = VarLocIDs[ItIdx];
1144       LocIndices LI = VarLocIDs.getAllIndices(VL);
1145       // For now, the back index is always the universal location index.
1146       assert(LI.back().Location == LocIndex::kUniversalLocation &&
1147              "Unexpected order of LocIndices for VarLoc; was it inserted into "
1148              "the VarLocMap correctly?");
1149       Collected.insert(LI.back().Index);
1150     }
1151 
1152     if (It == End)
1153       return;
1154   }
1155 }
1156 
1157 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1158                                  SmallVectorImpl<Register> &UsedRegs) const {
1159   // All register-based VarLocs are assigned indices greater than or equal to
1160   // FirstRegIndex.
1161   uint64_t FirstRegIndex =
1162       LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1163   uint64_t FirstInvalidIndex =
1164       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1165   for (auto It = CollectFrom.find(FirstRegIndex),
1166             End = CollectFrom.find(FirstInvalidIndex);
1167        It != End;) {
1168     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1169     // which register and add it to UsedRegs.
1170     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1171     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1172            "Duplicate used reg");
1173     UsedRegs.push_back(FoundReg);
1174 
1175     // Skip to the next /set/ register. Note that this finds a lower bound, so
1176     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1177     // guaranteed to move on to the next register (or to end()).
1178     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1179     It.advanceToLowerBound(NextRegIndex);
1180   }
1181 }
1182 
1183 //===----------------------------------------------------------------------===//
1184 //            Debug Range Extension Implementation
1185 //===----------------------------------------------------------------------===//
1186 
1187 #ifndef NDEBUG
1188 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1189                                        const VarLocInMBB &V,
1190                                        const VarLocMap &VarLocIDs,
1191                                        const char *msg,
1192                                        raw_ostream &Out) const {
1193   Out << '\n' << msg << '\n';
1194   for (const MachineBasicBlock &BB : MF) {
1195     if (!V.count(&BB))
1196       continue;
1197     const VarLocSet &L = getVarLocsInMBB(&BB, V);
1198     if (L.empty())
1199       continue;
1200     SmallVector<VarLoc, 32> VarLocs;
1201     collectAllVarLocs(VarLocs, L, VarLocIDs);
1202     Out << "MBB: " << BB.getNumber() << ":\n";
1203     for (const VarLoc &VL : VarLocs) {
1204       Out << " Var: " << VL.Var.getVariable()->getName();
1205       Out << " MI: ";
1206       VL.dump(TRI, Out);
1207     }
1208   }
1209   Out << "\n";
1210 }
1211 #endif
1212 
1213 VarLocBasedLDV::VarLoc::SpillLoc
1214 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1215   assert(MI.hasOneMemOperand() &&
1216          "Spill instruction does not have exactly one memory operand?");
1217   auto MMOI = MI.memoperands_begin();
1218   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1219   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1220          "Inconsistent memory operand in spill instruction");
1221   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1222   const MachineBasicBlock *MBB = MI.getParent();
1223   Register Reg;
1224   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1225   return {Reg, Offset};
1226 }
1227 
1228 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
1229 /// Transfer, which uses the to-be-deleted \p EntryVL.
1230 void VarLocBasedLDV::cleanupEntryValueTransfers(
1231     const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1232     const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
1233   if (EntryValTransfers.empty() || TRInst == nullptr)
1234     return;
1235 
1236   auto TransRange = EntryValTransfers.equal_range(TRInst);
1237   for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) {
1238     const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
1239     if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
1240         std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
1241                  EmittedEV.Expr)) {
1242       OpenRanges.erase(EmittedEV);
1243       EntryValTransfers.erase(TRInst);
1244       break;
1245     }
1246   }
1247 }
1248 
1249 /// Try to salvage the debug entry value if we encounter a new debug value
1250 /// describing the same parameter, otherwise stop tracking the value. Return
1251 /// true if we should stop tracking the entry value and do the cleanup of
1252 /// emitted Entry Value Transfers, otherwise return false.
1253 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1254                                       OpenRangesSet &OpenRanges,
1255                                       VarLocMap &VarLocIDs,
1256                                       const VarLoc &EntryVL,
1257                                       InstToEntryLocMap &EntryValTransfers,
1258                                       RegDefToInstMap &RegSetInstrs) {
1259   // Skip the DBG_VALUE which is the debug entry value itself.
1260   if (&MI == &EntryVL.MI)
1261     return;
1262 
1263   // If the parameter's location is not register location, we can not track
1264   // the entry value any more. It doesn't have the TransferInst which defines
1265   // register, so no Entry Value Transfers have been emitted already.
1266   if (!MI.getDebugOperand(0).isReg())
1267     return;
1268 
1269   // Try to get non-debug instruction responsible for the DBG_VALUE.
1270   const MachineInstr *TransferInst = nullptr;
1271   Register Reg = MI.getDebugOperand(0).getReg();
1272   if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end())
1273     TransferInst = RegSetInstrs.find(Reg)->second;
1274 
1275   // Case of the parameter's DBG_VALUE at the start of entry MBB.
1276   if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
1277     return;
1278 
1279   // If the debug expression from the DBG_VALUE is not empty, we can assume the
1280   // parameter's value has changed indicating that we should stop tracking its
1281   // entry value as well.
1282   if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
1283     // If the DBG_VALUE comes from a copy instruction that copies the entry
1284     // value, it means the parameter's value has not changed and we should be
1285     // able to use its entry value.
1286     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1287     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1288     // does not indicate the parameter modification.)
1289     auto DestSrc = TII->isCopyInstr(*TransferInst);
1290     if (DestSrc) {
1291       const MachineOperand *SrcRegOp, *DestRegOp;
1292       SrcRegOp = DestSrc->Source;
1293       DestRegOp = DestSrc->Destination;
1294       if (Reg == DestRegOp->getReg()) {
1295         for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1296           const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1297           if (VL.isEntryValueCopyBackupReg(Reg) &&
1298               // Entry Values should not be variadic.
1299               VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1300             return;
1301         }
1302       }
1303     }
1304   }
1305 
1306   LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1307              MI.print(dbgs(), /*IsStandalone*/ false,
1308                       /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1309                       /*AddNewLine*/ true, TII));
1310   cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
1311                              EntryValTransfers);
1312   OpenRanges.erase(EntryVL);
1313 }
1314 
1315 /// End all previous ranges related to @MI and start a new range from @MI
1316 /// if it is a DBG_VALUE instr.
1317 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1318                                         OpenRangesSet &OpenRanges,
1319                                         VarLocMap &VarLocIDs,
1320                                         InstToEntryLocMap &EntryValTransfers,
1321                                         RegDefToInstMap &RegSetInstrs) {
1322   if (!MI.isDebugValue())
1323     return;
1324   const DILocalVariable *Var = MI.getDebugVariable();
1325   const DIExpression *Expr = MI.getDebugExpression();
1326   const DILocation *DebugLoc = MI.getDebugLoc();
1327   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1328   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1329          "Expected inlined-at fields to agree");
1330 
1331   DebugVariable V(Var, Expr, InlinedAt);
1332 
1333   // Check if this DBG_VALUE indicates a parameter's value changing.
1334   // If that is the case, we should stop tracking its entry value.
1335   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1336   if (Var->isParameter() && EntryValBackupID) {
1337     const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1338     removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
1339                      RegSetInstrs);
1340   }
1341 
1342   if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1343         return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1344                MO.isCImm();
1345       })) {
1346     // Use normal VarLoc constructor for registers and immediates.
1347     VarLoc VL(MI, LS);
1348     // End all previous ranges of VL.Var.
1349     OpenRanges.erase(VL);
1350 
1351     LocIndices IDs = VarLocIDs.insert(VL);
1352     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1353     OpenRanges.insert(IDs, VL);
1354   } else if (MI.memoperands().size() > 0) {
1355     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1356   } else {
1357     // This must be an undefined location. If it has an open range, erase it.
1358     assert(MI.isUndefDebugValue() &&
1359            "Unexpected non-undef DBG_VALUE encountered");
1360     VarLoc VL(MI, LS);
1361     OpenRanges.erase(VL);
1362   }
1363 }
1364 
1365 // This should be removed later, doesn't fit the new design.
1366 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1367                                        const VarLocSet &CollectFrom,
1368                                        const VarLocMap &VarLocIDs) {
1369   // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1370   // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1371   // in Reg.
1372   uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1373   uint64_t FirstInvalidIndex =
1374       LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1375   // Iterate through that half-open interval and collect all the set IDs.
1376   for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1377        It != End && *It < FirstInvalidIndex; ++It) {
1378     LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1379     Collected.push_back(VarLocIDs[RegIdx]);
1380   }
1381 }
1382 
1383 /// Turn the entry value backup locations into primary locations.
1384 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1385                                      OpenRangesSet &OpenRanges,
1386                                      VarLocMap &VarLocIDs,
1387                                      InstToEntryLocMap &EntryValTransfers,
1388                                      VarLocsInRange &KillSet) {
1389   // Do not insert entry value locations after a terminator.
1390   if (MI.isTerminator())
1391     return;
1392 
1393   for (uint32_t ID : KillSet) {
1394     // The KillSet IDs are indices for the universal location bucket.
1395     LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1396     const VarLoc &VL = VarLocIDs[Idx];
1397     if (!VL.Var.getVariable()->isParameter())
1398       continue;
1399 
1400     auto DebugVar = VL.Var;
1401     Optional<LocIndices> EntryValBackupIDs =
1402         OpenRanges.getEntryValueBackup(DebugVar);
1403 
1404     // If the parameter has the entry value backup, it means we should
1405     // be able to use its entry value.
1406     if (!EntryValBackupIDs)
1407       continue;
1408 
1409     const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1410     VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
1411                                              EntryVL.Locs[0].Value.RegNo);
1412     LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1413     assert(EntryValueIDs.size() == 1 &&
1414            "EntryValue loc should not be variadic");
1415     EntryValTransfers.insert({&MI, EntryValueIDs.back()});
1416     OpenRanges.insert(EntryValueIDs, EntryLoc);
1417   }
1418 }
1419 
1420 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1421 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1422 /// new VarLoc. If \p NewReg is different than default zero value then the
1423 /// new location will be register location created by the copy like instruction,
1424 /// otherwise it is variable's location on the stack.
1425 void VarLocBasedLDV::insertTransferDebugPair(
1426     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1427     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1428     const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1429   const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1430 
1431   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1432     LocIndices LocIds = VarLocIDs.insert(VL);
1433 
1434     // Close this variable's previous location range.
1435     OpenRanges.erase(VL);
1436 
1437     // Record the new location as an open range, and a postponed transfer
1438     // inserting a DBG_VALUE for this location.
1439     OpenRanges.insert(LocIds, VL);
1440     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1441     TransferDebugPair MIP = {&MI, LocIds.back()};
1442     Transfers.push_back(MIP);
1443   };
1444 
1445   // End all previous ranges of VL.Var.
1446   OpenRanges.erase(VarLocIDs[OldVarID]);
1447   switch (Kind) {
1448   case TransferKind::TransferCopy: {
1449     assert(NewReg &&
1450            "No register supplied when handling a copy of a debug value");
1451     // Create a DBG_VALUE instruction to describe the Var in its new
1452     // register location.
1453     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1454     ProcessVarLoc(VL);
1455     LLVM_DEBUG({
1456       dbgs() << "Creating VarLoc for register copy:";
1457       VL.dump(TRI);
1458     });
1459     return;
1460   }
1461   case TransferKind::TransferSpill: {
1462     // Create a DBG_VALUE instruction to describe the Var in its spilled
1463     // location.
1464     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1465     VarLoc VL = VarLoc::CreateSpillLoc(
1466         OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1467     ProcessVarLoc(VL);
1468     LLVM_DEBUG({
1469       dbgs() << "Creating VarLoc for spill:";
1470       VL.dump(TRI);
1471     });
1472     return;
1473   }
1474   case TransferKind::TransferRestore: {
1475     assert(NewReg &&
1476            "No register supplied when handling a restore of a debug value");
1477     // DebugInstr refers to the pre-spill location, therefore we can reuse
1478     // its expression.
1479     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1480     ProcessVarLoc(VL);
1481     LLVM_DEBUG({
1482       dbgs() << "Creating VarLoc for restore:";
1483       VL.dump(TRI);
1484     });
1485     return;
1486   }
1487   }
1488   llvm_unreachable("Invalid transfer kind");
1489 }
1490 
1491 /// A definition of a register may mark the end of a range.
1492 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
1493                                          OpenRangesSet &OpenRanges,
1494                                          VarLocMap &VarLocIDs,
1495                                          InstToEntryLocMap &EntryValTransfers,
1496                                          RegDefToInstMap &RegSetInstrs) {
1497 
1498   // Meta Instructions do not affect the debug liveness of any register they
1499   // define.
1500   if (MI.isMetaInstruction())
1501     return;
1502 
1503   MachineFunction *MF = MI.getMF();
1504   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1505   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1506 
1507   // Find the regs killed by MI, and find regmasks of preserved regs.
1508   DefinedRegsSet DeadRegs;
1509   SmallVector<const uint32_t *, 4> RegMasks;
1510   for (const MachineOperand &MO : MI.operands()) {
1511     // Determine whether the operand is a register def.
1512     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1513         Register::isPhysicalRegister(MO.getReg()) &&
1514         !(MI.isCall() && MO.getReg() == SP)) {
1515       // Remove ranges of all aliased registers.
1516       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1517         // FIXME: Can we break out of this loop early if no insertion occurs?
1518         DeadRegs.insert(*RAI);
1519       RegSetInstrs.erase(MO.getReg());
1520       RegSetInstrs.insert({MO.getReg(), &MI});
1521     } else if (MO.isRegMask()) {
1522       RegMasks.push_back(MO.getRegMask());
1523     }
1524   }
1525 
1526   // Erase VarLocs which reside in one of the dead registers. For performance
1527   // reasons, it's critical to not iterate over the full set of open VarLocs.
1528   // Iterate over the set of dying/used regs instead.
1529   if (!RegMasks.empty()) {
1530     SmallVector<Register, 32> UsedRegs;
1531     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1532     for (Register Reg : UsedRegs) {
1533       // Remove ranges of all clobbered registers. Register masks don't usually
1534       // list SP as preserved. Assume that call instructions never clobber SP,
1535       // because some backends (e.g., AArch64) never list SP in the regmask.
1536       // While the debug info may be off for an instruction or two around
1537       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1538       // still a better user experience.
1539       if (Reg == SP)
1540         continue;
1541       bool AnyRegMaskKillsReg =
1542           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1543             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1544           });
1545       if (AnyRegMaskKillsReg)
1546         DeadRegs.insert(Reg);
1547       if (AnyRegMaskKillsReg) {
1548         RegSetInstrs.erase(Reg);
1549         RegSetInstrs.insert({Reg, &MI});
1550       }
1551     }
1552   }
1553 
1554   if (DeadRegs.empty())
1555     return;
1556 
1557   VarLocsInRange KillSet;
1558   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1559   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1560 
1561   if (TPC) {
1562     auto &TM = TPC->getTM<TargetMachine>();
1563     if (TM.Options.ShouldEmitDebugEntryValues())
1564       emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
1565   }
1566 }
1567 
1568 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1569                                          MachineFunction *MF) {
1570   // TODO: Handle multiple stores folded into one.
1571   if (!MI.hasOneMemOperand())
1572     return false;
1573 
1574   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1575     return false; // This is not a spill instruction, since no valid size was
1576                   // returned from either function.
1577 
1578   return true;
1579 }
1580 
1581 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1582                                       MachineFunction *MF, Register &Reg) {
1583   if (!isSpillInstruction(MI, MF))
1584     return false;
1585 
1586   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1587     if (!MO.isReg() || !MO.isUse()) {
1588       Reg = 0;
1589       return false;
1590     }
1591     Reg = MO.getReg();
1592     return MO.isKill();
1593   };
1594 
1595   for (const MachineOperand &MO : MI.operands()) {
1596     // In a spill instruction generated by the InlineSpiller the spilled
1597     // register has its kill flag set.
1598     if (isKilledReg(MO, Reg))
1599       return true;
1600     if (Reg != 0) {
1601       // Check whether next instruction kills the spilled register.
1602       // FIXME: Current solution does not cover search for killed register in
1603       // bundles and instructions further down the chain.
1604       auto NextI = std::next(MI.getIterator());
1605       // Skip next instruction that points to basic block end iterator.
1606       if (MI.getParent()->end() == NextI)
1607         continue;
1608       Register RegNext;
1609       for (const MachineOperand &MONext : NextI->operands()) {
1610         // Return true if we came across the register from the
1611         // previous spill instruction that is killed in NextI.
1612         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1613           return true;
1614       }
1615     }
1616   }
1617   // Return false if we didn't find spilled register.
1618   return false;
1619 }
1620 
1621 Optional<VarLocBasedLDV::VarLoc::SpillLoc>
1622 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1623                                       MachineFunction *MF, Register &Reg) {
1624   if (!MI.hasOneMemOperand())
1625     return None;
1626 
1627   // FIXME: Handle folded restore instructions with more than one memory
1628   // operand.
1629   if (MI.getRestoreSize(TII)) {
1630     Reg = MI.getOperand(0).getReg();
1631     return extractSpillBaseRegAndOffset(MI);
1632   }
1633   return None;
1634 }
1635 
1636 /// A spilled register may indicate that we have to end the current range of
1637 /// a variable and create a new one for the spill location.
1638 /// A restored register may indicate the reverse situation.
1639 /// We don't want to insert any instructions in process(), so we just create
1640 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1641 /// It will be inserted into the BB when we're done iterating over the
1642 /// instructions.
1643 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1644                                                  OpenRangesSet &OpenRanges,
1645                                                  VarLocMap &VarLocIDs,
1646                                                  TransferMap &Transfers) {
1647   MachineFunction *MF = MI.getMF();
1648   TransferKind TKind;
1649   Register Reg;
1650   Optional<VarLoc::SpillLoc> Loc;
1651 
1652   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1653 
1654   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1655   // written to, then close the variable location. The value in memory
1656   // will have changed.
1657   VarLocsInRange KillSet;
1658   if (isSpillInstruction(MI, MF)) {
1659     Loc = extractSpillBaseRegAndOffset(MI);
1660     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1661       LocIndex Idx = LocIndex::fromRawInteger(ID);
1662       const VarLoc &VL = VarLocIDs[Idx];
1663       assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1664       if (VL.usesSpillLoc(*Loc)) {
1665         // This location is overwritten by the current instruction -- terminate
1666         // the open range, and insert an explicit DBG_VALUE $noreg.
1667         //
1668         // Doing this at a later stage would require re-interpreting all
1669         // DBG_VALUes and DIExpressions to identify whether they point at
1670         // memory, and then analysing all memory writes to see if they
1671         // overwrite that memory, which is expensive.
1672         //
1673         // At this stage, we already know which DBG_VALUEs are for spills and
1674         // where they are located; it's best to fix handle overwrites now.
1675         KillSet.insert(ID);
1676         unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1677         VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1678         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1679         LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1680         Transfers.push_back({&MI, UndefLocIDs.back()});
1681       }
1682     }
1683     OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1684   }
1685 
1686   // Try to recognise spill and restore instructions that may create a new
1687   // variable location.
1688   if (isLocationSpill(MI, MF, Reg)) {
1689     TKind = TransferKind::TransferSpill;
1690     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1691     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1692                       << "\n");
1693   } else {
1694     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1695       return;
1696     TKind = TransferKind::TransferRestore;
1697     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1698     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1699                       << "\n");
1700   }
1701   // Check if the register or spill location is the location of a debug value.
1702   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1703   if (TKind == TransferKind::TransferSpill)
1704     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1705   else if (TKind == TransferKind::TransferRestore)
1706     TransferCandidates = OpenRanges.getSpillVarLocs();
1707   for (uint64_t ID : TransferCandidates) {
1708     LocIndex Idx = LocIndex::fromRawInteger(ID);
1709     const VarLoc &VL = VarLocIDs[Idx];
1710     unsigned LocIdx;
1711     if (TKind == TransferKind::TransferSpill) {
1712       assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1713       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1714                         << VL.Var.getVariable()->getName() << ")\n");
1715       LocIdx = VL.getRegIdx(Reg);
1716     } else {
1717       assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1718              "Broken VarLocSet?");
1719       if (!VL.usesSpillLoc(*Loc))
1720         // The spill location is not the location of a debug value.
1721         continue;
1722       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1723                         << VL.Var.getVariable()->getName() << ")\n");
1724       LocIdx = VL.getSpillLocIdx(*Loc);
1725     }
1726     VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1727     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1728                             MLoc, Reg);
1729     // FIXME: A comment should explain why it's correct to return early here,
1730     // if that is in fact correct.
1731     return;
1732   }
1733 }
1734 
1735 /// If \p MI is a register copy instruction, that copies a previously tracked
1736 /// value from one register to another register that is callee saved, we
1737 /// create new DBG_VALUE instruction  described with copy destination register.
1738 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1739                                            OpenRangesSet &OpenRanges,
1740                                            VarLocMap &VarLocIDs,
1741                                            TransferMap &Transfers) {
1742   auto DestSrc = TII->isCopyInstr(MI);
1743   if (!DestSrc)
1744     return;
1745 
1746   const MachineOperand *DestRegOp = DestSrc->Destination;
1747   const MachineOperand *SrcRegOp = DestSrc->Source;
1748 
1749   if (!DestRegOp->isDef())
1750     return;
1751 
1752   auto isCalleeSavedReg = [&](Register Reg) {
1753     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1754       if (CalleeSavedRegs.test(*RAI))
1755         return true;
1756     return false;
1757   };
1758 
1759   Register SrcReg = SrcRegOp->getReg();
1760   Register DestReg = DestRegOp->getReg();
1761 
1762   // We want to recognize instructions where destination register is callee
1763   // saved register. If register that could be clobbered by the call is
1764   // included, there would be a great chance that it is going to be clobbered
1765   // soon. It is more likely that previous register location, which is callee
1766   // saved, is going to stay unclobbered longer, even if it is killed.
1767   if (!isCalleeSavedReg(DestReg))
1768     return;
1769 
1770   // Remember an entry value movement. If we encounter a new debug value of
1771   // a parameter describing only a moving of the value around, rather then
1772   // modifying it, we are still able to use the entry value if needed.
1773   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1774     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1775       LocIndex Idx = LocIndex::fromRawInteger(ID);
1776       const VarLoc &VL = VarLocIDs[Idx];
1777       if (VL.isEntryValueBackupReg(SrcReg)) {
1778         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1779         VarLoc EntryValLocCopyBackup =
1780             VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1781         // Stop tracking the original entry value.
1782         OpenRanges.erase(VL);
1783 
1784         // Start tracking the entry value copy.
1785         LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1786         OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1787         break;
1788       }
1789     }
1790   }
1791 
1792   if (!SrcRegOp->isKill())
1793     return;
1794 
1795   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1796     LocIndex Idx = LocIndex::fromRawInteger(ID);
1797     assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1798     VarLoc::MachineLocValue Loc;
1799     Loc.RegNo = SrcReg;
1800     VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1801     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1802                             TransferKind::TransferCopy, MLoc, DestReg);
1803     // FIXME: A comment should explain why it's correct to return early here,
1804     // if that is in fact correct.
1805     return;
1806   }
1807 }
1808 
1809 /// Terminate all open ranges at the end of the current basic block.
1810 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1811                                          OpenRangesSet &OpenRanges,
1812                                          VarLocInMBB &OutLocs,
1813                                          const VarLocMap &VarLocIDs) {
1814   bool Changed = false;
1815   LLVM_DEBUG({
1816     VarVec VarLocs;
1817     OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1818     for (VarLoc &VL : VarLocs) {
1819       // Copy OpenRanges to OutLocs, if not already present.
1820       dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1821       VL.dump(TRI);
1822     }
1823   });
1824   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1825   Changed = VLS != OpenRanges.getVarLocs();
1826   // New OutLocs set may be different due to spill, restore or register
1827   // copy instruction processing.
1828   if (Changed)
1829     VLS = OpenRanges.getVarLocs();
1830   OpenRanges.clear();
1831   return Changed;
1832 }
1833 
1834 /// Accumulate a mapping between each DILocalVariable fragment and other
1835 /// fragments of that DILocalVariable which overlap. This reduces work during
1836 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1837 /// known-to-overlap fragments are present".
1838 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1839 ///           fragment usage.
1840 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1841 ///           Variable which are known to exist.
1842 /// \param OverlappingFragments The overlap map being constructed, from one
1843 ///           Var/Fragment pair to a vector of fragments known to overlap.
1844 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1845                                             VarToFragments &SeenFragments,
1846                                             OverlapMap &OverlappingFragments) {
1847   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1848                       MI.getDebugLoc()->getInlinedAt());
1849   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1850 
1851   // If this is the first sighting of this variable, then we are guaranteed
1852   // there are currently no overlapping fragments either. Initialize the set
1853   // of seen fragments, record no overlaps for the current one, and return.
1854   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1855   if (SeenIt == SeenFragments.end()) {
1856     SmallSet<FragmentInfo, 4> OneFragment;
1857     OneFragment.insert(ThisFragment);
1858     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1859 
1860     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1861     return;
1862   }
1863 
1864   // If this particular Variable/Fragment pair already exists in the overlap
1865   // map, it has already been accounted for.
1866   auto IsInOLapMap =
1867       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1868   if (!IsInOLapMap.second)
1869     return;
1870 
1871   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1872   auto &AllSeenFragments = SeenIt->second;
1873 
1874   // Otherwise, examine all other seen fragments for this variable, with "this"
1875   // fragment being a previously unseen fragment. Record any pair of
1876   // overlapping fragments.
1877   for (const auto &ASeenFragment : AllSeenFragments) {
1878     // Does this previously seen fragment overlap?
1879     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1880       // Yes: Mark the current fragment as being overlapped.
1881       ThisFragmentsOverlaps.push_back(ASeenFragment);
1882       // Mark the previously seen fragment as being overlapped by the current
1883       // one.
1884       auto ASeenFragmentsOverlaps =
1885           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1886       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1887              "Previously seen var fragment has no vector of overlaps");
1888       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1889     }
1890   }
1891 
1892   AllSeenFragments.insert(ThisFragment);
1893 }
1894 
1895 /// This routine creates OpenRanges.
1896 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1897                              VarLocMap &VarLocIDs, TransferMap &Transfers,
1898                              InstToEntryLocMap &EntryValTransfers,
1899                              RegDefToInstMap &RegSetInstrs) {
1900   if (!MI.isDebugInstr())
1901     LastNonDbgMI = &MI;
1902   transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
1903                      RegSetInstrs);
1904   transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
1905                       RegSetInstrs);
1906   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1907   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1908 }
1909 
1910 /// This routine joins the analysis results of all incoming edges in @MBB by
1911 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1912 /// source variable in all the predecessors of @MBB reside in the same location.
1913 bool VarLocBasedLDV::join(
1914     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1915     const VarLocMap &VarLocIDs,
1916     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1917     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1918   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1919 
1920   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1921 
1922   // For all predecessors of this MBB, find the set of VarLocs that
1923   // can be joined.
1924   int NumVisited = 0;
1925   for (auto *p : MBB.predecessors()) {
1926     // Ignore backedges if we have not visited the predecessor yet. As the
1927     // predecessor hasn't yet had locations propagated into it, most locations
1928     // will not yet be valid, so treat them as all being uninitialized and
1929     // potentially valid. If a location guessed to be correct here is
1930     // invalidated later, we will remove it when we revisit this block.
1931     if (!Visited.count(p)) {
1932       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
1933                         << "\n");
1934       continue;
1935     }
1936     auto OL = OutLocs.find(p);
1937     // Join is null in case of empty OutLocs from any of the pred.
1938     if (OL == OutLocs.end())
1939       return false;
1940 
1941     // Just copy over the Out locs to incoming locs for the first visited
1942     // predecessor, and for all other predecessors join the Out locs.
1943     VarLocSet &OutLocVLS = *OL->second;
1944     if (!NumVisited)
1945       InLocsT = OutLocVLS;
1946     else
1947       InLocsT &= OutLocVLS;
1948 
1949     LLVM_DEBUG({
1950       if (!InLocsT.empty()) {
1951         VarVec VarLocs;
1952         collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
1953         for (const VarLoc &VL : VarLocs)
1954           dbgs() << "  gathered candidate incoming var: "
1955                  << VL.Var.getVariable()->getName() << "\n";
1956       }
1957     });
1958 
1959     NumVisited++;
1960   }
1961 
1962   // Filter out DBG_VALUES that are out of scope.
1963   VarLocSet KillSet(Alloc);
1964   bool IsArtificial = ArtificialBlocks.count(&MBB);
1965   if (!IsArtificial) {
1966     for (uint64_t ID : InLocsT) {
1967       LocIndex Idx = LocIndex::fromRawInteger(ID);
1968       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1969         KillSet.set(ID);
1970         LLVM_DEBUG({
1971           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
1972           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
1973         });
1974       }
1975     }
1976   }
1977   InLocsT.intersectWithComplement(KillSet);
1978 
1979   // As we are processing blocks in reverse post-order we
1980   // should have processed at least one predecessor, unless it
1981   // is the entry block which has no predecessor.
1982   assert((NumVisited || MBB.pred_empty()) &&
1983          "Should have processed at least one predecessor");
1984 
1985   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1986   bool Changed = false;
1987   if (ILS != InLocsT) {
1988     ILS = InLocsT;
1989     Changed = true;
1990   }
1991 
1992   return Changed;
1993 }
1994 
1995 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
1996                                        VarLocMap &VarLocIDs) {
1997   // PendingInLocs records all locations propagated into blocks, which have
1998   // not had DBG_VALUE insts created. Go through and create those insts now.
1999   for (auto &Iter : PendingInLocs) {
2000     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
2001     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
2002     VarLocSet &Pending = *Iter.second;
2003 
2004     SmallVector<VarLoc, 32> VarLocs;
2005     collectAllVarLocs(VarLocs, Pending, VarLocIDs);
2006 
2007     for (VarLoc DiffIt : VarLocs) {
2008       // The ID location is live-in to MBB -- work out what kind of machine
2009       // location it is and create a DBG_VALUE.
2010       if (DiffIt.isEntryBackupLoc())
2011         continue;
2012       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
2013       MBB.insert(MBB.instr_begin(), MI);
2014 
2015       (void)MI;
2016       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
2017     }
2018   }
2019 }
2020 
2021 bool VarLocBasedLDV::isEntryValueCandidate(
2022     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
2023   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
2024 
2025   // TODO: Add support for local variables that are expressed in terms of
2026   // parameters entry values.
2027   // TODO: Add support for modified arguments that can be expressed
2028   // by using its entry value.
2029   auto *DIVar = MI.getDebugVariable();
2030   if (!DIVar->isParameter())
2031     return false;
2032 
2033   // Do not consider parameters that belong to an inlined function.
2034   if (MI.getDebugLoc()->getInlinedAt())
2035     return false;
2036 
2037   // Only consider parameters that are described using registers. Parameters
2038   // that are passed on the stack are not yet supported, so ignore debug
2039   // values that are described by the frame or stack pointer.
2040   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
2041     return false;
2042 
2043   // If a parameter's value has been propagated from the caller, then the
2044   // parameter's DBG_VALUE may be described using a register defined by some
2045   // instruction in the entry block, in which case we shouldn't create an
2046   // entry value.
2047   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
2048     return false;
2049 
2050   // TODO: Add support for parameters that have a pre-existing debug expressions
2051   // (e.g. fragments).
2052   if (MI.getDebugExpression()->getNumElements() > 0)
2053     return false;
2054 
2055   return true;
2056 }
2057 
2058 /// Collect all register defines (including aliases) for the given instruction.
2059 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2060                            const TargetRegisterInfo *TRI) {
2061   for (const MachineOperand &MO : MI.operands())
2062     if (MO.isReg() && MO.isDef() && MO.getReg())
2063       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2064         Regs.insert(*AI);
2065 }
2066 
2067 /// This routine records the entry values of function parameters. The values
2068 /// could be used as backup values. If we loose the track of some unmodified
2069 /// parameters, the backup values will be used as a primary locations.
2070 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2071                                        const DefinedRegsSet &DefinedRegs,
2072                                        OpenRangesSet &OpenRanges,
2073                                        VarLocMap &VarLocIDs) {
2074   if (TPC) {
2075     auto &TM = TPC->getTM<TargetMachine>();
2076     if (!TM.Options.ShouldEmitDebugEntryValues())
2077       return;
2078   }
2079 
2080   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2081                   MI.getDebugLoc()->getInlinedAt());
2082 
2083   if (!isEntryValueCandidate(MI, DefinedRegs) ||
2084       OpenRanges.getEntryValueBackup(V))
2085     return;
2086 
2087   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2088 
2089   // Create the entry value and use it as a backup location until it is
2090   // valid. It is valid until a parameter is not changed.
2091   DIExpression *NewExpr =
2092       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2093   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
2094   LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2095   OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2096 }
2097 
2098 /// Calculate the liveness information for the given machine function and
2099 /// extend ranges across basic blocks.
2100 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
2101                                   MachineDominatorTree *DomTree,
2102                                   TargetPassConfig *TPC, unsigned InputBBLimit,
2103                                   unsigned InputDbgValLimit) {
2104   (void)DomTree;
2105   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2106 
2107   if (!MF.getFunction().getSubprogram())
2108     // VarLocBaseLDV will already have removed all DBG_VALUEs.
2109     return false;
2110 
2111   // Skip functions from NoDebug compilation units.
2112   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2113       DICompileUnit::NoDebug)
2114     return false;
2115 
2116   TRI = MF.getSubtarget().getRegisterInfo();
2117   TII = MF.getSubtarget().getInstrInfo();
2118   TFI = MF.getSubtarget().getFrameLowering();
2119   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2120   this->TPC = TPC;
2121   LS.initialize(MF);
2122 
2123   bool Changed = false;
2124   bool OLChanged = false;
2125   bool MBBJoined = false;
2126 
2127   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
2128   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2129   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2130                               // Ranges that are open until end of bb.
2131   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
2132   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
2133   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
2134                               // spills, copies and restores).
2135   // Map responsible MI to attached Transfer emitted from Backup Entry Value.
2136   InstToEntryLocMap EntryValTransfers;
2137   // Map a Register to the last MI which clobbered it.
2138   RegDefToInstMap RegSetInstrs;
2139 
2140   VarToFragments SeenFragments;
2141 
2142   // Blocks which are artificial, i.e. blocks which exclusively contain
2143   // instructions without locations, or with line 0 locations.
2144   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2145 
2146   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2147   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2148   std::priority_queue<unsigned int, std::vector<unsigned int>,
2149                       std::greater<unsigned int>>
2150       Worklist;
2151   std::priority_queue<unsigned int, std::vector<unsigned int>,
2152                       std::greater<unsigned int>>
2153       Pending;
2154 
2155   // Set of register defines that are seen when traversing the entry block
2156   // looking for debug entry value candidates.
2157   DefinedRegsSet DefinedRegs;
2158 
2159   // Only in the case of entry MBB collect DBG_VALUEs representing
2160   // function parameters in order to generate debug entry values for them.
2161   MachineBasicBlock &First_MBB = *(MF.begin());
2162   for (auto &MI : First_MBB) {
2163     collectRegDefs(MI, DefinedRegs, TRI);
2164     if (MI.isDebugValue())
2165       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2166   }
2167 
2168   // Initialize per-block structures and scan for fragment overlaps.
2169   for (auto &MBB : MF)
2170     for (auto &MI : MBB)
2171       if (MI.isDebugValue())
2172         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2173 
2174   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2175     if (const DebugLoc &DL = MI.getDebugLoc())
2176       return DL.getLine() != 0;
2177     return false;
2178   };
2179   for (auto &MBB : MF)
2180     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2181       ArtificialBlocks.insert(&MBB);
2182 
2183   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2184                               "OutLocs after initialization", dbgs()));
2185 
2186   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2187   unsigned int RPONumber = 0;
2188   for (MachineBasicBlock *MBB : RPOT) {
2189     OrderToBB[RPONumber] = MBB;
2190     BBToOrder[MBB] = RPONumber;
2191     Worklist.push(RPONumber);
2192     ++RPONumber;
2193   }
2194 
2195   if (RPONumber > InputBBLimit) {
2196     unsigned NumInputDbgValues = 0;
2197     for (auto &MBB : MF)
2198       for (auto &MI : MBB)
2199         if (MI.isDebugValue())
2200           ++NumInputDbgValues;
2201     if (NumInputDbgValues > InputDbgValLimit) {
2202       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2203                         << " has " << RPONumber << " basic blocks and "
2204                         << NumInputDbgValues
2205                         << " input DBG_VALUEs, exceeding limits.\n");
2206       return false;
2207     }
2208   }
2209 
2210   // This is a standard "union of predecessor outs" dataflow problem.
2211   // To solve it, we perform join() and process() using the two worklist method
2212   // until the ranges converge.
2213   // Ranges have converged when both worklists are empty.
2214   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2215   while (!Worklist.empty() || !Pending.empty()) {
2216     // We track what is on the pending worklist to avoid inserting the same
2217     // thing twice.  We could avoid this with a custom priority queue, but this
2218     // is probably not worth it.
2219     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2220     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2221     while (!Worklist.empty()) {
2222       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2223       Worklist.pop();
2224       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2225                        ArtificialBlocks);
2226       MBBJoined |= Visited.insert(MBB).second;
2227       if (MBBJoined) {
2228         MBBJoined = false;
2229         Changed = true;
2230         // Now that we have started to extend ranges across BBs we need to
2231         // examine spill, copy and restore instructions to see whether they
2232         // operate with registers that correspond to user variables.
2233         // First load any pending inlocs.
2234         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2235         LastNonDbgMI = nullptr;
2236         RegSetInstrs.clear();
2237         for (auto &MI : *MBB)
2238           process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
2239                   RegSetInstrs);
2240         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2241 
2242         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2243                                     "OutLocs after propagating", dbgs()));
2244         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2245                                     "InLocs after propagating", dbgs()));
2246 
2247         if (OLChanged) {
2248           OLChanged = false;
2249           for (auto *s : MBB->successors())
2250             if (OnPending.insert(s).second) {
2251               Pending.push(BBToOrder[s]);
2252             }
2253         }
2254       }
2255     }
2256     Worklist.swap(Pending);
2257     // At this point, pending must be empty, since it was just the empty
2258     // worklist
2259     assert(Pending.empty() && "Pending should be empty");
2260   }
2261 
2262   // Add any DBG_VALUE instructions created by location transfers.
2263   for (auto &TR : Transfers) {
2264     assert(!TR.TransferInst->isTerminator() &&
2265            "Cannot insert DBG_VALUE after terminator");
2266     MachineBasicBlock *MBB = TR.TransferInst->getParent();
2267     const VarLoc &VL = VarLocIDs[TR.LocationID];
2268     MachineInstr *MI = VL.BuildDbgValue(MF);
2269     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2270   }
2271   Transfers.clear();
2272 
2273   // Add DBG_VALUEs created using Backup Entry Value location.
2274   for (auto &TR : EntryValTransfers) {
2275     MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
2276     assert(!TRInst->isTerminator() &&
2277            "Cannot insert DBG_VALUE after terminator");
2278     MachineBasicBlock *MBB = TRInst->getParent();
2279     const VarLoc &VL = VarLocIDs[TR.second];
2280     MachineInstr *MI = VL.BuildDbgValue(MF);
2281     MBB->insertAfterBundle(TRInst->getIterator(), MI);
2282   }
2283   EntryValTransfers.clear();
2284 
2285   // Deferred inlocs will not have had any DBG_VALUE insts created; do
2286   // that now.
2287   flushPendingLocs(InLocs, VarLocIDs);
2288 
2289   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2290   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2291   return Changed;
2292 }
2293 
2294 LDVImpl *
2295 llvm::makeVarLocBasedLiveDebugValues()
2296 {
2297   return new VarLocBasedLDV();
2298 }
2299