1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants, and target indices) that a variable 14 /// fragment might be located, qualified by a DIExpression and indirect-ness 15 /// flag, while each variable is identified by a DebugVariable object. The 16 /// availability of an expression begins when a DBG_VALUE instruction specifies 17 /// the location of a DebugVariable, and continues until that location is 18 /// clobbered or re-specified by a different DBG_VALUE for the same 19 /// DebugVariable. 20 /// 21 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 22 /// placed to extend variable locations as far they're available. This file 23 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 24 /// locations, using the VarLoc class. 25 /// 26 /// The canonical "available expressions" problem doesn't have expression 27 /// clobbering, instead when a variable is re-assigned, any expressions using 28 /// that variable get invalidated. LiveDebugValues can map onto "available 29 /// expressions" by having every register represented by a variable, which is 30 /// used in an expression that becomes available at a DBG_VALUE instruction. 31 /// When the register is clobbered, its variable is effectively reassigned, and 32 /// expressions computed from it become unavailable. A similar construct is 33 /// needed when a DebugVariable has its location re-specified, to invalidate 34 /// all other locations for that DebugVariable. 35 /// 36 /// Using the dataflow analysis to compute the available expressions, we create 37 /// a DBG_VALUE at the beginning of each block where the expression is 38 /// live-in. This propagates variable locations into every basic block where 39 /// the location can be determined, rather than only having DBG_VALUEs in blocks 40 /// where locations are specified due to an assignment or some optimization. 41 /// Movements of values between registers and spill slots are annotated with 42 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 43 /// DbgEntityHistoryCalculator to focus on only the locations within individual 44 /// blocks, facilitating testing and improving modularity. 45 /// 46 /// We follow an optimisic dataflow approach, with this lattice: 47 /// 48 /// \verbatim 49 /// ┬ "Unknown" 50 /// | 51 /// v 52 /// True 53 /// | 54 /// v 55 /// ⊥ False 56 /// \endverbatim With "True" signifying that the expression is available (and 57 /// thus a DebugVariable's location is the corresponding register), while 58 /// "False" signifies that the expression is unavailable. "Unknown"s never 59 /// survive to the end of the analysis (see below). 60 /// 61 /// Formally, all DebugVariable locations that are live-out of a block are 62 /// initialized to \top. A blocks live-in values take the meet of the lattice 63 /// value for every predecessors live-outs, except for the entry block, where 64 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 65 /// function for a block assigns an expression for a DebugVariable to be "True" 66 /// if a DBG_VALUE in the block specifies it; "False" if the location is 67 /// clobbered; or the live-in value if it is unaffected by the block. We 68 /// visit each block in reverse post order until a fixedpoint is reached. The 69 /// solution produced is maximal. 70 /// 71 /// Intuitively, we start by assuming that every expression / variable location 72 /// is at least "True", and then propagate "False" from the entry block and any 73 /// clobbers until there are no more changes to make. This gives us an accurate 74 /// solution because all incorrect locations will have a "False" propagated into 75 /// them. It also gives us a solution that copes well with loops by assuming 76 /// that variable locations are live-through every loop, and then removing those 77 /// that are not through dataflow. 78 /// 79 /// Within LiveDebugValues: each variable location is represented by a 80 /// VarLoc object that identifies the source variable, the set of 81 /// machine-locations that currently describe it (a single location for 82 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 83 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 84 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 85 /// corresponds to one of the VarLoc's machine-locations and can be used to 86 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 87 /// locations, the dataflow analysis in this pass identifies locations by their 88 /// indices in the VarLocMap, meaning all the variable locations in a block can 89 /// be described by a sparse vector of VarLocMap indicies. 90 /// 91 /// All the storage for the dataflow analysis is local to the ExtendRanges 92 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 93 /// in and out lattice values for each block. "OpenRanges" maintains a list of 94 /// variable locations and, with the "process" method, evaluates the transfer 95 /// function of each block. "flushPendingLocs" installs debug value instructions 96 /// for each live-in location at the start of blocks, while "Transfers" records 97 /// transfers of values between machine-locations. 98 /// 99 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 100 /// implementation. Instead, unvisited blocks implicitly have all lattice 101 /// values set as "Unknown". After being visited, there will be path back to 102 /// the entry block where the lattice value is "False", and as the transfer 103 /// function cannot make new "Unknown" locations, there are no scenarios where 104 /// a block can have an "Unknown" location after being visited. Similarly, we 105 /// don't enumerate all possible variable locations before exploring the 106 /// function: when a new location is discovered, all blocks previously explored 107 /// were implicitly "False" but unrecorded, and become explicitly "False" when 108 /// a new VarLoc is created with its bit not set in predecessor InLocs or 109 /// OutLocs. 110 /// 111 //===----------------------------------------------------------------------===// 112 113 #include "LiveDebugValues.h" 114 115 #include "llvm/ADT/CoalescingBitVector.h" 116 #include "llvm/ADT/DenseMap.h" 117 #include "llvm/ADT/PostOrderIterator.h" 118 #include "llvm/ADT/SmallPtrSet.h" 119 #include "llvm/ADT/SmallSet.h" 120 #include "llvm/ADT/SmallVector.h" 121 #include "llvm/ADT/Statistic.h" 122 #include "llvm/BinaryFormat/Dwarf.h" 123 #include "llvm/CodeGen/LexicalScopes.h" 124 #include "llvm/CodeGen/MachineBasicBlock.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineMemOperand.h" 129 #include "llvm/CodeGen/MachineOperand.h" 130 #include "llvm/CodeGen/PseudoSourceValue.h" 131 #include "llvm/CodeGen/TargetFrameLowering.h" 132 #include "llvm/CodeGen/TargetInstrInfo.h" 133 #include "llvm/CodeGen/TargetLowering.h" 134 #include "llvm/CodeGen/TargetPassConfig.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/Config/llvm-config.h" 138 #include "llvm/IR/DebugInfoMetadata.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCRegisterInfo.h" 142 #include "llvm/Support/Casting.h" 143 #include "llvm/Support/Debug.h" 144 #include "llvm/Support/TypeSize.h" 145 #include "llvm/Support/raw_ostream.h" 146 #include "llvm/Target/TargetMachine.h" 147 #include <algorithm> 148 #include <cassert> 149 #include <cstdint> 150 #include <functional> 151 #include <map> 152 #include <optional> 153 #include <queue> 154 #include <tuple> 155 #include <utility> 156 #include <vector> 157 158 using namespace llvm; 159 160 #define DEBUG_TYPE "livedebugvalues" 161 162 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 163 164 /// If \p Op is a stack or frame register return true, otherwise return false. 165 /// This is used to avoid basing the debug entry values on the registers, since 166 /// we do not support it at the moment. 167 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 168 const MachineInstr &MI, 169 const TargetRegisterInfo *TRI) { 170 if (!Op.isReg()) 171 return false; 172 173 const MachineFunction *MF = MI.getParent()->getParent(); 174 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 175 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 176 Register FP = TRI->getFrameRegister(*MF); 177 Register Reg = Op.getReg(); 178 179 return Reg && Reg != SP && Reg != FP; 180 } 181 182 namespace { 183 184 // Max out the number of statically allocated elements in DefinedRegsSet, as 185 // this prevents fallback to std::set::count() operations. 186 using DefinedRegsSet = SmallSet<Register, 32>; 187 188 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 189 // that represent Entry Values; every VarLoc in the set will also appear 190 // exactly once at Location=0. 191 // As a result, each VarLoc may appear more than once in this "set", but each 192 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 193 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 194 // is the set of all VarLocs. 195 using VarLocSet = CoalescingBitVector<uint64_t>; 196 197 /// A type-checked pair of {Register Location (or 0), Index}, used to index 198 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 199 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 200 /// type-checker helps ensure that the conversions aren't lossy. 201 /// 202 /// Why encode a location /into/ the VarLocMap index? This makes it possible 203 /// to find the open VarLocs killed by a register def very quickly. This is a 204 /// performance-critical operation for LiveDebugValues. 205 struct LocIndex { 206 using u32_location_t = uint32_t; 207 using u32_index_t = uint32_t; 208 209 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 210 // \ref MCRegister), so we have plenty of range left 211 // here to encode non-register locations. 212 u32_index_t Index; 213 214 /// The location that has an entry for every VarLoc in the map. 215 static constexpr u32_location_t kUniversalLocation = 0; 216 217 /// The first location that is reserved for VarLocs with locations of kind 218 /// RegisterKind. 219 static constexpr u32_location_t kFirstRegLocation = 1; 220 221 /// The first location greater than 0 that is not reserved for VarLocs with 222 /// locations of kind RegisterKind. 223 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 224 225 /// A special location reserved for VarLocs with locations of kind 226 /// SpillLocKind. 227 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 228 229 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 230 /// EntryValueCopyBackupKind. 231 static constexpr u32_location_t kEntryValueBackupLocation = 232 kFirstInvalidRegLocation + 1; 233 234 /// A special location reserved for VarLocs with locations of kind 235 /// WasmLocKind. 236 /// TODO Placing all Wasm target index locations in this single kWasmLocation 237 /// may cause slowdown in compilation time in very large functions. Consider 238 /// giving a each target index/offset pair its own u32_location_t if this 239 /// becomes a problem. 240 static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; 241 242 LocIndex(u32_location_t Location, u32_index_t Index) 243 : Location(Location), Index(Index) {} 244 245 uint64_t getAsRawInteger() const { 246 return (static_cast<uint64_t>(Location) << 32) | Index; 247 } 248 249 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 250 static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t), 251 "Cannot convert raw integer to LocIndex"); 252 return {static_cast<u32_location_t>(ID >> 32), 253 static_cast<u32_index_t>(ID)}; 254 } 255 256 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 257 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 258 static uint64_t rawIndexForReg(Register Reg) { 259 return LocIndex(Reg, 0).getAsRawInteger(); 260 } 261 262 /// Return a range covering all set indices in the interval reserved for 263 /// \p Location in \p Set. 264 static auto indexRangeForLocation(const VarLocSet &Set, 265 u32_location_t Location) { 266 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 267 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 268 return Set.half_open_range(Start, End); 269 } 270 }; 271 272 // Simple Set for storing all the VarLoc Indices at a Location bucket. 273 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 274 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 275 // appear in any two of these, as each VarLoc appears at most once in any 276 // Location bucket. 277 using LocIndices = SmallVector<LocIndex, 2>; 278 279 class VarLocBasedLDV : public LDVImpl { 280 private: 281 const TargetRegisterInfo *TRI; 282 const TargetInstrInfo *TII; 283 const TargetFrameLowering *TFI; 284 TargetPassConfig *TPC; 285 BitVector CalleeSavedRegs; 286 LexicalScopes LS; 287 VarLocSet::Allocator Alloc; 288 289 const MachineInstr *LastNonDbgMI; 290 291 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 292 293 using FragmentInfo = DIExpression::FragmentInfo; 294 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; 295 296 /// A pair of debug variable and value location. 297 struct VarLoc { 298 // The location at which a spilled variable resides. It consists of a 299 // register and an offset. 300 struct SpillLoc { 301 unsigned SpillBase; 302 StackOffset SpillOffset; 303 bool operator==(const SpillLoc &Other) const { 304 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 305 } 306 bool operator!=(const SpillLoc &Other) const { 307 return !(*this == Other); 308 } 309 }; 310 311 // Target indices used for wasm-specific locations. 312 struct WasmLoc { 313 // One of TargetIndex values defined in WebAssembly.h. We deal with 314 // local-related TargetIndex in this analysis (TI_LOCAL and 315 // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled 316 // separately WebAssemblyDebugFixup pass, and we don't associate debug 317 // info with values in global operands (TI_GLOBAL_RELOC) at the moment. 318 int Index; 319 int64_t Offset; 320 bool operator==(const WasmLoc &Other) const { 321 return Index == Other.Index && Offset == Other.Offset; 322 } 323 bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } 324 }; 325 326 /// Identity of the variable at this location. 327 const DebugVariable Var; 328 329 /// The expression applied to this location. 330 const DIExpression *Expr; 331 332 /// DBG_VALUE to clone var/expr information from if this location 333 /// is moved. 334 const MachineInstr &MI; 335 336 enum class MachineLocKind { 337 InvalidKind = 0, 338 RegisterKind, 339 SpillLocKind, 340 ImmediateKind, 341 WasmLocKind 342 }; 343 344 enum class EntryValueLocKind { 345 NonEntryValueKind = 0, 346 EntryValueKind, 347 EntryValueBackupKind, 348 EntryValueCopyBackupKind 349 } EVKind = EntryValueLocKind::NonEntryValueKind; 350 351 /// The value location. Stored separately to avoid repeatedly 352 /// extracting it from MI. 353 union MachineLocValue { 354 uint64_t RegNo; 355 SpillLoc SpillLocation; 356 uint64_t Hash; 357 int64_t Immediate; 358 const ConstantFP *FPImm; 359 const ConstantInt *CImm; 360 WasmLoc WasmLocation; 361 MachineLocValue() : Hash(0) {} 362 }; 363 364 /// A single machine location; its Kind is either a register, spill 365 /// location, or immediate value. 366 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 367 /// single MachineLoc of RegisterKind. 368 struct MachineLoc { 369 MachineLocKind Kind; 370 MachineLocValue Value; 371 bool operator==(const MachineLoc &Other) const { 372 if (Kind != Other.Kind) 373 return false; 374 switch (Kind) { 375 case MachineLocKind::SpillLocKind: 376 return Value.SpillLocation == Other.Value.SpillLocation; 377 case MachineLocKind::WasmLocKind: 378 return Value.WasmLocation == Other.Value.WasmLocation; 379 case MachineLocKind::RegisterKind: 380 case MachineLocKind::ImmediateKind: 381 return Value.Hash == Other.Value.Hash; 382 default: 383 llvm_unreachable("Invalid kind"); 384 } 385 } 386 bool operator<(const MachineLoc &Other) const { 387 switch (Kind) { 388 case MachineLocKind::SpillLocKind: 389 return std::make_tuple( 390 Kind, Value.SpillLocation.SpillBase, 391 Value.SpillLocation.SpillOffset.getFixed(), 392 Value.SpillLocation.SpillOffset.getScalable()) < 393 std::make_tuple( 394 Other.Kind, Other.Value.SpillLocation.SpillBase, 395 Other.Value.SpillLocation.SpillOffset.getFixed(), 396 Other.Value.SpillLocation.SpillOffset.getScalable()); 397 case MachineLocKind::WasmLocKind: 398 return std::make_tuple(Kind, Value.WasmLocation.Index, 399 Value.WasmLocation.Offset) < 400 std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index, 401 Other.Value.WasmLocation.Offset); 402 case MachineLocKind::RegisterKind: 403 case MachineLocKind::ImmediateKind: 404 return std::tie(Kind, Value.Hash) < 405 std::tie(Other.Kind, Other.Value.Hash); 406 default: 407 llvm_unreachable("Invalid kind"); 408 } 409 } 410 }; 411 412 /// The set of machine locations used to determine the variable's value, in 413 /// conjunction with Expr. Initially populated with MI's debug operands, 414 /// but may be transformed independently afterwards. 415 SmallVector<MachineLoc, 8> Locs; 416 /// Used to map the index of each location in Locs back to the index of its 417 /// original debug operand in MI. Used when multiple location operands are 418 /// coalesced and the original MI's operands need to be accessed while 419 /// emitting a debug value. 420 SmallVector<unsigned, 8> OrigLocMap; 421 422 VarLoc(const MachineInstr &MI) 423 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 424 MI.getDebugLoc()->getInlinedAt()), 425 Expr(MI.getDebugExpression()), MI(MI) { 426 assert(MI.isDebugValue() && "not a DBG_VALUE"); 427 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 428 "malformed DBG_VALUE"); 429 for (const MachineOperand &Op : MI.debug_operands()) { 430 MachineLoc ML = GetLocForOp(Op); 431 auto It = find(Locs, ML); 432 if (It == Locs.end()) { 433 Locs.push_back(ML); 434 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 435 } else { 436 // ML duplicates an element in Locs; replace references to Op 437 // with references to the duplicating element. 438 unsigned OpIdx = Locs.size(); 439 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 440 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 441 } 442 } 443 444 // We create the debug entry values from the factory functions rather 445 // than from this ctor. 446 assert(EVKind != EntryValueLocKind::EntryValueKind && 447 !isEntryBackupLoc()); 448 } 449 450 static MachineLoc GetLocForOp(const MachineOperand &Op) { 451 MachineLocKind Kind; 452 MachineLocValue Loc; 453 if (Op.isReg()) { 454 Kind = MachineLocKind::RegisterKind; 455 Loc.RegNo = Op.getReg(); 456 } else if (Op.isImm()) { 457 Kind = MachineLocKind::ImmediateKind; 458 Loc.Immediate = Op.getImm(); 459 } else if (Op.isFPImm()) { 460 Kind = MachineLocKind::ImmediateKind; 461 Loc.FPImm = Op.getFPImm(); 462 } else if (Op.isCImm()) { 463 Kind = MachineLocKind::ImmediateKind; 464 Loc.CImm = Op.getCImm(); 465 } else if (Op.isTargetIndex()) { 466 Kind = MachineLocKind::WasmLocKind; 467 Loc.WasmLocation = {Op.getIndex(), Op.getOffset()}; 468 } else 469 llvm_unreachable("Invalid Op kind for MachineLoc."); 470 return {Kind, Loc}; 471 } 472 473 /// Take the variable and machine-location in DBG_VALUE MI, and build an 474 /// entry location using the given expression. 475 static VarLoc CreateEntryLoc(const MachineInstr &MI, 476 const DIExpression *EntryExpr, Register Reg) { 477 VarLoc VL(MI); 478 assert(VL.Locs.size() == 1 && 479 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 480 VL.EVKind = EntryValueLocKind::EntryValueKind; 481 VL.Expr = EntryExpr; 482 VL.Locs[0].Value.RegNo = Reg; 483 return VL; 484 } 485 486 /// Take the variable and machine-location from the DBG_VALUE (from the 487 /// function entry), and build an entry value backup location. The backup 488 /// location will turn into the normal location if the backup is valid at 489 /// the time of the primary location clobbering. 490 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 491 const DIExpression *EntryExpr) { 492 VarLoc VL(MI); 493 assert(VL.Locs.size() == 1 && 494 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 495 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 496 VL.Expr = EntryExpr; 497 return VL; 498 } 499 500 /// Take the variable and machine-location from the DBG_VALUE (from the 501 /// function entry), and build a copy of an entry value backup location by 502 /// setting the register location to NewReg. 503 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 504 const DIExpression *EntryExpr, 505 Register NewReg) { 506 VarLoc VL(MI); 507 assert(VL.Locs.size() == 1 && 508 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 509 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 510 VL.Expr = EntryExpr; 511 VL.Locs[0].Value.RegNo = NewReg; 512 return VL; 513 } 514 515 /// Copy the register location in DBG_VALUE MI, updating the register to 516 /// be NewReg. 517 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 518 Register NewReg) { 519 VarLoc VL = OldVL; 520 for (MachineLoc &ML : VL.Locs) 521 if (ML == OldML) { 522 ML.Kind = MachineLocKind::RegisterKind; 523 ML.Value.RegNo = NewReg; 524 return VL; 525 } 526 llvm_unreachable("Should have found OldML in new VarLoc."); 527 } 528 529 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 530 /// locating it in the specified spill location. 531 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 532 unsigned SpillBase, StackOffset SpillOffset) { 533 VarLoc VL = OldVL; 534 for (MachineLoc &ML : VL.Locs) 535 if (ML == OldML) { 536 ML.Kind = MachineLocKind::SpillLocKind; 537 ML.Value.SpillLocation = {SpillBase, SpillOffset}; 538 return VL; 539 } 540 llvm_unreachable("Should have found OldML in new VarLoc."); 541 } 542 543 /// Create a DBG_VALUE representing this VarLoc in the given function. 544 /// Copies variable-specific information such as DILocalVariable and 545 /// inlining information from the original DBG_VALUE instruction, which may 546 /// have been several transfers ago. 547 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 548 assert(!isEntryBackupLoc() && 549 "Tried to produce DBG_VALUE for backup VarLoc"); 550 const DebugLoc &DbgLoc = MI.getDebugLoc(); 551 bool Indirect = MI.isIndirectDebugValue(); 552 const auto &IID = MI.getDesc(); 553 const DILocalVariable *Var = MI.getDebugVariable(); 554 NumInserted++; 555 556 const DIExpression *DIExpr = Expr; 557 SmallVector<MachineOperand, 8> MOs; 558 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 559 MachineLocKind LocKind = Locs[I].Kind; 560 MachineLocValue Loc = Locs[I].Value; 561 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 562 switch (LocKind) { 563 case MachineLocKind::RegisterKind: 564 // An entry value is a register location -- but with an updated 565 // expression. The register location of such DBG_VALUE is always the 566 // one from the entry DBG_VALUE, it does not matter if the entry value 567 // was copied in to another register due to some optimizations. 568 // Non-entry value register locations are like the source 569 // DBG_VALUE, but with the register number from this VarLoc. 570 MOs.push_back(MachineOperand::CreateReg( 571 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 572 : Register(Loc.RegNo), 573 false)); 574 break; 575 case MachineLocKind::SpillLocKind: { 576 // Spills are indirect DBG_VALUEs, with a base register and offset. 577 // Use the original DBG_VALUEs expression to build the spilt location 578 // on top of. FIXME: spill locations created before this pass runs 579 // are not recognized, and not handled here. 580 unsigned Base = Loc.SpillLocation.SpillBase; 581 auto *TRI = MF.getSubtarget().getRegisterInfo(); 582 if (MI.isNonListDebugValue()) { 583 auto Deref = Indirect ? DIExpression::DerefAfter : 0; 584 DIExpr = TRI->prependOffsetExpression( 585 DIExpr, DIExpression::ApplyOffset | Deref, 586 Loc.SpillLocation.SpillOffset); 587 Indirect = true; 588 } else { 589 SmallVector<uint64_t, 4> Ops; 590 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 591 Ops.push_back(dwarf::DW_OP_deref); 592 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 593 } 594 MOs.push_back(MachineOperand::CreateReg(Base, false)); 595 break; 596 } 597 case MachineLocKind::ImmediateKind: { 598 MOs.push_back(Orig); 599 break; 600 } 601 case MachineLocKind::WasmLocKind: { 602 MOs.push_back(Orig); 603 break; 604 } 605 case MachineLocKind::InvalidKind: 606 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 607 } 608 } 609 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 610 } 611 612 /// Is the Loc field a constant or constant object? 613 bool isConstant(MachineLocKind Kind) const { 614 return Kind == MachineLocKind::ImmediateKind; 615 } 616 617 /// Check if the Loc field is an entry backup location. 618 bool isEntryBackupLoc() const { 619 return EVKind == EntryValueLocKind::EntryValueBackupKind || 620 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 621 } 622 623 /// If this variable is described by register \p Reg holding the entry 624 /// value, return true. 625 bool isEntryValueBackupReg(Register Reg) const { 626 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 627 } 628 629 /// If this variable is described by register \p Reg holding a copy of the 630 /// entry value, return true. 631 bool isEntryValueCopyBackupReg(Register Reg) const { 632 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 633 usesReg(Reg); 634 } 635 636 /// If this variable is described in whole or part by \p Reg, return true. 637 bool usesReg(Register Reg) const { 638 MachineLoc RegML; 639 RegML.Kind = MachineLocKind::RegisterKind; 640 RegML.Value.RegNo = Reg; 641 return is_contained(Locs, RegML); 642 } 643 644 /// If this variable is described in whole or part by \p Reg, return true. 645 unsigned getRegIdx(Register Reg) const { 646 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 647 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 648 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) 649 return Idx; 650 llvm_unreachable("Could not find given Reg in Locs"); 651 } 652 653 /// If this variable is described in whole or part by 1 or more registers, 654 /// add each of them to \p Regs and return true. 655 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 656 bool AnyRegs = false; 657 for (const auto &Loc : Locs) 658 if (Loc.Kind == MachineLocKind::RegisterKind) { 659 Regs.push_back(Loc.Value.RegNo); 660 AnyRegs = true; 661 } 662 return AnyRegs; 663 } 664 665 bool containsSpillLocs() const { 666 return any_of(Locs, [](VarLoc::MachineLoc ML) { 667 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 668 }); 669 } 670 671 /// If this variable is described in whole or part by \p SpillLocation, 672 /// return true. 673 bool usesSpillLoc(SpillLoc SpillLocation) const { 674 MachineLoc SpillML; 675 SpillML.Kind = MachineLocKind::SpillLocKind; 676 SpillML.Value.SpillLocation = SpillLocation; 677 return is_contained(Locs, SpillML); 678 } 679 680 /// If this variable is described in whole or part by \p SpillLocation, 681 /// return the index . 682 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 683 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 684 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 685 Locs[Idx].Value.SpillLocation == SpillLocation) 686 return Idx; 687 llvm_unreachable("Could not find given SpillLoc in Locs"); 688 } 689 690 bool containsWasmLocs() const { 691 return any_of(Locs, [](VarLoc::MachineLoc ML) { 692 return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; 693 }); 694 } 695 696 /// If this variable is described in whole or part by \p WasmLocation, 697 /// return true. 698 bool usesWasmLoc(WasmLoc WasmLocation) const { 699 MachineLoc WasmML; 700 WasmML.Kind = MachineLocKind::WasmLocKind; 701 WasmML.Value.WasmLocation = WasmLocation; 702 return is_contained(Locs, WasmML); 703 } 704 705 /// Determine whether the lexical scope of this value's debug location 706 /// dominates MBB. 707 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 708 return LS.dominates(MI.getDebugLoc().get(), &MBB); 709 } 710 711 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 712 // TRI and TII can be null. 713 void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, 714 raw_ostream &Out = dbgs()) const { 715 Out << "VarLoc("; 716 for (const MachineLoc &MLoc : Locs) { 717 if (Locs.begin() != &MLoc) 718 Out << ", "; 719 switch (MLoc.Kind) { 720 case MachineLocKind::RegisterKind: 721 Out << printReg(MLoc.Value.RegNo, TRI); 722 break; 723 case MachineLocKind::SpillLocKind: 724 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 725 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 726 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 727 << "x vscale" 728 << "]"; 729 break; 730 case MachineLocKind::ImmediateKind: 731 Out << MLoc.Value.Immediate; 732 break; 733 case MachineLocKind::WasmLocKind: { 734 if (TII) { 735 auto Indices = TII->getSerializableTargetIndices(); 736 auto Found = 737 find_if(Indices, [&](const std::pair<int, const char *> &I) { 738 return I.first == MLoc.Value.WasmLocation.Index; 739 }); 740 assert(Found != Indices.end()); 741 Out << Found->second; 742 if (MLoc.Value.WasmLocation.Offset > 0) 743 Out << " + " << MLoc.Value.WasmLocation.Offset; 744 } else { 745 Out << "WasmLoc"; 746 } 747 break; 748 } 749 case MachineLocKind::InvalidKind: 750 llvm_unreachable("Invalid VarLoc in dump method"); 751 } 752 } 753 754 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 755 if (Var.getInlinedAt()) 756 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 757 else 758 Out << "(null))"; 759 760 if (isEntryBackupLoc()) 761 Out << " (backup loc)\n"; 762 else 763 Out << "\n"; 764 } 765 #endif 766 767 bool operator==(const VarLoc &Other) const { 768 return std::tie(EVKind, Var, Expr, Locs) == 769 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 770 } 771 772 /// This operator guarantees that VarLocs are sorted by Variable first. 773 bool operator<(const VarLoc &Other) const { 774 return std::tie(Var, EVKind, Locs, Expr) < 775 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 776 } 777 }; 778 779 #ifndef NDEBUG 780 using VarVec = SmallVector<VarLoc, 32>; 781 #endif 782 783 /// VarLocMap is used for two things: 784 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 785 /// virtually insert a VarLoc into a VarLocSet. 786 /// 2) Given a LocIndex, look up the unique associated VarLoc. 787 class VarLocMap { 788 /// Map a VarLoc to an index within the vector reserved for its location 789 /// within Loc2Vars. 790 std::map<VarLoc, LocIndices> Var2Indices; 791 792 /// Map a location to a vector which holds VarLocs which live in that 793 /// location. 794 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 795 796 public: 797 /// Retrieve LocIndices for \p VL. 798 LocIndices insert(const VarLoc &VL) { 799 LocIndices &Indices = Var2Indices[VL]; 800 // If Indices is not empty, VL is already in the map. 801 if (!Indices.empty()) 802 return Indices; 803 SmallVector<LocIndex::u32_location_t, 4> Locations; 804 // LocIndices are determined by EVKind and MLs; each Register has a 805 // unique location, while all SpillLocs use a single bucket, and any EV 806 // VarLocs use only the Backup bucket or none at all (except the 807 // compulsory entry at the universal location index). LocIndices will 808 // always have an index at the universal location index as the last index. 809 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 810 VL.getDescribingRegs(Locations); 811 assert(all_of(Locations, 812 [](auto RegNo) { 813 return RegNo < LocIndex::kFirstInvalidRegLocation; 814 }) && 815 "Physreg out of range?"); 816 if (VL.containsSpillLocs()) 817 Locations.push_back(LocIndex::kSpillLocation); 818 if (VL.containsWasmLocs()) 819 Locations.push_back(LocIndex::kWasmLocation); 820 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 821 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 822 Locations.push_back(Loc); 823 } 824 Locations.push_back(LocIndex::kUniversalLocation); 825 for (LocIndex::u32_location_t Location : Locations) { 826 auto &Vars = Loc2Vars[Location]; 827 Indices.push_back( 828 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 829 Vars.push_back(VL); 830 } 831 return Indices; 832 } 833 834 LocIndices getAllIndices(const VarLoc &VL) const { 835 auto IndIt = Var2Indices.find(VL); 836 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 837 return IndIt->second; 838 } 839 840 /// Retrieve the unique VarLoc associated with \p ID. 841 const VarLoc &operator[](LocIndex ID) const { 842 auto LocIt = Loc2Vars.find(ID.Location); 843 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 844 return LocIt->second[ID.Index]; 845 } 846 }; 847 848 using VarLocInMBB = 849 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 850 struct TransferDebugPair { 851 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 852 LocIndex LocationID; ///< Location number for the transfer dest. 853 }; 854 using TransferMap = SmallVector<TransferDebugPair, 4>; 855 // Types for recording Entry Var Locations emitted by a single MachineInstr, 856 // as well as recording MachineInstr which last defined a register. 857 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; 858 using RegDefToInstMap = DenseMap<Register, MachineInstr *>; 859 860 // Types for recording sets of variable fragments that overlap. For a given 861 // local variable, we record all other fragments of that variable that could 862 // overlap it, to reduce search time. 863 using FragmentOfVar = 864 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 865 using OverlapMap = 866 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 867 868 // Helper while building OverlapMap, a map of all fragments seen for a given 869 // DILocalVariable. 870 using VarToFragments = 871 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 872 873 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 874 /// to \p Collected once, in order of insertion into \p VarLocIDs. 875 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 876 const VarLocSet &CollectFrom, 877 const VarLocMap &VarLocIDs); 878 879 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 880 /// by \p CollectFrom. 881 void getUsedRegs(const VarLocSet &CollectFrom, 882 SmallVectorImpl<Register> &UsedRegs) const; 883 884 /// This holds the working set of currently open ranges. For fast 885 /// access, this is done both as a set of VarLocIDs, and a map of 886 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 887 /// previous open ranges for the same variable. In addition, we keep 888 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 889 /// methods act differently depending on whether a VarLoc is primary 890 /// location or backup one. In the case the VarLoc is backup location 891 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 892 /// we perform the operation on the Vars. 893 class OpenRangesSet { 894 VarLocSet::Allocator &Alloc; 895 VarLocSet VarLocs; 896 // Map the DebugVariable to recent primary location ID. 897 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 898 // Map the DebugVariable to recent backup location ID. 899 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 900 OverlapMap &OverlappingFragments; 901 902 public: 903 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 904 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 905 906 const VarLocSet &getVarLocs() const { return VarLocs; } 907 908 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 909 // This method is needed to get every VarLoc once, as each VarLoc may have 910 // multiple indices in a VarLocMap (corresponding to each applicable 911 // location), but all VarLocs appear exactly once at the universal location 912 // index. 913 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 914 const VarLocMap &VarLocIDs) const { 915 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 916 } 917 918 /// Terminate all open ranges for VL.Var by removing it from the set. 919 void erase(const VarLoc &VL); 920 921 /// Terminate all open ranges listed as indices in \c KillSet with 922 /// \c Location by removing them from the set. 923 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 924 LocIndex::u32_location_t Location); 925 926 /// Insert a new range into the set. 927 void insert(LocIndices VarLocIDs, const VarLoc &VL); 928 929 /// Insert a set of ranges. 930 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 931 932 std::optional<LocIndices> getEntryValueBackup(DebugVariable Var); 933 934 /// Empty the set. 935 void clear() { 936 VarLocs.clear(); 937 Vars.clear(); 938 EntryValuesBackupVars.clear(); 939 } 940 941 /// Return whether the set is empty or not. 942 bool empty() const { 943 assert(Vars.empty() == EntryValuesBackupVars.empty() && 944 Vars.empty() == VarLocs.empty() && 945 "open ranges are inconsistent"); 946 return VarLocs.empty(); 947 } 948 949 /// Get an empty range of VarLoc IDs. 950 auto getEmptyVarLocRange() const { 951 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 952 getVarLocs().end()); 953 } 954 955 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 956 auto getRegisterVarLocs(Register Reg) const { 957 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 958 } 959 960 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 961 auto getSpillVarLocs() const { 962 return LocIndex::indexRangeForLocation(getVarLocs(), 963 LocIndex::kSpillLocation); 964 } 965 966 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 967 /// EntryValueCopyBackupKind. 968 auto getEntryValueBackupVarLocs() const { 969 return LocIndex::indexRangeForLocation( 970 getVarLocs(), LocIndex::kEntryValueBackupLocation); 971 } 972 973 /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. 974 auto getWasmVarLocs() const { 975 return LocIndex::indexRangeForLocation(getVarLocs(), 976 LocIndex::kWasmLocation); 977 } 978 }; 979 980 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 981 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 982 /// VarLoc correspond to entries in the universal location bucket, which every 983 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 984 static void collectIDsForRegs(VarLocsInRange &Collected, 985 const DefinedRegsSet &Regs, 986 const VarLocSet &CollectFrom, 987 const VarLocMap &VarLocIDs); 988 989 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 990 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 991 if (!VLS) 992 VLS = std::make_unique<VarLocSet>(Alloc); 993 return *VLS; 994 } 995 996 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 997 const VarLocInMBB &Locs) const { 998 auto It = Locs.find(MBB); 999 assert(It != Locs.end() && "MBB not in map"); 1000 return *It->second; 1001 } 1002 1003 /// Tests whether this instruction is a spill to a stack location. 1004 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1005 1006 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1007 /// criteria to make this decision: 1008 /// - Is this instruction a store to a spill slot? 1009 /// - Is there a register operand that is both used and killed? 1010 /// TODO: Store optimization can fold spills into other stores (including 1011 /// other spills). We do not handle this yet (more than one memory operand). 1012 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1013 Register &Reg); 1014 1015 /// Returns true if the given machine instruction is a debug value which we 1016 /// can emit entry values for. 1017 /// 1018 /// Currently, we generate debug entry values only for parameters that are 1019 /// unmodified throughout the function and located in a register. 1020 bool isEntryValueCandidate(const MachineInstr &MI, 1021 const DefinedRegsSet &Regs) const; 1022 1023 /// If a given instruction is identified as a spill, return the spill location 1024 /// and set \p Reg to the spilled register. 1025 std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1026 MachineFunction *MF, 1027 Register &Reg); 1028 /// Given a spill instruction, extract the register and offset used to 1029 /// address the spill location in a target independent way. 1030 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1031 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 1032 TransferMap &Transfers, VarLocMap &VarLocIDs, 1033 LocIndex OldVarID, TransferKind Kind, 1034 const VarLoc::MachineLoc &OldLoc, 1035 Register NewReg = Register()); 1036 1037 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 1038 VarLocMap &VarLocIDs, 1039 InstToEntryLocMap &EntryValTransfers, 1040 RegDefToInstMap &RegSetInstrs); 1041 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 1042 VarLocMap &VarLocIDs, TransferMap &Transfers); 1043 void cleanupEntryValueTransfers(const MachineInstr *MI, 1044 OpenRangesSet &OpenRanges, 1045 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 1046 InstToEntryLocMap &EntryValTransfers); 1047 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 1048 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 1049 InstToEntryLocMap &EntryValTransfers, 1050 RegDefToInstMap &RegSetInstrs); 1051 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 1052 VarLocMap &VarLocIDs, 1053 InstToEntryLocMap &EntryValTransfers, 1054 VarLocsInRange &KillSet); 1055 void recordEntryValue(const MachineInstr &MI, 1056 const DefinedRegsSet &DefinedRegs, 1057 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 1058 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 1059 VarLocMap &VarLocIDs, TransferMap &Transfers); 1060 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 1061 VarLocMap &VarLocIDs, 1062 InstToEntryLocMap &EntryValTransfers, 1063 RegDefToInstMap &RegSetInstrs); 1064 void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 1065 VarLocMap &VarLocIDs); 1066 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 1067 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 1068 1069 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1070 VarLocMap &VarLocIDs, TransferMap &Transfers, 1071 InstToEntryLocMap &EntryValTransfers, 1072 RegDefToInstMap &RegSetInstrs); 1073 1074 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 1075 OverlapMap &OLapMap); 1076 1077 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1078 const VarLocMap &VarLocIDs, 1079 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1080 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1081 1082 /// Create DBG_VALUE insts for inlocs that have been propagated but 1083 /// had their instruction creation deferred. 1084 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1085 1086 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1087 TargetPassConfig *TPC, unsigned InputBBLimit, 1088 unsigned InputDbgValLimit) override; 1089 1090 public: 1091 /// Default construct and initialize the pass. 1092 VarLocBasedLDV(); 1093 1094 ~VarLocBasedLDV(); 1095 1096 /// Print to ostream with a message. 1097 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1098 const VarLocMap &VarLocIDs, const char *msg, 1099 raw_ostream &Out) const; 1100 }; 1101 1102 } // end anonymous namespace 1103 1104 //===----------------------------------------------------------------------===// 1105 // Implementation 1106 //===----------------------------------------------------------------------===// 1107 1108 VarLocBasedLDV::VarLocBasedLDV() = default; 1109 1110 VarLocBasedLDV::~VarLocBasedLDV() = default; 1111 1112 /// Erase a variable from the set of open ranges, and additionally erase any 1113 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1114 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1115 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1116 /// location, erase the variable from the Vars set. 1117 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1118 // Erasure helper. 1119 auto DoErase = [&VL, this](DebugVariable VarToErase) { 1120 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1121 auto It = EraseFrom->find(VarToErase); 1122 if (It != EraseFrom->end()) { 1123 LocIndices IDs = It->second; 1124 for (LocIndex ID : IDs) 1125 VarLocs.reset(ID.getAsRawInteger()); 1126 EraseFrom->erase(It); 1127 } 1128 }; 1129 1130 DebugVariable Var = VL.Var; 1131 1132 // Erase the variable/fragment that ends here. 1133 DoErase(Var); 1134 1135 // Extract the fragment. Interpret an empty fragment as one that covers all 1136 // possible bits. 1137 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1138 1139 // There may be fragments that overlap the designated fragment. Look them up 1140 // in the pre-computed overlap map, and erase them too. 1141 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1142 if (MapIt != OverlappingFragments.end()) { 1143 for (auto Fragment : MapIt->second) { 1144 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1145 if (!DebugVariable::isDefaultFragment(Fragment)) 1146 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1147 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1148 } 1149 } 1150 } 1151 1152 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1153 const VarLocMap &VarLocIDs, 1154 LocIndex::u32_location_t Location) { 1155 VarLocSet RemoveSet(Alloc); 1156 for (LocIndex::u32_index_t ID : KillSet) { 1157 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1158 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1159 EraseFrom->erase(VL.Var); 1160 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1161 for (LocIndex ID : VLI) 1162 RemoveSet.set(ID.getAsRawInteger()); 1163 } 1164 VarLocs.intersectWithComplement(RemoveSet); 1165 } 1166 1167 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1168 const VarLocMap &Map) { 1169 VarLocsInRange UniqueVarLocIDs; 1170 DefinedRegsSet Regs; 1171 Regs.insert(LocIndex::kUniversalLocation); 1172 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1173 for (uint64_t ID : UniqueVarLocIDs) { 1174 LocIndex Idx = LocIndex::fromRawInteger(ID); 1175 const VarLoc &VarL = Map[Idx]; 1176 const LocIndices Indices = Map.getAllIndices(VarL); 1177 insert(Indices, VarL); 1178 } 1179 } 1180 1181 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1182 const VarLoc &VL) { 1183 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1184 for (LocIndex ID : VarLocIDs) 1185 VarLocs.set(ID.getAsRawInteger()); 1186 InsertInto->insert({VL.Var, VarLocIDs}); 1187 } 1188 1189 /// Return the Loc ID of an entry value backup location, if it exists for the 1190 /// variable. 1191 std::optional<LocIndices> 1192 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1193 auto It = EntryValuesBackupVars.find(Var); 1194 if (It != EntryValuesBackupVars.end()) 1195 return It->second; 1196 1197 return std::nullopt; 1198 } 1199 1200 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1201 const DefinedRegsSet &Regs, 1202 const VarLocSet &CollectFrom, 1203 const VarLocMap &VarLocIDs) { 1204 assert(!Regs.empty() && "Nothing to collect"); 1205 SmallVector<Register, 32> SortedRegs; 1206 append_range(SortedRegs, Regs); 1207 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1208 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1209 auto End = CollectFrom.end(); 1210 for (Register Reg : SortedRegs) { 1211 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1212 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1213 // live in Reg. 1214 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1215 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1216 It.advanceToLowerBound(FirstIndexForReg); 1217 1218 // Iterate through that half-open interval and collect all the set IDs. 1219 for (; It != End && *It < FirstInvalidIndex; ++It) { 1220 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1221 const VarLoc &VL = VarLocIDs[ItIdx]; 1222 LocIndices LI = VarLocIDs.getAllIndices(VL); 1223 // For now, the back index is always the universal location index. 1224 assert(LI.back().Location == LocIndex::kUniversalLocation && 1225 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1226 "the VarLocMap correctly?"); 1227 Collected.insert(LI.back().Index); 1228 } 1229 1230 if (It == End) 1231 return; 1232 } 1233 } 1234 1235 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1236 SmallVectorImpl<Register> &UsedRegs) const { 1237 // All register-based VarLocs are assigned indices greater than or equal to 1238 // FirstRegIndex. 1239 uint64_t FirstRegIndex = 1240 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1241 uint64_t FirstInvalidIndex = 1242 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1243 for (auto It = CollectFrom.find(FirstRegIndex), 1244 End = CollectFrom.find(FirstInvalidIndex); 1245 It != End;) { 1246 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1247 // which register and add it to UsedRegs. 1248 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1249 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1250 "Duplicate used reg"); 1251 UsedRegs.push_back(FoundReg); 1252 1253 // Skip to the next /set/ register. Note that this finds a lower bound, so 1254 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1255 // guaranteed to move on to the next register (or to end()). 1256 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1257 It.advanceToLowerBound(NextRegIndex); 1258 } 1259 } 1260 1261 //===----------------------------------------------------------------------===// 1262 // Debug Range Extension Implementation 1263 //===----------------------------------------------------------------------===// 1264 1265 #ifndef NDEBUG 1266 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1267 const VarLocInMBB &V, 1268 const VarLocMap &VarLocIDs, 1269 const char *msg, 1270 raw_ostream &Out) const { 1271 Out << '\n' << msg << '\n'; 1272 for (const MachineBasicBlock &BB : MF) { 1273 if (!V.count(&BB)) 1274 continue; 1275 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1276 if (L.empty()) 1277 continue; 1278 SmallVector<VarLoc, 32> VarLocs; 1279 collectAllVarLocs(VarLocs, L, VarLocIDs); 1280 Out << "MBB: " << BB.getNumber() << ":\n"; 1281 for (const VarLoc &VL : VarLocs) { 1282 Out << " Var: " << VL.Var.getVariable()->getName(); 1283 Out << " MI: "; 1284 VL.dump(TRI, TII, Out); 1285 } 1286 } 1287 Out << "\n"; 1288 } 1289 #endif 1290 1291 VarLocBasedLDV::VarLoc::SpillLoc 1292 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1293 assert(MI.hasOneMemOperand() && 1294 "Spill instruction does not have exactly one memory operand?"); 1295 auto MMOI = MI.memoperands_begin(); 1296 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1297 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1298 "Inconsistent memory operand in spill instruction"); 1299 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1300 const MachineBasicBlock *MBB = MI.getParent(); 1301 Register Reg; 1302 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1303 return {Reg, Offset}; 1304 } 1305 1306 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the 1307 /// Transfer, which uses the to-be-deleted \p EntryVL. 1308 void VarLocBasedLDV::cleanupEntryValueTransfers( 1309 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1310 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { 1311 if (EntryValTransfers.empty() || TRInst == nullptr) 1312 return; 1313 1314 auto TransRange = EntryValTransfers.equal_range(TRInst); 1315 for (auto &TDPair : llvm::make_range(TransRange.first, TransRange.second)) { 1316 const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; 1317 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == 1318 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, 1319 EmittedEV.Expr)) { 1320 OpenRanges.erase(EmittedEV); 1321 EntryValTransfers.erase(TRInst); 1322 break; 1323 } 1324 } 1325 } 1326 1327 /// Try to salvage the debug entry value if we encounter a new debug value 1328 /// describing the same parameter, otherwise stop tracking the value. Return 1329 /// true if we should stop tracking the entry value and do the cleanup of 1330 /// emitted Entry Value Transfers, otherwise return false. 1331 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1332 OpenRangesSet &OpenRanges, 1333 VarLocMap &VarLocIDs, 1334 const VarLoc &EntryVL, 1335 InstToEntryLocMap &EntryValTransfers, 1336 RegDefToInstMap &RegSetInstrs) { 1337 // Skip the DBG_VALUE which is the debug entry value itself. 1338 if (&MI == &EntryVL.MI) 1339 return; 1340 1341 // If the parameter's location is not register location, we can not track 1342 // the entry value any more. It doesn't have the TransferInst which defines 1343 // register, so no Entry Value Transfers have been emitted already. 1344 if (!MI.getDebugOperand(0).isReg()) 1345 return; 1346 1347 // Try to get non-debug instruction responsible for the DBG_VALUE. 1348 const MachineInstr *TransferInst = nullptr; 1349 Register Reg = MI.getDebugOperand(0).getReg(); 1350 if (Reg.isValid() && RegSetInstrs.contains(Reg)) 1351 TransferInst = RegSetInstrs.find(Reg)->second; 1352 1353 // Case of the parameter's DBG_VALUE at the start of entry MBB. 1354 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) 1355 return; 1356 1357 // If the debug expression from the DBG_VALUE is not empty, we can assume the 1358 // parameter's value has changed indicating that we should stop tracking its 1359 // entry value as well. 1360 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { 1361 // If the DBG_VALUE comes from a copy instruction that copies the entry 1362 // value, it means the parameter's value has not changed and we should be 1363 // able to use its entry value. 1364 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1365 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1366 // does not indicate the parameter modification.) 1367 auto DestSrc = TII->isCopyLikeInstr(*TransferInst); 1368 if (DestSrc) { 1369 const MachineOperand *SrcRegOp, *DestRegOp; 1370 SrcRegOp = DestSrc->Source; 1371 DestRegOp = DestSrc->Destination; 1372 if (Reg == DestRegOp->getReg()) { 1373 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1374 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1375 if (VL.isEntryValueCopyBackupReg(Reg) && 1376 // Entry Values should not be variadic. 1377 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1378 return; 1379 } 1380 } 1381 } 1382 } 1383 1384 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1385 MI.print(dbgs(), /*IsStandalone*/ false, 1386 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1387 /*AddNewLine*/ true, TII)); 1388 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, 1389 EntryValTransfers); 1390 OpenRanges.erase(EntryVL); 1391 } 1392 1393 /// End all previous ranges related to @MI and start a new range from @MI 1394 /// if it is a DBG_VALUE instr. 1395 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1396 OpenRangesSet &OpenRanges, 1397 VarLocMap &VarLocIDs, 1398 InstToEntryLocMap &EntryValTransfers, 1399 RegDefToInstMap &RegSetInstrs) { 1400 if (!MI.isDebugValue()) 1401 return; 1402 const DILocalVariable *Var = MI.getDebugVariable(); 1403 const DIExpression *Expr = MI.getDebugExpression(); 1404 const DILocation *DebugLoc = MI.getDebugLoc(); 1405 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1406 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1407 "Expected inlined-at fields to agree"); 1408 1409 DebugVariable V(Var, Expr, InlinedAt); 1410 1411 // Check if this DBG_VALUE indicates a parameter's value changing. 1412 // If that is the case, we should stop tracking its entry value. 1413 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1414 if (Var->isParameter() && EntryValBackupID) { 1415 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1416 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, 1417 RegSetInstrs); 1418 } 1419 1420 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1421 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1422 MO.isCImm() || MO.isTargetIndex(); 1423 })) { 1424 // Use normal VarLoc constructor for registers and immediates. 1425 VarLoc VL(MI); 1426 // End all previous ranges of VL.Var. 1427 OpenRanges.erase(VL); 1428 1429 LocIndices IDs = VarLocIDs.insert(VL); 1430 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1431 OpenRanges.insert(IDs, VL); 1432 } else if (MI.memoperands().size() > 0) { 1433 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1434 } else { 1435 // This must be an undefined location. If it has an open range, erase it. 1436 assert(MI.isUndefDebugValue() && 1437 "Unexpected non-undef DBG_VALUE encountered"); 1438 VarLoc VL(MI); 1439 OpenRanges.erase(VL); 1440 } 1441 } 1442 1443 // This should be removed later, doesn't fit the new design. 1444 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1445 const VarLocSet &CollectFrom, 1446 const VarLocMap &VarLocIDs) { 1447 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1448 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1449 // in Reg. 1450 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1451 uint64_t FirstInvalidIndex = 1452 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1453 // Iterate through that half-open interval and collect all the set IDs. 1454 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1455 It != End && *It < FirstInvalidIndex; ++It) { 1456 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1457 Collected.push_back(VarLocIDs[RegIdx]); 1458 } 1459 } 1460 1461 /// Turn the entry value backup locations into primary locations. 1462 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1463 OpenRangesSet &OpenRanges, 1464 VarLocMap &VarLocIDs, 1465 InstToEntryLocMap &EntryValTransfers, 1466 VarLocsInRange &KillSet) { 1467 // Do not insert entry value locations after a terminator. 1468 if (MI.isTerminator()) 1469 return; 1470 1471 for (uint32_t ID : KillSet) { 1472 // The KillSet IDs are indices for the universal location bucket. 1473 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1474 const VarLoc &VL = VarLocIDs[Idx]; 1475 if (!VL.Var.getVariable()->isParameter()) 1476 continue; 1477 1478 auto DebugVar = VL.Var; 1479 std::optional<LocIndices> EntryValBackupIDs = 1480 OpenRanges.getEntryValueBackup(DebugVar); 1481 1482 // If the parameter has the entry value backup, it means we should 1483 // be able to use its entry value. 1484 if (!EntryValBackupIDs) 1485 continue; 1486 1487 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1488 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr, 1489 EntryVL.Locs[0].Value.RegNo); 1490 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1491 assert(EntryValueIDs.size() == 1 && 1492 "EntryValue loc should not be variadic"); 1493 EntryValTransfers.insert({&MI, EntryValueIDs.back()}); 1494 OpenRanges.insert(EntryValueIDs, EntryLoc); 1495 } 1496 } 1497 1498 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1499 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1500 /// new VarLoc. If \p NewReg is different than default zero value then the 1501 /// new location will be register location created by the copy like instruction, 1502 /// otherwise it is variable's location on the stack. 1503 void VarLocBasedLDV::insertTransferDebugPair( 1504 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1505 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1506 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1507 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1508 1509 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1510 LocIndices LocIds = VarLocIDs.insert(VL); 1511 1512 // Close this variable's previous location range. 1513 OpenRanges.erase(VL); 1514 1515 // Record the new location as an open range, and a postponed transfer 1516 // inserting a DBG_VALUE for this location. 1517 OpenRanges.insert(LocIds, VL); 1518 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1519 TransferDebugPair MIP = {&MI, LocIds.back()}; 1520 Transfers.push_back(MIP); 1521 }; 1522 1523 // End all previous ranges of VL.Var. 1524 OpenRanges.erase(VarLocIDs[OldVarID]); 1525 switch (Kind) { 1526 case TransferKind::TransferCopy: { 1527 assert(NewReg && 1528 "No register supplied when handling a copy of a debug value"); 1529 // Create a DBG_VALUE instruction to describe the Var in its new 1530 // register location. 1531 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1532 ProcessVarLoc(VL); 1533 LLVM_DEBUG({ 1534 dbgs() << "Creating VarLoc for register copy:"; 1535 VL.dump(TRI, TII); 1536 }); 1537 return; 1538 } 1539 case TransferKind::TransferSpill: { 1540 // Create a DBG_VALUE instruction to describe the Var in its spilled 1541 // location. 1542 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1543 VarLoc VL = VarLoc::CreateSpillLoc( 1544 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1545 ProcessVarLoc(VL); 1546 LLVM_DEBUG({ 1547 dbgs() << "Creating VarLoc for spill:"; 1548 VL.dump(TRI, TII); 1549 }); 1550 return; 1551 } 1552 case TransferKind::TransferRestore: { 1553 assert(NewReg && 1554 "No register supplied when handling a restore of a debug value"); 1555 // DebugInstr refers to the pre-spill location, therefore we can reuse 1556 // its expression. 1557 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1558 ProcessVarLoc(VL); 1559 LLVM_DEBUG({ 1560 dbgs() << "Creating VarLoc for restore:"; 1561 VL.dump(TRI, TII); 1562 }); 1563 return; 1564 } 1565 } 1566 llvm_unreachable("Invalid transfer kind"); 1567 } 1568 1569 /// A definition of a register may mark the end of a range. 1570 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, 1571 OpenRangesSet &OpenRanges, 1572 VarLocMap &VarLocIDs, 1573 InstToEntryLocMap &EntryValTransfers, 1574 RegDefToInstMap &RegSetInstrs) { 1575 1576 // Meta Instructions do not affect the debug liveness of any register they 1577 // define. 1578 if (MI.isMetaInstruction()) 1579 return; 1580 1581 MachineFunction *MF = MI.getMF(); 1582 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1583 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1584 1585 // Find the regs killed by MI, and find regmasks of preserved regs. 1586 DefinedRegsSet DeadRegs; 1587 SmallVector<const uint32_t *, 4> RegMasks; 1588 for (const MachineOperand &MO : MI.operands()) { 1589 // Determine whether the operand is a register def. 1590 if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && 1591 !(MI.isCall() && MO.getReg() == SP)) { 1592 // Remove ranges of all aliased registers. 1593 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1594 // FIXME: Can we break out of this loop early if no insertion occurs? 1595 DeadRegs.insert(*RAI); 1596 RegSetInstrs.erase(MO.getReg()); 1597 RegSetInstrs.insert({MO.getReg(), &MI}); 1598 } else if (MO.isRegMask()) { 1599 RegMasks.push_back(MO.getRegMask()); 1600 } 1601 } 1602 1603 // Erase VarLocs which reside in one of the dead registers. For performance 1604 // reasons, it's critical to not iterate over the full set of open VarLocs. 1605 // Iterate over the set of dying/used regs instead. 1606 if (!RegMasks.empty()) { 1607 SmallVector<Register, 32> UsedRegs; 1608 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1609 for (Register Reg : UsedRegs) { 1610 // Remove ranges of all clobbered registers. Register masks don't usually 1611 // list SP as preserved. Assume that call instructions never clobber SP, 1612 // because some backends (e.g., AArch64) never list SP in the regmask. 1613 // While the debug info may be off for an instruction or two around 1614 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1615 // still a better user experience. 1616 if (Reg == SP) 1617 continue; 1618 bool AnyRegMaskKillsReg = 1619 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1620 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1621 }); 1622 if (AnyRegMaskKillsReg) 1623 DeadRegs.insert(Reg); 1624 if (AnyRegMaskKillsReg) { 1625 RegSetInstrs.erase(Reg); 1626 RegSetInstrs.insert({Reg, &MI}); 1627 } 1628 } 1629 } 1630 1631 if (DeadRegs.empty()) 1632 return; 1633 1634 VarLocsInRange KillSet; 1635 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1636 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1637 1638 if (TPC) { 1639 auto &TM = TPC->getTM<TargetMachine>(); 1640 if (TM.Options.ShouldEmitDebugEntryValues()) 1641 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); 1642 } 1643 } 1644 1645 void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, 1646 OpenRangesSet &OpenRanges, 1647 VarLocMap &VarLocIDs) { 1648 // If this is not a Wasm local.set or local.tee, which sets local values, 1649 // return. 1650 int Index; 1651 int64_t Offset; 1652 if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) 1653 return; 1654 1655 // Find the target indices killed by MI, and delete those variable locations 1656 // from the open range. 1657 VarLocsInRange KillSet; 1658 VarLoc::WasmLoc Loc{Index, Offset}; 1659 for (uint64_t ID : OpenRanges.getWasmVarLocs()) { 1660 LocIndex Idx = LocIndex::fromRawInteger(ID); 1661 const VarLoc &VL = VarLocIDs[Idx]; 1662 assert(VL.containsWasmLocs() && "Broken VarLocSet?"); 1663 if (VL.usesWasmLoc(Loc)) 1664 KillSet.insert(ID); 1665 } 1666 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation); 1667 } 1668 1669 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1670 MachineFunction *MF) { 1671 // TODO: Handle multiple stores folded into one. 1672 if (!MI.hasOneMemOperand()) 1673 return false; 1674 1675 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1676 return false; // This is not a spill instruction, since no valid size was 1677 // returned from either function. 1678 1679 return true; 1680 } 1681 1682 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1683 MachineFunction *MF, Register &Reg) { 1684 if (!isSpillInstruction(MI, MF)) 1685 return false; 1686 1687 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1688 if (!MO.isReg() || !MO.isUse()) { 1689 Reg = 0; 1690 return false; 1691 } 1692 Reg = MO.getReg(); 1693 return MO.isKill(); 1694 }; 1695 1696 for (const MachineOperand &MO : MI.operands()) { 1697 // In a spill instruction generated by the InlineSpiller the spilled 1698 // register has its kill flag set. 1699 if (isKilledReg(MO, Reg)) 1700 return true; 1701 if (Reg != 0) { 1702 // Check whether next instruction kills the spilled register. 1703 // FIXME: Current solution does not cover search for killed register in 1704 // bundles and instructions further down the chain. 1705 auto NextI = std::next(MI.getIterator()); 1706 // Skip next instruction that points to basic block end iterator. 1707 if (MI.getParent()->end() == NextI) 1708 continue; 1709 Register RegNext; 1710 for (const MachineOperand &MONext : NextI->operands()) { 1711 // Return true if we came across the register from the 1712 // previous spill instruction that is killed in NextI. 1713 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1714 return true; 1715 } 1716 } 1717 } 1718 // Return false if we didn't find spilled register. 1719 return false; 1720 } 1721 1722 std::optional<VarLocBasedLDV::VarLoc::SpillLoc> 1723 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1724 MachineFunction *MF, Register &Reg) { 1725 if (!MI.hasOneMemOperand()) 1726 return std::nullopt; 1727 1728 // FIXME: Handle folded restore instructions with more than one memory 1729 // operand. 1730 if (MI.getRestoreSize(TII)) { 1731 Reg = MI.getOperand(0).getReg(); 1732 return extractSpillBaseRegAndOffset(MI); 1733 } 1734 return std::nullopt; 1735 } 1736 1737 /// A spilled register may indicate that we have to end the current range of 1738 /// a variable and create a new one for the spill location. 1739 /// A restored register may indicate the reverse situation. 1740 /// We don't want to insert any instructions in process(), so we just create 1741 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1742 /// It will be inserted into the BB when we're done iterating over the 1743 /// instructions. 1744 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1745 OpenRangesSet &OpenRanges, 1746 VarLocMap &VarLocIDs, 1747 TransferMap &Transfers) { 1748 MachineFunction *MF = MI.getMF(); 1749 TransferKind TKind; 1750 Register Reg; 1751 std::optional<VarLoc::SpillLoc> Loc; 1752 1753 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1754 1755 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1756 // written to, then close the variable location. The value in memory 1757 // will have changed. 1758 VarLocsInRange KillSet; 1759 if (isSpillInstruction(MI, MF)) { 1760 Loc = extractSpillBaseRegAndOffset(MI); 1761 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1762 LocIndex Idx = LocIndex::fromRawInteger(ID); 1763 const VarLoc &VL = VarLocIDs[Idx]; 1764 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1765 if (VL.usesSpillLoc(*Loc)) { 1766 // This location is overwritten by the current instruction -- terminate 1767 // the open range, and insert an explicit DBG_VALUE $noreg. 1768 // 1769 // Doing this at a later stage would require re-interpreting all 1770 // DBG_VALUes and DIExpressions to identify whether they point at 1771 // memory, and then analysing all memory writes to see if they 1772 // overwrite that memory, which is expensive. 1773 // 1774 // At this stage, we already know which DBG_VALUEs are for spills and 1775 // where they are located; it's best to fix handle overwrites now. 1776 KillSet.insert(ID); 1777 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1778 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1779 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1780 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1781 Transfers.push_back({&MI, UndefLocIDs.back()}); 1782 } 1783 } 1784 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1785 } 1786 1787 // Try to recognise spill and restore instructions that may create a new 1788 // variable location. 1789 if (isLocationSpill(MI, MF, Reg)) { 1790 TKind = TransferKind::TransferSpill; 1791 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1792 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1793 << "\n"); 1794 } else { 1795 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1796 return; 1797 TKind = TransferKind::TransferRestore; 1798 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1799 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1800 << "\n"); 1801 } 1802 // Check if the register or spill location is the location of a debug value. 1803 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1804 if (TKind == TransferKind::TransferSpill) 1805 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1806 else if (TKind == TransferKind::TransferRestore) 1807 TransferCandidates = OpenRanges.getSpillVarLocs(); 1808 for (uint64_t ID : TransferCandidates) { 1809 LocIndex Idx = LocIndex::fromRawInteger(ID); 1810 const VarLoc &VL = VarLocIDs[Idx]; 1811 unsigned LocIdx; 1812 if (TKind == TransferKind::TransferSpill) { 1813 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1814 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1815 << VL.Var.getVariable()->getName() << ")\n"); 1816 LocIdx = VL.getRegIdx(Reg); 1817 } else { 1818 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1819 "Broken VarLocSet?"); 1820 if (!VL.usesSpillLoc(*Loc)) 1821 // The spill location is not the location of a debug value. 1822 continue; 1823 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1824 << VL.Var.getVariable()->getName() << ")\n"); 1825 LocIdx = VL.getSpillLocIdx(*Loc); 1826 } 1827 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1828 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1829 MLoc, Reg); 1830 // FIXME: A comment should explain why it's correct to return early here, 1831 // if that is in fact correct. 1832 return; 1833 } 1834 } 1835 1836 /// If \p MI is a register copy instruction, that copies a previously tracked 1837 /// value from one register to another register that is callee saved, we 1838 /// create new DBG_VALUE instruction described with copy destination register. 1839 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1840 OpenRangesSet &OpenRanges, 1841 VarLocMap &VarLocIDs, 1842 TransferMap &Transfers) { 1843 auto DestSrc = TII->isCopyLikeInstr(MI); 1844 if (!DestSrc) 1845 return; 1846 1847 const MachineOperand *DestRegOp = DestSrc->Destination; 1848 const MachineOperand *SrcRegOp = DestSrc->Source; 1849 1850 if (!DestRegOp->isDef()) 1851 return; 1852 1853 auto isCalleeSavedReg = [&](Register Reg) { 1854 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1855 if (CalleeSavedRegs.test(*RAI)) 1856 return true; 1857 return false; 1858 }; 1859 1860 Register SrcReg = SrcRegOp->getReg(); 1861 Register DestReg = DestRegOp->getReg(); 1862 1863 // We want to recognize instructions where destination register is callee 1864 // saved register. If register that could be clobbered by the call is 1865 // included, there would be a great chance that it is going to be clobbered 1866 // soon. It is more likely that previous register location, which is callee 1867 // saved, is going to stay unclobbered longer, even if it is killed. 1868 if (!isCalleeSavedReg(DestReg)) 1869 return; 1870 1871 // Remember an entry value movement. If we encounter a new debug value of 1872 // a parameter describing only a moving of the value around, rather then 1873 // modifying it, we are still able to use the entry value if needed. 1874 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1875 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1876 LocIndex Idx = LocIndex::fromRawInteger(ID); 1877 const VarLoc &VL = VarLocIDs[Idx]; 1878 if (VL.isEntryValueBackupReg(SrcReg)) { 1879 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1880 VarLoc EntryValLocCopyBackup = 1881 VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg); 1882 // Stop tracking the original entry value. 1883 OpenRanges.erase(VL); 1884 1885 // Start tracking the entry value copy. 1886 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1887 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1888 break; 1889 } 1890 } 1891 } 1892 1893 if (!SrcRegOp->isKill()) 1894 return; 1895 1896 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1897 LocIndex Idx = LocIndex::fromRawInteger(ID); 1898 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1899 VarLoc::MachineLocValue Loc; 1900 Loc.RegNo = SrcReg; 1901 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1902 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1903 TransferKind::TransferCopy, MLoc, DestReg); 1904 // FIXME: A comment should explain why it's correct to return early here, 1905 // if that is in fact correct. 1906 return; 1907 } 1908 } 1909 1910 /// Terminate all open ranges at the end of the current basic block. 1911 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1912 OpenRangesSet &OpenRanges, 1913 VarLocInMBB &OutLocs, 1914 const VarLocMap &VarLocIDs) { 1915 bool Changed = false; 1916 LLVM_DEBUG({ 1917 VarVec VarLocs; 1918 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1919 for (VarLoc &VL : VarLocs) { 1920 // Copy OpenRanges to OutLocs, if not already present. 1921 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1922 VL.dump(TRI, TII); 1923 } 1924 }); 1925 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1926 Changed = VLS != OpenRanges.getVarLocs(); 1927 // New OutLocs set may be different due to spill, restore or register 1928 // copy instruction processing. 1929 if (Changed) 1930 VLS = OpenRanges.getVarLocs(); 1931 OpenRanges.clear(); 1932 return Changed; 1933 } 1934 1935 /// Accumulate a mapping between each DILocalVariable fragment and other 1936 /// fragments of that DILocalVariable which overlap. This reduces work during 1937 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1938 /// known-to-overlap fragments are present". 1939 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1940 /// fragment usage. 1941 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1942 /// Variable which are known to exist. 1943 /// \param OverlappingFragments The overlap map being constructed, from one 1944 /// Var/Fragment pair to a vector of fragments known to overlap. 1945 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1946 VarToFragments &SeenFragments, 1947 OverlapMap &OverlappingFragments) { 1948 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1949 MI.getDebugLoc()->getInlinedAt()); 1950 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1951 1952 // If this is the first sighting of this variable, then we are guaranteed 1953 // there are currently no overlapping fragments either. Initialize the set 1954 // of seen fragments, record no overlaps for the current one, and return. 1955 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1956 if (SeenIt == SeenFragments.end()) { 1957 SmallSet<FragmentInfo, 4> OneFragment; 1958 OneFragment.insert(ThisFragment); 1959 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1960 1961 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1962 return; 1963 } 1964 1965 // If this particular Variable/Fragment pair already exists in the overlap 1966 // map, it has already been accounted for. 1967 auto IsInOLapMap = 1968 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1969 if (!IsInOLapMap.second) 1970 return; 1971 1972 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1973 auto &AllSeenFragments = SeenIt->second; 1974 1975 // Otherwise, examine all other seen fragments for this variable, with "this" 1976 // fragment being a previously unseen fragment. Record any pair of 1977 // overlapping fragments. 1978 for (const auto &ASeenFragment : AllSeenFragments) { 1979 // Does this previously seen fragment overlap? 1980 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1981 // Yes: Mark the current fragment as being overlapped. 1982 ThisFragmentsOverlaps.push_back(ASeenFragment); 1983 // Mark the previously seen fragment as being overlapped by the current 1984 // one. 1985 auto ASeenFragmentsOverlaps = 1986 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1987 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1988 "Previously seen var fragment has no vector of overlaps"); 1989 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1990 } 1991 } 1992 1993 AllSeenFragments.insert(ThisFragment); 1994 } 1995 1996 /// This routine creates OpenRanges. 1997 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1998 VarLocMap &VarLocIDs, TransferMap &Transfers, 1999 InstToEntryLocMap &EntryValTransfers, 2000 RegDefToInstMap &RegSetInstrs) { 2001 if (!MI.isDebugInstr()) 2002 LastNonDbgMI = &MI; 2003 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, 2004 RegSetInstrs); 2005 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, 2006 RegSetInstrs); 2007 transferWasmDef(MI, OpenRanges, VarLocIDs); 2008 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 2009 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 2010 } 2011 2012 /// This routine joins the analysis results of all incoming edges in @MBB by 2013 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 2014 /// source variable in all the predecessors of @MBB reside in the same location. 2015 bool VarLocBasedLDV::join( 2016 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 2017 const VarLocMap &VarLocIDs, 2018 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2019 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 2020 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2021 2022 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 2023 2024 // For all predecessors of this MBB, find the set of VarLocs that 2025 // can be joined. 2026 int NumVisited = 0; 2027 for (auto *p : MBB.predecessors()) { 2028 // Ignore backedges if we have not visited the predecessor yet. As the 2029 // predecessor hasn't yet had locations propagated into it, most locations 2030 // will not yet be valid, so treat them as all being uninitialized and 2031 // potentially valid. If a location guessed to be correct here is 2032 // invalidated later, we will remove it when we revisit this block. 2033 if (!Visited.count(p)) { 2034 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 2035 << "\n"); 2036 continue; 2037 } 2038 auto OL = OutLocs.find(p); 2039 // Join is null in case of empty OutLocs from any of the pred. 2040 if (OL == OutLocs.end()) 2041 return false; 2042 2043 // Just copy over the Out locs to incoming locs for the first visited 2044 // predecessor, and for all other predecessors join the Out locs. 2045 VarLocSet &OutLocVLS = *OL->second; 2046 if (!NumVisited) 2047 InLocsT = OutLocVLS; 2048 else 2049 InLocsT &= OutLocVLS; 2050 2051 LLVM_DEBUG({ 2052 if (!InLocsT.empty()) { 2053 VarVec VarLocs; 2054 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 2055 for (const VarLoc &VL : VarLocs) 2056 dbgs() << " gathered candidate incoming var: " 2057 << VL.Var.getVariable()->getName() << "\n"; 2058 } 2059 }); 2060 2061 NumVisited++; 2062 } 2063 2064 // Filter out DBG_VALUES that are out of scope. 2065 VarLocSet KillSet(Alloc); 2066 bool IsArtificial = ArtificialBlocks.count(&MBB); 2067 if (!IsArtificial) { 2068 for (uint64_t ID : InLocsT) { 2069 LocIndex Idx = LocIndex::fromRawInteger(ID); 2070 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 2071 KillSet.set(ID); 2072 LLVM_DEBUG({ 2073 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 2074 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 2075 }); 2076 } 2077 } 2078 } 2079 InLocsT.intersectWithComplement(KillSet); 2080 2081 // As we are processing blocks in reverse post-order we 2082 // should have processed at least one predecessor, unless it 2083 // is the entry block which has no predecessor. 2084 assert((NumVisited || MBB.pred_empty()) && 2085 "Should have processed at least one predecessor"); 2086 2087 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 2088 bool Changed = false; 2089 if (ILS != InLocsT) { 2090 ILS = InLocsT; 2091 Changed = true; 2092 } 2093 2094 return Changed; 2095 } 2096 2097 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 2098 VarLocMap &VarLocIDs) { 2099 // PendingInLocs records all locations propagated into blocks, which have 2100 // not had DBG_VALUE insts created. Go through and create those insts now. 2101 for (auto &Iter : PendingInLocs) { 2102 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 2103 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 2104 VarLocSet &Pending = *Iter.second; 2105 2106 SmallVector<VarLoc, 32> VarLocs; 2107 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 2108 2109 for (VarLoc DiffIt : VarLocs) { 2110 // The ID location is live-in to MBB -- work out what kind of machine 2111 // location it is and create a DBG_VALUE. 2112 if (DiffIt.isEntryBackupLoc()) 2113 continue; 2114 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 2115 MBB.insert(MBB.instr_begin(), MI); 2116 2117 (void)MI; 2118 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 2119 } 2120 } 2121 } 2122 2123 bool VarLocBasedLDV::isEntryValueCandidate( 2124 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 2125 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 2126 2127 // TODO: Add support for local variables that are expressed in terms of 2128 // parameters entry values. 2129 // TODO: Add support for modified arguments that can be expressed 2130 // by using its entry value. 2131 auto *DIVar = MI.getDebugVariable(); 2132 if (!DIVar->isParameter()) 2133 return false; 2134 2135 // Do not consider parameters that belong to an inlined function. 2136 if (MI.getDebugLoc()->getInlinedAt()) 2137 return false; 2138 2139 // Only consider parameters that are described using registers. Parameters 2140 // that are passed on the stack are not yet supported, so ignore debug 2141 // values that are described by the frame or stack pointer. 2142 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 2143 return false; 2144 2145 // If a parameter's value has been propagated from the caller, then the 2146 // parameter's DBG_VALUE may be described using a register defined by some 2147 // instruction in the entry block, in which case we shouldn't create an 2148 // entry value. 2149 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 2150 return false; 2151 2152 // TODO: Add support for parameters that have a pre-existing debug expressions 2153 // (e.g. fragments). 2154 // A simple deref expression is equivalent to an indirect debug value. 2155 const DIExpression *Expr = MI.getDebugExpression(); 2156 if (Expr->getNumElements() > 0 && !Expr->isDeref()) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 /// Collect all register defines (including aliases) for the given instruction. 2163 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2164 const TargetRegisterInfo *TRI) { 2165 for (const MachineOperand &MO : MI.all_defs()) { 2166 if (MO.getReg() && MO.getReg().isPhysical()) { 2167 Regs.insert(MO.getReg()); 2168 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2169 Regs.insert(*AI); 2170 } 2171 } 2172 } 2173 2174 /// This routine records the entry values of function parameters. The values 2175 /// could be used as backup values. If we loose the track of some unmodified 2176 /// parameters, the backup values will be used as a primary locations. 2177 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2178 const DefinedRegsSet &DefinedRegs, 2179 OpenRangesSet &OpenRanges, 2180 VarLocMap &VarLocIDs) { 2181 if (TPC) { 2182 auto &TM = TPC->getTM<TargetMachine>(); 2183 if (!TM.Options.ShouldEmitDebugEntryValues()) 2184 return; 2185 } 2186 2187 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2188 MI.getDebugLoc()->getInlinedAt()); 2189 2190 if (!isEntryValueCandidate(MI, DefinedRegs) || 2191 OpenRanges.getEntryValueBackup(V)) 2192 return; 2193 2194 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2195 2196 // Create the entry value and use it as a backup location until it is 2197 // valid. It is valid until a parameter is not changed. 2198 DIExpression *NewExpr = 2199 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2200 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr); 2201 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2202 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2203 } 2204 2205 /// Calculate the liveness information for the given machine function and 2206 /// extend ranges across basic blocks. 2207 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, 2208 MachineDominatorTree *DomTree, 2209 TargetPassConfig *TPC, unsigned InputBBLimit, 2210 unsigned InputDbgValLimit) { 2211 (void)DomTree; 2212 LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n"); 2213 2214 if (!MF.getFunction().getSubprogram()) 2215 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2216 return false; 2217 2218 // Skip functions from NoDebug compilation units. 2219 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2220 DICompileUnit::NoDebug) 2221 return false; 2222 2223 TRI = MF.getSubtarget().getRegisterInfo(); 2224 TII = MF.getSubtarget().getInstrInfo(); 2225 TFI = MF.getSubtarget().getFrameLowering(); 2226 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2227 this->TPC = TPC; 2228 LS.initialize(MF); 2229 2230 bool Changed = false; 2231 bool OLChanged = false; 2232 bool MBBJoined = false; 2233 2234 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2235 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2236 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2237 // Ranges that are open until end of bb. 2238 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2239 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2240 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2241 // spills, copies and restores). 2242 // Map responsible MI to attached Transfer emitted from Backup Entry Value. 2243 InstToEntryLocMap EntryValTransfers; 2244 // Map a Register to the last MI which clobbered it. 2245 RegDefToInstMap RegSetInstrs; 2246 2247 VarToFragments SeenFragments; 2248 2249 // Blocks which are artificial, i.e. blocks which exclusively contain 2250 // instructions without locations, or with line 0 locations. 2251 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2252 2253 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2254 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2255 std::priority_queue<unsigned int, std::vector<unsigned int>, 2256 std::greater<unsigned int>> 2257 Worklist; 2258 std::priority_queue<unsigned int, std::vector<unsigned int>, 2259 std::greater<unsigned int>> 2260 Pending; 2261 2262 // Set of register defines that are seen when traversing the entry block 2263 // looking for debug entry value candidates. 2264 DefinedRegsSet DefinedRegs; 2265 2266 // Only in the case of entry MBB collect DBG_VALUEs representing 2267 // function parameters in order to generate debug entry values for them. 2268 MachineBasicBlock &First_MBB = *(MF.begin()); 2269 for (auto &MI : First_MBB) { 2270 collectRegDefs(MI, DefinedRegs, TRI); 2271 if (MI.isDebugValue()) 2272 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2273 } 2274 2275 // Initialize per-block structures and scan for fragment overlaps. 2276 for (auto &MBB : MF) 2277 for (auto &MI : MBB) 2278 if (MI.isDebugValue()) 2279 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2280 2281 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2282 if (const DebugLoc &DL = MI.getDebugLoc()) 2283 return DL.getLine() != 0; 2284 return false; 2285 }; 2286 for (auto &MBB : MF) 2287 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2288 ArtificialBlocks.insert(&MBB); 2289 2290 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2291 "OutLocs after initialization", dbgs())); 2292 2293 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2294 unsigned int RPONumber = 0; 2295 for (MachineBasicBlock *MBB : RPOT) { 2296 OrderToBB[RPONumber] = MBB; 2297 BBToOrder[MBB] = RPONumber; 2298 Worklist.push(RPONumber); 2299 ++RPONumber; 2300 } 2301 2302 if (RPONumber > InputBBLimit) { 2303 unsigned NumInputDbgValues = 0; 2304 for (auto &MBB : MF) 2305 for (auto &MI : MBB) 2306 if (MI.isDebugValue()) 2307 ++NumInputDbgValues; 2308 if (NumInputDbgValues > InputDbgValLimit) { 2309 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2310 << " has " << RPONumber << " basic blocks and " 2311 << NumInputDbgValues 2312 << " input DBG_VALUEs, exceeding limits.\n"); 2313 return false; 2314 } 2315 } 2316 2317 // This is a standard "union of predecessor outs" dataflow problem. 2318 // To solve it, we perform join() and process() using the two worklist method 2319 // until the ranges converge. 2320 // Ranges have converged when both worklists are empty. 2321 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2322 while (!Worklist.empty() || !Pending.empty()) { 2323 // We track what is on the pending worklist to avoid inserting the same 2324 // thing twice. We could avoid this with a custom priority queue, but this 2325 // is probably not worth it. 2326 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2327 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2328 while (!Worklist.empty()) { 2329 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2330 Worklist.pop(); 2331 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2332 ArtificialBlocks); 2333 MBBJoined |= Visited.insert(MBB).second; 2334 if (MBBJoined) { 2335 MBBJoined = false; 2336 Changed = true; 2337 // Now that we have started to extend ranges across BBs we need to 2338 // examine spill, copy and restore instructions to see whether they 2339 // operate with registers that correspond to user variables. 2340 // First load any pending inlocs. 2341 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2342 LastNonDbgMI = nullptr; 2343 RegSetInstrs.clear(); 2344 for (auto &MI : *MBB) 2345 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, 2346 RegSetInstrs); 2347 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2348 2349 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2350 "OutLocs after propagating", dbgs())); 2351 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2352 "InLocs after propagating", dbgs())); 2353 2354 if (OLChanged) { 2355 OLChanged = false; 2356 for (auto *s : MBB->successors()) 2357 if (OnPending.insert(s).second) { 2358 Pending.push(BBToOrder[s]); 2359 } 2360 } 2361 } 2362 } 2363 Worklist.swap(Pending); 2364 // At this point, pending must be empty, since it was just the empty 2365 // worklist 2366 assert(Pending.empty() && "Pending should be empty"); 2367 } 2368 2369 // Add any DBG_VALUE instructions created by location transfers. 2370 for (auto &TR : Transfers) { 2371 assert(!TR.TransferInst->isTerminator() && 2372 "Cannot insert DBG_VALUE after terminator"); 2373 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2374 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2375 MachineInstr *MI = VL.BuildDbgValue(MF); 2376 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2377 } 2378 Transfers.clear(); 2379 2380 // Add DBG_VALUEs created using Backup Entry Value location. 2381 for (auto &TR : EntryValTransfers) { 2382 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); 2383 assert(!TRInst->isTerminator() && 2384 "Cannot insert DBG_VALUE after terminator"); 2385 MachineBasicBlock *MBB = TRInst->getParent(); 2386 const VarLoc &VL = VarLocIDs[TR.second]; 2387 MachineInstr *MI = VL.BuildDbgValue(MF); 2388 MBB->insertAfterBundle(TRInst->getIterator(), MI); 2389 } 2390 EntryValTransfers.clear(); 2391 2392 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2393 // that now. 2394 flushPendingLocs(InLocs, VarLocIDs); 2395 2396 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2397 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2398 return Changed; 2399 } 2400 2401 LDVImpl * 2402 llvm::makeVarLocBasedLiveDebugValues() 2403 { 2404 return new VarLocBasedLDV(); 2405 } 2406