1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, the set of 80 /// machine-locations that currently describe it (a single location for 81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 84 /// corresponds to one of the VarLoc's machine-locations and can be used to 85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 86 /// locations, the dataflow analysis in this pass identifies locations by their 87 /// indices in the VarLocMap, meaning all the variable locations in a block can 88 /// be described by a sparse vector of VarLocMap indicies. 89 /// 90 /// All the storage for the dataflow analysis is local to the ExtendRanges 91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 92 /// in and out lattice values for each block. "OpenRanges" maintains a list of 93 /// variable locations and, with the "process" method, evaluates the transfer 94 /// function of each block. "flushPendingLocs" installs debug value instructions 95 /// for each live-in location at the start of blocks, while "Transfers" records 96 /// transfers of values between machine-locations. 97 /// 98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 99 /// implementation. Instead, unvisited blocks implicitly have all lattice 100 /// values set as "Unknown". After being visited, there will be path back to 101 /// the entry block where the lattice value is "False", and as the transfer 102 /// function cannot make new "Unknown" locations, there are no scenarios where 103 /// a block can have an "Unknown" location after being visited. Similarly, we 104 /// don't enumerate all possible variable locations before exploring the 105 /// function: when a new location is discovered, all blocks previously explored 106 /// were implicitly "False" but unrecorded, and become explicitly "False" when 107 /// a new VarLoc is created with its bit not set in predecessor InLocs or 108 /// OutLocs. 109 /// 110 //===----------------------------------------------------------------------===// 111 112 #include "LiveDebugValues.h" 113 114 #include "llvm/ADT/CoalescingBitVector.h" 115 #include "llvm/ADT/DenseMap.h" 116 #include "llvm/ADT/PostOrderIterator.h" 117 #include "llvm/ADT/SmallPtrSet.h" 118 #include "llvm/ADT/SmallSet.h" 119 #include "llvm/ADT/SmallVector.h" 120 #include "llvm/ADT/Statistic.h" 121 #include "llvm/ADT/UniqueVector.h" 122 #include "llvm/CodeGen/LexicalScopes.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineFunctionPass.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineMemOperand.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/PseudoSourceValue.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetFrameLowering.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetLowering.h" 136 #include "llvm/CodeGen/TargetPassConfig.h" 137 #include "llvm/CodeGen/TargetRegisterInfo.h" 138 #include "llvm/CodeGen/TargetSubtargetInfo.h" 139 #include "llvm/Config/llvm-config.h" 140 #include "llvm/IR/DIBuilder.h" 141 #include "llvm/IR/DebugInfoMetadata.h" 142 #include "llvm/IR/DebugLoc.h" 143 #include "llvm/IR/Function.h" 144 #include "llvm/IR/Module.h" 145 #include "llvm/InitializePasses.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Pass.h" 148 #include "llvm/Support/Casting.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/TypeSize.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstdint> 157 #include <functional> 158 #include <map> 159 #include <queue> 160 #include <tuple> 161 #include <utility> 162 #include <vector> 163 164 using namespace llvm; 165 166 #define DEBUG_TYPE "livedebugvalues" 167 168 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 169 170 /// If \p Op is a stack or frame register return true, otherwise return false. 171 /// This is used to avoid basing the debug entry values on the registers, since 172 /// we do not support it at the moment. 173 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 174 const MachineInstr &MI, 175 const TargetRegisterInfo *TRI) { 176 if (!Op.isReg()) 177 return false; 178 179 const MachineFunction *MF = MI.getParent()->getParent(); 180 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 181 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 182 Register FP = TRI->getFrameRegister(*MF); 183 Register Reg = Op.getReg(); 184 185 return Reg && Reg != SP && Reg != FP; 186 } 187 188 namespace { 189 190 // Max out the number of statically allocated elements in DefinedRegsSet, as 191 // this prevents fallback to std::set::count() operations. 192 using DefinedRegsSet = SmallSet<Register, 32>; 193 194 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 195 // that represent Entry Values; every VarLoc in the set will also appear 196 // exactly once at Location=0. 197 // As a result, each VarLoc may appear more than once in this "set", but each 198 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 199 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 200 // is the set of all VarLocs. 201 using VarLocSet = CoalescingBitVector<uint64_t>; 202 203 /// A type-checked pair of {Register Location (or 0), Index}, used to index 204 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 205 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 206 /// type-checker helps ensure that the conversions aren't lossy. 207 /// 208 /// Why encode a location /into/ the VarLocMap index? This makes it possible 209 /// to find the open VarLocs killed by a register def very quickly. This is a 210 /// performance-critical operation for LiveDebugValues. 211 struct LocIndex { 212 using u32_location_t = uint32_t; 213 using u32_index_t = uint32_t; 214 215 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 216 // \ref MCRegister), so we have plenty of range left 217 // here to encode non-register locations. 218 u32_index_t Index; 219 220 /// The location that has an entry for every VarLoc in the map. 221 static constexpr u32_location_t kUniversalLocation = 0; 222 223 /// The first location that is reserved for VarLocs with locations of kind 224 /// RegisterKind. 225 static constexpr u32_location_t kFirstRegLocation = 1; 226 227 /// The first location greater than 0 that is not reserved for VarLocs with 228 /// locations of kind RegisterKind. 229 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 230 231 /// A special location reserved for VarLocs with locations of kind 232 /// SpillLocKind. 233 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 234 235 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 236 /// EntryValueCopyBackupKind. 237 static constexpr u32_location_t kEntryValueBackupLocation = 238 kFirstInvalidRegLocation + 1; 239 240 LocIndex(u32_location_t Location, u32_index_t Index) 241 : Location(Location), Index(Index) {} 242 243 uint64_t getAsRawInteger() const { 244 return (static_cast<uint64_t>(Location) << 32) | Index; 245 } 246 247 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 248 static_assert(std::is_unsigned<IntT>::value && 249 sizeof(ID) == sizeof(uint64_t), 250 "Cannot convert raw integer to LocIndex"); 251 return {static_cast<u32_location_t>(ID >> 32), 252 static_cast<u32_index_t>(ID)}; 253 } 254 255 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 256 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 257 static uint64_t rawIndexForReg(Register Reg) { 258 return LocIndex(Reg, 0).getAsRawInteger(); 259 } 260 261 /// Return a range covering all set indices in the interval reserved for 262 /// \p Location in \p Set. 263 static auto indexRangeForLocation(const VarLocSet &Set, 264 u32_location_t Location) { 265 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 266 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 267 return Set.half_open_range(Start, End); 268 } 269 }; 270 271 // Simple Set for storing all the VarLoc Indices at a Location bucket. 272 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 273 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 274 // appear in any two of these, as each VarLoc appears at most once in any 275 // Location bucket. 276 using LocIndices = SmallVector<LocIndex, 2>; 277 278 class VarLocBasedLDV : public LDVImpl { 279 private: 280 const TargetRegisterInfo *TRI; 281 const TargetInstrInfo *TII; 282 const TargetFrameLowering *TFI; 283 TargetPassConfig *TPC; 284 BitVector CalleeSavedRegs; 285 LexicalScopes LS; 286 VarLocSet::Allocator Alloc; 287 288 const MachineInstr *LastNonDbgMI; 289 290 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 291 292 using FragmentInfo = DIExpression::FragmentInfo; 293 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 294 295 /// A pair of debug variable and value location. 296 struct VarLoc { 297 // The location at which a spilled variable resides. It consists of a 298 // register and an offset. 299 struct SpillLoc { 300 unsigned SpillBase; 301 StackOffset SpillOffset; 302 bool operator==(const SpillLoc &Other) const { 303 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 304 } 305 bool operator!=(const SpillLoc &Other) const { 306 return !(*this == Other); 307 } 308 }; 309 310 /// Identity of the variable at this location. 311 const DebugVariable Var; 312 313 /// The expression applied to this location. 314 const DIExpression *Expr; 315 316 /// DBG_VALUE to clone var/expr information from if this location 317 /// is moved. 318 const MachineInstr &MI; 319 320 enum class MachineLocKind { 321 InvalidKind = 0, 322 RegisterKind, 323 SpillLocKind, 324 ImmediateKind 325 }; 326 327 enum class EntryValueLocKind { 328 NonEntryValueKind = 0, 329 EntryValueKind, 330 EntryValueBackupKind, 331 EntryValueCopyBackupKind 332 } EVKind; 333 334 /// The value location. Stored separately to avoid repeatedly 335 /// extracting it from MI. 336 union MachineLocValue { 337 uint64_t RegNo; 338 SpillLoc SpillLocation; 339 uint64_t Hash; 340 int64_t Immediate; 341 const ConstantFP *FPImm; 342 const ConstantInt *CImm; 343 MachineLocValue() : Hash(0) {} 344 }; 345 346 /// A single machine location; its Kind is either a register, spill 347 /// location, or immediate value. 348 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 349 /// single MachineLoc of RegisterKind. 350 struct MachineLoc { 351 MachineLocKind Kind; 352 MachineLocValue Value; 353 bool operator==(const MachineLoc &Other) const { 354 if (Kind != Other.Kind) 355 return false; 356 switch (Kind) { 357 case MachineLocKind::SpillLocKind: 358 return Value.SpillLocation == Other.Value.SpillLocation; 359 case MachineLocKind::RegisterKind: 360 case MachineLocKind::ImmediateKind: 361 return Value.Hash == Other.Value.Hash; 362 default: 363 llvm_unreachable("Invalid kind"); 364 } 365 } 366 bool operator<(const MachineLoc &Other) const { 367 switch (Kind) { 368 case MachineLocKind::SpillLocKind: 369 return std::make_tuple( 370 Kind, Value.SpillLocation.SpillBase, 371 Value.SpillLocation.SpillOffset.getFixed(), 372 Value.SpillLocation.SpillOffset.getScalable()) < 373 std::make_tuple( 374 Other.Kind, Other.Value.SpillLocation.SpillBase, 375 Other.Value.SpillLocation.SpillOffset.getFixed(), 376 Other.Value.SpillLocation.SpillOffset.getScalable()); 377 case MachineLocKind::RegisterKind: 378 case MachineLocKind::ImmediateKind: 379 return std::tie(Kind, Value.Hash) < 380 std::tie(Other.Kind, Other.Value.Hash); 381 default: 382 llvm_unreachable("Invalid kind"); 383 } 384 } 385 }; 386 387 /// The set of machine locations used to determine the variable's value, in 388 /// conjunction with Expr. Initially populated with MI's debug operands, 389 /// but may be transformed independently afterwards. 390 SmallVector<MachineLoc, 8> Locs; 391 /// Used to map the index of each location in Locs back to the index of its 392 /// original debug operand in MI. Used when multiple location operands are 393 /// coalesced and the original MI's operands need to be accessed while 394 /// emitting a debug value. 395 SmallVector<unsigned, 8> OrigLocMap; 396 397 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 398 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 399 MI.getDebugLoc()->getInlinedAt()), 400 Expr(MI.getDebugExpression()), MI(MI), 401 EVKind(EntryValueLocKind::NonEntryValueKind) { 402 assert(MI.isDebugValue() && "not a DBG_VALUE"); 403 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 404 "malformed DBG_VALUE"); 405 for (const MachineOperand &Op : MI.debug_operands()) { 406 MachineLoc ML = GetLocForOp(Op); 407 auto It = find(Locs, ML); 408 if (It == Locs.end()) { 409 Locs.push_back(ML); 410 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 411 } else { 412 // ML duplicates an element in Locs; replace references to Op 413 // with references to the duplicating element. 414 unsigned OpIdx = Locs.size(); 415 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 416 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 417 } 418 } 419 420 // We create the debug entry values from the factory functions rather 421 // than from this ctor. 422 assert(EVKind != EntryValueLocKind::EntryValueKind && 423 !isEntryBackupLoc()); 424 } 425 426 static MachineLoc GetLocForOp(const MachineOperand &Op) { 427 MachineLocKind Kind; 428 MachineLocValue Loc; 429 if (Op.isReg()) { 430 Kind = MachineLocKind::RegisterKind; 431 Loc.RegNo = Op.getReg(); 432 } else if (Op.isImm()) { 433 Kind = MachineLocKind::ImmediateKind; 434 Loc.Immediate = Op.getImm(); 435 } else if (Op.isFPImm()) { 436 Kind = MachineLocKind::ImmediateKind; 437 Loc.FPImm = Op.getFPImm(); 438 } else if (Op.isCImm()) { 439 Kind = MachineLocKind::ImmediateKind; 440 Loc.CImm = Op.getCImm(); 441 } else 442 llvm_unreachable("Invalid Op kind for MachineLoc."); 443 return {Kind, Loc}; 444 } 445 446 /// Take the variable and machine-location in DBG_VALUE MI, and build an 447 /// entry location using the given expression. 448 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 449 const DIExpression *EntryExpr, Register Reg) { 450 VarLoc VL(MI, LS); 451 assert(VL.Locs.size() == 1 && 452 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 453 VL.EVKind = EntryValueLocKind::EntryValueKind; 454 VL.Expr = EntryExpr; 455 VL.Locs[0].Value.RegNo = Reg; 456 return VL; 457 } 458 459 /// Take the variable and machine-location from the DBG_VALUE (from the 460 /// function entry), and build an entry value backup location. The backup 461 /// location will turn into the normal location if the backup is valid at 462 /// the time of the primary location clobbering. 463 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 464 LexicalScopes &LS, 465 const DIExpression *EntryExpr) { 466 VarLoc VL(MI, LS); 467 assert(VL.Locs.size() == 1 && 468 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 469 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 470 VL.Expr = EntryExpr; 471 return VL; 472 } 473 474 /// Take the variable and machine-location from the DBG_VALUE (from the 475 /// function entry), and build a copy of an entry value backup location by 476 /// setting the register location to NewReg. 477 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 478 LexicalScopes &LS, 479 const DIExpression *EntryExpr, 480 Register NewReg) { 481 VarLoc VL(MI, LS); 482 assert(VL.Locs.size() == 1 && 483 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 484 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 485 VL.Expr = EntryExpr; 486 VL.Locs[0].Value.RegNo = NewReg; 487 return VL; 488 } 489 490 /// Copy the register location in DBG_VALUE MI, updating the register to 491 /// be NewReg. 492 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 493 Register NewReg) { 494 VarLoc VL = OldVL; 495 for (size_t I = 0, E = VL.Locs.size(); I < E; ++I) 496 if (VL.Locs[I] == OldML) { 497 VL.Locs[I].Kind = MachineLocKind::RegisterKind; 498 VL.Locs[I].Value.RegNo = NewReg; 499 return VL; 500 } 501 llvm_unreachable("Should have found OldML in new VarLoc."); 502 } 503 504 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 505 /// locating it in the specified spill location. 506 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 507 unsigned SpillBase, StackOffset SpillOffset) { 508 VarLoc VL = OldVL; 509 for (int I = 0, E = VL.Locs.size(); I < E; ++I) 510 if (VL.Locs[I] == OldML) { 511 VL.Locs[I].Kind = MachineLocKind::SpillLocKind; 512 VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset}; 513 return VL; 514 } 515 llvm_unreachable("Should have found OldML in new VarLoc."); 516 } 517 518 /// Create a DBG_VALUE representing this VarLoc in the given function. 519 /// Copies variable-specific information such as DILocalVariable and 520 /// inlining information from the original DBG_VALUE instruction, which may 521 /// have been several transfers ago. 522 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 523 assert(!isEntryBackupLoc() && 524 "Tried to produce DBG_VALUE for backup VarLoc"); 525 const DebugLoc &DbgLoc = MI.getDebugLoc(); 526 bool Indirect = MI.isIndirectDebugValue(); 527 const auto &IID = MI.getDesc(); 528 const DILocalVariable *Var = MI.getDebugVariable(); 529 NumInserted++; 530 531 const DIExpression *DIExpr = Expr; 532 SmallVector<MachineOperand, 8> MOs; 533 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 534 MachineLocKind LocKind = Locs[I].Kind; 535 MachineLocValue Loc = Locs[I].Value; 536 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 537 switch (LocKind) { 538 case MachineLocKind::RegisterKind: 539 // An entry value is a register location -- but with an updated 540 // expression. The register location of such DBG_VALUE is always the 541 // one from the entry DBG_VALUE, it does not matter if the entry value 542 // was copied in to another register due to some optimizations. 543 // Non-entry value register locations are like the source 544 // DBG_VALUE, but with the register number from this VarLoc. 545 MOs.push_back(MachineOperand::CreateReg( 546 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 547 : Register(Loc.RegNo), 548 false)); 549 break; 550 case MachineLocKind::SpillLocKind: { 551 // Spills are indirect DBG_VALUEs, with a base register and offset. 552 // Use the original DBG_VALUEs expression to build the spilt location 553 // on top of. FIXME: spill locations created before this pass runs 554 // are not recognized, and not handled here. 555 unsigned Base = Loc.SpillLocation.SpillBase; 556 auto *TRI = MF.getSubtarget().getRegisterInfo(); 557 if (MI.isNonListDebugValue()) { 558 auto Deref = Indirect ? DIExpression::DerefAfter : 0; 559 DIExpr = TRI->prependOffsetExpression( 560 DIExpr, DIExpression::ApplyOffset | Deref, 561 Loc.SpillLocation.SpillOffset); 562 Indirect = true; 563 } else { 564 SmallVector<uint64_t, 4> Ops; 565 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 566 Ops.push_back(dwarf::DW_OP_deref); 567 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 568 } 569 MOs.push_back(MachineOperand::CreateReg(Base, false)); 570 break; 571 } 572 case MachineLocKind::ImmediateKind: { 573 MOs.push_back(Orig); 574 break; 575 } 576 case MachineLocKind::InvalidKind: 577 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 578 } 579 } 580 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 581 } 582 583 /// Is the Loc field a constant or constant object? 584 bool isConstant(MachineLocKind Kind) const { 585 return Kind == MachineLocKind::ImmediateKind; 586 } 587 588 /// Check if the Loc field is an entry backup location. 589 bool isEntryBackupLoc() const { 590 return EVKind == EntryValueLocKind::EntryValueBackupKind || 591 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 592 } 593 594 /// If this variable is described by register \p Reg holding the entry 595 /// value, return true. 596 bool isEntryValueBackupReg(Register Reg) const { 597 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 598 } 599 600 /// If this variable is described by register \p Reg holding a copy of the 601 /// entry value, return true. 602 bool isEntryValueCopyBackupReg(Register Reg) const { 603 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 604 usesReg(Reg); 605 } 606 607 /// If this variable is described in whole or part by \p Reg, return true. 608 bool usesReg(Register Reg) const { 609 MachineLoc RegML; 610 RegML.Kind = MachineLocKind::RegisterKind; 611 RegML.Value.RegNo = Reg; 612 return is_contained(Locs, RegML); 613 } 614 615 /// If this variable is described in whole or part by \p Reg, return true. 616 unsigned getRegIdx(Register Reg) const { 617 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 618 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 619 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) 620 return Idx; 621 llvm_unreachable("Could not find given Reg in Locs"); 622 } 623 624 /// If this variable is described in whole or part by 1 or more registers, 625 /// add each of them to \p Regs and return true. 626 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 627 bool AnyRegs = false; 628 for (const auto &Loc : Locs) 629 if (Loc.Kind == MachineLocKind::RegisterKind) { 630 Regs.push_back(Loc.Value.RegNo); 631 AnyRegs = true; 632 } 633 return AnyRegs; 634 } 635 636 bool containsSpillLocs() const { 637 return any_of(Locs, [](VarLoc::MachineLoc ML) { 638 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 639 }); 640 } 641 642 /// If this variable is described in whole or part by \p SpillLocation, 643 /// return true. 644 bool usesSpillLoc(SpillLoc SpillLocation) const { 645 MachineLoc SpillML; 646 SpillML.Kind = MachineLocKind::SpillLocKind; 647 SpillML.Value.SpillLocation = SpillLocation; 648 return is_contained(Locs, SpillML); 649 } 650 651 /// If this variable is described in whole or part by \p SpillLocation, 652 /// return the index . 653 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 654 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 655 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 656 Locs[Idx].Value.SpillLocation == SpillLocation) 657 return Idx; 658 llvm_unreachable("Could not find given SpillLoc in Locs"); 659 } 660 661 /// Determine whether the lexical scope of this value's debug location 662 /// dominates MBB. 663 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 664 return LS.dominates(MI.getDebugLoc().get(), &MBB); 665 } 666 667 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 668 // TRI can be null. 669 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 670 Out << "VarLoc("; 671 for (const MachineLoc &MLoc : Locs) { 672 if (Locs.begin() != &MLoc) 673 Out << ", "; 674 switch (MLoc.Kind) { 675 case MachineLocKind::RegisterKind: 676 Out << printReg(MLoc.Value.RegNo, TRI); 677 break; 678 case MachineLocKind::SpillLocKind: 679 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 680 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 681 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 682 << "x vscale" 683 << "]"; 684 break; 685 case MachineLocKind::ImmediateKind: 686 Out << MLoc.Value.Immediate; 687 break; 688 case MachineLocKind::InvalidKind: 689 llvm_unreachable("Invalid VarLoc in dump method"); 690 } 691 } 692 693 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 694 if (Var.getInlinedAt()) 695 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 696 else 697 Out << "(null))"; 698 699 if (isEntryBackupLoc()) 700 Out << " (backup loc)\n"; 701 else 702 Out << "\n"; 703 } 704 #endif 705 706 bool operator==(const VarLoc &Other) const { 707 return std::tie(EVKind, Var, Expr, Locs) == 708 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 709 } 710 711 /// This operator guarantees that VarLocs are sorted by Variable first. 712 bool operator<(const VarLoc &Other) const { 713 return std::tie(Var, EVKind, Locs, Expr) < 714 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 715 } 716 }; 717 718 #ifndef NDEBUG 719 using VarVec = SmallVector<VarLoc, 32>; 720 #endif 721 722 /// VarLocMap is used for two things: 723 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 724 /// virtually insert a VarLoc into a VarLocSet. 725 /// 2) Given a LocIndex, look up the unique associated VarLoc. 726 class VarLocMap { 727 /// Map a VarLoc to an index within the vector reserved for its location 728 /// within Loc2Vars. 729 std::map<VarLoc, LocIndices> Var2Indices; 730 731 /// Map a location to a vector which holds VarLocs which live in that 732 /// location. 733 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 734 735 public: 736 /// Retrieve LocIndices for \p VL. 737 LocIndices insert(const VarLoc &VL) { 738 LocIndices &Indices = Var2Indices[VL]; 739 // If Indices is not empty, VL is already in the map. 740 if (!Indices.empty()) 741 return Indices; 742 SmallVector<LocIndex::u32_location_t, 4> Locations; 743 // LocIndices are determined by EVKind and MLs; each Register has a 744 // unique location, while all SpillLocs use a single bucket, and any EV 745 // VarLocs use only the Backup bucket or none at all (except the 746 // compulsory entry at the universal location index). LocIndices will 747 // always have an index at the universal location index as the last index. 748 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 749 VL.getDescribingRegs(Locations); 750 assert(all_of(Locations, 751 [](auto RegNo) { 752 return RegNo < LocIndex::kFirstInvalidRegLocation; 753 }) && 754 "Physreg out of range?"); 755 if (VL.containsSpillLocs()) { 756 LocIndex::u32_location_t Loc = LocIndex::kSpillLocation; 757 Locations.push_back(Loc); 758 } 759 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 760 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 761 Locations.push_back(Loc); 762 } 763 Locations.push_back(LocIndex::kUniversalLocation); 764 for (LocIndex::u32_location_t Location : Locations) { 765 auto &Vars = Loc2Vars[Location]; 766 Indices.push_back( 767 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 768 Vars.push_back(VL); 769 } 770 return Indices; 771 } 772 773 LocIndices getAllIndices(const VarLoc &VL) const { 774 auto IndIt = Var2Indices.find(VL); 775 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 776 return IndIt->second; 777 } 778 779 /// Retrieve the unique VarLoc associated with \p ID. 780 const VarLoc &operator[](LocIndex ID) const { 781 auto LocIt = Loc2Vars.find(ID.Location); 782 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 783 return LocIt->second[ID.Index]; 784 } 785 }; 786 787 using VarLocInMBB = 788 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 789 struct TransferDebugPair { 790 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 791 LocIndex LocationID; ///< Location number for the transfer dest. 792 }; 793 using TransferMap = SmallVector<TransferDebugPair, 4>; 794 // Types for recording Entry Var Locations emitted by a single MachineInstr, 795 // as well as recording MachineInstr which last defined a register. 796 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; 797 using RegDefToInstMap = DenseMap<Register, MachineInstr *>; 798 799 // Types for recording sets of variable fragments that overlap. For a given 800 // local variable, we record all other fragments of that variable that could 801 // overlap it, to reduce search time. 802 using FragmentOfVar = 803 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 804 using OverlapMap = 805 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 806 807 // Helper while building OverlapMap, a map of all fragments seen for a given 808 // DILocalVariable. 809 using VarToFragments = 810 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 811 812 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 813 /// to \p Collected once, in order of insertion into \p VarLocIDs. 814 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 815 const VarLocSet &CollectFrom, 816 const VarLocMap &VarLocIDs); 817 818 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 819 /// by \p CollectFrom. 820 void getUsedRegs(const VarLocSet &CollectFrom, 821 SmallVectorImpl<Register> &UsedRegs) const; 822 823 /// This holds the working set of currently open ranges. For fast 824 /// access, this is done both as a set of VarLocIDs, and a map of 825 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 826 /// previous open ranges for the same variable. In addition, we keep 827 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 828 /// methods act differently depending on whether a VarLoc is primary 829 /// location or backup one. In the case the VarLoc is backup location 830 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 831 /// we perform the operation on the Vars. 832 class OpenRangesSet { 833 VarLocSet::Allocator &Alloc; 834 VarLocSet VarLocs; 835 // Map the DebugVariable to recent primary location ID. 836 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 837 // Map the DebugVariable to recent backup location ID. 838 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 839 OverlapMap &OverlappingFragments; 840 841 public: 842 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 843 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 844 845 const VarLocSet &getVarLocs() const { return VarLocs; } 846 847 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 848 // This method is needed to get every VarLoc once, as each VarLoc may have 849 // multiple indices in a VarLocMap (corresponding to each applicable 850 // location), but all VarLocs appear exactly once at the universal location 851 // index. 852 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 853 const VarLocMap &VarLocIDs) const { 854 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 855 } 856 857 /// Terminate all open ranges for VL.Var by removing it from the set. 858 void erase(const VarLoc &VL); 859 860 /// Terminate all open ranges listed as indices in \c KillSet with 861 /// \c Location by removing them from the set. 862 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 863 LocIndex::u32_location_t Location); 864 865 /// Insert a new range into the set. 866 void insert(LocIndices VarLocIDs, const VarLoc &VL); 867 868 /// Insert a set of ranges. 869 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 870 871 llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var); 872 873 /// Empty the set. 874 void clear() { 875 VarLocs.clear(); 876 Vars.clear(); 877 EntryValuesBackupVars.clear(); 878 } 879 880 /// Return whether the set is empty or not. 881 bool empty() const { 882 assert(Vars.empty() == EntryValuesBackupVars.empty() && 883 Vars.empty() == VarLocs.empty() && 884 "open ranges are inconsistent"); 885 return VarLocs.empty(); 886 } 887 888 /// Get an empty range of VarLoc IDs. 889 auto getEmptyVarLocRange() const { 890 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 891 getVarLocs().end()); 892 } 893 894 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 895 auto getRegisterVarLocs(Register Reg) const { 896 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 897 } 898 899 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 900 auto getSpillVarLocs() const { 901 return LocIndex::indexRangeForLocation(getVarLocs(), 902 LocIndex::kSpillLocation); 903 } 904 905 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 906 /// EntryValueCopyBackupKind. 907 auto getEntryValueBackupVarLocs() const { 908 return LocIndex::indexRangeForLocation( 909 getVarLocs(), LocIndex::kEntryValueBackupLocation); 910 } 911 }; 912 913 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 914 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 915 /// VarLoc correspond to entries in the universal location bucket, which every 916 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 917 static void collectIDsForRegs(VarLocsInRange &Collected, 918 const DefinedRegsSet &Regs, 919 const VarLocSet &CollectFrom, 920 const VarLocMap &VarLocIDs); 921 922 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 923 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 924 if (!VLS) 925 VLS = std::make_unique<VarLocSet>(Alloc); 926 return *VLS.get(); 927 } 928 929 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 930 const VarLocInMBB &Locs) const { 931 auto It = Locs.find(MBB); 932 assert(It != Locs.end() && "MBB not in map"); 933 return *It->second.get(); 934 } 935 936 /// Tests whether this instruction is a spill to a stack location. 937 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 938 939 /// Decide if @MI is a spill instruction and return true if it is. We use 2 940 /// criteria to make this decision: 941 /// - Is this instruction a store to a spill slot? 942 /// - Is there a register operand that is both used and killed? 943 /// TODO: Store optimization can fold spills into other stores (including 944 /// other spills). We do not handle this yet (more than one memory operand). 945 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 946 Register &Reg); 947 948 /// Returns true if the given machine instruction is a debug value which we 949 /// can emit entry values for. 950 /// 951 /// Currently, we generate debug entry values only for parameters that are 952 /// unmodified throughout the function and located in a register. 953 bool isEntryValueCandidate(const MachineInstr &MI, 954 const DefinedRegsSet &Regs) const; 955 956 /// If a given instruction is identified as a spill, return the spill location 957 /// and set \p Reg to the spilled register. 958 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 959 MachineFunction *MF, 960 Register &Reg); 961 /// Given a spill instruction, extract the register and offset used to 962 /// address the spill location in a target independent way. 963 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 964 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 965 TransferMap &Transfers, VarLocMap &VarLocIDs, 966 LocIndex OldVarID, TransferKind Kind, 967 const VarLoc::MachineLoc &OldLoc, 968 Register NewReg = Register()); 969 970 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 971 VarLocMap &VarLocIDs, 972 InstToEntryLocMap &EntryValTransfers, 973 RegDefToInstMap &RegSetInstrs); 974 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 975 VarLocMap &VarLocIDs, TransferMap &Transfers); 976 void cleanupEntryValueTransfers(const MachineInstr *MI, 977 OpenRangesSet &OpenRanges, 978 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 979 InstToEntryLocMap &EntryValTransfers); 980 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 981 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 982 InstToEntryLocMap &EntryValTransfers, 983 RegDefToInstMap &RegSetInstrs); 984 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 985 VarLocMap &VarLocIDs, 986 InstToEntryLocMap &EntryValTransfers, 987 VarLocsInRange &KillSet); 988 void recordEntryValue(const MachineInstr &MI, 989 const DefinedRegsSet &DefinedRegs, 990 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 991 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 992 VarLocMap &VarLocIDs, TransferMap &Transfers); 993 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 994 VarLocMap &VarLocIDs, 995 InstToEntryLocMap &EntryValTransfers, 996 RegDefToInstMap &RegSetInstrs); 997 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 998 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 999 1000 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1001 VarLocMap &VarLocIDs, TransferMap &Transfers, 1002 InstToEntryLocMap &EntryValTransfers, 1003 RegDefToInstMap &RegSetInstrs); 1004 1005 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 1006 OverlapMap &OLapMap); 1007 1008 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1009 const VarLocMap &VarLocIDs, 1010 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1011 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1012 1013 /// Create DBG_VALUE insts for inlocs that have been propagated but 1014 /// had their instruction creation deferred. 1015 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1016 1017 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1018 TargetPassConfig *TPC, unsigned InputBBLimit, 1019 unsigned InputDbgValLimit) override; 1020 1021 public: 1022 /// Default construct and initialize the pass. 1023 VarLocBasedLDV(); 1024 1025 ~VarLocBasedLDV(); 1026 1027 /// Print to ostream with a message. 1028 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1029 const VarLocMap &VarLocIDs, const char *msg, 1030 raw_ostream &Out) const; 1031 }; 1032 1033 } // end anonymous namespace 1034 1035 //===----------------------------------------------------------------------===// 1036 // Implementation 1037 //===----------------------------------------------------------------------===// 1038 1039 VarLocBasedLDV::VarLocBasedLDV() { } 1040 1041 VarLocBasedLDV::~VarLocBasedLDV() { } 1042 1043 /// Erase a variable from the set of open ranges, and additionally erase any 1044 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1045 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1046 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1047 /// location, erase the variable from the Vars set. 1048 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1049 // Erasure helper. 1050 auto DoErase = [VL, this](DebugVariable VarToErase) { 1051 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1052 auto It = EraseFrom->find(VarToErase); 1053 if (It != EraseFrom->end()) { 1054 LocIndices IDs = It->second; 1055 for (LocIndex ID : IDs) 1056 VarLocs.reset(ID.getAsRawInteger()); 1057 EraseFrom->erase(It); 1058 } 1059 }; 1060 1061 DebugVariable Var = VL.Var; 1062 1063 // Erase the variable/fragment that ends here. 1064 DoErase(Var); 1065 1066 // Extract the fragment. Interpret an empty fragment as one that covers all 1067 // possible bits. 1068 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1069 1070 // There may be fragments that overlap the designated fragment. Look them up 1071 // in the pre-computed overlap map, and erase them too. 1072 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1073 if (MapIt != OverlappingFragments.end()) { 1074 for (auto Fragment : MapIt->second) { 1075 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1076 if (!DebugVariable::isDefaultFragment(Fragment)) 1077 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1078 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1079 } 1080 } 1081 } 1082 1083 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1084 const VarLocMap &VarLocIDs, 1085 LocIndex::u32_location_t Location) { 1086 VarLocSet RemoveSet(Alloc); 1087 for (LocIndex::u32_index_t ID : KillSet) { 1088 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1089 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1090 EraseFrom->erase(VL.Var); 1091 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1092 for (LocIndex ID : VLI) 1093 RemoveSet.set(ID.getAsRawInteger()); 1094 } 1095 VarLocs.intersectWithComplement(RemoveSet); 1096 } 1097 1098 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1099 const VarLocMap &Map) { 1100 VarLocsInRange UniqueVarLocIDs; 1101 DefinedRegsSet Regs; 1102 Regs.insert(LocIndex::kUniversalLocation); 1103 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1104 for (uint64_t ID : UniqueVarLocIDs) { 1105 LocIndex Idx = LocIndex::fromRawInteger(ID); 1106 const VarLoc &VarL = Map[Idx]; 1107 const LocIndices Indices = Map.getAllIndices(VarL); 1108 insert(Indices, VarL); 1109 } 1110 } 1111 1112 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1113 const VarLoc &VL) { 1114 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1115 for (LocIndex ID : VarLocIDs) 1116 VarLocs.set(ID.getAsRawInteger()); 1117 InsertInto->insert({VL.Var, VarLocIDs}); 1118 } 1119 1120 /// Return the Loc ID of an entry value backup location, if it exists for the 1121 /// variable. 1122 llvm::Optional<LocIndices> 1123 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1124 auto It = EntryValuesBackupVars.find(Var); 1125 if (It != EntryValuesBackupVars.end()) 1126 return It->second; 1127 1128 return llvm::None; 1129 } 1130 1131 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1132 const DefinedRegsSet &Regs, 1133 const VarLocSet &CollectFrom, 1134 const VarLocMap &VarLocIDs) { 1135 assert(!Regs.empty() && "Nothing to collect"); 1136 SmallVector<Register, 32> SortedRegs; 1137 append_range(SortedRegs, Regs); 1138 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1139 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1140 auto End = CollectFrom.end(); 1141 for (Register Reg : SortedRegs) { 1142 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1143 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1144 // live in Reg. 1145 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1146 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1147 It.advanceToLowerBound(FirstIndexForReg); 1148 1149 // Iterate through that half-open interval and collect all the set IDs. 1150 for (; It != End && *It < FirstInvalidIndex; ++It) { 1151 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1152 const VarLoc &VL = VarLocIDs[ItIdx]; 1153 LocIndices LI = VarLocIDs.getAllIndices(VL); 1154 // For now, the back index is always the universal location index. 1155 assert(LI.back().Location == LocIndex::kUniversalLocation && 1156 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1157 "the VarLocMap correctly?"); 1158 Collected.insert(LI.back().Index); 1159 } 1160 1161 if (It == End) 1162 return; 1163 } 1164 } 1165 1166 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1167 SmallVectorImpl<Register> &UsedRegs) const { 1168 // All register-based VarLocs are assigned indices greater than or equal to 1169 // FirstRegIndex. 1170 uint64_t FirstRegIndex = 1171 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1172 uint64_t FirstInvalidIndex = 1173 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1174 for (auto It = CollectFrom.find(FirstRegIndex), 1175 End = CollectFrom.find(FirstInvalidIndex); 1176 It != End;) { 1177 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1178 // which register and add it to UsedRegs. 1179 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1180 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1181 "Duplicate used reg"); 1182 UsedRegs.push_back(FoundReg); 1183 1184 // Skip to the next /set/ register. Note that this finds a lower bound, so 1185 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1186 // guaranteed to move on to the next register (or to end()). 1187 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1188 It.advanceToLowerBound(NextRegIndex); 1189 } 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Debug Range Extension Implementation 1194 //===----------------------------------------------------------------------===// 1195 1196 #ifndef NDEBUG 1197 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1198 const VarLocInMBB &V, 1199 const VarLocMap &VarLocIDs, 1200 const char *msg, 1201 raw_ostream &Out) const { 1202 Out << '\n' << msg << '\n'; 1203 for (const MachineBasicBlock &BB : MF) { 1204 if (!V.count(&BB)) 1205 continue; 1206 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1207 if (L.empty()) 1208 continue; 1209 SmallVector<VarLoc, 32> VarLocs; 1210 collectAllVarLocs(VarLocs, L, VarLocIDs); 1211 Out << "MBB: " << BB.getNumber() << ":\n"; 1212 for (const VarLoc &VL : VarLocs) { 1213 Out << " Var: " << VL.Var.getVariable()->getName(); 1214 Out << " MI: "; 1215 VL.dump(TRI, Out); 1216 } 1217 } 1218 Out << "\n"; 1219 } 1220 #endif 1221 1222 VarLocBasedLDV::VarLoc::SpillLoc 1223 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1224 assert(MI.hasOneMemOperand() && 1225 "Spill instruction does not have exactly one memory operand?"); 1226 auto MMOI = MI.memoperands_begin(); 1227 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1228 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1229 "Inconsistent memory operand in spill instruction"); 1230 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1231 const MachineBasicBlock *MBB = MI.getParent(); 1232 Register Reg; 1233 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1234 return {Reg, Offset}; 1235 } 1236 1237 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the 1238 /// Transfer, which uses the to-be-deleted \p EntryVL. 1239 void VarLocBasedLDV::cleanupEntryValueTransfers( 1240 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1241 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { 1242 if (EntryValTransfers.empty() || TRInst == nullptr) 1243 return; 1244 1245 auto TransRange = EntryValTransfers.equal_range(TRInst); 1246 for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) { 1247 const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; 1248 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == 1249 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, 1250 EmittedEV.Expr)) { 1251 OpenRanges.erase(EmittedEV); 1252 EntryValTransfers.erase(TRInst); 1253 break; 1254 } 1255 } 1256 } 1257 1258 /// Try to salvage the debug entry value if we encounter a new debug value 1259 /// describing the same parameter, otherwise stop tracking the value. Return 1260 /// true if we should stop tracking the entry value and do the cleanup of 1261 /// emitted Entry Value Transfers, otherwise return false. 1262 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1263 OpenRangesSet &OpenRanges, 1264 VarLocMap &VarLocIDs, 1265 const VarLoc &EntryVL, 1266 InstToEntryLocMap &EntryValTransfers, 1267 RegDefToInstMap &RegSetInstrs) { 1268 // Skip the DBG_VALUE which is the debug entry value itself. 1269 if (&MI == &EntryVL.MI) 1270 return; 1271 1272 // If the parameter's location is not register location, we can not track 1273 // the entry value any more. It doesn't have the TransferInst which defines 1274 // register, so no Entry Value Transfers have been emitted already. 1275 if (!MI.getDebugOperand(0).isReg()) 1276 return; 1277 1278 // Try to get non-debug instruction responsible for the DBG_VALUE. 1279 const MachineInstr *TransferInst = nullptr; 1280 Register Reg = MI.getDebugOperand(0).getReg(); 1281 if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end()) 1282 TransferInst = RegSetInstrs.find(Reg)->second; 1283 1284 // Case of the parameter's DBG_VALUE at the start of entry MBB. 1285 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) 1286 return; 1287 1288 // If the debug expression from the DBG_VALUE is not empty, we can assume the 1289 // parameter's value has changed indicating that we should stop tracking its 1290 // entry value as well. 1291 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { 1292 // If the DBG_VALUE comes from a copy instruction that copies the entry 1293 // value, it means the parameter's value has not changed and we should be 1294 // able to use its entry value. 1295 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1296 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1297 // does not indicate the parameter modification.) 1298 auto DestSrc = TII->isCopyInstr(*TransferInst); 1299 if (DestSrc) { 1300 const MachineOperand *SrcRegOp, *DestRegOp; 1301 SrcRegOp = DestSrc->Source; 1302 DestRegOp = DestSrc->Destination; 1303 if (Reg == DestRegOp->getReg()) { 1304 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1305 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1306 if (VL.isEntryValueCopyBackupReg(Reg) && 1307 // Entry Values should not be variadic. 1308 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1309 return; 1310 } 1311 } 1312 } 1313 } 1314 1315 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1316 MI.print(dbgs(), /*IsStandalone*/ false, 1317 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1318 /*AddNewLine*/ true, TII)); 1319 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, 1320 EntryValTransfers); 1321 OpenRanges.erase(EntryVL); 1322 } 1323 1324 /// End all previous ranges related to @MI and start a new range from @MI 1325 /// if it is a DBG_VALUE instr. 1326 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1327 OpenRangesSet &OpenRanges, 1328 VarLocMap &VarLocIDs, 1329 InstToEntryLocMap &EntryValTransfers, 1330 RegDefToInstMap &RegSetInstrs) { 1331 if (!MI.isDebugValue()) 1332 return; 1333 const DILocalVariable *Var = MI.getDebugVariable(); 1334 const DIExpression *Expr = MI.getDebugExpression(); 1335 const DILocation *DebugLoc = MI.getDebugLoc(); 1336 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1337 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1338 "Expected inlined-at fields to agree"); 1339 1340 DebugVariable V(Var, Expr, InlinedAt); 1341 1342 // Check if this DBG_VALUE indicates a parameter's value changing. 1343 // If that is the case, we should stop tracking its entry value. 1344 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1345 if (Var->isParameter() && EntryValBackupID) { 1346 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1347 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, 1348 RegSetInstrs); 1349 } 1350 1351 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1352 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1353 MO.isCImm(); 1354 })) { 1355 // Use normal VarLoc constructor for registers and immediates. 1356 VarLoc VL(MI, LS); 1357 // End all previous ranges of VL.Var. 1358 OpenRanges.erase(VL); 1359 1360 LocIndices IDs = VarLocIDs.insert(VL); 1361 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1362 OpenRanges.insert(IDs, VL); 1363 } else if (MI.memoperands().size() > 0) { 1364 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1365 } else { 1366 // This must be an undefined location. If it has an open range, erase it. 1367 assert(MI.isUndefDebugValue() && 1368 "Unexpected non-undef DBG_VALUE encountered"); 1369 VarLoc VL(MI, LS); 1370 OpenRanges.erase(VL); 1371 } 1372 } 1373 1374 // This should be removed later, doesn't fit the new design. 1375 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1376 const VarLocSet &CollectFrom, 1377 const VarLocMap &VarLocIDs) { 1378 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1379 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1380 // in Reg. 1381 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1382 uint64_t FirstInvalidIndex = 1383 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1384 // Iterate through that half-open interval and collect all the set IDs. 1385 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1386 It != End && *It < FirstInvalidIndex; ++It) { 1387 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1388 Collected.push_back(VarLocIDs[RegIdx]); 1389 } 1390 } 1391 1392 /// Turn the entry value backup locations into primary locations. 1393 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1394 OpenRangesSet &OpenRanges, 1395 VarLocMap &VarLocIDs, 1396 InstToEntryLocMap &EntryValTransfers, 1397 VarLocsInRange &KillSet) { 1398 // Do not insert entry value locations after a terminator. 1399 if (MI.isTerminator()) 1400 return; 1401 1402 for (uint32_t ID : KillSet) { 1403 // The KillSet IDs are indices for the universal location bucket. 1404 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1405 const VarLoc &VL = VarLocIDs[Idx]; 1406 if (!VL.Var.getVariable()->isParameter()) 1407 continue; 1408 1409 auto DebugVar = VL.Var; 1410 Optional<LocIndices> EntryValBackupIDs = 1411 OpenRanges.getEntryValueBackup(DebugVar); 1412 1413 // If the parameter has the entry value backup, it means we should 1414 // be able to use its entry value. 1415 if (!EntryValBackupIDs) 1416 continue; 1417 1418 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1419 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, 1420 EntryVL.Locs[0].Value.RegNo); 1421 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1422 assert(EntryValueIDs.size() == 1 && 1423 "EntryValue loc should not be variadic"); 1424 EntryValTransfers.insert({&MI, EntryValueIDs.back()}); 1425 OpenRanges.insert(EntryValueIDs, EntryLoc); 1426 } 1427 } 1428 1429 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1430 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1431 /// new VarLoc. If \p NewReg is different than default zero value then the 1432 /// new location will be register location created by the copy like instruction, 1433 /// otherwise it is variable's location on the stack. 1434 void VarLocBasedLDV::insertTransferDebugPair( 1435 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1436 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1437 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1438 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1439 1440 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1441 LocIndices LocIds = VarLocIDs.insert(VL); 1442 1443 // Close this variable's previous location range. 1444 OpenRanges.erase(VL); 1445 1446 // Record the new location as an open range, and a postponed transfer 1447 // inserting a DBG_VALUE for this location. 1448 OpenRanges.insert(LocIds, VL); 1449 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1450 TransferDebugPair MIP = {&MI, LocIds.back()}; 1451 Transfers.push_back(MIP); 1452 }; 1453 1454 // End all previous ranges of VL.Var. 1455 OpenRanges.erase(VarLocIDs[OldVarID]); 1456 switch (Kind) { 1457 case TransferKind::TransferCopy: { 1458 assert(NewReg && 1459 "No register supplied when handling a copy of a debug value"); 1460 // Create a DBG_VALUE instruction to describe the Var in its new 1461 // register location. 1462 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1463 ProcessVarLoc(VL); 1464 LLVM_DEBUG({ 1465 dbgs() << "Creating VarLoc for register copy:"; 1466 VL.dump(TRI); 1467 }); 1468 return; 1469 } 1470 case TransferKind::TransferSpill: { 1471 // Create a DBG_VALUE instruction to describe the Var in its spilled 1472 // location. 1473 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1474 VarLoc VL = VarLoc::CreateSpillLoc( 1475 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1476 ProcessVarLoc(VL); 1477 LLVM_DEBUG({ 1478 dbgs() << "Creating VarLoc for spill:"; 1479 VL.dump(TRI); 1480 }); 1481 return; 1482 } 1483 case TransferKind::TransferRestore: { 1484 assert(NewReg && 1485 "No register supplied when handling a restore of a debug value"); 1486 // DebugInstr refers to the pre-spill location, therefore we can reuse 1487 // its expression. 1488 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1489 ProcessVarLoc(VL); 1490 LLVM_DEBUG({ 1491 dbgs() << "Creating VarLoc for restore:"; 1492 VL.dump(TRI); 1493 }); 1494 return; 1495 } 1496 } 1497 llvm_unreachable("Invalid transfer kind"); 1498 } 1499 1500 /// A definition of a register may mark the end of a range. 1501 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, 1502 OpenRangesSet &OpenRanges, 1503 VarLocMap &VarLocIDs, 1504 InstToEntryLocMap &EntryValTransfers, 1505 RegDefToInstMap &RegSetInstrs) { 1506 1507 // Meta Instructions do not affect the debug liveness of any register they 1508 // define. 1509 if (MI.isMetaInstruction()) 1510 return; 1511 1512 MachineFunction *MF = MI.getMF(); 1513 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1514 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1515 1516 // Find the regs killed by MI, and find regmasks of preserved regs. 1517 DefinedRegsSet DeadRegs; 1518 SmallVector<const uint32_t *, 4> RegMasks; 1519 for (const MachineOperand &MO : MI.operands()) { 1520 // Determine whether the operand is a register def. 1521 if (MO.isReg() && MO.isDef() && MO.getReg() && 1522 Register::isPhysicalRegister(MO.getReg()) && 1523 !(MI.isCall() && MO.getReg() == SP)) { 1524 // Remove ranges of all aliased registers. 1525 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1526 // FIXME: Can we break out of this loop early if no insertion occurs? 1527 DeadRegs.insert(*RAI); 1528 RegSetInstrs.erase(MO.getReg()); 1529 RegSetInstrs.insert({MO.getReg(), &MI}); 1530 } else if (MO.isRegMask()) { 1531 RegMasks.push_back(MO.getRegMask()); 1532 } 1533 } 1534 1535 // Erase VarLocs which reside in one of the dead registers. For performance 1536 // reasons, it's critical to not iterate over the full set of open VarLocs. 1537 // Iterate over the set of dying/used regs instead. 1538 if (!RegMasks.empty()) { 1539 SmallVector<Register, 32> UsedRegs; 1540 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1541 for (Register Reg : UsedRegs) { 1542 // Remove ranges of all clobbered registers. Register masks don't usually 1543 // list SP as preserved. Assume that call instructions never clobber SP, 1544 // because some backends (e.g., AArch64) never list SP in the regmask. 1545 // While the debug info may be off for an instruction or two around 1546 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1547 // still a better user experience. 1548 if (Reg == SP) 1549 continue; 1550 bool AnyRegMaskKillsReg = 1551 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1552 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1553 }); 1554 if (AnyRegMaskKillsReg) 1555 DeadRegs.insert(Reg); 1556 if (AnyRegMaskKillsReg) { 1557 RegSetInstrs.erase(Reg); 1558 RegSetInstrs.insert({Reg, &MI}); 1559 } 1560 } 1561 } 1562 1563 if (DeadRegs.empty()) 1564 return; 1565 1566 VarLocsInRange KillSet; 1567 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1568 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1569 1570 if (TPC) { 1571 auto &TM = TPC->getTM<TargetMachine>(); 1572 if (TM.Options.ShouldEmitDebugEntryValues()) 1573 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); 1574 } 1575 } 1576 1577 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1578 MachineFunction *MF) { 1579 // TODO: Handle multiple stores folded into one. 1580 if (!MI.hasOneMemOperand()) 1581 return false; 1582 1583 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1584 return false; // This is not a spill instruction, since no valid size was 1585 // returned from either function. 1586 1587 return true; 1588 } 1589 1590 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1591 MachineFunction *MF, Register &Reg) { 1592 if (!isSpillInstruction(MI, MF)) 1593 return false; 1594 1595 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1596 if (!MO.isReg() || !MO.isUse()) { 1597 Reg = 0; 1598 return false; 1599 } 1600 Reg = MO.getReg(); 1601 return MO.isKill(); 1602 }; 1603 1604 for (const MachineOperand &MO : MI.operands()) { 1605 // In a spill instruction generated by the InlineSpiller the spilled 1606 // register has its kill flag set. 1607 if (isKilledReg(MO, Reg)) 1608 return true; 1609 if (Reg != 0) { 1610 // Check whether next instruction kills the spilled register. 1611 // FIXME: Current solution does not cover search for killed register in 1612 // bundles and instructions further down the chain. 1613 auto NextI = std::next(MI.getIterator()); 1614 // Skip next instruction that points to basic block end iterator. 1615 if (MI.getParent()->end() == NextI) 1616 continue; 1617 Register RegNext; 1618 for (const MachineOperand &MONext : NextI->operands()) { 1619 // Return true if we came across the register from the 1620 // previous spill instruction that is killed in NextI. 1621 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1622 return true; 1623 } 1624 } 1625 } 1626 // Return false if we didn't find spilled register. 1627 return false; 1628 } 1629 1630 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1631 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1632 MachineFunction *MF, Register &Reg) { 1633 if (!MI.hasOneMemOperand()) 1634 return None; 1635 1636 // FIXME: Handle folded restore instructions with more than one memory 1637 // operand. 1638 if (MI.getRestoreSize(TII)) { 1639 Reg = MI.getOperand(0).getReg(); 1640 return extractSpillBaseRegAndOffset(MI); 1641 } 1642 return None; 1643 } 1644 1645 /// A spilled register may indicate that we have to end the current range of 1646 /// a variable and create a new one for the spill location. 1647 /// A restored register may indicate the reverse situation. 1648 /// We don't want to insert any instructions in process(), so we just create 1649 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1650 /// It will be inserted into the BB when we're done iterating over the 1651 /// instructions. 1652 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1653 OpenRangesSet &OpenRanges, 1654 VarLocMap &VarLocIDs, 1655 TransferMap &Transfers) { 1656 MachineFunction *MF = MI.getMF(); 1657 TransferKind TKind; 1658 Register Reg; 1659 Optional<VarLoc::SpillLoc> Loc; 1660 1661 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1662 1663 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1664 // written to, then close the variable location. The value in memory 1665 // will have changed. 1666 VarLocsInRange KillSet; 1667 if (isSpillInstruction(MI, MF)) { 1668 Loc = extractSpillBaseRegAndOffset(MI); 1669 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1670 LocIndex Idx = LocIndex::fromRawInteger(ID); 1671 const VarLoc &VL = VarLocIDs[Idx]; 1672 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1673 if (VL.usesSpillLoc(*Loc)) { 1674 // This location is overwritten by the current instruction -- terminate 1675 // the open range, and insert an explicit DBG_VALUE $noreg. 1676 // 1677 // Doing this at a later stage would require re-interpreting all 1678 // DBG_VALUes and DIExpressions to identify whether they point at 1679 // memory, and then analysing all memory writes to see if they 1680 // overwrite that memory, which is expensive. 1681 // 1682 // At this stage, we already know which DBG_VALUEs are for spills and 1683 // where they are located; it's best to fix handle overwrites now. 1684 KillSet.insert(ID); 1685 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1686 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1687 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1688 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1689 Transfers.push_back({&MI, UndefLocIDs.back()}); 1690 } 1691 } 1692 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1693 } 1694 1695 // Try to recognise spill and restore instructions that may create a new 1696 // variable location. 1697 if (isLocationSpill(MI, MF, Reg)) { 1698 TKind = TransferKind::TransferSpill; 1699 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1700 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1701 << "\n"); 1702 } else { 1703 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1704 return; 1705 TKind = TransferKind::TransferRestore; 1706 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1707 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1708 << "\n"); 1709 } 1710 // Check if the register or spill location is the location of a debug value. 1711 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1712 if (TKind == TransferKind::TransferSpill) 1713 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1714 else if (TKind == TransferKind::TransferRestore) 1715 TransferCandidates = OpenRanges.getSpillVarLocs(); 1716 for (uint64_t ID : TransferCandidates) { 1717 LocIndex Idx = LocIndex::fromRawInteger(ID); 1718 const VarLoc &VL = VarLocIDs[Idx]; 1719 unsigned LocIdx; 1720 if (TKind == TransferKind::TransferSpill) { 1721 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1722 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1723 << VL.Var.getVariable()->getName() << ")\n"); 1724 LocIdx = VL.getRegIdx(Reg); 1725 } else { 1726 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1727 "Broken VarLocSet?"); 1728 if (!VL.usesSpillLoc(*Loc)) 1729 // The spill location is not the location of a debug value. 1730 continue; 1731 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1732 << VL.Var.getVariable()->getName() << ")\n"); 1733 LocIdx = VL.getSpillLocIdx(*Loc); 1734 } 1735 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1736 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1737 MLoc, Reg); 1738 // FIXME: A comment should explain why it's correct to return early here, 1739 // if that is in fact correct. 1740 return; 1741 } 1742 } 1743 1744 /// If \p MI is a register copy instruction, that copies a previously tracked 1745 /// value from one register to another register that is callee saved, we 1746 /// create new DBG_VALUE instruction described with copy destination register. 1747 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1748 OpenRangesSet &OpenRanges, 1749 VarLocMap &VarLocIDs, 1750 TransferMap &Transfers) { 1751 auto DestSrc = TII->isCopyInstr(MI); 1752 if (!DestSrc) 1753 return; 1754 1755 const MachineOperand *DestRegOp = DestSrc->Destination; 1756 const MachineOperand *SrcRegOp = DestSrc->Source; 1757 1758 if (!DestRegOp->isDef()) 1759 return; 1760 1761 auto isCalleeSavedReg = [&](Register Reg) { 1762 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1763 if (CalleeSavedRegs.test(*RAI)) 1764 return true; 1765 return false; 1766 }; 1767 1768 Register SrcReg = SrcRegOp->getReg(); 1769 Register DestReg = DestRegOp->getReg(); 1770 1771 // We want to recognize instructions where destination register is callee 1772 // saved register. If register that could be clobbered by the call is 1773 // included, there would be a great chance that it is going to be clobbered 1774 // soon. It is more likely that previous register location, which is callee 1775 // saved, is going to stay unclobbered longer, even if it is killed. 1776 if (!isCalleeSavedReg(DestReg)) 1777 return; 1778 1779 // Remember an entry value movement. If we encounter a new debug value of 1780 // a parameter describing only a moving of the value around, rather then 1781 // modifying it, we are still able to use the entry value if needed. 1782 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1783 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1784 LocIndex Idx = LocIndex::fromRawInteger(ID); 1785 const VarLoc &VL = VarLocIDs[Idx]; 1786 if (VL.isEntryValueBackupReg(SrcReg)) { 1787 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1788 VarLoc EntryValLocCopyBackup = 1789 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1790 // Stop tracking the original entry value. 1791 OpenRanges.erase(VL); 1792 1793 // Start tracking the entry value copy. 1794 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1795 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1796 break; 1797 } 1798 } 1799 } 1800 1801 if (!SrcRegOp->isKill()) 1802 return; 1803 1804 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1805 LocIndex Idx = LocIndex::fromRawInteger(ID); 1806 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1807 VarLoc::MachineLocValue Loc; 1808 Loc.RegNo = SrcReg; 1809 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1810 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1811 TransferKind::TransferCopy, MLoc, DestReg); 1812 // FIXME: A comment should explain why it's correct to return early here, 1813 // if that is in fact correct. 1814 return; 1815 } 1816 } 1817 1818 /// Terminate all open ranges at the end of the current basic block. 1819 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1820 OpenRangesSet &OpenRanges, 1821 VarLocInMBB &OutLocs, 1822 const VarLocMap &VarLocIDs) { 1823 bool Changed = false; 1824 LLVM_DEBUG({ 1825 VarVec VarLocs; 1826 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1827 for (VarLoc &VL : VarLocs) { 1828 // Copy OpenRanges to OutLocs, if not already present. 1829 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1830 VL.dump(TRI); 1831 } 1832 }); 1833 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1834 Changed = VLS != OpenRanges.getVarLocs(); 1835 // New OutLocs set may be different due to spill, restore or register 1836 // copy instruction processing. 1837 if (Changed) 1838 VLS = OpenRanges.getVarLocs(); 1839 OpenRanges.clear(); 1840 return Changed; 1841 } 1842 1843 /// Accumulate a mapping between each DILocalVariable fragment and other 1844 /// fragments of that DILocalVariable which overlap. This reduces work during 1845 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1846 /// known-to-overlap fragments are present". 1847 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1848 /// fragment usage. 1849 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1850 /// Variable which are known to exist. 1851 /// \param OverlappingFragments The overlap map being constructed, from one 1852 /// Var/Fragment pair to a vector of fragments known to overlap. 1853 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1854 VarToFragments &SeenFragments, 1855 OverlapMap &OverlappingFragments) { 1856 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1857 MI.getDebugLoc()->getInlinedAt()); 1858 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1859 1860 // If this is the first sighting of this variable, then we are guaranteed 1861 // there are currently no overlapping fragments either. Initialize the set 1862 // of seen fragments, record no overlaps for the current one, and return. 1863 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1864 if (SeenIt == SeenFragments.end()) { 1865 SmallSet<FragmentInfo, 4> OneFragment; 1866 OneFragment.insert(ThisFragment); 1867 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1868 1869 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1870 return; 1871 } 1872 1873 // If this particular Variable/Fragment pair already exists in the overlap 1874 // map, it has already been accounted for. 1875 auto IsInOLapMap = 1876 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1877 if (!IsInOLapMap.second) 1878 return; 1879 1880 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1881 auto &AllSeenFragments = SeenIt->second; 1882 1883 // Otherwise, examine all other seen fragments for this variable, with "this" 1884 // fragment being a previously unseen fragment. Record any pair of 1885 // overlapping fragments. 1886 for (auto &ASeenFragment : AllSeenFragments) { 1887 // Does this previously seen fragment overlap? 1888 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1889 // Yes: Mark the current fragment as being overlapped. 1890 ThisFragmentsOverlaps.push_back(ASeenFragment); 1891 // Mark the previously seen fragment as being overlapped by the current 1892 // one. 1893 auto ASeenFragmentsOverlaps = 1894 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1895 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1896 "Previously seen var fragment has no vector of overlaps"); 1897 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1898 } 1899 } 1900 1901 AllSeenFragments.insert(ThisFragment); 1902 } 1903 1904 /// This routine creates OpenRanges. 1905 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1906 VarLocMap &VarLocIDs, TransferMap &Transfers, 1907 InstToEntryLocMap &EntryValTransfers, 1908 RegDefToInstMap &RegSetInstrs) { 1909 if (!MI.isDebugInstr()) 1910 LastNonDbgMI = &MI; 1911 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1912 RegSetInstrs); 1913 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1914 RegSetInstrs); 1915 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1916 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1917 } 1918 1919 /// This routine joins the analysis results of all incoming edges in @MBB by 1920 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1921 /// source variable in all the predecessors of @MBB reside in the same location. 1922 bool VarLocBasedLDV::join( 1923 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1924 const VarLocMap &VarLocIDs, 1925 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1926 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1927 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1928 1929 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1930 1931 // For all predecessors of this MBB, find the set of VarLocs that 1932 // can be joined. 1933 int NumVisited = 0; 1934 for (auto p : MBB.predecessors()) { 1935 // Ignore backedges if we have not visited the predecessor yet. As the 1936 // predecessor hasn't yet had locations propagated into it, most locations 1937 // will not yet be valid, so treat them as all being uninitialized and 1938 // potentially valid. If a location guessed to be correct here is 1939 // invalidated later, we will remove it when we revisit this block. 1940 if (!Visited.count(p)) { 1941 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1942 << "\n"); 1943 continue; 1944 } 1945 auto OL = OutLocs.find(p); 1946 // Join is null in case of empty OutLocs from any of the pred. 1947 if (OL == OutLocs.end()) 1948 return false; 1949 1950 // Just copy over the Out locs to incoming locs for the first visited 1951 // predecessor, and for all other predecessors join the Out locs. 1952 VarLocSet &OutLocVLS = *OL->second.get(); 1953 if (!NumVisited) 1954 InLocsT = OutLocVLS; 1955 else 1956 InLocsT &= OutLocVLS; 1957 1958 LLVM_DEBUG({ 1959 if (!InLocsT.empty()) { 1960 VarVec VarLocs; 1961 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 1962 for (const VarLoc &VL : VarLocs) 1963 dbgs() << " gathered candidate incoming var: " 1964 << VL.Var.getVariable()->getName() << "\n"; 1965 } 1966 }); 1967 1968 NumVisited++; 1969 } 1970 1971 // Filter out DBG_VALUES that are out of scope. 1972 VarLocSet KillSet(Alloc); 1973 bool IsArtificial = ArtificialBlocks.count(&MBB); 1974 if (!IsArtificial) { 1975 for (uint64_t ID : InLocsT) { 1976 LocIndex Idx = LocIndex::fromRawInteger(ID); 1977 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1978 KillSet.set(ID); 1979 LLVM_DEBUG({ 1980 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1981 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1982 }); 1983 } 1984 } 1985 } 1986 InLocsT.intersectWithComplement(KillSet); 1987 1988 // As we are processing blocks in reverse post-order we 1989 // should have processed at least one predecessor, unless it 1990 // is the entry block which has no predecessor. 1991 assert((NumVisited || MBB.pred_empty()) && 1992 "Should have processed at least one predecessor"); 1993 1994 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1995 bool Changed = false; 1996 if (ILS != InLocsT) { 1997 ILS = InLocsT; 1998 Changed = true; 1999 } 2000 2001 return Changed; 2002 } 2003 2004 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 2005 VarLocMap &VarLocIDs) { 2006 // PendingInLocs records all locations propagated into blocks, which have 2007 // not had DBG_VALUE insts created. Go through and create those insts now. 2008 for (auto &Iter : PendingInLocs) { 2009 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 2010 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 2011 VarLocSet &Pending = *Iter.second.get(); 2012 2013 SmallVector<VarLoc, 32> VarLocs; 2014 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 2015 2016 for (VarLoc DiffIt : VarLocs) { 2017 // The ID location is live-in to MBB -- work out what kind of machine 2018 // location it is and create a DBG_VALUE. 2019 if (DiffIt.isEntryBackupLoc()) 2020 continue; 2021 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 2022 MBB.insert(MBB.instr_begin(), MI); 2023 2024 (void)MI; 2025 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 2026 } 2027 } 2028 } 2029 2030 bool VarLocBasedLDV::isEntryValueCandidate( 2031 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 2032 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 2033 2034 // TODO: Add support for local variables that are expressed in terms of 2035 // parameters entry values. 2036 // TODO: Add support for modified arguments that can be expressed 2037 // by using its entry value. 2038 auto *DIVar = MI.getDebugVariable(); 2039 if (!DIVar->isParameter()) 2040 return false; 2041 2042 // Do not consider parameters that belong to an inlined function. 2043 if (MI.getDebugLoc()->getInlinedAt()) 2044 return false; 2045 2046 // Only consider parameters that are described using registers. Parameters 2047 // that are passed on the stack are not yet supported, so ignore debug 2048 // values that are described by the frame or stack pointer. 2049 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 2050 return false; 2051 2052 // If a parameter's value has been propagated from the caller, then the 2053 // parameter's DBG_VALUE may be described using a register defined by some 2054 // instruction in the entry block, in which case we shouldn't create an 2055 // entry value. 2056 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 2057 return false; 2058 2059 // TODO: Add support for parameters that have a pre-existing debug expressions 2060 // (e.g. fragments). 2061 if (MI.getDebugExpression()->getNumElements() > 0) 2062 return false; 2063 2064 return true; 2065 } 2066 2067 /// Collect all register defines (including aliases) for the given instruction. 2068 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2069 const TargetRegisterInfo *TRI) { 2070 for (const MachineOperand &MO : MI.operands()) 2071 if (MO.isReg() && MO.isDef() && MO.getReg()) 2072 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2073 Regs.insert(*AI); 2074 } 2075 2076 /// This routine records the entry values of function parameters. The values 2077 /// could be used as backup values. If we loose the track of some unmodified 2078 /// parameters, the backup values will be used as a primary locations. 2079 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2080 const DefinedRegsSet &DefinedRegs, 2081 OpenRangesSet &OpenRanges, 2082 VarLocMap &VarLocIDs) { 2083 if (TPC) { 2084 auto &TM = TPC->getTM<TargetMachine>(); 2085 if (!TM.Options.ShouldEmitDebugEntryValues()) 2086 return; 2087 } 2088 2089 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2090 MI.getDebugLoc()->getInlinedAt()); 2091 2092 if (!isEntryValueCandidate(MI, DefinedRegs) || 2093 OpenRanges.getEntryValueBackup(V)) 2094 return; 2095 2096 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2097 2098 // Create the entry value and use it as a backup location until it is 2099 // valid. It is valid until a parameter is not changed. 2100 DIExpression *NewExpr = 2101 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2102 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 2103 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2104 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2105 } 2106 2107 /// Calculate the liveness information for the given machine function and 2108 /// extend ranges across basic blocks. 2109 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, 2110 MachineDominatorTree *DomTree, 2111 TargetPassConfig *TPC, unsigned InputBBLimit, 2112 unsigned InputDbgValLimit) { 2113 (void)DomTree; 2114 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2115 2116 if (!MF.getFunction().getSubprogram()) 2117 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2118 return false; 2119 2120 // Skip functions from NoDebug compilation units. 2121 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2122 DICompileUnit::NoDebug) 2123 return false; 2124 2125 TRI = MF.getSubtarget().getRegisterInfo(); 2126 TII = MF.getSubtarget().getInstrInfo(); 2127 TFI = MF.getSubtarget().getFrameLowering(); 2128 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2129 this->TPC = TPC; 2130 LS.initialize(MF); 2131 2132 bool Changed = false; 2133 bool OLChanged = false; 2134 bool MBBJoined = false; 2135 2136 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2137 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2138 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2139 // Ranges that are open until end of bb. 2140 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2141 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2142 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2143 // spills, copies and restores). 2144 // Map responsible MI to attached Transfer emitted from Backup Entry Value. 2145 InstToEntryLocMap EntryValTransfers; 2146 // Map a Register to the last MI which clobbered it. 2147 RegDefToInstMap RegSetInstrs; 2148 2149 VarToFragments SeenFragments; 2150 2151 // Blocks which are artificial, i.e. blocks which exclusively contain 2152 // instructions without locations, or with line 0 locations. 2153 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2154 2155 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2156 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2157 std::priority_queue<unsigned int, std::vector<unsigned int>, 2158 std::greater<unsigned int>> 2159 Worklist; 2160 std::priority_queue<unsigned int, std::vector<unsigned int>, 2161 std::greater<unsigned int>> 2162 Pending; 2163 2164 // Set of register defines that are seen when traversing the entry block 2165 // looking for debug entry value candidates. 2166 DefinedRegsSet DefinedRegs; 2167 2168 // Only in the case of entry MBB collect DBG_VALUEs representing 2169 // function parameters in order to generate debug entry values for them. 2170 MachineBasicBlock &First_MBB = *(MF.begin()); 2171 for (auto &MI : First_MBB) { 2172 collectRegDefs(MI, DefinedRegs, TRI); 2173 if (MI.isDebugValue()) 2174 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2175 } 2176 2177 // Initialize per-block structures and scan for fragment overlaps. 2178 for (auto &MBB : MF) 2179 for (auto &MI : MBB) 2180 if (MI.isDebugValue()) 2181 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2182 2183 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2184 if (const DebugLoc &DL = MI.getDebugLoc()) 2185 return DL.getLine() != 0; 2186 return false; 2187 }; 2188 for (auto &MBB : MF) 2189 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2190 ArtificialBlocks.insert(&MBB); 2191 2192 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2193 "OutLocs after initialization", dbgs())); 2194 2195 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2196 unsigned int RPONumber = 0; 2197 for (MachineBasicBlock *MBB : RPOT) { 2198 OrderToBB[RPONumber] = MBB; 2199 BBToOrder[MBB] = RPONumber; 2200 Worklist.push(RPONumber); 2201 ++RPONumber; 2202 } 2203 2204 if (RPONumber > InputBBLimit) { 2205 unsigned NumInputDbgValues = 0; 2206 for (auto &MBB : MF) 2207 for (auto &MI : MBB) 2208 if (MI.isDebugValue()) 2209 ++NumInputDbgValues; 2210 if (NumInputDbgValues > InputDbgValLimit) { 2211 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2212 << " has " << RPONumber << " basic blocks and " 2213 << NumInputDbgValues 2214 << " input DBG_VALUEs, exceeding limits.\n"); 2215 return false; 2216 } 2217 } 2218 2219 // This is a standard "union of predecessor outs" dataflow problem. 2220 // To solve it, we perform join() and process() using the two worklist method 2221 // until the ranges converge. 2222 // Ranges have converged when both worklists are empty. 2223 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2224 while (!Worklist.empty() || !Pending.empty()) { 2225 // We track what is on the pending worklist to avoid inserting the same 2226 // thing twice. We could avoid this with a custom priority queue, but this 2227 // is probably not worth it. 2228 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2229 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2230 while (!Worklist.empty()) { 2231 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2232 Worklist.pop(); 2233 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2234 ArtificialBlocks); 2235 MBBJoined |= Visited.insert(MBB).second; 2236 if (MBBJoined) { 2237 MBBJoined = false; 2238 Changed = true; 2239 // Now that we have started to extend ranges across BBs we need to 2240 // examine spill, copy and restore instructions to see whether they 2241 // operate with registers that correspond to user variables. 2242 // First load any pending inlocs. 2243 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2244 LastNonDbgMI = nullptr; 2245 RegSetInstrs.clear(); 2246 for (auto &MI : *MBB) 2247 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, 2248 RegSetInstrs); 2249 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2250 2251 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2252 "OutLocs after propagating", dbgs())); 2253 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2254 "InLocs after propagating", dbgs())); 2255 2256 if (OLChanged) { 2257 OLChanged = false; 2258 for (auto s : MBB->successors()) 2259 if (OnPending.insert(s).second) { 2260 Pending.push(BBToOrder[s]); 2261 } 2262 } 2263 } 2264 } 2265 Worklist.swap(Pending); 2266 // At this point, pending must be empty, since it was just the empty 2267 // worklist 2268 assert(Pending.empty() && "Pending should be empty"); 2269 } 2270 2271 // Add any DBG_VALUE instructions created by location transfers. 2272 for (auto &TR : Transfers) { 2273 assert(!TR.TransferInst->isTerminator() && 2274 "Cannot insert DBG_VALUE after terminator"); 2275 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2276 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2277 MachineInstr *MI = VL.BuildDbgValue(MF); 2278 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2279 } 2280 Transfers.clear(); 2281 2282 // Add DBG_VALUEs created using Backup Entry Value location. 2283 for (auto &TR : EntryValTransfers) { 2284 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); 2285 assert(!TRInst->isTerminator() && 2286 "Cannot insert DBG_VALUE after terminator"); 2287 MachineBasicBlock *MBB = TRInst->getParent(); 2288 const VarLoc &VL = VarLocIDs[TR.second]; 2289 MachineInstr *MI = VL.BuildDbgValue(MF); 2290 MBB->insertAfterBundle(TRInst->getIterator(), MI); 2291 } 2292 EntryValTransfers.clear(); 2293 2294 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2295 // that now. 2296 flushPendingLocs(InLocs, VarLocIDs); 2297 2298 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2299 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2300 return Changed; 2301 } 2302 2303 LDVImpl * 2304 llvm::makeVarLocBasedLiveDebugValues() 2305 { 2306 return new VarLocBasedLDV(); 2307 } 2308